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Abstract: The binary expansion testing framework was recently introduced to test

the independence of two continuous random variables by using symmetry statis-

tics that are complete sufficient statistics for dependence. We develop a new test

based on an ensemble approach that uses the sum of squared symmetry statis-

tics and the distance correlation. Simulation studies suggest that this method has

improved power, while preserving the clear interpretation of the binary expansion

testing. We extend this method to tests of independence of random vectors in an

arbitrary dimension. Using random projections, the proposed binary expansion

randomized ensemble test transforms the multivariate independence testing prob-

lem into a univariate problem. Simulation studies and data examples show that

the proposed method provides relatively robust performance compared with that of

existing methods.

Key words and phrases: Binary Expansion, monparametric inference, multiple test-

ing, multivariate analysis, nonparametric test of independence.

1. Introduction

Nonparametric tests of independence are a fundamental problem in statistics

and have been studied by, among others, Hoeffding (1948). This problem is

garnering increased interest, owing to its important role in machine learning and

big data analysis.

Numerous testing methods have been proposed, including those of Székely,

Rizzo and Bakirov (2007), Wang, Jiang and Liu (2017), and Han, Chen and Liu

(2017), who generalize the idea of correlation and R-squared, Shapiro and Hubert

(1979), Friedman and Rafsky (1983), Azadkia and Chatterjee (2021), Deb and

Sen (2023), and Deb, Bhattacharya and Sen (2021), who relate dependence to

graphs, Heller, Heller and Gorfine (2012), Heller et al. (2016), and Heller and

Heller (2016), who study the distance matrix of ranks, Berrett and Samworth

(2019), Kim, Balakrishnan and Wasserman (2022), and Berrett, Kontoyiannis

and Samworth (2021), who consider classical permutation-based statistics, and
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Gretton et al. (2007), Chwialkowski and Gretton (2014), Jitkrittum, Szabó and

Gretton (2017), Pfister et al. (2018), Zhang et al. (2018), and Chakraborty and

Zhang (2021), who take advantage of the reproducing kernel Hilbert space to

develop Hilbert–Schmidt independence criterion-based statistics. Other recent

works include those of Weihs, Drton and Meinshausen (2018), Ke and Yin (2019),

Bodnar, Dette and Parolya (2019), Shi, Drton and Han (2020), and Drton, Han

and Shi (2020). Zhu et al. (2017) proposed a projection method related to the

distance correlation when testing independence. Excellent reviews can be found

in Jaworski et al. (2010) and Josse and Holmes (2016).

An important problem in nonparametric dependence detection is that of

nonuniform consistency, which means that no test can uniformly detect all forms

of dependency, as described by Zhang (2019). This problem is particularly se-

vere for nonlinear relationships, which are common in many areas of science.

To avoid the power loss due to nonuniform consistency, Zhang (2019) considers

the binary expansion statistics (BEStat) framework, which examines dependence

using a filtration approach induced by a binary expansion of the uniformly dis-

tributed variables. Zhang (2019) also proposed testing the independence of two

continuous variables using the framework of maximum binary expansion testing

(BET). Rather than one test of independence, this approach uses a carefully de-

signed sequence of tests based on a filtration to achieve universality. BET also

achieves uniform consistency and is minimax optimal in terms of power (see sec-

tion 4.2 in Zhang (2019)). In addition, it provides clear interpretability, and can

be implemented efficiently using bitwise operations.

Although BET works well for testing the independence between two vari-

ables, two crucial improvements are needed to make it more practical. The first

requirement is to improve the power of BET under certain cases, such as linear

dependency. The second requirement is an extension to test the independence of

random vectors. We describe a new approach that solves both problems. The

first problem is addressed using a novel ensemble approach, and the second is

solved by using a one-dimensional random projection. We call the new method

the binary expansion randomized ensemble test (BERET). We use simulation

studies to show that the proposed method has good power properties.

We use example data sets to illustrate how the proposed method provides

clear interpretability, while maintaining good power properties across various

dependence structures, including both linear and nonlinear relationships. In a

life expectancy example, our method detects three meaningful and interpretable

relationships and provides similar p-values to those of competing methods. In

a mortality rate example, we show that the canonical correlation test can be
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interpretable, but fails to detect a nonlinear dependence structure. This is unfor-

tunate, because the canonical correlation test is the only other method that has

inherent interpretability. In contrast, our method is able to identify meaningful

relationships, even when there is a nonlinear relationship. In a house price exam-

ple, the mutual information test fails to reject independence because the linear

relationship is not sufficiently strong. However, our method rejects independence

because of its stronger sensitivity to linear relationships, and is able to detect in-

terpretable dependence structures, including linear relationships. The canonical

correlation test also works here and provides good interpretability. However, our

method is the only method that can detect both linear and nonlinear relation-

ships, as well as providing interpretable dependency structures.

The remainder of this paper is organized as follows. Section 2 describes the

ensemble method and the BERET procedure. In Section 3, we present simulation

studies that demonstrate the performance of the proposed method, and in Section

4, we provide three data examples. Concluding remarks are presented in Section

5. All proofs are given in the Supplementary Material.

2. Proposed Method

2.1. The BET framework

We briefly introduce the BET and useful notation from Zhang (2019). Let

(X1, Y1), . . . , (Xn, Yn) be a random sample from distributions of X and Y . If the

marginal distributions of X and Y are known, we can use the CDF transformation

so that U = FX(X) and V = FY (Y ) are each uniformly distributed over [0, 1].

The binary expansions of the two random variables U and V can be expressed

as U =
∑∞

k=1Ak/2
k and V =

∑∞
k=1Bk/2

k, where Ak
i.i.d.∼ Bernoulli(1/2) and

Bk
i.i.d.∼ Bernoulli(1/2). The value of each Bernoulli distributed variable can be

found using Ak′ = I{U −
∑k′−1

k=1 Ak/2
k ≥ 1/2k

′} or Bk′ = I{V −
∑k′−1

k=1 Bk/2
k ≥

1/2k
′}. If we truncate the expansions at depth d, then Ud =

∑d
k=1Ak/2

k and

Vd =
∑d

k=1Bk/2
k are two discrete variables that can take 2d possible values.

We define the binary variables Ȧk = 2Ak − 1 and Ḃk = 2Bk − 1 to express the

interaction between them as their products. We call any products of Ak and

Bk with at least one Ak and one Bk cross-interactions. In other words, cross-

interactions are defined as variables of the form Ȧk1 . . . ȦkrḂk′
1
. . . Ḃk′

t
, for some

r, t > 0. We use the following binary integer indexing. Let a be a d-dimensional

binary vector with ones at k1, . . . , kr and zeros otherwise, and let b be a d-

dimensional binary vector with ones at k′1, . . . , k
′
t and zeros otherwise. Using

this notation, the cross-interaction Ȧk1,...,krḂk′
1,...,k

′
t

can be written as ȦaḂb. For
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example, Ȧ1Ȧ3Ḃ2Ḃ4 = ȦaḂb, where a = 1010 and b = 0101 when d = 4.

Let Ȧa,i and Ḃb,i be the values of Ȧa and Ḃb for the ith observation.

We denote the sum of the observed binary interaction variables by S(ab) =∑n
i=1 Ȧa,iḂb,i, with S(00) = n. These are referred to as the symmetry statis-

tics. If Ud and Vd are independent, (S(ab) + n)/2 ∼ Binomial(n, 1/2), for a 6= 0

and b 6= 0. If the marginal distributions are unknown, we use the empirical CDF

transformation, and then (Ŝ(ab) + n)/4 ∼ Hypergeometric(n, n/2, n/2), where

Ŝ(ab) is a symmetry statistic with an empirical CDF transformation.

If we truncate the expansions at depth d = dmax, the BET procedure at depth

dmax can be defined as follows. First, we compute all symmetry statistics with

a 6= 0 and b 6= 0, for d = dmax. For each depth d = 1, . . . , dmax, we identify the

symmetry statistic with the strongest asymmetry and find its p-value. Finally, we

use the Bonferroni adjustment to obtain a p-value that considers the family-wise

error rate.

BET has several advantages. The test is minimax optimal under certain

regulatory conditions. Moreover, it provides both inferences and clear inter-

pretations. For BET, rejecting independence implies that there is at least one

significant cross-interaction. Thus, we can find a potential dependence structure

in the sample by investigating the detected cross-interaction.

2.2. Univariate independence testing procedure

Although BET shows good performance in many interesting dependency

structures, there is room for improvement. In particular, using the maximum

statistic in the BET testing procedure may introduce a loss of power when the

sparsity assumption in Zhang (2019) is violated. We consider a test based on the

sum of the squared symmetry statistics.

Consider a binary expansion test with specified dmax. For each depth d =

1, . . . , dmax, we can find a set of symmetry statistics S(ab). Let Cd be a set

of corresponding ab indices of depth d. The sets Cd have a nested structure.

Because an interaction has different ab indices for two different d, to avoid con-

fusion, we use ab of depth dmax, for example, when dmax = 2, C1 = {1010}, and

C2 = {0101, 0110, 0111, 1001, 1010, 1011, 1101, 1110, 1111}. Now, for each depth

d, we introduce two measures of dependence. Suppose X ∈ R and Y ∈ R are two

continuous random variables. The population measure of dependence is defined

as

Bd(X,Y ) =
1

(2d − 1)2

∑
ab∈Cd

E(ȦaḂb)2, (2.1)
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for each depth d = 1, . . . , dmax. The joint distribution of (Ud, Vd) with a finite d is

not an exact model for the joint distribution of (U, V ). Therefore, Bd(X,Y ) = 0

does not necessarily indicate independence between (U, V ). When d is large,

however, we expect that the dependence in (Ud, Vd) precisely approximates that

in (U, V ).

Let {(Xi, Yi)}ni=1 be a random sample from the joint distribution of (X,Y ).

The empirical measure of dependence is defined as

Bn,d[{(Xi, Yi)}ni=1] =
1

(2d − 1)2

∑
ab∈Cd

(
S(ab)

n

)2

, (2.2)

for each depth d = 1, . . . , dmax. The following theorem lists some properties of

Bd(X,Y ) and Bn,d[{(Xi, Yi)}ni=1].

Theorem 1. Suppose X and Y are continuous random variables. The following

properties hold:

(i) Bd(X,Y ) = 0 if and only if Ud and Vd are independent.

(ii) 0 ≤ Bd(X,Y ) ≤ 1.

(iii) Bn,d[{(Xi, Yi)}ni=1]
a.s.−→ Bd(X,Y ) as n→∞.

(iv) If X and Y are independent, then (2d− 1)2nBn,d[{(Xi, Yi)}ni=1]
d−→ χ2

(2d−1)2
as n→∞.

We define the scaled sum of the squared symmetry statistics for each depth

d = 1, . . . , dmax as

ξn,d =
∑

ab∈Cd

S2
(ab)

n
. (2.3)

By this definition, each ξn,d can be used to detect dependencies up to depth d.

Consider a test that rejects H0: “X and Y are independent” if at least one ξn,d
is greater than ξn,d,1−αd

, the 1−αd quantile of ξn,d. Then, by Boole’s inequality,

the upper bound of the type-I error is

Pr(reject H0 | H0 is true) ≤
dmax∑
d=1

αd. (2.4)

There are many possible versions of the test based on different choices of αd.

Alternatives in Cd for smaller d reflect more global dependencies with lower reso-

lutions. From this point of view, we propose an exponentially decaying approach
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for the choice of αd. If we choose αd = αγd/
∑dmax

d=1 γd, where 0 < γ ≤ 1, then

the upper bound of the significance level is

Pr(reject H0 | H0 is true) ≤
dmax∑
d=1

αγd∑dmax

d=1 γd
= α, (2.5)

guaranteeing a level-α test. A natural choice of γ is one:

Pr(reject H0 | H0 is true) ≤
dmax∑
d=1

α

dmax
= α. (2.6)

The correct depth where the dependency may present is not known a priori.

An appropriate dmax should reflect the desired accuracy in the approximation.

However, considering ‖(Ud, Vd) − (U, V )‖ = Op(2
−d), we believe that dmax = 4

provides a good approximation in practice.

The power of the proposed test can be improved by compromising between a

distance correlation test and multiple testing over interactions. The BET frame-

work loses power from the adverse effect of multiplicity control over depth. This

loss of power is particularly severe for linear dependency. See Section 1.2 in the

supplementary material of Zhang (2019) for a detailed discussion. By consider-

ing distance correlation combined with the proposed test, we can mitigate this

power loss. The above test is composed of multiple hypothesis tests, and each test

has its own set of dependence structures as its alternative hypothesis. Suppose

dmax = 4. Then there is only one interaction Ȧ1000Ḃ1000 in ξn,1. The cross-

interaction Ȧ1000Ḃ1000 falls in the first or the third quadrant of the unit square

[0, 1]2 when Ȧ1000Ḃ1000 = 1, and in the second or the fourth quadrant when

Ȧ1000Ḃ1000 = −1. Therefore, ξn,1 = S2
10001000/n represents the strength of the

linear dependency. If another independence test performs better than ξn,1 under

linear dependency, we can replace the test based on ξn,1 with it, while maintain-

ing the performance of the test in other dependence structures. Because we are

using a Bonferroni correction for the critical values, this replacement still main-

tains the targeted level of the test. We call this approach an ensemble method

because it combines two testing methods. The independence test with Pearson’s

correlation can also be combined with the proposed test. However, we choose

the distance correlation test, because it improves the power in a wider range of

cases and is equivalent to Pearson’s correlation under normality. The proposed

procedure consists of the following steps:
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Step 1 : Fix α1, . . . , αdmax
with

∑dmax

d=1 αd = α.

Step 2 : Find the p-value for the distance correlation test.

Step 3 : For each d = 2, . . . , dmax, compute ξn,d and its p-value.

Step 4 : Reject H0 if at least one of the p-values is less than the respective αd.

To find the p-value for each depth d ≥ 2, we can use either a permutation

approach or the asymptotic distribution given in Theorem 1, part (iv). Now, we

investigate the behavior of our test in large samples.

Theorem 2. Denote the joint distribution of (Ud, Vd) by P(Ud,Vd) and the bi-

variate uniform distribution over {0/2d, . . . , (2d − 1)/2d}2 by P0,d. For any fixed

0 < δ ≤ 1/2, denote by H1,d the collection of distributions P(Ud,Vd) such that

TV (P(Ud,Vd),P0,d) ≥ δ. Consider the testing problem,

H0 : P(Ud,Vd) = P0,d v.s. H1 : P(Ud,Vd) ∈ H1,d.

Under H1, each ξn,d →∞ as n→∞.

Theorem 2 shows that our test statistics, ξn,d, go to infinity as the sample

size increases. Moreover, the distance correlation test is known to be consis-

tent. Therefore, the ensemble method is also statistically consistent against the

collection of alternatives described in Theorem 2.

2.3. Multivariate independence testing procedure

In this section, we develop a generalized independence test for random vec-

tors. To do so, we convert the independence of the random vectors into the

independence of univariate random variables, which yields the following lemma.

Lemma 1. Let X ∈ Rp and Y ∈ Rq be two random vectors. Then, X and Y

are independent if and only if sTX and tTY are independent for all s ∈ Rp and

t ∈ Rq, with ‖s‖ = 1 and ‖t‖ = 1.

This result shows that to prove the independence of random vectors, it is suf-

ficient to consider the independence of arbitrary linear combinations of the com-

ponents. Therefore, the multivariate independence can be tested by checking all

possible combinations of s and t. However, because this cannot be implemented,

we consider an approximation of the test by including a finite, but reasonably

broad number of combinations. Denote the hyper unit spheres in Rp and Rq

by Sp and Sq, respectively. Now, for each depth d, we propose two measures of

dependence.
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Suppose X ∈ Rp and Y ∈ Rq are two random vectors. For s ∈ Sp and t ∈ Sq,
we define a measure of dependence for the multivariate setting by

Bd(X,Y) =
1

cpcq

∫
Sq

∫
Sp

Bd(sTX, tTY)dsdt, (2.7)

where cp = 2πp/2/Γ(p/2) and cq = 2πq/2/Γ(q/2).

Let {(Xi,Yi)}ni=1 be a random sample from the joint distribution of (X,Y).

The empirical measure of dependence is defined as

Bn,d[{(Xi,Yi)}ni=1] =
1

cpcq

∫
Sq

∫
Sp

Bn,d[{(sTXi, t
TYi)}ni=1]dsdt. (2.8)

The following theorem lists several properties of Bd(X,Y) and Bn,d[{(Xi,

Yi)}ni=1].

Theorem 3. Suppose the distributions of X and Y are continuous. Let U s
d

and V t
d be truncated binary expansions at depth d of U s and V t, respectively,

where U s = FsTX(sTX) and V t = FtTY(tTY), for s ∈ Sp and t ∈ Sq. Similarity

transformations consist of all Euclidean transformations and all (nonzero) scaling

(Móri and Székely (2019)). The following properties hold:

(i) Bd(X,Y) = 0 if and only if U s
d and V t

d are independent, for all s ∈ Sp and

t ∈ Sq.

(ii) 0 ≤ Bd(X,Y) ≤ 1.

(iii) Bd(X,Y) is invariant with respect to all similarity transformations.

(iv) Bn,d[{(Xi,Yi)}ni=1]
a.s.−→ Bd(X,Y) as n→∞.

Note that Bn,d[{(Xi,Yi)}ni=1]=ES,T(Bn,d[{(STXi,T
TYi)}ni=1] |{(Xi,Yi)}ni=1),

where S and T follow uniform distributions on Sp and Sq, respectively. This ex-

pectation can be estimated by

B̂mn,d[{(Xi,Yi)}ni=1] =
1

m

m∑
j=1

Bn,d[{(STj Xi,T
T
j Yi)}ni=1], (2.9)

where {(Sj ,Tj)}mj=1 is a random sample generated from uniform distributions

on Sp and Sq. We call this statistic the BERET measure of dependence. The

following theorem shows this measure is a consistent estimator of the population

measure of dependence.
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Theorem 4. Suppose X and Y are continuous random vectors. Then, B̂mn,d[{(Xi,

Yi)}ni=1]
a.s.−→ Bd(X,Y) as m, n→∞.

Now, to develop an independence test, we define the statistic

ζmn,d = n(2d − 1)2B̂mn,d[{(Xi,Yi)}ni=1], (2.10)

for each depth d = 1, . . . , dmax. By computing 1 − αd quantiles of ζmn,d, for d =

1, . . . , dmax, we can consider the test that rejects H0 : “X and Y are independent”

if at least one ζmn,d, for d = 1, . . . , dmax, is greater than ζmn,d,1−αd
. If

∑dmax

d=1 αd ≤ α,

this procedure provides a level-α test. To put the proposed test into practice, we

estimate the asymptotic null distribution using a random permutation method.

