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Abstract: Multivariate linear regressions are widely used to model the associations

between multiple related responses and a set of predictors. To infer such asso-

ciations, researchers often test the structure of the regression coefficients matrix,

usually using a likelihood ratio test (LRT). Despite their popularity, classical χ2

approximations for LRTs are known to fail in high-dimensional settings, where the

dimensions of the responses and the predictors (m, p) are allowed to grow with

the sample size n. Although various corrected LRTs and other test statistics have

been proposed, few studies have examined the important question of when the clas-

sic LRT starts to fail. An answer to this would provide insights for practitioners,

especially when analyzing data in which m/n and p/n are small, but not negligi-

ble. Moreover, the power of the LRT in high-dimensional data analyses remains

under-researched. To address these issues, the first part of this work determines

the asymptotic boundary at which the classical LRT fails, and develops a corrected

limiting distribution for the LRT with a general asymptotic regime. The second

part of this work examines the power of the LRT in high-dimensional settings. In

addition to advancing the current understanding of the asymptotic behavior of the

LRT under an alternative hypothesis, these results motivate the development of

a more powerful LRT. The third part of this work considers the setting in which

p > n, where the LRT is not well defined. We propose a two-step testing procedure.

First, we perform a dimension reduction, and then we apply the proposed LRT.

Theoretical properties are developed to ensure the validity of the proposed method,

and simulations demonstrate that the method performs well.

Key words and phrases: High dimension, likelihood ratio test, multivariate linear

regression

1. Introduction

Multivariate linear regressions are widely used in econometrics, financial en-

gineering, psychometrics, and many other areas to model the relationships be-
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tween multiple related responses and a set of predictors. Suppose we have n

observations of m-dimensional responses yi = (yi,1, . . . , yi,m)ᵀ and p-dimensional

predictors xi = (xi,1, . . . , xi,p)
ᵀ, for i = 1, . . . , n. Let Y = (y1, . . . ,yn)ᵀ be the

n×m response matrix, and X = (x1, . . . ,xn)ᵀ be the n× p design matrix. The

multivariate linear regression model assumes Y = XB+E, where B is a p×m ma-

trix of unknown regression parameters, and E = (ε1, . . . , εn)ᵀ is an n×m matrix

of regression errors, where εi is independently sampled from an m-dimensional

Gaussian distribution N (0,Σ).

Under the multivariate linear regression model, we are interested in testing

the null hypothesis H0 : CB = 0r×m, where C is an r × p matrix of rank r ≤ p,

and 0r×m is an all-zero matrix of size r×m. This is often called a general linear

hypothesis in multivariate analyses, and has been widely used in multivariate

analysis of variance (see, e.g., Muirhead (2005)). The choice of the testing matrix

C depends on the application. For instance, if B is partitioned as Bᵀ = [Bᵀ
1 , B

ᵀ
2 ],

where B1 is an r×m matrix, then the null hypothesis of B1 = 0r×m is equivalent

to taking C = [Ir,0r×(p−r)], which can be used to test the significance of the

first r predictors of X. Another example is to test the equivalence of the effects

of a set of r + 1 predictors (e.g., different levels of categorical variables), where

C = [Ir,0r×(p−r−1),−1r], and 1r represents an r-dimensional vector of ones.

To testH0 : CB = 0r×m, a popular approach in the literature is the likelihood

ratio test (LRT) (Anderson (2003); Muirhead (2005)). Specifically, when n >

m + p, Σ is positive definite, and X has rank p, then the LRT statistic is Ln =

det(SE)n/2/{det(SE + SX)n/2}. Here SE = Y ᵀ[I −X(XᵀX)−1Xᵀ]Y and SX =

(CB̂)ᵀ[C(XᵀX)−1Cᵀ]−1CB̂ are the residual sum of squares and the regression

sum of squares matrices, respectively, and B̂ = (XᵀX)−1XᵀY is the least squares

estimator. Assuming m and p are fixed, it is well known that −2 logLn converges

weakly to a χ2 distribution as n → ∞ under the null hypothesis (Anderson

(2003)).

However, in high-dimensional settings, where the dimension parameters (p,

m, r) are allowed to increase with n, the LRT suffers from several issues. First,

under the null hypothesis, the limiting distribution of −2 logLn may longer be a

χ2 distribution. The failure of the χ2 approximations of LRT distributions under

high dimensions has been studied in various model settings. For instance, Bai

et al. (2009) examined two LRTs for covariance matrices. They showed that the

χ2 approximations perform poorly, and thus proposed corrected normal limiting

distributions. Jiang and Yang (2013) and Jiang and Qi (2015) studied classical

LRTs for sample means and covariance matrices, showing that the χ2 approxi-

mations fail as the dimensions increase. Moreover, Bai et al. (2013) considered
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the LRT for linear hypotheses in high-dimensional multivariate linear regressions.

They demonstrated the failure of the χ2 approximation and derived a corrected

LRT. Note that Bai et al. (2013) only considered high-dimensional settings where

m, r, and n− p are proportional to each other, with m ≤ r. Despite these works,

it is still unclear under which asymptotic regimes the χ2 approximation of a LRT

starts to fail. An answer to this question would provide insights for practition-

ers, especially when analyzing data in which m/n and p/n are small, but not

negligible.

