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Abstract: In longitudinal studies, it is common that the response and the covariate
are not measured at the same time, which complicates the subsequent analysis.
In this study, we consider the estimation of a generalized varying coefficient
model with such asynchronous observations. We construct a penalized kernel-
weighted estimating equation using the kernel technique in a functional data analysis
framework. Moreover, we consider local sparsity in the estimating equation to
improve the interpretability of the estimate. We extend the iteratively reweighted
least squares algorithm in our computation, and establish the theoretical properties
of the proposed method, including the consistency, sparsistency, and asymptotic
distribution. Lastly, we use simulation studies to verify the performance of our
method, and demonstrate the method by applying it to data from a study on
women’s health.
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1. Introduction

A generalized varying coefficient model (Hastie and Tibshirani| (1993); Cai,
Fan and Li.|(2000)) allows the coefficients to vary over time, significantly widening
the application of regression models. Specifically, the model can be expressed as

E{Y()[X ()} = g{Bo(t) + BL() X ()}, €T, (1.1)

where Y'(t) is the response, X (t) is the covariate, ¢(-) is a known strictly increasing
and continuously twice-differentiable link function, 5y(t) is the intercept function,
B1(t) is the varying coefficient function, and 7 is a bounded and closed interval.
Here, we propose a new estimating method for a generalized varying coefficient
model with longitudinal measurements, from the perspective of functional data.

In practice, it often happens that the covariate and the response are not
measured at the same time for each subject in longitudinal observations. Such
asynchronous observations make the subsequent analysis more complicated. T'wo
main types of approaches have been proposed to solve this problem. The first
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comprises two steps, and is based on synchronizing the measurements of the
covariate and the response. For example, Xiong and Dubin (2010) propose
a binning method to align the measurement times in order to use traditional
longitudinal modeling, and Sentiirk et al.| (2013) use a functional principal
component analysis (FPCA) method to synchronize the data. However, because
the data used for modeling is obtained from estimations, errors from each step
accumulate. The second approach imposes a kernel weight based on the time
difference between the observations of the covariate and the response. These
methods are more appealing, because they use all available data. |Cao, Zeng and!
Fine| (2015) construct a kernel-weighted estimating equation for a generalized
linear model and a generalized varying coefficient model. [Cao, Li and Fine
(2016)) develop a weighted last observation carried forward (LOCF) method, and
Chen and Cao| (2017) apply the kernel weighting technique to partially linear
models. |Li et al. (2022)) consider models with longitudinal functional covariates,
and Sun, Zhao and Sun| (2021]) examine cases in which the observation times are
informative. Most of the above kernel methods work only with models with time
invariant coefficients, and only |Cao, Zeng and Fine| (2015) consider a generalized
varying coefficient model. However, their varying coefficients are estimated point
by point, which can be time consuming and lacks integrity. Therefore, a new
estimating method is required.

Interpreting the varying coefficient function J3;(t) is a vital part of a regression
analysis. These interpretability can be improved by introducing local sparsity,
which means the curve can be strictly equal to zero in some subintervals. Some
prior works have achieved local sparsity by imposing a sparseness penalty for
various models. For example, James, Wang and Zhu (2009), |[Zhou, Wang and
Wang| (2013]), and [Lin et al.| (2017) develop locally sparse estimators for a scalar-
on-function regression model, and [Tu, Park and Wang] (2020) use a group bridge
approach to obtain locally sparse estimates for a varying coefficient model. [Fang
et al. (2020) generalize the method of Lin et al.| (2017)) to cases in which the
response is multivariate, and a function-on-function regression model and a
function-on-scalar regression model are considered by (Centofanti et al.| (2020)
and Wang et al. (2020)), respectively. However, to the best of our knowledge,
local sparsity has not been considered for generalized varying coefficient models.

We use a functional data analysis (FDA) approach, because longitudinal data
can be viewed as functional data in a sparse design, and an FDA is more effective
than using pointwise methods. Our goal is to propose a novel method that
can be applied to asynchronous data, and that can produce estimates that are
more interpretable. Specifically, we construct a new kernel-weighted estimating
equation with penalties on both the roughness and the sparseness. To solve the
estimating equation, we extend the iteratively reweighted least squares (IRLS)
method, and design an innovative algorithm for the computation. We also
consider the selection of the tuning parameters. We generalize the extended
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Bayesian information criterion (EBIC) in |(Chen and Chen| (2008} |2012), to adapt
it to asynchronous data, such that the roughness parameter and the sparseness
parameter can be chosen accordingly. Moreover, we select the number of basis
functions using cross-validation (CV). The proposed method for a generalized
varying coefficient model is called LocKer, because we can use it to obtain a
locally sparse estimator of 3 (t), and we use the kernel technique in the procedure.
We also explore the theoretical properties of the proposed approach.

Our work contributes to the literature in three ways. First, we study
generalized varying coefficient models in an FDA framework, considering both
asynchronous data and local sparsity. Solving this problem will improve the
accuracy, utility, and interpretability of the results. Second, the proposed
algorithm can be implemented using the R package LocKer, available at https:
//CRAN.R-project.org/package=LocKer. Third, we explore the consistency,
sparsistency, and asymptotic distribution of our proposed method.

The remainder of the paper proceeds as follows. In Section 2, we construct
the penalized kernel-weighted estimating equation, and develop a computation
algorithm for the proposed LocKer method. We discuss the theoretical properties
of the proposed method in Section 3. In Section 4, we use simulation studies to
explore the accuracy of the proposed method and its ability to identify zero-valued
subintervals. We apply our method to data from a study on women’s health in
Section 5, and conclude the paper in Section 6.

2. Methodology
2.1. Estimating equation

Suppose there are n independent subjects in the study. For the ith
subject, let Y;(¢) and X;(¢) be realizations of the response process Y (t) and the
covariate process X (t), respectively. However, only longitudinal measurements
are obtained. Specifically, for ¢ = 1,...,n, we observe

K(EJ)7]:177LL7 Xi(Sik)ak:17"'7Mi7

where T;; is the jth observation time of the response, S;; is the kth observation
time of the covariate, L; is the observation size of the response, and M, is the
observation size of the covariate. Following |Cao, Zeng and Fine (2015), the
observation times can be viewed as being generated from a bivariate counting

process
L; M;

Ni(t,s) =Y (T <t,5 < s),

j=1 k=1

where I(-) is the indicator function.
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To estimate [y(t) and B;(t) in (1.1]), we employ the following basis approxi-
mation:

L L
Bot) = X Bilt)n” =B(1) 4. Bi0) = Y Biltn” = B() 'y,
=1 =1

where {By(t),l = 1,...,L} are B-spline basis functions with degree d and M
interior knots, 7\*’ and 7" are the corresponding coefficients of B,(t) and B;(t),
B(t) = (Bi(t)..... B ()T, ¥ = (1" 9)T, 40 = (0", 41))T, and
L = M + d+ 1 is the number of basis functions. Here, we apply B-spline basis
functions;|Zhong et al.| (2021]) explain the reasons for the wide use of B-spline basis
functions in local sparse estimation. Let v = (vOT,vOT) T X,(t) = X (£)By(t),
and X (t) = (X1(t),..., X, (t))T. Then, the generalized varying coefficient model
can be approximated by

E{Y (1) —g{ZBl <°>+2X } o{X' ()7},

where X'(t) = (B(t)T,X(t)T)T. Following previous works, such as [Lin
et al. (2017) and Li et al.| (2022)), we use an equal sign above to denote the
approximation. We can obtain estimates of Gy(f) and /31 (¢) using the estimation
of ~v. To this end, we construct the following penalized kernel-weighted estimating

equation:
1 n L q; o .
n N Z Kh ij zk Xl (Sik') [K(E]) - g{Xz (Szk>—r’7}i|
0 =1 j=1 k=1
PEN
V- RO (1)

oy

where Ny = S0 LiM;, V,,,, = diag(poV,p1 V), V = [ BO0)B(1)@7dt,
B (t) is the second derivative of B(t), po and p; are the roughness parameters
for Bo(t) and i (t), respectively, K(t) = K(t/h)/h, K(t) is a symmetric kernel
function, h is the bandwidth, PEN, () is the sparseness penalty for 3;(t), A is
the sparseness parameter, and 0 is a zero-valued vector with length 2L. Here,
we use h = max(7y.5,0.01) as the bandwidth, where 795 is the 0.95-quantile
of minj, |T;; — Six|. For the first term in (2.1)), define the kernel-weighted log-
likelihood function as

ZZ{ Gl b(e““) +c(E(Tu>,¢>}Kh(Tij—sik>,

i=1 j=1 k=1

n

where 6;, = X:(Sik)T’y, b(-) = g(-), a(¢) and ¢(Y;(T};), ¢) are both constants.
Then, the first term can be viewed as the derivative of the kernel-weighted log-
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likelihood function by neglecting a constant multiplier. Here, we consider all
possible pairs of response and covariate measurements, using the kernel weights to
control the effects of various pairs, such that measurements with close observation
times are emphasized. The second term is the derivative of the roughness penalty,
which is defined as

7 L{ﬁéz)(t)}th +5 /T{ﬁiz) (t)}"at

_ P

1
. A OTV~O 4 %’y“)TV'y“) =57 Vo

where 8$% (¢) and B (t) are the second derivatives of Bo(t) and 3, (t), respectively.
The third term is the derivative of the sparseness penalty PEN, (), the expression
of which is provided in Section 2.2. Note that the roughness penalty and the
sparseness penalty are imposed on the estimating equation by their derivatives.
Using , we can obtain a locally sparse estimator for model with
asynchronous observations. Though we consider a generalized varying coefficient
model with one covariate here, this can be extended easily to cases with more
covariates.

2.2. Sparseness penalty

In this section, we introduce the sparseness penalty used in (2.1). We
generalize the functional SCAD penalty in (Lin et al| (2017)) to achieve local
sparsity of (3;(t). Specifically, the sparseness penalty imposed on [ (t) is defined

L(B1) = A@;l/m(\ﬁl ZpA<\/M“/ B2(t dt) (2.2)

where T is the length of T, 7, is the knot of the used B-spline basis, and p,(+) is
the SCAD function suggested in (Fan and Li (2001)). We then transform (2.2} to
the penalty of « for the sake of computation. Let [|Sipmll3 = [ B7(t)dt. By the

local quadratic approximation py(|v|) = px(|Jve]) + (1/2){p;(|vo|)/|v0]}(02 —v2) in
(Fan and Li (2001))), we have

M+1 1
Z px( ||ﬁ1[m]\|2>

M+1
~ Z {PA( ||51[m]“2>
m=1

+1p&(\/—(M+1)/TH/3§?) ) <M+1”B PERLEZYPY )}
o 1[m] |2 1 2
2 /I )/T)89, 2 !

as
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MH M+ 1 " M+ 1 1Bipm I
I3l ) 55 12+ C

M+1

m=1

=~"Uy+C,

where

my

(0)
o _ \/Tm(v M+1)/T|8, 1)

2/| B l2

M+1
/ B(t)B(t)Tdt, U= diag(O, 3 Um), (2.3)
M+1 "
C: Zp)\< ||181[777,]H2>
I\/[+1 1
-5 Z M+ pA(

and O is an L x L matrix with all elements being zero. Here, Hﬁi?ﬁn]Hg is
obtained from the initial value or the estimate in the previous iteration. Then,
the sparseness penalty in (2.1]) can be expressed as

0 0
Hﬁl) ||2>||5< 2illz,

1
PEN\(7) = 57" Uy.

Here, the value of U depends on the value of ||ﬁ§?7)n] |2, so it varies in the iteration
process introduced in Section 2.3.

2.3. Algorithm

We generalize the IRLS algorithm to solve our estimating equation proposed
in Section 2.1. To this end, we ﬁrst rewrite in matrix form, and introduce

some additional notation. Let X = (X*(Sﬂ) ...,X:(S’iMl.))T, X = 1, ®
~xT ~xT
X, .ol X, )Y = (YT, Yi(Tin) Y = (Y ®@1,,,....Y, ®

11\T/1n)Ta n= X*77 Z=n+{Y—-gn)} f{gn)}, W = diag{Ky(T11 — Su), ...,
Kn(Ti1—Sia), Kn(Tia—S11)s - s Kn(Trn, — S, ) }, and H = diag[1/f'{g(n)}],
where ® is the Kronecker product, 1,, and 1,,, are vectors of length L, and
M;, respectively, with all elements being one, and f'(-) is the first derivative of
f(+), which is the inverse function of g(-). Then, the penalized kernel-weighted
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estimating equation ({2.1)) becomes
1 ~xT
Un(v) = FOX WH(Z —n) - Viomy —Uv =0, (2.4)

where H, Z, 1, and U are computed using the initial value of « or its estimate
in the previous iteration. From ({2.4]), we obtain the new estimate as

5=X"WHX + NV, +NU"'X" WHZ. (2.5)

Moreover, following (Lin et al. (2017)) and (Zhong et al| (2021)), the small

~*T ~ %
elements of 4 are shrunk to zero in the iteration such that X WHX -+
NoV,, .0, + NoU is not singular. Then, the estimates of [§y(t) and (;(t) are
given by

Bo®) =B1)™3® and Bi(t) =B(t)"FY, (2.6)

respectively, where 4(°) and (") are obtained from the final estimate of v using
the definition v = (y@7, M T)T,
The whole algorithm is summarized as follows:

Step 1: Give the initial value of 4, which we denote as ). Here, we use a least
squares estimate with a kernel weight, and consider the roughness penalty

in the initial estimate, that is, v/ = ()Z*TWX* + NOVphpz)‘lf(*TWY.
Step 2: Start with ¢ = 1. For the ¢th iteration,

(1) nl) = X Al
(2) 21 =l + {Y — g(n!")} - f{g(n'")} and H'Y = diag[1/ ' {g(n'")}].
(3) Compute U from .
4) v = (X WHIIX" + NV

3.
(5) Repeat Step 2(1)—(4) until convergence.

Step 3: Let 4 = ~19. Then, compute Bo(t) and 5, (t) using (2.6).

2.4. Selection of tuning parameters

+ NOU[Q})”)N(*TWH[Q]Z[Q] from

P1,P2

Recall that the bandwidth is chosen as h = max(7p9s5,0.01), where 7995
is the 0.95-quantile of min;y |T;; — Si|. In this section, we discuss selecting
the other tuning parameters in the computation, including the roughness
parameters, sparseness parameter, and number of B-spline basis functions, with
the bandwidth determined already. For clarity, let py = p; = p, which means
Bo(t) and Bi(t) share the same roughness parameter. However, our selection
criterion can be extended easily to the case pg # p;.
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The roughness parameter p and the sparseness parameter A are considered
jointly. We generalize the EBIC in (Chen and Chen| (2008, 2012)) to adapt it to
the asynchronous observations. More specifically, define

og (o) +

EBIC(p, A) = log(Dev) + df - ! v-df - %’

No U]

(2.7)

where Dev represents the deviance of the estimate, df is the degrees of freedom,
ng = #{Kn(T;; —Sir) #0,i=1,...,n;j=1,...Li;k=1,...,M;},and 0 < v <
1. We use v = 0.5, as suggested by Huang, Horowitz and Wei| (2010)). Moreover,
Dev is given by

Dev = -2 Z Z Z{K ii)0i — (é\m)}Kh(ng — Sik)s

=1 j=1 k=1

where 0;;, = g(f/ (Sik)). Then by ignoring some constant, we have

n

Dev = ZZZ{K 1) = Yi(Sin) Y En(Ty; — Sik)

i=1 j=1 k=1

for a Gaussian response,
Dev

=2 ZL:Z Yi(,I;j)lOg YZETZJ) —f-{l - %( %J)}logizf((Tij; Kh(Tij _Sik)

i=1 j=1 k=1 i\MPik - Iy Szk

DeV_zZ Y; ”)log{Y( )}]Kh(irw _Sik)

for a Poisson response. Furthermore, df is computed by
~*x ~%T ~ % - *T
df = tr{X (X4 WaX 1+ NoVy, p,4)” Xy Wal,

where A is a set indexing the nonzero elements in 4. For the third term in (2.7)),
2L is the length of «, and if more covariates are considered, it should be varied
accordingly.

We choose the number of B-spline basis functions using CV. For a given L,
we first select the best p and A using the EBIC, and then calculate the CV score
using the same method as Dev when facing responses with various distributions.
The effect of L is discussed in our simulation study in Section 4.2.
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3. Theoretical results

We study the asymptotic properties of our method in this section. Let
n(t,B) = Bo(t) + X (t)B:(t), where B(t) = (Bo(t), B1(t))". Let By(t) be the true
value of B(t). Define X*(t) = (1, X(t))". Let var{Y ()| X (¢)} = o{t, X (¢)}* and
cov{Y (s),Y (t)| X (s),X(t)} = r{s,t, X (s), X (t)}. Moreover, denote NULL(f) =
{t € T : f(t) = 0} and SUPP(f) = {t € T : f(t) # 0}, for any function f(¢).

Denote p = max(pg, p1). The needed assumptions are listed as follows:

Assumption 1. There exists some constant ¢ > 0 such that \Bép/)(tl) -
B ()| < ety — to]” and B (t1) — BP) (1) < |ty — to]”, for v € [0,1]. Let
r =p + v, and assume that 3/2 < r < d, where d is the degree of the B-spline
basis.

Assumption 2. The counting process N;(t,s) is independent of (Y;, X;) and
E{dN;(t,s)} = A(t,s)dtds, where \(t,s) is a bounded twice-continuous differen-
tiable function for any t,s € T. The Borel measure for G = {\(t,t) > 0,t € T}
is strictly positive. Moreover, P{dN(t;,ty) = 1|N(s1,82) — N(s1—, 82—) = 1} =
f(t1,ta, 81, 82)dt1dty, for t; # s1 and ty # sy, where f(tq,t2,81,S2) is continuous
and f(t1%, tot, s11, sot) exists.

Assumption 3. The tuning parameter X\ — 0 as n — oo. Assume that

JIsuppon BIAOPd = 0w M=), [ suppon KRG -
o(M~3/%).

Assumption 4. For any B in a neighborhood of By, we assume that E[X*(s)
g{n(t,B)}] and E[X*(s)g'{n(t,B)} X" (t)] are twice-continuous differentiable for
any (t,s) € T?, where b = 0,1. Moreover, we assume that E[X"(s1)X"(s2)"
g{1(tr, BN g{n(ts, B)}] and E[X(51) X (52) Tr{t, b, X(1), X (12)}] are twice-

continuous differentiable for any (t1,ts,s1,52) € T™.

Assumption 5. For any B in a neighborhood of By, we assume that E[X,(s)
X;(s)"g'{n(s,B)}? and E[X*(s)o{s, X (s)}?] are uniformly bounded in s, where
X5(s) = (1L, X*(1)".

Assumption 6. If ¥y and 1y satisfy ¥o(s) + ¥1(s)X(s) = 0, for Vs € G, with
probability one, then 1y = 0 and ¥, = 0.

Assumption 7. The kernel function K(-) is a symmetric density function.
Assume that [ 22K (z)dz < oo and [ K(z)*dz < oo.

Assumption 1 is similar to (C2) in (Lin et al.|(2017))), and is used to justify the
B-spline approximation. The requirement for the counting process is presented
in Assumption 2, and is the same as Condition 1 in (Cao, Zeng and Fine (2015))
and Assumption 3 in (Li et al. (2022)). Assumption 3 is analogous to (C3)
in (Lin et al, (2017)), and Assumptions 4-6 are parallel to assumptions in
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(Li et al. (2022))). Furthermore, Assumption 7 is a common assumption for a
kernel function.

Theorem 1. Under Assumptions 1-7, if M*?h?> — 0, n=/2M3/2p=1/2 — 0,
p— 0, and M~ — 0, then we have

Su713 \go(t) — Bo(t)| = OI,(Ml/zh2 +n YVEMY2 RV 4 p MY M),
te

sup 1B1(t) = Bu(t)| = Op (MR + n = 2MM2R=2 4 pM =12+ M),
te

The above theorem states the consistency of both By(t) and S3(t), and
the convergence rates are also given. To achieve the best convergence rate
in Theorem 1, we can set h = On~Y°), M = OnYCO+F2D)) and p =
O(n(_4r+2)/(5£1+2’“))) Then, we have sup,.; |Bo(t) — Bo(t)] = O, (n=4/G0+2r))
and sup,c |B1(t) — Bi(t)] = O,(n=*/G0+2)) " We discuss the sparsistency of
B1(t) in the following theorem.

Theorem 2. Suppose that the conditions of Theorem 1 are satisfied. If nh® =
O(1), nhM~2" = o(1), p = o(n'?), and An*/2M~/2h1/2 — oo, then we have
NULL(B,) — NULL(B,) and SUPP(B3,) — SUPP(f31) in probability, as n — oo.

According to Theorem 2, the zero-valued subintervals of our estimate [ (t)
are consistent with the true zero-valued subintervals. That means we have 3;(t) =

0 for any ¢t € NULL(f;), and Bl(t) # 0 for any t € SUPP(3) in probability. Next,
we discuss the asymptotic distribution of 4. Let ~, = (’yo ,’yél)T) be the
coefficient vector that satisfies |7 "B = Bollc = O(M ") and ||7{" "B = B/ =

O(M~") (de Boor| (2001); Zhong et al.| (2021))).

Theorem 3. Suppose that the conditions of Theorem 1 are satisfied. If nh®>M =
o(1), nhM =% = O(1), n"'M? = o(1), and p = o(n"'/?), then

nh(y — ) " Q2(F — v) — tr(Xo) 4
2tr(X3)

N(0,1),
where

_12//Kh (t— 8)X, (5)g' {mi(5, Bo) } X, (5) TdN, (1, 9),

5 = W(hl/z / / Ku(t — )X ()Y (1) — g{n(s, Bo) NN (1, s>>.

The asymptotic distribution of 4 is examined further using simulated data
in the Supplementary Material, where we also explore the pointwise asymptotic
distributions of 5y(t) and f;(t), and provide proofs of all theorems.
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4. Simulation Studies
4.1. Numerical performance

In this section, we discuss the performance of the proposed method by
simulation studies. The simulated data sets are generated from model ,
and Gaussian response, Bernoulli response and Poisson response are all in
consideration.  Moreover, for each distribution, both nonsparse coefficient
function and coefficient function with local sparsity are taken into account. The
detailed settings are as follows:

e Gaussian cases: The intercept function is set as [y(t) = cos(2nt), for
t € [0, 1]. For the nonsparse setting, the coefficient function £, (t) = sin(2nt),
and for the sparse setting, 5, (t) = 2-{Bs(t) + B7(t)}, where B;(t) is the Ith
B-spline basis on [0, 1], with degree three and nine equally spaced interior
knots. We generate the covariate functions in the same way as in |Lin
et al. (2017), that is, X;(¢t) = Y_,_, auB;* (t), where a;; is obtained from the
standard normal distribution, and B;*(¢) is the {th B-spline basis on [0, 1],
with degree four and 69 equally spaced interior knots. The sample size is
set as n = 200. Then, Y;(¢) is generated from Gaussian distribution with
mean fo(t) + S1(t)X,(t) and standard error one. To obtain asynchronous
data, we generate the observation sizes of the response and the covariate
independently from a Poisson distribution, with one additional observation
to avoid cases with no measurement. Here, the response and the covariate
share the same intensity rate m, and m is set as 15 and 20. Then, the
observation times are uniformly selected on [0, 1].

e Bernoulli cases: The settings are the same as those in the Gaussian cases,
except that Y;(t) is generated from a Bernoulli distribution with mean

Bo(t) + Bi(t) X (t).

e Poisson cases: The settings are the same as those in the Gaussian cases,
except that Y;(t) is generated from a Poisson distribution with mean 5y (t)+

B1(t) X (¢).

The proposed LocKer method is compared with other four approaches in
the simulation. The first is a reconstruction method that synchronizes the
response and the covariate using PACE (Yao, Miller and Wang| (2005))), as in
Senturk et al. (2013), and then employs the traditional IRLS algorithm. We
also consider the moment method of (Senturk et al. (2013)), the approach in
Cao, Zeng and Fine| (2015), and the penalized least squares estimating (PLSE)
method investigated by Tu, Park and Wang (2020). Note that |Tu, Park and
Wang| (2020)) investigated a local sparse estimator for a varying coefficient
model with synchronous observations. Therefore, to implement their method
for asynchronous cases, we first synchronize the data using smoothing, and then
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apply the PLSE to the synchronized data. These four methods are denoted as
Recon, Moment, Cao, and PLSE, respectively. Note that the Cao method is
available for regression models with Bernoulli and Poisson responses, but is quite
slow for these non-Gaussian cases, because it is a pointwise method. Hence, we
use an identity link for the Cao method in all considered cases. Moreover, the
PLSE is only applicable to a regression model with a Gaussian response; thus,
we view the responses as Gaussian for the PLSE in all cases.

We evaluate the integrated square error (ISE) of the estimated intercept
function and coefficient function for each method. Specifically,

ISE, = /T {Bo(t) — Bo(t)}2dt,
ISE, — /T (Bu(t) — Bu(t))2dt.

In the simulation, 100 runs are conducted for each case. The average ISE and
the standard deviation are compared between the methods.

Table 1 reports the average ISE, and ISE; of the Gaussian cases. With
various settings for the coefficient function (;(t) and the observation rate m,
the simulation results show similar trends. For the estimation of the intercept
function fy(t), all five methods give promising results, with minor differences
in ISEyg. On the other hand, it is evident that our LocKer method exhibits
significant advantages for the estimation of (3(t), regardless of whether or not
the true [;(t) is sparse. These results demonstrate that synchronizing and
pointwise approaches are not adequate, further indicating the importance of using
the observed data directly and taking sufficient account of the smoothness in
the estimation. Moreover, the estimating results become more precise for each
method as the observation rate increases.

Simulation results for the Bernoulli cases are presented in Table 2. The ISE,
and ISE; are higher than the errors in the Gaussian cases, which implies that
a Bernoulli response is more difficult to handle. However, the proposed LocKer
method still outperforms the other four methods in terms of estimating () for
both nonsparse and sparse settings, though the Recon and Moment methods are
slightly better in terms of estimating [y(¢). The reason for the invalid behavior
of the Cao and PLSE methods is that they simply treat the Bernoulli response as
a Gaussian response here. Table 3 displays the simulation results for the Poisson
cases. We find that the proposed LocKer method achieves the most accurate
estimates for both 5y(t) and (31 (¢) in each considered setting.

In summary, our LocKer method yields encouraging estimation results for
each case compared with those of the other methods. We conjecture that the
superiority of our method is because we use an FDA approach and a kernel
technique, as well as considering local sparsity.
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Table 1. The average ISEq and ISE; across 100 runs for five methods in Gaussian cases,
with the standard deviation in parentheses.

n =200,m =15 n = 200,m = 20

ISEq ISE; ISEq ISE,
Recon  0.0050 (0.0022) 0.2768 (0.0505) 0.0044 (0.0019) 0.1889 (0.0455)
Moment  0.0045 (0.0022) 0.4154 (0.1826) 0.0033 (0.0017) 0.4001 (0.0581)
Nonsparse Cao 0.0072 (0.0031) 0.3000 (0.0326) 0.0059 (0.0028) 0.2841 (0.0344)
PLSE  0.0244 (0.0106) 0.3994 (0.0839) 0.0145 (0.0066) 0.2966 (0.0998)
LocKer 0.0170 (0.0081) 0.0385 (0.0255) 0.0094 (0.0062) 0.0217 (0.0148)
Recon  0.0049 (0.0025) 0.2329 (0.0713) 0.0045 (0.0023) 0.1578 (0.0516)
Moment 0.0052 (0.0059) 0.5350 (0.2588) 0.0033 (0.0016) 0.4972 (0.0648)
Sparse Cao 0.0071 (0.0035) 0.3176 (0.0627) 0.0057 (0.0033) 0.3124 (0.0514)
PLSE  0.0216 (0.0081) 0.3025 (0.0992) 0.0153 (0.0057) 0.2147 (0.0780)
LocKer 0.0131 (0.0075) 0.0515 (0.0303) 0.0087 (0.0043) 0.0302 (0.0173)

Table 2. The average ISEq and ISE; across 100 runs for five methods in Bernoulli cases,
with the standard deviation in parentheses.

n = 200,m =15 n = 200,m = 20

ISE, ISE, ISEq ISE,
Recon  0.0128 (0.0061) 0.3123 (0.0824) 0.0106 (0.0057) 0.2264 (0.0791)
Moment 0.0171 (0.0085) 0.6108 (0.3848) 0.0131 (0.0064) 0.4744 (0.2760)
Nonsparse Cao 0.5600 (0.0139) 0.4530 (0.0133) 0.5590 (0.0135) 0.4480 (0.0142)
PLSE  0.5132 (0.0170) 0.4856 (0.0195) 0.5163 (0.0150) 0.4721 (0.0255)
LocKer 0.0531 (0.0267) 0.1777 (0.0973) 0.0332 (0.0155) 0.1074 (0.0578)
Recon  0.0182 (0.0075) 0.2898 (0.0966) 0.0172 (0.0067) 0.2444 (0.0892)
Moment 0.0230 (0.0113) 0.6906 (0.3372) 0.0193 (0.0074) 0.5646 (0.1204)
Sparse Cao 0.5751 (0.0150) 0.5259 (0.0148) 0.5753 (0.0113) 0.5239 (0.0140)
PLSE  0.5272 (0.0175) 0.5490 (0.0301) 0.5311 (0.0119) 0.5381 (0.0331)
LocKer 0.0426 (0.0235) 0.2600 (0.1094) 0.0291 (0.0147) 0.1773 (0.0805)

4.2. The effect of L

In Section 4.1, we focused on the accuracy of the estimation. In this section,
we explore how the number of B-spline basis functions influences the estimation,
especially the ability of the model to identify zero-valued subintervals of (3 (t).
Because local sparsity is also considered for the PLSE method, we include the
PLSE in the comparison in this section. The settings are the same as those in
Section 4.1, except that the response and the covariate are set to be observed
at the same time to make the comparison with the PLSE more meaningful. To
quantify the identifying ability, we compute the values of (;(¢) and Bl (t) at a
sequence of dense grids on [0, 1], and calculate the rates of the grids that correctly
identified being zero and falsely estimated being zero, which are denoted by TP
and FN, respectively. Moreover, the closer TP is to one and the closer FN is to
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Table 3. The average ISEy and ISE; across 100 runs for five methods in Poisson cases,
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with the standard deviation in parentheses.

n =200,m =15 n = 200,m = 20

ISEq ISE; ISEq ISE,
Recon  0.0257 (0.0078) 0.2789 (0.0573) 0.0234 (0.0064) 0.1929 (0.0437)
Moment  0.0285 (0.0083) 0.3335 (0.1157) 0.0253 (0.0067) 0.3597 (0.0489)
Nonsparse Cao 1.9949 (0.1056) 0.2645 (0.0378) 1.9772 (0.0794) 0.2496 (0.0371)
PLSE  1.6426 (0.1044) 0.3555 (0.0909) 1.7170 (0.0942) 0.2408 (0.0773)
LocKer 0.0163 (0.0103) 0.0345 (0.0186) 0.0096 (0.0069) 0.0192 (0.0128)
Recon  0.0660 (0.0166) 0.2462 (0.0940) 0.0660 (0.0146) 0.1670 (0.0903)
Moment 0.0730 (0.0234) 0.4579 (0.0962) 0.0745 (0.0175) 0.4791 (0.0647)
Sparse Cao 1.8242 (0.0954) 0.4116 (0.0511) 1.8220 (0.0752) 0.3991 (0.0496)
PLSE  1.4866 (0.0916) 0.4303 (0.1172) 1.5611 (0.0819) 0.3346 (0.1184)
LocKer 0.0268 (0.0128) 0.0912 (0.0604) 0.0185 (0.0097) 0.0465 (0.0225)

zero, the better the identifying ability is.

Tables 4-5 list the simulation results with different values of L in the Gaussian
For the nonsparse settings, ISE, and ISE; of the proposed LocKer
method decrease with an increase in L, and are better than those of the PLSE.
Moreover, TP does not exist for nonsparse settings, so only FN is reported. Here,
both methods achieve zero-valued FN, which means no grid is falsely identified,
indicating that subintervals can be identified effectively for a coefficient function

cases.

without local sparsity by both methods.

For the sparse settings, the estimation of 3y(t) becomes better as L increases.
However, both methods give the best estimation of 3 (¢) when L = 13. The reason
is related to the setting of ;(t). Recall that to ensure local sparsity of 3;(t), we
use the B-spline basis with degree three and nine equally spaced interior knots
in the setup. Therefore, the B-spline basis used in the setup is coincided with
the B-spline basis applied in the estimation, yielding good performance of our
method for L = 13. Except when L = 13, a larger value of L can yield a better
estimation in terms of both accuracy and identifying ability. Compared with the
PLSE, our method produces estimates that are more precise for Gy(t), but ISE;
is slightly higher than that of PLSE. However, for the identifying ability, the
proposed LocKer method is much better than the PLSE in terms of both TP and
FN, showing the advantage of our method in identifying zero-valued subintervals.

To sum up, although a larger value of L is beneficial for the identification
in some general cases, more B-spline basis functions mean more parameters in
the estimation, thus increasing the difficulty of the estimation. We discuss the
results for the Bernoulli and Poisson cases in the Supplementary Material.
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Table 4. The average ISE, ISE;, TP, and FN across 100 runs for PLSE and LocKer
using various values of L when n = 200 and m = 15 in Gaussian cases, with standard
deviations in parentheses.

ISEg ISE; TP FN
PLSE 0.0120 (0.0054) 0.0196 (0.0064) - 0 (0)
Nonsparse
L—10 LocKer 0.0115 (0.0039) 0.0139 (0.0048) - 0 (0)
N Sparse PLSE 0.0209 (0.0079) 0.0159 (0.0062) 0.1740 (0.2254) 0 (0)
P LocKer 0.0099 (0.0036) 0.0169 (0.0060) 0.5564 (0.1486) 0 (0)
PLSE 0.0123 (0.0049) 0.0189 (0.0060) - 0 (0)
Nonsparse
I—13 LocKer 0.0077 (0.0029) 0.0115 (0.0054) - 0 (0)
N Sparse PLSE 0.0209 (0.0075) 0.0070 (0.0049) 0.6109 (0.3012) 0 (0)
pat LocKer 0.0065 (0.0031) 0.0056 (0.0041) 0.9777 (0.0625) 0 (0)
PLSE 0.0093 (0.0038) 0.0186 (0.0064) - 0 (0)
Nonsparse
I —15 LocKer 0.0063 (0.0025) 0.0095 (0.0054) - 0 (0)
N Sparse PLSE 0.0152 (0.0059) 0.0081 (0.0039) 0.3925 (0.2461) 0.0230 (0.0365)
P LocKer 0.0053 (0.0022) 0.0161 (0.0072) 0.8619 (0.0461) 0.0195 (0.0359)
PLSE 0.0093 (0.0039) 0.0204 (0.0062) - 0 (0)
Nonsparse
L — 92 LocKer 0.0047 (0.0021) 0.0076 (0.0055) - 0 (0)
N Sparse PLSE 0.0179 (0.0065) 0.0098 (0.0049) 0.5022 (0.2323) 0.0786 (0.0619)
P LocKer 0.0043 (0.0018) 0.0135 (0.0092) 0.9086 (0.0631) 0.0042 (0.0167)

Table 5. The average ISE, ISE;, TP, and FN across 100 runs for PLSE and LocKer
using various values of L when n = 200 and m = 20 in Gaussian cases, with standard
deviations in parentheses.