For better performance, under possible linear dependency, we combine this

procedure with the distance correlation test, as above. If the scales of the elements

in the random vectors differ greatly, normalization may help to reduce the number

of s and t values to be sampled when the marginal variance of each entry in the

random vector cannot degenerate to zero or diverge to infinity. The following

procedure summarizes the approach:

Step 1 : Set α1, . . . , αdmax
, with

∑dmax

d=1 αd = α.

Step 2 : Normalize marginally each element of the random vectors.

Step 3 : Find the p-value for the distance correlation test.

Step 4 : Fixm ∈ N and generate the random samples s1, . . . , sm and t1, . . . , tm
from uniform distributions on hyper spheres.

Step 5 : For each d = 2, . . . , dmax, compute ζmn,d and its p-value using the

permutation method.

Step 6 : Reject H0 if at least one of the p-values is less than the respective

αd.

The name of the test reflects the random projection and ensemble structure.

Again, we investigate the behavior of our test in large samples. Theorem 5 shows

that the BERET is uniformly consistent against the alternatives in the theorem.

Theorem 5. For any fixed 0 < δ ≤ 1/2, denote by Hs,t
1,d the collection of distri-

butions P(Us
d,V

t
d )

such that TV (P(Us
d,V

t
d )
,P0,d) ≥ δ. Consider the testing problem

H0 : P(Us
d,V

t
d )

=P0,d for all s ∈ Sp, t ∈ Sq
vs. H1 : P(Us

d,V
t
d )
∈ Hs,t

1,d for some s ∈ Sp and t ∈ Sq.
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Then, the following properties hold:

(i) Under H1, ζmn,d →∞ as m,n→∞.

(ii) The rejection probability of the permutation test is bounded by α under H0

and converges to one under H1 as m,n→∞ if dmax ≥ d.

The BERET has the following advantages. First, the method achieves robust

power by a compromise between the distance correlation test and multiple testing

over interactions (see the simulation results in Section 3). There is also a power

loss in the multivariate case owing to the multiplicity control over the depth. By

considering the distance correlation result together with the proposed measure of

dependence with d ≥ 2, we can improve the power over a wide range of plausible

dependencies.

The second benefit of our method is clear interpretability, which is particu-

larly important when evaluating multivariate relationships. However, most mul-

tivariate independence tests provide only the results of the tests, with no in-

formation on potential dependence structures in the sample. In contrast, when

the proposed test rejects independence, the s and t vectors indicate the linear

combinations of the vectors that have strong dependencies (see section 2.3 of the

Supplementary Material). Using these vectors, we can detect possible depen-

dence structures in the sample; see the three-dimensional double helix structure

in Figure 1, in which white positive regions and gray negative regions of interac-

tions provide the interpretation of global dependency. The double helix structure

is detected by two linear combinations. Additional interesting interpretation ex-

amples are provided in Section 4.

The third benefit of our method is its “invariance.” Móri and Székely (2019)

introduced axioms for a measure to be a dependence measure. If a measure ∆

satisfies ∆{f(X), g(Y )} = ∆(X,Y ), where f and g are similarity transformations,

it is called invariant with respect to similarity transformations. Because of the

random projection and the CDF transformation steps in the proposed method,

translations, orthogonal linear mappings, and uniform scalings do not affect the

value of the measure of dependence.

Lastly, our method provides useful exploratory information for model selec-

tion. A small entry in the unit vector s or t may indicate that the corresponding

variable is not related to the other random vector; see the data examples in

Section 4 for details.
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Figure 1. The first plot shows a sample with a double helix dependency between a
random vector (X1 X2)T and a random variable Y with n = 128. The second and third
plots show the linear combinations of X1 and X2 with the strongest asymmetries and
the corresponding symmetry statistics (S(ab)). Positive regions (ȦaḂb = 1) are in white,

and negative regions (ȦaḂb = −1) are in gray.

3. Simulation Studies

3.1. Univariate independence

For comparison, we consider Hoeffding’s D test (Hoeffding (1948)), the dis-

tance correlation test (Székely, Rizzo and Bakirov (2007)), the mutual infor-

mation test (MINTav, Berrett and Samworth (2019)), Fisher’s exact scanning

method (Ma and Mao (2019)), and the maximum binary expansion test (Zhang

(2019)). We use the sample size n = 128 as a moderate sample size for the power

comparison. We set the level of the tests to be 0.1, and simulate each scenario

1,000 times. We adopt dmax = 4, because this depth provides a good approx-

imation to the true distribution; see Section 4.5 in Zhang (2019) for a detailed

discussion. The p-values of the proposed method are calculated using the asymp-

totic distribution of Theorem 1, part (iv). Lastly, we verified that the p-value

under the null hypothesis is controlled at the level 0.1.

We compare the power of the above methods using linear, parabolic, circu-

lar, sine, checkerboard, and local relationships described in Zhang (2019). At

each noise level l = 1, . . . , 10, ε, ε′, and ε′′ are independent N (0, (l/40)2) random

variables. Here, U follows the standard uniform distribution, ϑ is a U [−π, π]

random variable, and W , V1, and V2 follow multi-Bern({1, 2, 3}, (1/3, 1/3, 1/3)),

Bern({2, 4}, (1/2, 1/2)), and multi-Bern({1, 3, 5}, (1/3, 1/3, 1/3)) distributions,

respectively. G1 and G2 are generated from N (0, 1/4); see Table 1. These sce-

narios are displayed visually in the Supplementary Material.
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Table 1. Simulation scenarios for the univariate independence test.

Scenario Generation of X Generation of Y

Linear X = U Y = X + 6ε

Parabolic X = U Y = (X − 0.5)2 + 1.5ε

Circular X = cosϑ+ 2ε Y = sinϑ+ 2ε′

Sine X = U Y = sin(4πX) + 8ε

Checkerboard X = W + ε Y =

{
V1 + 4ε′ if W = 2

V2 + 4ε′′ otherwise

Local X = G1 Y =

{
X + ε if 0 ≤ G1 ≤ 1 and 0 ≤ G2 ≤ 1

G2 otherwise

Figure 2 shows the performance of the six methods. With the exception of

the proposed test, the other methods all show the lowest power in at least one

scenario. The ensemble approach and the BET show similar power across the

scenarios, except for the linear and local dependency. The ensemble approach

improves the power considerably in the linear and local dependency scenarios.

As discussed previously, the ensemble approach uses the information on depen-

dence remaining in the symmetry statistics that is not reflected in the calculation

of the maximum BET. Therefore, small asymmetries in many symmetry statis-

tics can be combined to provide a significant result in the ensemble approach

when the sparsity assumption is violated. This result is related to the second

finding that the ensemble approach outperforms Fisher’s exact scanning in terms

of both global and local dependence structures. Zhang (2019) reported that the

maximum BET provides better power for global dependence structures, whereas

Fisher’s exact scanning performs better for local dependence structures. The

simulation results suggest that the ensemble approach works better than Fisher’s

exact scanning, even in the local dependency scenario.

3.2. Multivariate independence

Although the proposed method can be applied to arbitrary p and q, we choose

p = 2 and q = 1 for better illustration. We compare the proposed method with

the distance correlation test (Székely, Rizzo and Bakirov (2007)), Heller–Heller–

Gorfine test (Heller, Heller and Gorfine (2012)), d-variable Hilbert–Schmidt inde-

pendence criterion (Gretton et al. (2007)), and mutual information test (MINTav,

Berrett and Samworth (2019)). We again use the sample size n = 128. We set

the level of the tests to be 0.1, and simulate each scenario 1,000 times. For our

method, we adopt m = 30, because there is no considerable difference in perfor-

mance compared with larger m, such as m = 360. We also use a permutation
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Figure 2. Comparison of the power of six tests of independence: the binary expansion
randomized ensemble test with dmax = 4 (square), the maximum binary expansion test
with dmax = 4 (plus sign), the distance correlation test (cross), Hoeffding’s D (diamond),
the mutual information test (triangle), and Fisher exact scanning (circle).

method with 1,000 replicates to calculate the p-values of the proposed approach.

We verified that the p-value under the null hypothesis is controlled at the level

0.1.

We compare the power of the methods over linear, parabolic, spherical, sine,

and local dependence structures. These scenarios are generalized from the uni-

variate dependence simulations. In addition, we include an additional interesting
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Table 2. Simulation scenarios for multivariate independence testing.

Scenario Generation of X Generation of Y

Linear X =

(
U1

U2

)
Y = X1 +X2 + 7ε

Parabolic X =

(
U1

U2

)
Y = (X1 − 0.5)2 + (X2 − 0.5)2 + 1.5ε

Spherical X =

 G1√
G2

1+G
2
2+G

2
3

G2√
G2

1+G
2
2+G

2
3

 Y = G3√
G2

1+G
2
2+G

2
3

+ 3ε

Sine X =

(
U1

U2

)
Y = sin (5πX1) + 4ε

Double helix X =

(
Icos(ϑ) + 1.5ε

Isin(ϑ) + 1.5ε′

)
Y = ϑ

2 + 2ε′′

Local X =

(
G1

G2

)
Y =

{
X1√
2

+ X2√
2

+ ε
2 , if 0 ≤ G1 +G2 ≤ 2 and 0 ≤ G3 ≤ 1.

G3, otherwise.

Table 3. Computing time (in seconds) of each method for 100 runs.

BERET dCor HHG d-HSIC MINT
CPU Time (seconds) 74.89 0.17 510.42 16.96 65.19

relationship, namely, the double helix structure. At each noise level l = 1, . . . , 10,

ε, ε′, and ε′′ are independent N (0, (l/40)2) random variables, U1 and U2 follow the

standard uniform distribution, ϑ follows U[0, 4π], G1, G2, and G3 are independent

N (0, 1/4) random variables, and I follows the Rademacher distribution; see Table

2. These three-dimensional scenarios are presented visually in the Supplementary

Material.

Before we compare the statistical performance of the methods, we report the

computation time of 100 runs for each method in Table 3.

Figure 3 shows the simulation results. The BERET provides the best power

in more complex dependency structures, such as the sine and double helix de-

pendencies, and it outperforms the distance correlation test and the d-variable

Hilbert–Schmidt independence criterion in at least five scenarios. Moreover, our

method provides stable results across the scenarios considered. It ranks at least

third in all scenarios. The mutual information test performs best in the high-

est number of scenarios. In linear and sine relationships, however, there is a

significant loss of power in the mutual information test compared with the pro-

posed method. Note that our method provides additional insight. Other methods

provide only test results of independence, whereas our method also provides po-

tential dependence structures. The simulation results show that BERET provides

competitive performance, while providing a much clearer interpretation.
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Figure 3. Comparison of the power of five tests of independence: the binary expansion
randomized ensemble test with dmax = 4 (square), the Heller–Heller–Gorfine test (plus
sign), the distance correlation test (cross), the d-variable Hilbert–Schmidt independence
criterion (diamond), and the mutual information test (triangle).

4. Data Examples

4.1. Life expectancy

We use the proposed method to test the independence between geographic

location and life expectancy, and compare its performance with that of the dis-

tance correlation test (dCor), Heller–Heller–Gorfine test (HHG), mutual informa-
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Table 4. p-values from five tests of independence.

BERET dCor HHG MINT CC
Life expectancy <0.0001 <0.0001 0.0010 0.0010 <0.0001
Mortality rate 0.0040 0.0050 0.0010 0.3077 0.4303
House price <0.0001 <0.0001 0.0010 0.6204 <0.0001

tion test (MINT), and canonical correlation test (CC). We include the canonical

correlation test because it provides some insight on the dependence structure,

as does the proposed method. For the proposed method, we set dmax = 4 and

m = 30. The p-value of the test is calculated using a permutation method with

1,000 replicates. The data set is obtained from the life expectancy report released

by the World Health Organization in 2016, and includes males and females and to-

tal life expectancy for 189 countries and special administrative regions estimated

in 2015. We use the latitude (X1), longitude (X2), and total life expectancy (Y )

in the analysis. Table 4 presents the testing results for the five methods. All five

tests provide p-values close to zero, indicating a significant dependence between

geographic location and life expectancy.

To identify the dependence structure, we investigate the symmetry statistics.

Figure 4 shows the three largest symmetry statistics and the corresponding s

in each case. The most asymmetric result is shown in the first row, that is,

Ȧ2Ḃ1, with s = (0.516, 0.857)T . The horizontal axis is the empirical cumulative

distribution function transformation of 0.516X1 + 0.857X2, wherein a smaller

value implies that the country is located in the southwest, and a larger value

implies that it is located in the northeast. There are four groups. Each gray cell

represents a specific region, namely, America, Africa, Europe, and Asia, from left

to right. The countries in America and Europe show a higher life expectancy

than do countries in Africa and Asia. The four points in the top-right corner

are Hong Kong, Japan, Macau, and South Korea. These can be interpreted as

potential outliers distinct from the global pattern.

The second row shows that there is a positive relationship between latitude

and life expectancy. That is, countries in North America, Europe, and Northeast

Asia have a higher life expectancy than do countries in Africa, South America, and

the other parts of Asia. The last row shows that a circular dependency can exist,

indicating that countries in America and Asia have a medium life expectancy,

whereas countries around the prime meridian have different life expectancies,

higher in Europe and lower in Africa. These findings prove clearly that our

method detects the dependence structures between geographic location and life

expectancy.



THE BINARY EXPANSION RANDOMIZED ENSEMBLE TEST 2397

V

U
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

s = (0.516, 0.857)
S (ab) = −71

V

U
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

s = (0.999, −0.054)
S (ab) = 69

V

U
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

s = (0, 1)
S (ab) = −63

V

U
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

s = (0.516, 0.857)
S (ab) = −71

V

U
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

s = (0.999, −0.054)
S (ab) = 69

V

U
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

s = (0, 1)
S (ab) = −63

V

U
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

s = (0.516, 0.857)
S (ab) = −71

V

U
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

s = (0.999, −0.054)
S (ab) = 69

V

U
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

s = (0, 1)
S (ab) = −63

Figure 4. The three strongest dependency structures between geographic location and
life expectancy, as well as the corresponding values of the symmetry statistics (S(ab))
and the coefficients of linear combination (s) of X1 and X2. The arrows in the world
maps represent the horizontal axes in the scatterplots.

A canonical correlation analysis can also be used to find information on the

dependence structure. The canonical correlation is 0.43, and it is calculated us-

ing 0.991X1 − 0.137X2 and Y . The coefficients of X1 and X2 are similar to the

elements of s in the result of the proposed method in the second row. How-

ever, a canonical correlation provides information only on the linear dependence

structure, whereas our method provides richer information by considering various

nonlinear dependence structures.
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4.2. Mortality rate

In this section, we investigate the relationship between mortality rate, birth

rate, and income level. We use the Central Intelligence Agency’s world fact data,

estimated in 2018. The data set includes the income level (X1), birth rate (X2),

and mortality rate (Y ) of 224 countries and special administrative regions. The

p-values of the five methods are presented in Table 4. Once again, the proposed

method and two other methods provide p-values close to zero, thus rejecting the

null hypothesis, whereas the mutual information test and canonical correlation

fail to reject it. The poor performance of the canonical correlation can be ex-

plained by investigating the results of our method. The strongest asymmetry is in

Figure 5, which shows a strong quadratic relationship. This relationship explains

the failure of the canonical correlation for these data. Although the canonical

correlation test provides both an inference and information on the dependence

structure, it performs poorly in nonlinear dependency settings.

Two conflicting phenomena explain the observed quadratic relationship. First,

developed countries have low birth rates, but high mortality rates, owing to pop-

ulation aging. However, developing countries have high birth rates because of a

lack of family planning, and high mortality rates because of insufficient public

health. Thus, mortality rates are high in countries with low or high birth rates.

The BERET detects an interesting structure that can be explained by widely

recognized relationships between mortality rate and birth rate.

4.3. House price

The third data example is based on the market historical data set of real

estate from the University of California, Irvine machine learning repository. The

data include 414 transactions from the Xindian district of Taipei between August

2012 and July 2013. We use these data to detect the relationship between geo-

graphic location and house price. The p-values of the five methods are presented

in Table 4. All methods except the mutual information test provide p-values close

to zero, which is consistent with the commonly assumed relationship between lo-

cation and house price in a city. The mutual information test fails to reject the

independence. Figure 6 presents the two strongest dependencies identified by the

proposed method.

The symmetry statistic with the strongest asymmetry is Ȧ1Ḃ1, which means

there may be a linear relationship between geographic location and house price.

The corresponding s for the horizontal axis is (0.964, 0.268). That is, houses

have higher values in the north and lower values in the south. This is because
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Figure 5. The plot shows the strongest dependency structure between birth rate, income
level, and mortality rate, as well as the corresponding value of the symmetry statistic
(S(ab)) and the coefficients of the linear combination (s) of X1 and X2.

the central part of Taipei is above the Xindian district. The symmetry statistic

with the second strongest asymmetry is Ȧ1Ȧ2Ḃ1. The corresponding s for the

horizontal axis is (0.215, 0.977)T . That is, house prices are high at the center of

the district, where two main roads intersect, and decrease toward the periphery.

These results accord closely with the general characteristics of real estate prices

in a city. Therefore, we conclude that the proposed method properly detects the

relationship between house price and geographic location.
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Figure 6. The plots show the two strongest dependency structures between geographic
location and house price. The plots also present the symmetry statistics (S(ab)) and the
coefficients in the linear combinations s and t. The arrows in the map represent the
horizontal axes in the scatterplots.

5. Conclusion

Detecting dependence in a distribution-free setting is an important problem

in statistics. Existing methods find it difficult to detect complicated dependence

structures. For example, in our simulations, the distance correlation test does not

detect circular dependency well, but does provide good power in linear, parabolic,

and sine settings. The BET procedure in Zhang (2019) suggests a novel way of

solving this problem. However, it is limited to the independence test of two

random variables, and there is room to enhance the power when the sparsity

assumption is violated.

We have introduced an ensemble approach and a binary expansion random-

ized ensemble test. The ensemble approach uses both the sum of the squared
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symmetric statistics and the distance correlation test. It shows better power in

linear and local settings, while maintaining power for other dependence struc-

tures. Moreover, it can be easily generalized to an independence test for the

multivariate setting, the binary expansion randomized ensemble test. Using ran-

dom projections, the BERET transforms the multivariate independence testing

problem into a univariate testing problem. The BERET also maintains the clear

interpretability of the maximum BET.

Simulation studies suggest that the BERET is more powerful than several

competitors considered in meaningful dependence structures. Three data exam-

ples show that the BERET reveals hidden dependence structures in the data,

while maintaining a level of power similar to that of the best of the competing

methods.

Several improvements are worth considering for future work. For instance,

there may be a different method of combining the symmetry statistics that offers

better performance. It would also be useful to derive the limiting null distribution

of the test statistic for the multivariate setting to avoid a permutation method.

Supplementary Material

The online Supplementary Material provides technical details and proofs.
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