The second problem with the LRT is its power performance under high-

dimensional alternative hypotheses. When n > p + m, −2 logLn = n
∑min{m,r}

i=1

log(1 + λi), where λ is an eigenvalue of S
1/2
X S−1

E S
1/2
X . Therefore, we expect the

asymptotic power of the LRT to depend on an averaged effect of all eigenval-

ues. However, few studies have examined the eigenvalues of the random matrix

S
1/2
X S−1

E S
1/2
X under alternative hypotheses.

The third issue with the LRT arises when the dimension parameters p and

m are large, such that n < p+m. In this situation, the LRT is not well defined,

owing to the singularity of the matrix SE . This excludes the LRT from many

high-dimensional applications with p > n or m > n (e.g., Donoho, 2000; Fan,

Han and Liu, 2014). When m > n, the linear hypothesis testing problem has

been studied in depth for specific submodels, such as the one-way MANOVA

(Srivastava and Fujikoshi, 2006; Hu et al., 2017; Zhou, Guo and Zhang, 2017; Cai

and Xia, 2014, etc.). Li, Aue and Paul (2018) recently proposed a modified LRT

for general linear hypothesis tests using spectral shrinkage. However, these works

assume that p is fixed.

This study aims to address the above problems. First, under the null hy-

pothesis, we derive the asymptotic boundary at which the χ2 approximation fails

as the dimension parameters (p,m, r) increase with the sample size n. Moreover,

we develop a corrected limiting distribution for logLn in a general asymptotic

regime of (p,m, r, n). Second, under alternative hypotheses, we characterize the

statistical power of logLn in the high-dimensional setting. By analyzing the par-

tial differential equations induced by the test statistic, we show that the LRT is

powerful when the trace of the signal matrix (CB)Σ−1(CB)ᵀ is large, but that

it loses power under a low-rank signal matrix. Given that alternatives tend to

be unknown in practice, we propose an enhanced likelihood ratio test that is also

powerful against low-rank alternative signal matrices. The power-enhanced test

statistic combines the LRT statistic and the largest eigenvalue (Johnstone (2008,

2009)) to further improve the test power against low-rank alternatives. Third,

when n < p and the LRT is not well defined, we propose a two-step testing pro-
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cedure: first, we reduce the dimensions of the covariates and responses, and then

we use the proposed (enhanced) LRT. To control the estimation error induced

by the dimension reduction in the first step, we employ a repeated data-splitting

approach, and show that the asymptotic type-I error is well controlled under the

null hypothesis. Simulation results confirm that the proposed approach performs

well.

The rest of the paper is organized as follows. In Section 2, we examine

when the classic LRT fails under the null hypothesis, and propose a corrected

limiting distribution for logLn. In Section 3, we analyze the power of logLn and

propose a more powerful test statistic. In Section 4, we discuss the multi-split

LRT procedure when n < p. Simulation studies and a real dataset analysis on

breast cancer are reported in Sections 5 and 6, respectively.

2. When the LRT Begins to Fail?

In traditional multivariate regression analyses, where the dimension param-

eters (p,m, r) are considered fixed, the χ2 approximation of the LRT,

−2 logLn
D−→ χ2

mr, as n→∞, (2.1)

is used for H0 : CB = 0r×m (Muirhead (2005); Anderson (2003)), where
D−→

denotes the convergence in distribution. However, this χ2 approximation is known

to perform poorly in high-dimensional applications (see, e.g., Bai and Saranadasa

(1996); Jiang, Jiang and Yang (2012); Bai et al. (2009, 2013); Jiang and Yang

(2013)).

When the three dimension parameters (m, p, r) are allowed to grow with n,

it is of interest to examine the phase transition boundary where the χ2 approxi-

mation fails. This is described in the following theorem.

Theorem 1. Consider n > p + m and p ≥ r. Let χ2
mr(α) denote the upper

α-quantile of a χ2
mr distribution.

(i) When mr → ∞ and max{p,m, r}/n → 0 as n → ∞, P{−2 logLn >

χ2
mr(α)} → α, for any significance level α, if and only if

lim
n→∞

√
mr

(
p+

m

2
− r

2

)
n−1 = 0. (2.2)

(ii) When mr is finite, P{−2 logLn > χ2
mr(α)} → α, if and only if limn→∞

p/n = 0.

Theorem 1 gives the necessary and sufficient condition on (m, p, r, n) such
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that the χ2 approximation (2.1) fails. Note that although (2.2) is obtained when

mr → ∞, (2.2) becomes limn→∞ p/n = 0 for finite m and r, supporting the

conclusion when mr is finite. To further examine the implications of (2.2), we

consider two special cases. Specifically, let m = bnηc and p = bnεc, with η and

ε ∈ (0, 1), where b·c denotes the floor of a number. When r is fixed, (2.2) implies√
m(p+m/2) = o(n); that is, max{ε, η} + η/2 < 1. When r = p = bnεc, (2.2)

implies
√
mp(p + m) = o(n); that is, max{ε, η} + (η + ε)/2 < 1. For these two

cases, we give two corresponding (η, ε)-regions in Figure 1 satisfying constraint

(2.2). In these two regions, when ε approaches zero, the largest η approaches

2/3. Therefore, when p is small, the largest m such that (2.2) holds is of order

n2/3. The same is true for the cases of fixed r and r = p, because p is small

and r ≤ p. In addition, when η goes to zero, the largest ε-values under fixed r

and r = p converge to one and 2/3, respectively. