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Abstract: Motivated by studying the asymptotic properties of the parameter

estimator in switching linear state space models, switching GARCH models,

switching stochastic volatility models, and recurrent neural networks, we investigate

the maximum likelihood estimator for general Markov switching models. To this

end, we first propose an innovative matrix-valued Markovian iterated function

system (MIFS) representation for the likelihood function. Then, we express the

derivatives of the MIFS as a composition of random matrices. To the best of

our knowledge, this is a new method in the literature. Using this useful device,

we establish the strong consistency and asymptotic normality of the maximum

likelihood estimator under some regularity conditions. Furthermore, we characterize

the Fisher information as the inverse of the asymptotic variance.
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1. Introduction

Motivated by studying the asymptotic properties of the parameter estimator

in switching linear state space models, switching GARCH models, switching

stochastic volatility (SV) models, and recurrent neural networks (RNNs), we

investigate the maximum likelihood estimator (MLE) for general Markov switch-

ing models (GMSMs). Let {Ht, t ≥ 0} be an ergodic (aperiodic, irreducible,

and positive recurrent) Markov chain on a finite state space D = {1, . . . , d}, and
denote

Yt = gHt
(Xt, Yt−1, εt; θ), t ≥ 1, with Y0 = 0, (1.1)

Xt = fHt
(Xt−1, ηt; θ), t ≥ 1, with X0 = 0, (1.2)

where Yt ∈ Rp, for some p ≥ 1, Xt ∈ Rm, for some m ≥ 1, {εt, t ≥ 1} is a

sequence of independent and identically distributed (i.i.d.) p×1 random vectors,

and {ηt, t ≥ 1} is a sequence of i.i.d. m × 1 random vectors. Furthermore, we

assume that {Ht, t ≥ 0} is a first-order Markov chain, and that {Ht, t ≥ 0},
{ηt, t ≥ 1}, and {εt, t ≥ 1} are independent. The GMSM is very flexible, and

*Corresponding author.

https://doi.org/10.5705/ss.202021.0336


1368 FUH AND PANG

includes the aforementioned models as special cases. For example, if gHt
and

fHt
are linear functions and there is no dynamic structure in the observations

{Yt, t ≥ 0}, the GMSM is reduced to the following well-known switching linear

state space model:

Yt = Bt(Ht)Xt + εn, t ≥ 1, with Y0 = 0, (1.3)

Xt = At(Ht)Xt−1 + ηn, t ≥ 1, with X0 = 0; (1.4)

see Kim (1994) and Ghahramani and Hinton (2000).

A GMSM is, loosely speaking, a two-layer Markov switching model (MSM)

or a two-layer state space model. Specifically, let Y = {Yt, t ≥ 0} be a sequence of

random variables obtained in the following way. First, a realization of a Markov

chain X = {Xt, t ≥ 0} is created. This chain is sometimes called the regime, and

is not observed. Then, conditioned on X, the Y-variables are generated. Usually,

the dependency of Yt on X is more or less local, as when Yt = g(Xt, Yt−1, εt), for

some function g and random sequence {εt, t ≥ 1}, independent of X. In general,

Yt itself is not Markovian, and may in fact have a complicated dependency

structure. When the state space of {Xt, t ≥ 0} is finite, it is the so-called

hidden Markov model or MSM. In this paper, we consider a GMSM in which

the underlying Markov chain X depends on a regime switching. That is, there is

an extra finite state Markov chain H = {Ht, t ≥ 0} such that, conditional on Ht,

Xt is a general state Markov chain, for t ≥ 0. Moreover, Y depends on both H

and X.

The purpose of this study is to provide a theoretical justification for the

MLE in a GMSM. A major difficulty when analyzing the likelihood function in

a GMSM is that the function can be expressed only in recursive integral form;

see Equation (2.4) below, for instance. Here, we use the device in (2.5)–(2.13),

to represent the probability density and the likelihood function in (2.4) as the

L1-norm of a matrix-valued Markovian iterated function system (MIFS). Then,

the log likelihood function can be expressed in additive form, as in (3.7), to which

we can apply the standard argument of the likelihood function for the “enlarged”

Markov chain. This representation also gives a fast numerical computation

algorithm of the invariant probability and the Kullback–Leibler divergence for

a two-state hidden Markov model; see Fuh and Mei (2015). Furthermore, it

may provide a fast algorithm for evaluating of the likelihood function using

the EM algorithm. Note that the asymptotic behavior of MIFS is examined

in detail by Fuh (2021). This new device enables us to apply the results of

the strong law of large numbers and the central limit theorem for the asymptotic

distributions of the matrix-valued MIFS, as well as to verify the strong consistency

and asymptotic normality of the MLE in a GMSM.
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Next, we give a brief summary of the literature on GMSMs. Note that a

GMSM has two-layer hidden states H and X. When there is no hidden state X,

andY is conditionally independent for givenH, the GMSM is the classical hidden

Markov model, and has attracted much attention because of its importance in,

for example, speech recognition, signal processing, ion channels, and molecular

biology. When Y forms an autoregression model for a given H, the GMSM

reduces to the MSM of Hamilton (1989) and the Markov switching multifractal

models of, for example, Calvet and Fisher (2001). When there is only X and

no hidden state H, the GMSM includes the celebrated (G)ARCH models, as in

Engle (1982) and Bollerslev (1986), SV models, as in Taylor (1986), and RNNs,

as in Goodfellow, Bengio, and Courville (2016). Refer to Hamilton (1994) and

Fan and Yao (2003) for a comprehensive summary.

When there are two-layer hidden states H and X, the GMSM includes the

switching linear state space model, as in Kim (1994) and Ghahramani and Hinton

(2000), switching GARCH models, as in Cai (1994) and Hamilton and Susmel

(1994), switching SV models, as in So, Lam, and Li (1998), and variational RNNs,

as in Chung et al. (2015). When H = {Ht, t ≥ 0} are i.i.d. finite-valued random

variables, and {Xt, t ≥ 0} is a finite-state Markov chain for given H, then {Yt, t ≥
0} is the factorial hidden Markov model, as in Ghahramani and Jordan (1997).

These prior works focus on state space modeling and estimation, algorithms for

fitting these models, and implementing likelihood-based methods. For instance,

Kim (1994) and Ghahramani and Hinton (2000) propose a Kalman-filter-based

method and a variational approximation method, respectively, to implement the

MLE in switching linear state space models, and Davig and Doh (2014) estimate

new Keynesian general equilibrium models using switching monetary policy rules.

RNNs are a popular modeling choice for solving sequence learning problems

in machine learning (see Goodfellow, Bengio, and Courville (2016)). Early

applications of RNN models in econometrics can be found in Kuan and White

(1994) and White (1988), among others. Recent approaches have used artificial

neural networks for auction design, as in Dütting et al. (2019), for estimating

causal relationships, developing the broad idea of instrumental variables, as in

Hartford et al. (2016), for portfolio theory in finance, as in Sirignano (2019) and

Gu, Kelly, and Xiu (2020), and for time series, as in Verstyuk (2020). Owing to

the model complexity, most econometrics and machine learning studies use the

gradient descent and/or stochastic gradient descent to compute the MLE. For

instance, Rumelhart, Hinton, and Williams (1987) propose a recursive algorithm

(backpropagation learning) that speeds up the gradient descent method, and

White (1989) establishes the consistency and asymptotic normality of the

algorithm. Adaptive moment (Adam) estimation is a recent popular adaptive

gradient algorithm used in machine learning, for example, in Kingma and Ba

(2015).
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There is extensive literature on the MLE in a special case of the GMSM

in which there is only one finite hidden state H. When the observation is

a deterministic function of the state space, Baum and Petrie (1966) establish

the consistency and asymptotic normality of the MLE. When the observed

random variables are conditionally independent, Leroux (1992) proves the strong

consistency of the MLE, and Bickel, Ritov, and Rydén (1998) establish the

asymptotic normality of the MLE, under mild conditions. By extending

the inference problem to time-series analysis, where the state space is finite

and the observed random variables are conditionally Markovian dependent,

Goldfeld and Quandt (1973) and Hamilton (1989) use the MLE in switching

autoregression with Markov regimes. Francq and Roussignol (1998) and Douc,

Moulines, and Rydén (2004) study the consistency and asymptotic normality,

respectively, of the MLE in Markov-switching autoregressive models, and Fuh

(2004) establishes the Bahadur efficiency of the MLE in MSMs. When {Yt, t ≥ 0}
are conditionally independent given X, Jensen and Petersen (1999) and Douc

and Matias (2001) study the asymptotic properties of the MLE. Douc et al.

(2011) study the consistency of the MLE for general hidden Markov models. The

strong consistency and asymptotic normality of the MLE for general state hidden

Markov models can be found in Fuh (2006).

This study makes three contributions to the literature. First, we provide

a probability framework for the GMSM, which includes hidden Markov models,

MSMs, (switching) GARCH(p, q) models, (switching) SV models, (switching)

linear state space models, and variational RNNs as special cases. Moreover,

we use a dynamic economic model’s viewpoint to analyze the two-layer RNN

model in machine learning. Second, in order to establish the strong consistency

and asymptotic normality of the MLE under some regularity conditions, we

first propose an innovative matrix-valued MIFS representation for the likelihood

function, and then express the derivatives of the MIFS as a composition of random

matrices. To the best of our knowledge, this is a new method in the literature.

Moreover, we provide a weaker weighted local mean contractive condition and fill

the gap in the proof of asymptotic normality in Fuh (2006). Third, we characterize

the Fisher information as the inverse of the asymptotic variance by showing that

the derivatives of the likelihood function still form a matrix-valued MIFS. These

results can be applied to Markov switching models, nonlinear state space models,

and SV models as well.

The remainder of this paper is organized as follows. In Section 2, we formally

define the GMSM and represent its likelihood function as the L1-norm of a matrix-

valued MIFS. Section 3 investigates the MLE in the GMSM, and states the main

results. Section 4 studies derivatives of the matrix-valued MIFS and the score

function, and then characterizes the Fisher information. Section 5 concludes

the paper. In Section S1 of the Supplementary Material, we consider several

interesting examples, including switching linear state space models, switching
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GARCH(p, q) models, switching SV models, and variational RNNs, which are

popular in econometrics and machine learning. A simulation study and all

technical proofs are given in Section S2 and Section S3, respectively, of the

Supplementary Material.

2. GMSMs

In general, a GMSM is not Markovian. However, in this section, we provide a

probability framework for the GMSM, under which it can be regarded as a Markov

chain in an enlarged state space. There are two Markov chain representations

for the GMSM. First, a GMSM is defined as a parameterized Markov chain in

a Markovian random environment, with the underlying environmental Markov

chain viewed as missing data. Specifically, let H = {Ht, t ≥ 0} be an ergodic

(aperiodic, irreducible, and positive recurrent) Markov chain on a finite state

space D = {1, . . . , d}, with transition probability pθij = P θ{H1 = j|H0 = i} and

stationary probability πθ
H(·). For given H, let X = {Xt, t ≥ 0} be a Markov chain

on a general state space X , with transition probability kernel P θ
j (x, ·) = P θ{X1 ∈

·|H1 = j,X0 = x} and stationary probability πθ
X(·|H0 = j), where θ ∈ Θ ⊆ Rq

denotes the unknown parameter. Suppose that a random sequence {Yt, t ≥ 0},
taking values in Rp, is adjoined to the chain such that {((Ht, Xt), Yt), t ≥ 0} is a

Markov chain on (D × X ) ×Rp, such that conditioning on the full H sequence,

{Xt, t ≥ 0} is a Markov chain with probability{
P θ{X0 ∈ A|H0, H1, . . . , Y0 = y} = P θ{X0 ∈ A|H0},
P θ{X1 ∈ A|H0, H1, . . . , X0 = x, Y0 = y} = P θ{X1 ∈ A|H1, X0 = x} a.s.,

(2.1)

for A ∈ B(X ), the Borel σ-algebra of X . Furthermore, conditioning on the full

(H,X) sequence, {Yt, t ≥ 0} is a Markov chain with probability
P θ{Y0 ∈ B|H0, H1, . . . , X0, X1, . . .} = P θ{Y0 ∈ B|H0, X0},
P θ{Yt+1 ∈ B|H0, H1, . . . , X0, X1, . . . ;Y0, Y1, . . . , Yt} =
P θ{Yt+1 ∈ B|Ht+1, Xt+1;Yt} a.s.,

(2.2)

for each t and B ∈ B(Rp), the Borel σ-algebra of Rp. Note that in (2.2), the

conditional probability of Yt+1 depends only on (Ht+1, Xt+1) and Yt. Furthermore,

we assume the existence of a transition probability density pθj(x, x
′) for the

Markov chain {Xt, t ≥ 0}, given Ht = j, with respect to a σ-finite measure

m on X such that for i, j ∈ D,

P θ{H1 = j,X1 ∈ A, Y1 ∈ B|H0 = i,X0 = x, Y0 = y0}

=

∫
x′∈A

∫
y∈B

pθijp
θ
j(x, x

′)f(y; θ|j, x′, y0)Q(dy)m(dx′),
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where f(Yk; θ|Hk, Xk, Yk−1) is the conditional probability density of Yk given

((Hk, Xk), Yk−1), with respect to a σ-finite measure Q on Rp. We also assume

that the Markov chain {((Ht, Xt), Yt), t ≥ 0} has a stationary probability with

probability density function πθ
H(h0)π

θ
X(x0|h0)f(·; θ|h0, x0) with respect to m×Q.

In this paper, we consider θ = (θ1, . . . , θq)
T ∈ Θ ⊆ Rq as the unknown

parameter (here, and in what follows, T denotes the transpose of a vector or

matrix), and the true parameter value is denoted by θ0. We use πH(j) for π
θ
H(j),

πX(x|j) for πθ
X(x|j), pj(x, x′) for pθj(x, x

′), f(y0|H0, X0) for f(y0; θ|H0, X0), and

f(yk|Hk, Xk, Yk−1) for f(yk; θ|Hk, Xk, Yk−1), depending on the context.

The following is a formal definition of the GMSM.

Definition 1. {Yt, t ≥ 0} is called a GMSM if there is a Markov chain {(Ht, Xt),

t ≥ 0} such that the process {((Ht, Xt), Yt), t ≥ 0} is a Markov chain that satisfies

(2.1) and (2.2).

For the first Markov chain representation of the likelihood function of the

GMSM, recall that πθ
H(h0)π

θ
X(x0|h0)f(y0; θ|h0, x0) is the stationary probability

density, with respect to m×Q, of the Markov chain {((Ht, Xt), Yt), t ≥ 0}. Note
that the joint probability of {Yt, t = 0, . . . , n} is

P{Y0 ∈ B0, Y1 ∈ B1, . . . , Yn ∈ Bn} (2.3)

=

∫
y0∈B0

∫
y1∈B1

· · ·
∫
yn∈Bn

pn(y0, y1, . . . , yn; θ)Q(dyn) · · ·Q(dy1)Q(dy0),

where

pn(y0, y1, . . . , yn; θ) =
d∑

h0,...,hn=1

∫
x0,x1,...,xn∈X

πθ
H(h0)π

θ
X(x0|h0)f(y0; θ|h0, x0)

×
n∏

t=1

pθht−1ht
pθht

(xt−1, xt)f(yt; θ|ht, xt, yt−1)m(dxn) · · ·m(dx0). (2.4)

To illustrate the GMSM, we use the switching linear state space model given

in (1.3) and (1.4). Other examples, including the switching GARCH models,

switching SV models, and variational RNNs, are provided in the Supplementary

Material.

Example 1 (Switching linear state space models). Consider the model

in (1.3) and (1.4), with X0 = 0 replaced with the stationary distribution πX ,

where Bt(Ht) =: Bt and At(Ht) =: At are p ×m and m ×m random matrices,

respectively, governed by {Ht, t ≥ 0}. Let {(Ht, Xt), t ≥ 0} be a Markov chain

on a general state space D ×Rm with Borel σ-algebra B(D) × B(Rm), which is

irreducible with respect to a maximal irreducibility measure on (D×Rm,B(D)×
B(Rm)) and is aperiodic. With a slight abuse of notation, we still let P (·, ·)
denote the transition probability kernel and assume that (Ht, Xt) has stationary
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measure πH(h0)πX(·|h0).

When εt ∼ N(µ, σ2), ηt ∼ N(0, 1), Bt = βHt
∈ R, and At = αHt

∈ R, with

|αj| < 1, for j = 1, . . . , d, then for given Ht = j, {Xt, t ≥ 0} forms a Markov

chain with transition probability density function

pj(xt−1, xt) =
1√
2π

exp

{
−(xt − αjxt−1)

2

2

}
.

For given observations y = (y1, . . . , yn) from the switching linear state space

model (1.3) and (1.4), the likelihood function of the parameter θ = (α1, . . . , αd,

β1, . . . , βd, µ, σ
2)T is

L(θ|y) =
d∑

h0,h1,...,hn=1

∫
x0,...,xn∈X

πH(h0)πX(x0|h0)

·
n∏

t=1

pht−1ht
pht

(xt−1, xt)ϕµ,σ2(yt − βht
xt)dxn · · · dx0,

where ϕµ,σ2(·) is the probability density function of N(µ, σ2); see Section S1 in

the Supplementary Material for further details.

For the second Markov chain representation of the GMSM in (2.3) and (2.4),

which we use to analyze the MLE of the GMSM, we first write the random joint

probability density function pn(Y0, Y1, . . . , Yn; θ) as the L1-norm of a composition

of Markovian random matrices, each component of which is a Markovian iterated

random function. Specifically, let

M =

{
g|g : X 7→ R is m−measurable,

∫
|g(x)|m(dx) <∞ and sup

x∈X
|g(x)| <∞

}
. (2.5)

For each t = 1, . . . , n and j = 1, . . . , d, define the random functions Pθ
j(Y0) and

Pθ
j(Yt) on (X ×Rp)×M as

Pθ
j(Y0)[g(x)] = f(Y0; θ|j, x)g(x), (2.6)

Pθ
j(Yt)[g(x)] =

∫
x′∈X

pθj(x
′, x)f(Yt; θ|j, x, Yt−1)g(x

′)m(dx′). (2.7)

For the definition of Pθ
j(Yt)[g(x)] in (2.7), we consider the reverse of the transition

probability density, which generalizes the corresponding result in hidden Markov

models; see (1.5) in Fuh (2003). Note that, strictly speaking, the notation

Pθ
j(Yt)[g(x)] in (2.7) needs to be replaced with Pθ

j(Yt, Yt−1)[g(x)], but we abuse

the notation a bit here for convenience.
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For given i, j = 1, . . . , d, define the composition of two random functions as

Pθ
j(Yt+1) ◦Pθ

i (Yt)[g(x)]

=

∫
x′′∈X

pθj(x
′′, x)f(Yt+1; θ|j, x, Yt)(∫

x′∈X
pθi (x

′, x′′)f(Yt; θ|i, x′′, Yt−1)g(x
′)m(dx′)

)
m(dx′′). (2.8)

It is straightforward to see that M defined in (2.5) forms a vector space with

the standard scale product. Addition in M is defined as the addition of two

functions. For g ∈ M, denote ∥g∥l :=
∫
x∈X |g(x)|m(dx) as the L1-norm on M

with respect to m. Then, (M, ∥ · ∥l) is a separable Banach space. Moreover, we

define ⟨g⟩l :=
∫
x∈X g(x)m(dx).

For a given vector z = (z1, . . . , zd)
T ∈ Rd, define the L1-norm of z as ∥z∥d =∑d

i=1 |zi|, and define ⟨z⟩d =
∑d

i=1 zi. Then, we define the L1-norm of a d × d

matrix z = [zij]i,j=1,...,d ∈ Rd2

as ∥z∥d =
∑d

i,j=1 |zij|. Denote

P(Y0) = Pθ(Y0) = diag(Pθ
1(Y0), . . . ,P

θ
d(Y0)) (2.9)

P(Yt) = Pθ(Yt) =

 p11P
θ
1(Yt) · · · pd1Pθ

1(Yt)
...

. . .
...

p1dP
θ
d(Yt) · · · pddPθ

d(Yt)

 , for t = 1, . . . , n, (2.10)

and Md := {ψ = (ψ1, . . . , ψd) : ψj ∈ M, for j = 1, . . . , d}. Then, Pθ(Y0) and

Pθ(Yt) are random functions defined on M := (D ×D ×X ×Rp)×Md.

Now, for given Pθ(Yt) and Pθ(Yt+1) in (2.10), define Pθ(Yt+1) ◦Pθ(Yt) as

Pθ(Yt+1) ◦Pθ(Yt) (2.11)

=


∑d

i=1 pi1p1iP
θ
1(Yt+1) ◦Pθ

i (Yt) · · ·
∑d

i=1 pi1pdiP
θ
1(Yt+1) ◦Pθ

i (Yt)
...

. . .
...∑d

i=1 pidp1iP
θ
d(Yt+1) ◦Pθ

i (Yt) · · ·
∑d

i=1 pidpdiP
θ
d(Yt+1) ◦Pθ

i (Yt)

 .
Note that the operation defined in (2.11) is in the domain of block operator

matrices; see Tretter (2008).

Let πX(x) = (πX(x|1), . . . , πX(x|d))T. For given t = 1, . . . , n, define

P(Yt)◦πX = P(Yt)◦πX(x) =

 p11P
θ
1(Yt)πX(x|1) · · · pd1Pθ

1(Yt)πX(x|d)
...

. . .
...

p1dP
θ
d(Yt)πX(x|1) · · · pddPθ

d(Yt)πX(x|d)

 , (2.12)
and

P(Yt) ◦ πX ◦ πH = P(Yt) ◦ πX ◦ πH(x) (2.13)
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=

(
d∑

i=1

πH(i)pi1P
θ
1(Yt)πX(x|i), . . . ,

d∑
i=1

πH(i)pidP
θ
d(Yt)πX(x|i)

)T

.

Define the norm ∥ · ∥ld of P(Yt) ◦ πX ◦ πH as

∥P(Yt) ◦ πX ◦ πH∥ld =

∥∥∥∥∥∥∥
 ∥
∑d

i=1 πH(i)pi1P
θ
1(Yt)πX(x|i)∥l

...

∥
∑d

i=1 πH(i)pidP
θ
d(Yt)πX(x|i)∥l


∥∥∥∥∥∥∥
d

.

Then, pn(Y0, Y1, . . . , Yn; θ) in (2.4) can be represented as

pn(Y0, Y1, . . . , Yn; θ) = ∥Pθ(Yn) ◦ · · · ◦Pθ(Y1) ◦Pθ(Y0) ◦ πX ◦ πH∥ld, (2.14)

where πH = πθ
H = (πθ

H(1), . . . , π
θ
H(d))

T and πX = πθ
X = πθ

X(x), for x ∈ X .

Therefore, by representation (2.14), pn(Y0, Y1, . . . , Yn; θ) is the L1-norm of

a matrix-valued MIFS. Further detailed analysis is provided in Section 3. In

addition, we define ⟨·⟩ld of P(Yt) ◦ πX ◦ πH as

⟨P(Yt) ◦ πX ◦ πH⟩ld =
〈 ⟨

∑d
i=1 πH(i)pi1P

θ
1(Yt)πX(x|i)⟩l

...

⟨
∑d

i=1 πH(i)pidP
θ
d(Yt)πX(x|i)⟩l

〉
d

.

Remark 1.

(1) Note that although we assume that the initial distribution in (2.4) is station-

ary, it can be arbitrary. This is because we do not need this assumption in

the required theorems, such as Lemma 1 in the Supplementary Material for

the stability issue, the strong law of large numbers for the induced matrix-

valued MIFS (Fuh (2021)), and Theorem 2 and Corollary 1 in Fuh (2006)

for the central limit theorem of the induced Markov chain.

(2) For hidden Markov models, which are a special case of the GMSMs studied

in this paper, the likelihood function is usually expressed as product

of conditional likelihood functions, p(yk|y0, . . . , yk−1), for k = 1, . . . , n.

Then, use p(yk|y0, . . . , y−∞) to approximate p(yk|y0, . . . , yk−1) under some

assumptions; for example, see Bickel, Ritov, and Rydén (1998) and

Yonekura, Beskos, and Singh (2021). However, this approach is difficult to

be applied to more general models, such as GMSMs. For GMSMs, we show

that the MIFS approach works. That is, we find that both the likelihood

function and the derivatives of the likelihood function can be expressed as

matrix-valued MIFS, and that the MLE of a GMSM can be examined using

the asymptotic properties of MIFS established in Fuh (2021).
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3. The MLE

Let y0, y1, . . . , yn be the observed values from the GMSM defined in (2.1)

and (2.2). Then, the likelihood function L(θ|y0, y1, . . . , yn) has the form pn =

pn(y0, y1, . . . , yn; θ), defined in (2.4). When ∂ logL(θ|y0, y1, . . . , yn)/∂θ exists, we

can seek solutions to the likelihood equations

∂ logL(θ|y0, y1, . . . , yn)
∂θ

= 0,

and obtain the MLE θ̂n in a GMSM. Note that the MLE may not be unique.

To study the asymptotic properties of the MLE in a GMSM, we first impose

some suitable conditions on the underlying Markov chain. Let Zt := ((Ht, Xt), Yt)

be an aperiodic and irreducible Markov chain on a general state space (D×X )×Rp

with Borel σ-algebra A := B(D) × B(X ) × B(Rp), where irreducibility is with

respect to a maximal irreducible measure on A. For the recurrent condition

on the Markov chain, we first consider that {Zt, t ≥ 0} is Harris recurrent,

which is defined as follows: if there exists a set A ∈ A, a probability measure Γ

concentrates on A and an ε with 0 < ε < 1 such that Pz(Zt ∈ A i.o.) = 1, for all

z ∈ (D × X ) ×Rp; furthermore, there exists t, such that P t(z, C) ≥ εΓ(C), for

all z ∈ A and all C ∈ A.

Next, we consider the w-uniformly ergodic condition. Let w : (D×X )×Rp 7→
[1,∞) be a measurable function, and let B be the Banach space of measurable

functions h : (D × X ) × Rp 7→ C (:= set of complex numbers), with ∥h∥w :=

supz |h(z)|/w(z) < ∞. We impose the following conditions on the Markov chain

{Zt, t ≥ 0}.
Assume Zt has an invariant probability measure with probability density

function π := πH(·)πX(·|H)f(·|H,X), such that
∫
w(z)π(z)dz < ∞, and for

every h ∈ B satisfying |h| ≤ w,

lim
t→∞

sup
z∈(D×X )×Rp

{
|E[h((Ht, Xt), Yt)|((H0, X0), Y0) = z]−

∫
h(z′)π(z′)dz′|

w(z)

}
= 0,

(3.1)

sup
z∈(D×X )×Rp

{
E
[
w((H1, X1), Y1)|((H0, X0), Y0) = z

]
w(z)

}
<∞.

(3.2)

Condition (3.1) states that the chain is w-uniformly ergodic, and implies that

there exist γ > 0 and 0 < ρ < 1 such that for all h ∈ B and n ≥ 1,

sup
z∈(D×X )×Rp

|E[h((Ht, Xt), Yt)|((H0, X0), Y0) = z]−
∫
h(z′)π(z′)dz′|

w(z)
≤ γρt∥h∥w;

see pages 382–383 and Proposition 16.1.3 of Meyn and Tweedie (2009). When

w ≡ 1, this reduces to the classical uniformly ergodic condition. Note that for
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an aperiodic and irreducible Markov chain {(Ht, Xt), Yt), t ≥ 0}, the w-uniformly

ergodic condition (3.1) implies that the Harris recurrent condition holds; see

Theorem 9.1.8 of Meyn and Tweedie (2009).

For a given nonnegative integer vector ν = (ν(1), . . . , ν(q))T, write |ν| = ν(1)+

· · · + ν(q), ν! = ν(1)! · · · ν(q)!, and let Dν = (D1)
ν(1) · · · (Dq)

ν(q)

denote the νth

derivative with respect to θ in Nδ(θ0) := {θ : ∥θ − θ0∥ ≤ δ}, the δ-neighborhood
of the true parameter θ0, where (Dl)

k is the kth partial derivative with respect

to the lth coordinate of θ for l = 1, . . . , q, and ∥ · ∥ denotes the L2-norm. Here,

ν = 0 denotes no derivative.

The following conditions are used throughout the rest of this paper.

C1. Stationary and ergodicity conditions

For any θ ∈ Θ ⊂ Rq, the Markov chain {((Ht, Xt), Yt), t ≥ 0} defined in

(2.1) and (2.2) is aperiodic, irreducible, and satisfies (3.1) and (3.2), with weight

function w(·).

C2. Identifiability condition

The true parameter θ0 is an interior point of Θ, and the equality pn(y0, y1, . . . ,

yn; θ) = pn(y0, y1, . . . , yn; θ
′) holds P -almost surely, for all nonnegative n, if and

only if θ = θ′.

C3. Conditions on the state equation functions

C3.1. For all j ∈ D and x, x′ ∈ X , θ 7→ pθj(x, x
′) and θ 7→ πθ

X(x|j) are continuous.
Furthermore, for all j ∈ D and x ∈ X , pθj(x, x

′) → 0 and πθ
X(x|j) → 0 as

∥θ∥ → ∞, and for all θ ∈ Θ and each j ∈ D, 0 < pθj(x, x
′) < ∞, for all

x, x′ ∈ X , and supx∈X
∫
pθj(x

′, x)m(dx′) <∞.

C3.2. For all j ∈ D and x, x′ ∈ X , θ 7→ pθj(x, x
′) and θ 7→ πθ

X(x|j) have twice

continuous derivatives in some neighborhood Nδ(θ0) of θ0.

C3.3. For any θ ∈ Nδ(θ0) and ν with 1 ≤ |ν| ≤ 2, assume for each j ∈ D,

|Dνpθj(x, x
′)| <∞, for all x, x′ ∈ X .

C3.4. For all j ∈ D, x ∈ X , and k1, k2 = 1, . . . , q,∫
X

sup
θ∈Nδ(θ0)

∣∣∣∣∂ log πθ
X(x|j)

∂θk1

∣∣∣∣2m(dx) <∞,

∫
X

sup
θ∈Nδ(θ0)

∣∣∣∣∂ log pθj(x, x′)

∂θk1

∣∣∣∣2m(dx′) <∞,∫
X

sup
θ∈Nδ(θ0)

∣∣∣∣∂2 log πθ
X(x|j)

∂θk1
∂θk2

∣∣∣∣m(dx) <∞,

∫
X

sup
θ∈Nδ(θ0)

∣∣∣∣∂2 log pθj(x, x
′)

∂θk1
∂θk2

∣∣∣∣m(dx′) <∞.

For all j ∈ D, x ∈ X , l = 1, 2, and k1, k2 = 1, . . . , q,∫
X

sup
θ∈Nδ(θ0)

∣∣∣∣ ∂lπθ
X(x|j)

∂θk1
· · · ∂θkl

∣∣∣∣m(dx) <∞,

∫
X

sup
θ∈Nδ(θ0)

∣∣∣∣ ∂lpθj(x, x
′)

∂θk1
· · · ∂θkl

∣∣∣∣m(dx′) <∞.
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C4. Conditions on the observation equation functions

C4.1. For all j ∈ D and x ∈ X , θ 7→ f(y0; θ|j, x) and θ 7→ f(y1; θ|j, x, y0) are

continuous, for all y0, y1 ∈ Rp. Furthermore, for all j ∈ D, x ∈ X , and

y0, y1 ∈ Rp, f(y0; θ|j, x) → 0 and f(y1; θ|j, x, y0) → 0 as ∥θ∥ → ∞.

C4.2. For all θ ∈ Θ and each j ∈ D, 0 < supx∈X f(y0; θ|j, x) < ∞ and 0 <

supx∈X f(y1; θ|j, x, y0) < ∞, for all y0, y1 ∈ Rp. Because m is σ-finite,

there exist pairwise disjoint {Xn, n ≥ 1} such that X = ∪∞
n=1Xn and 0 <

m(Xn) < ∞. Assume E
[∑∞

n=1(1/2
n) supj∈D,x∈Xn

f(Y1; θ|j, x, y0)
]
< ∞,

for all y0 ∈ Rp and θ ∈ Θ.

Assume that there exists r ≥ 1 such that, for θ ∈ Θ ⊂ Rq and g ∈ M,

sup
((j,x0),y0)∈(D×X )×Rp

Eθ
(j,x0,y0)

{
log

(
Pθ

j(Yr) ◦ · · · ◦Pθ
j(Y1) ◦Pθ

j(y0)[g(x0)]

× w(Hr, Xr, Yr)

w(j, x0, y0)

)}
< 0, (3.3)

sup
((j,x0),y0)∈(D×X )×Rp

Eθ
(j,x0,y0)

{
Pθ

j(Y1) ◦Pθ
j(y0)[g(x0)]

w(H1, X1, Y1)

w(j, x0, y0)

}
<∞.

(3.4)

C4.3. For any θ ∈ Nδ(θ0) and ν with 1 ≤ |ν| ≤ 2, supj∈D,x∈X |Dνf(y1; θ|j, x, y0)|
< ∞, for all y0, y1 ∈ Rp. Assume that E

[∑∞
n=1(1/2

n) supj∈D,x∈Xn

|Dνf(Y1; θ|j, x, y0)|
]
<∞, for all y0 ∈ Rp and θ ∈ Θ.

Given 1 ≤ |ν| ≤ 2, assume that there exists r ≥ 1 such that, for all

θ ∈ Nδ(θ0) and g ∈ M, supx∈X |∂g(x)/∂θk| <∞, for k = 1, . . . , q, and

sup
((j,x0),y0)∈(D×X )×Rp

Eθ
(j,x0,y0)

{
log

(∣∣∣∣Dν

(
Pθ

j(Yr) ◦ · · · ◦Pθ
j(Y1) ◦Pθ

j(y0)[g(x0)]

)∣∣∣∣
× w(Hr, Xr, Yr)

w(j, x0, y0)

)}
< 0, (3.5)

sup
((j,x0),y0)∈(D×X )×Rp

Eθ
(j,x0,y0)

{∣∣∣∣Dν

(
Pθ

j(Y1) ◦Pθ
j(y0)[g(x0)]

)∣∣∣∣w(H1, X1, Y1)

w(j, x0, y0)

}
<∞.

(3.6)

C4.4. For all j ∈D, x∈X , y0, y1 ∈Rp, and θ ∈Θ ⊂ Rq, and for k1, k2, k3 = 1,

. . . , q, the partial derivatives ∂f(y0; θ|j, x)/∂θk1
, ∂2f(y0; θ|j, x)/∂θk1

∂θk2
,

and ∂3f(y0; θ|j, x)/∂θk1
∂θk2

∂θk3
, and ∂f(y1; θ|j, x, y0)/∂θk1

, ∂2f(y1; θ|
j, x, y0)/∂θk1

∂θk2
, and ∂3f(y1; θ|j, x, y0)/∂θk1

∂θk2
∂θk3

exist.
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C4.5. For all j ∈ D, x ∈ X , y0 ∈ Rp, and k1, k2 = 1, . . . , q,

Eθ
(j,x)

[
sup

θ∈Nδ(θ0)

∣∣∣∣∂ log f(Y0; θ|j, x)
∂θk1

∣∣∣∣2] <∞,

Eθ
((j,x),y0)

[
sup

θ∈Nδ(θ0)

∣∣∣∣∂ log f(Y1; θ|j, x, y0)
∂θk1

∣∣∣∣2] <∞,

Eθ
(j,x)

[
sup

θ∈Nδ(θ0)

∣∣∣∣∂2 log f(Y0; θ|j, x)
∂θk1

∂θk2

∣∣∣∣] <∞,

Eθ
((j,x),y0)

[
sup

θ∈Nδ(θ0)

∣∣∣∣∂2 log f(Y1; θ|j, x, y0)
∂θk1

∂θk2

∣∣∣∣] <∞.

For all j ∈ D, x ∈ X , y0 ∈ Rp, l = 1, 2, and k1, k2 = 1, . . . , q,∫
sup

θ∈Nδ(θ0)

∣∣∣∣∂lf(y; θ|j, x)
∂θk1

· · · ∂θkl

∣∣∣∣Q(dy) <∞,∫
sup

θ∈Nδ(θ0)

∣∣∣∣∂lf(y1; θ|j, x, y0)
∂θk1

· · · ∂θkl

∣∣∣∣Q(dy1) <∞.

C4.6. Eθ0
((j,x),y0)

| log(f(y0; θ0|j, x)f(Y1; θ0|j, x, y0))| <∞, for all j ∈ D and x ∈ X .

C4.7. For each θ ∈ Θ, there is a δ > 0 such that for all j ∈ D and x ∈
X , Eθ0

((j,x),y0)
(sup∥θ′−θ∥<δ

[
log(f(y0; θ

′|j, x)f(Y1; θ
′|j, x, y0))

]+
) < ∞, where

a+ = max{a, 0}. Furthermore, there is a b > 0 such that, for all j ∈ D and

x ∈ X , Eθ0
((j,x),y0)

(sup∥θ′∥>b

[
log(f(y0; θ

′|j, x)f(Y1; θ
′)|j, x, y0))

]+
) <∞.

C4.8. For θ ∈ Nδ(θ0),

sup
((j,x),y0)∈(D×X )×Rp

Eθ0
((j,x),y0)

(
sup

θ∈Nδ(θ0)

sup
x,x′∈X

f(y0; θ|j, x)f(Y1; θ|j, x, y0)
f(y0; θ|j, x′)f(Y1; θ|j, x′, y0)

)2

<∞.

Remark 2.

(1) Condition C1 is the stationary and w-uniform ergodicity condition for the

underlying Markov chain. In practice, {Ht, t ≥ 0} is often a finite-state

ergodic Markov chain, and {Yt, t ≥ 0} are conditionally independent for given

{Ht, t ≥ 0} and {Xt, t ≥ 0}. Then, we need only check w-uniform ergodicity

for {Xt, t ≥ 0}. Note that for the switching linear state space model in

Example 1, Xt is an autoregressive model with w(x) = ∥x∥2; see Theorem

16.5.1 of Meyn and Tweedie (2009). Additional examples are provided in the

Supplementary Material.

(2) Condition C2 is the identifiability condition for a GMSM. That is, the family

of mixtures of {f(Y1; θ|j, x, y0) : θ ∈ Θ} is identifiable. We also use this

condition to prove the strong consistency of the MLE. Although it is difficult
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to check this condition in a GMSM, in many models of interest, such as a

finite-state hidden Markov model with normal distributions, the parameter

itself is identifiable only up to a permutation of states. A sufficient condition

for the identifiability in hidden Markov models can be found in Douc et al.

(2011).

(3) C3 states conditions on the state equation functions, where C3.1 is a standard

continuity condition and C3.2–4 are standard smoothness conditions. These

conditions are fulfilled in many practical models, such as switching linear

Gaussian state space models.

(4) C4 states conditions on the observation equation functions. C4.1 is a

standard continuity condition. In C4.2–3, we impose the weighted local

mean contractive conditions (3.3) and (3.5) and the weighted mean moment

conditions (3.4) and (3.6), to guarantee that the MIFS induced by the

likelihood function of the GMSM and its derivatives, respectively, satisfy K2

and K3 in Section 4 of Fuh (2006). Note that (3.3) is a weaker condition than

C1 in Fuh (2006). C4.4–5 are standard smoothness conditions. C4.6–7 are

integrability conditions, which we use to prove the strong consistency of the

MLE. C4.8 is a technical condition for the existence of the Fisher information

to be defined in (3.11) below. In the Supplementary Material, we check that

these conditions hold for several models used in practice.

Let {((Ht, Xt), Yt), t ≥ 0} be the Markov chain defined in (2.1) and (2.2). Re-

call from (2.14) that the log likelihood function based on the samples {Y0, Y1, . . . ,

Yn} can be written as

l(θ) = logL(θ|Y0, Y1, . . . , Yn) = log pn(Y0, Y1, . . . , Yn; θ) (3.7)

= log ∥Pθ(Yn) ◦ · · · ◦Pθ(Y1) ◦Pθ(Y0) ◦ πX ◦ πH∥ld

= log
∥Pθ(Yn) ◦ · · · ◦Pθ(Y1) ◦Pθ(Y0) ◦ πX ◦ πH∥ld
∥Pθ(Yn−1) ◦ · · · ◦Pθ(Y1) ◦Pθ(Y0) ◦ πX ◦ πH∥ld

+ · · ·

+ log
∥Pθ(Y1) ◦Pθ(Y0) ◦ πX ◦ πH∥ld

∥Pθ(Y0) ◦ πX ◦ πH∥ld
+ log ∥Pθ(Y0) ◦ πX ◦ πH∥ld.

For each n, denote

Mn := Pθ(Yn) ◦ · · · ◦Pθ(Y1) ◦Pθ(Y0) (3.8)

as the matrix-valued MIFS on Md induced from (2.5)–(2.13). Then, the log-

likelihood function l(θ) based on the samples {Y0, Y1, . . . , Yn} can be written as

Sn :=
∑n

t=1 ϕ(Mt−1,Mt) + log ∥Pθ(Y0) ◦ πX ◦ πH∥ld, with

ϕ(Mt−1,Mt) := log
∥Pθ(Yt) ◦ · · · ◦Pθ(Y1) ◦Pθ(Y0) ◦ πX ◦ πH∥ld
∥Pθ(Yt−1) ◦ · · · ◦Pθ(Y1) ◦Pθ(Y0) ◦ πX ◦ πH∥ld

. (3.9)
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To prove the strong consistency and asymptotic normality of the MLE in a

GMSM under conditions C1–C4, we need to apply Lemma 1 in the Supplementary

Material and Corollary 1 of Fuh (2006). For this purpose, we need to check that

the induced matrix-valued MIFS satisfies the assumptions in Fuh (2006), and

that the associated Markov chain is aperiodic, irreducible, and Harris recurrent.

To start with, for given g ∈ M, we define the sup-norm of g as ∥g∥∞ =

supx∈X |g(x)| < ∞. We also define the variation distance between any two

elements g1, g2 in M by

d(g1, g2) = sup
x∈X

|g1(x)− g2(x)|. (3.10)

Note that (M, d) is a complete metric space with Borel σ-algebra B(M), but it

is not separable. However, we can apply the results developed in Dudley (1966)

for a nonseparable space. Therefore, Lemma 1 in the Supplementary Material

and Theorems 1–4 of Fuh (2006) still hold under the regularity conditions. An

alternative approach can be found in Section 7 of Diaconis and Freedman (1999),

who provide a direct argument of convergence, rather than dealing with the

measure-theoretic technicalities created by a nonseparable space.

Then, {((Ht, Xt, Yt),Mt), t ≥ 0} is a Markov chain on the state space M1 :=

(D × X × Rp) × Md, with transition probability kernel Pθ defined as (S3.2) in

the Supplementary Material,

Pθ(((h0, x0, y0), ψ), (A,B))=

∫
(h1,x1,y1)∈A

IB(P
θ(y1)ψ)P ((h0, x0, y0), d(h1, x1, y1)),

for h0 ∈ D, x0 ∈ X , y0 ∈ Rp, ψ ∈ Md, A ∈ A, and B ∈ B(Md),

where I denotes the indicator function. In the Supplementary Material, under

conditions C1–C4, we show that the stationary distribution of the Markov chain

{((Ht, Xt, Yt),Mt), t ≥ 0} exists, and is denoted as Π̃ := Π̃θ.

In the following theorem, we state the strong consistency of the MLE θ̂n
under some regularity conditions.

Theorem 1. Assume conditions C1, C2, C3.1, and C4.1,2,6,7 hold. Then, θ̂n −→
θ0, P

θ0-a.s. as n→ ∞.

To state the asymptotic normality of the MLE θ̂n in a GMSM, we need to

define the Fisher information matrix

I(θ) = (Ilk(θ)) (3.11)

=

(
Eθ
Π̃

[(
∂ log ∥Pθ(Y1) ◦Pθ(Y0) ◦ πX ◦ πH∥ld

∂θl

)
(
∂ log ∥Pθ(Y1) ◦Pθ(Y0) ◦ πX ◦ πH∥ld

∂θk

)])
,
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which is finite for θ in a neighborhood Nδ(θ0) of θ0. Here, Eθ
Π̃
is the expectation

under Pθ
Π̃
, defined in (4.8) in Section 4. Furthermore, assume I(θ0) is invertible.

Theorem 2. Assume conditions C1–C4 hold. Then,
√
n(θ̂n − θ0) is asymptoti-

cally normally distributed with mean zero and variance-covariance matrix I−1(θ0).

Remark 3. In practice, although it is not easy to compute the MLE of a

GMSM, we can approximate it. For example, for switching linear state space

models, Kim (1994) provides a Kalman-filter-based approach for computing an

approximation of the likelihood. Then, a nonlinear optimization procedure is

used to compute the maximizer. This approach has been proved to perform well

with a considerable advantage in terms of computation time. Ghahramani and

Hinton (2000) propose a variational approximation method, similar to the EM

algorithm, for computing the MLE.

4. Fisher Information and Score Function

To prove the strong consistency and asymptotic normality of the MLE θ̂n
in a GMSM, we investigate the Kullback–Leibler divergence in Lemma 4 in the

Supplementary Material, and the Fisher information in Theorem 3 below, which

are of independent interest. The proof of the convergence of the score function

and the Fisher information involves derivatives of the log likelihood function.

Thus, we first show that the derivatives of the log likelihood function l(θ) in

(3.7) can be expressed as an additive functional of a MIFS. Then, we can define

the Fisher information and state the asymptotic normality of the score function.

Note that the results in this section also fill the gap in the proofs of Lemmas 5

and 6 in Fuh (2006).

Recall Pθ(Yt) defined in (2.10) andMn = Pθ(Yn)◦· · ·◦Pθ(Y1)◦Pθ(Y0) defined

in (3.8). For any 1 ≤ l ≤ q and positive integer k, recall that Dl is the partial

derivative with respect to the lth coordinate of θ in a neighborhood Nδ(θ0) of the

true parameter θ0, and (Dl)
k is the corresponding kth partial derivative. Now,

for any two given random functions Pθ
j(Yt+1) and Pθ

j(Yt), defined in (2.7), and

for any given gθ(·) ∈ M, by conditions C1–C4 in Section 3 and the dominated

convergence theorem, we have

Dl

{
Pθ

j(Yt)[gθ(x)]
}
= Dl

{∫
x′∈X

pθj(x
′, x)f(Yt; θ|j, x, Yt−1)gθ(x

′)m(dx′)

}
=

∫
x′∈X

{
f(Yt; θ|j, x, Yt−1)gθ(x

′)Dlp
θ
j(x

′, x) + pθj(x
′, x)gθ(x

′)Dlf(Yt; θ|j, x, Yt−1)

+pθj(x
′, x)f(Yt; θ|j, x, Yt−1)Dlgθ(x

′)

}
m(dx′),

and
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Dl

{
Pθ

j(Yt+1) ◦Pθ
i (Yt)[gθ(x)]

}
= Dl

{∫
x′′∈X

pθj(x
′′, x)f(Yt+1; θ|j, x, Yt)(∫

x′∈X
pθi (x

′, x′′)f(Yt; θ|i, x′′, Yt−1)gθ(x
′)m(dx′)

)
m(dx′′)

}
=

∫
x′′∈X

Dl

{
pθj(x

′′, x)f(Yt+1; θ|j, x, Yt)
}

(∫
x′∈X

pθi (x
′, x′′)f(Yt; θ|i, x′′, Yt−1)gθ(x

′)m(dx′)

)
m(dx′′)

+

∫
x′′∈X

pθj(x
′′, x)f(Yt+1; θ|j, x, Yt)(∫

x′∈X
Dl

{
pθi (x

′, x′′)f(Yt; θ|i, x′′, Yt−1)gθ(x
′)
}
m(dx′)

)
m(dx′′)

=
{
DlP

θ
j(Yt+1)

}
◦Pθ

i (Yt)[gθ(x)] +Pθ
j(Yt+1) ◦

{
Dl(P

θ
i (Yt)[gθ(x)])

}
.

Denote

DlP(Yt) := DlP
θ(Yt) =

Dl(p11P
θ
1(Yt)) · · · Dl(pd1P

θ
1(Yt))

...
. . .

...

Dl(p1dP
θ
d(Yt)) · · · Dl(pddP

θ
d(Yt))

 (4.1)

=

Dl(p11)P
θ
1(Yt) · · · Dl(pd1)P

θ
1(Yt)

...
. . .

...

Dl(p1d)P
θ
d(Yt) · · · Dl(pdd)P

θ
d(Yt))

+

 p11Dl(P
θ
1(Yt)) · · · pd1Dl(P

θ
1(Yt))

...
. . .

...

p1dDl(P
θ
d(Yt)) · · · pddDl(P

θ
d(Yt))

 ,
for t = 1, . . . , n. Note that pij may depend on θ, for i, j = 1, . . . , d.

Although we use only the first two derivatives of the MIFS, we consider a

general setting in the following arguments. For higher derivatives, we assume

the corresponding assumptions in C3.2–4 and C4.3–5 hold, without specification.

Recall that, for a given nonnegative integer vector ν = (ν(1), . . . , ν(q))T, we write

|ν| = ν(1) + · · · + ν(q) and ν! = ν(1)! · · · ν(q)!, and let Dν = (D1)
ν(1) · · · (Dq)

ν(q)

denote the νth derivative with respect to θ in Nδ(θ0). For any ν, define

W ν
n = DνMn = (D1)

ν(1) · · · (Dq)
ν(q)

(Mn). Then, by conditions C1–C4 and the

dominated convergence theorem, we have Dν∥(Mn ◦πX ◦πH)∥ld = ⟨Dν(Mn ◦πX ◦
πH)⟩ld.

Now, let us consider all derivatives with order r or less. Note that for a fixed

integer r ≥ 1, there are exactly K = (r + q)!/r!q! different ν satisfying |ν| ≤ r.

Label all such ν by ν1, ν2, . . . , νK , and let Wn = (W ν1
n ,W ν2

n , . . . ,W νK
n )T. Recall

M = (D ×D ×X ×Rp)×Md. Then, Wn ∈ MK := {v = (m1, . . . ,mK)
T : mk ∈

M, 1 ≤ k ≤ K}. Moreover, for given νl and νk, let νl + νk denote componentwise

addition in the vector.
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To investigate the dynamic of Wn, note that for any νl, we have

W νl
n (4.2)

= Dνl
(
Pθ(Yn) ◦ · · · ◦Pθ(Y1) ◦Pθ(Y0)

)
=

∑
1≤k≤m≤K
νl=νk+νm

{
(νl)!

(νk)!(νm)!
DνmPθ(Yn) ◦Dνk

(
Pθ(Yn−1) ◦ · · · ◦Pθ(Y1) ◦Pθ(Y0)

)}

=
∑

1≤k≤m≤K
νl=νk+νm

(νl)!

(νk)!(νm)!

{
DνmPθ(Yn) ◦W νk

n−1

}
.

Hence, we can denote a K ×K matrix

An = [anlk]1≤l,k≤K , (4.3)

with each anlk ∈ M defined as

anlk =

{
(νl)!

(νk)!(νm)!
DνmPθ(Yn), if exists 1 ≤ m ≤ K such that νl = νk + νm,

0, otherwise.

(4.4)

In addition, for each K × K M-valued matrix B = [blk]1≤l,k≤K and each K-

dimensional M-valued vector V = (V1, V2, . . . , VK)
T ∈ MK , we define

B ◦ V :=

(
K∑
j=1

b1j ◦ Vj,
K∑
j=1

b2j ◦ Vj, . . . ,
K∑
j=1

bKj ◦ Vj

)T

. (4.5)

Then, by (4.2), we have Wn = An ◦Wn−1, and thus

Wn = An ◦An−1 ◦ · · · ◦A1 ◦W0, (4.6)

where W0 = {W ν
0 : |ν| ≤ r}, with W ν

0 = DνPθ(Y0).

Remark 4. To illustrate (4.6), let q = 1, that is, θ is a one-dimensional

parameter. In this case, ν ∈ R and we can simply label all |ν| ≤ r by natural

order so that Wn = (W 0
n ,W

1
n , . . . ,W

r
n)

T, the vector of the first rth derivatives.

Then, for any 0 ≤ k ≤ r, we have

W k
n = Dk(Pθ(Yn) ◦ · · · ◦Pθ(Y1) ◦Pθ(Y0))

=
∑

0≤k1≤k

{
k!

(k1)!(k − k1)!
Dk1Pθ(Yn)

◦Dk−k1

(
Pθ(Yn−1) ◦ · · · ◦Pθ(Y1) ◦Pθ(Y0)

)}
=

∑
0≤k1≤k

Ck
k1

{
Dk1Pθ(Yn) ◦W k−k1

n−1

}
,
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where Cb
a = b!/(a!(b− a)!). Therefore, Wn = An ◦Wn−1, with

An =


Pθ(Yn) 0 · · · 0

C1
1D

1Pθ(Yn) Pθ(Yn) · · · 0
...

...
. . .

...

Cr
rD

rPθ(Yn) C
r
r−1D

r−1Pθ(Yn) · · · Pθ(Yn)

 , (4.7)

where zero denotes the zero function in M. Note thatWn forms a MIFS on MK ,

and that the components in Wn can be different.

Note that Wn in (4.6) and An in (4.7) are K × K random matrices. In

addition, for k = 0, 1, . . . , r, the component DkPθ(Yn) in An is a d × d M-

valued matrix, rather than the traditional R-valued vector and matrix. That

is, DkPθ(Yn) is a d× d M-valued random matrix in which each component is a

random functional defined on M.

To illustrate this phenomenon, we consider Ht as a finite d-state Markov

chain and there is no Xt. Let θ be a one-dimensional parameter. Then, An in

(4.7) is a K×K matrix, with each element being a d×d matrix (with zero being a

d×d zero matrix), which can be regarded as a block matrix or partioned matrix;

see Zhang (2011). In the same manner, although the operator defined in (4.5)

looks like a traditional matrix multiplication, it replaces the multiplication within

each component with ◦. Nevertheless, the essential idea is to have a matrix form

for Wn, by which it constitutes a MIFS, from (4.6).

Note that obtaining a neat form in (4.6) is based on a matrix representation

in (4.3) and (4.4), for all partial derivatives up to the rth order. Then,

{((Ht, Xt, Yt),Wt), t ≥ 0} is a Markov chain on the state space MK
1 := (D ×

X ×Rp)× (Md)K , with transition probability kernel Pθ, defined in (S3.2) in the

Supplementary Material,

Pθ
Π̃
(((h0, x0, y0), ψ), (A,B)) (4.8)

=

∫
(h1,x1,y1)∈A

IB(W1(ψ)) P ((h0, x0, y0), d(h1, x1, y1)),

for h0 ∈ D, x0 ∈ X , y0 ∈ Rp, ψ ∈ (Md)K , A ∈ B(D) × B(X ) × B(Rp), and

B ∈ B((Md)K).

We show in the Supplementary Material that, under conditions C1–C4, for

θ ∈ Nδ(θ0), the MIFS Wn in (4.6) satisfies Assumption K in Fuh (2006). Using

this result and the result that the νth derivatives of the log likelihood function can

be written as an additive functional of the Markov chain {((Ht, Xt, Yt),Wt), t ≥ 0}
in Lemma 5 in the Supplementary Material, we have the strong law of large

numbers for the observed Fisher information. Then, we characterize the Fisher

information matrix in Theorem 3, and state the asymptotic normality of the score

function in Theorem 4.
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Theorem 3. Assume conditions C1–C4 hold. Then, for θ ∈ Nδ(θ0), we have

that as n→ ∞,

1

n

∂2

∂θl∂θk
log ∥Pθ(Yn) ◦ · · · ◦Pθ(Y1) ◦Pθ(Y0) ◦ πX ◦ πH∥ld → −Ilk(θ), (4.9)

with probability one, where Ilk(θ) is defined in (3.11) and is finite for θ in a

neighborhood Nδ(θ0) of θ0. Recall that I(θ) = (Ilk(θ)) is the Fisher information

matrix.

Theorem 4. Assume conditions C1–C4 hold. Let l′k(θ0) = ∂l(θ)/∂θk|θ=θ0. Then,

as n→ ∞,

1√
n
(l′1(θ0), . . . , l

′
q(θ0))

T −→ N(0, I(θ0)) in distribution.

5. Conclusion

We provide a GMSM, which includes many practically used models as special

cases. In this framework, the hidden unit can be one or two layers, and can be a

linear (or nonlinear) predictable (or stochastic) function of past information. This

can be viewed as a Markov model if we include all hidden units. Furthermore, by

using a matrix-valued MIFS representation of the likelihood function, we prove

the strong consistency and asymptotic normality of the MLE in a GMSM under a

weighted local mean contractive property. It is easy to check that the (switching)

linear state space models, (switching) GARCH(p, q) models, (switching) SV

models, and variational RNNs satisfy these conditions under some commonly

used assumptions.

Using this framework, it would be interesting to explore the asymptotic

properties, including the strong consistency, asymptotic normality, and even

high-order asymptotics, of other commonly used estimators, such as the GMM,

Bayesian estimators, and generalized empirical likelihood estimator.

Supplementary Material

The Supplementary Material includes examples of GMSM, a simulation

study, and proofs for the theorems presented here.
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