ISEg ISE; TP FN
PLSE 0.0065 (0.0031) 0.0128 (0.0049) - 0 (0)
Nonsparse
L—10 LocKer 0.0071 (0.0027) 0.0089 (0.0044) - 0 (0)
N Sparse PLSE 0.0128 (0.0057) 0.0136 (0.0051) 0.1621 (0.2108) 0 (0)
P LocKer 0.0061 (0.0027) 0.0159 (0.0045) 0.5587 (0.1517) 0 (0)
PLSE 0.0066 (0.0029) 0.0131 (0.0045) — 0 (0)
Nonsparse
L—13 LocKer 0.0045 (0.0020) 0.0075 (0.0046) - 0 (0)
N Sparse PLSE 0.0143 (0.0046) 0.0050 (0.0033) 0.6009 (0.2522) 0 (0)
P LocKer 0.0038 (0.0016) 0.0049 (0.0034) 0.9838 (0.0542) 0 (0)
PLSE 0.0056 (0.0023) 0.0134 (0.0044) - 0 (0)
Nonsparse
I—15 LocKer 0.0041 (0.0018) 0.0075 (0.0043) — 0 (0)
N Sparse PLSE 0.0092 (0.0035) 0.0064 (0.0035) 0.3104 (0.2266) 0.0126 (0.0261)
P LocKer 0.0033 (0.0014) 0.0096 (0.0038) 0.8654 (0.0613) 0.0241 (0.0345)
PLSE 0.0065 (0.0024) 0.0150 (0.0047) - 0 (0)
Nonsparse
L =20 LocKer 0.0035 (0.0018) 0.0057 (0.0039) - 0 (0)
N Sparse PLSE 0.0128 (0.0049) 0.0078 (0.0033) 0.5393 (0.1997) 0.0748 (0.0582)
P LocKer 0.0028 (0.0015) 0.0073 (0.0033) 0.9484 (0.0242) 0.0116 (0.0268)

5. Real Data Analysis

Menopause in women is often accompanied by several physical changes.
For example, follicle stimulating hormone (FSH) begins to increase in the
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Figure 1. Observation times of FSH and TG for 100 randomly selected women.

perimenopausal stage (Wang et al. (2020)). Some studies showed that FSH has
an influence on cardiovascular disease (CVD) risk (El Khoudary et al. (2016]);
Wang et al.|(2017))). Serviente et al. (2019) propose that the association between
FSH and CVD risk may be related to the effect of FSH on lipid levels. In this
section, we aim to explore the relationship between FSH and triglycerides (TG),
one of the lipid variables, using the proposed LocKer method.

The Study of Womens Health Across the Nation (SWAN) focuses on the
health of women during their middle years. Between 1996 and 1997, 3302
women enrolled in this study, and 10 visits were conducted from 1997 to 2008.
Moreover, both FSH and TG were recorded in this study and the data can be
download from https://www.swanstudy.org/. Since TG was not measured in
the last two visits, only the baseline and the first eight visits are taken into
account in our analysis. Furthermore, we exclusively consider women who were
early perimenopause or pre-menopausal at the baseline. Then, after removing
individuals with no FSH or TG data, we have n = 3224 women in the study.
Figure 1 displays the observation times of FSH and TG for 100 randomly selected
women; note that the observation times are transformed to take values in [0, 1].
The figure shows that although some of the observation times for FSH and TG
are the same, the asynchronous problem remains, particularly on [0.2,0.3] and
[0.8,1], owing to the absence of TG records in the second and eighth visits.

We apply the LocKer method by treating FSH as the covariate and treating
TG as the response. Both FSH and TG are centralized after being log-
transformed. The roughness parameter and sparseness parameter are selected as
introduced in Section 2.4. Figure 2 shows the estimated coefficient function using
LocKer. Our results show a negative association between FSH and TG, which
is consistent with the findings of Wang et al. (2020). Furthermore, additional
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Figure 2. Estimate of the coefficient function obtained using the proposed LocKer method
for the relationship between FSH and TG in women enrolled in the SWAN study.

findings can be achieved by local sparsity of our estimate. The estimate is zero-
valued in the early stage, indicating that FSH has a minor effect on TG at the
start of the menopausal transition. This effect begins to increase at about t = 0.5,
and reaches a maximum at around ¢ = 0.8, which implies a stronger relationship
between FSH and TG in the later stage.

6. Conclusion

In this paper, we employ FDA method in the estimation of generalized
varying coefficient model. Moreover, we use the kernel technique to solve the
asynchronous problem, and impose a sparseness penalty to improve the accuracy
and interpretability of the estimates. Our theoretical study verifies both the
consistency and the sparsistency of the proposed LocKer method, and provides
an asymptotic distribution of the estimator. The results of extensive simulation
experiments and a practical application suggest that the LocKer method performs
well.

However, we focus on the generalized varying coefficient model, which means
only response and covariate values recorded at the same time are relevant. A
more general model can be expressed as

B{Y(t)|X(s),s € T} = g{ﬁo(t) + [rX(s),Bl(s,t)ds},t eT.

In the above model, the response is related to the value of the covariate on the
whole interval 7, rather than at one exact time point, which is more practical
in real-world data sets. In future research, we will consider the asynchronous
problem and local sparsity in this model in greater detail.



1920 ZHONG, ZHANG AND ZHANG

Supplementary Material

The online Supplementary Material contains proofs of Theorems 1-3, and
some additional theoretical and simulation results.
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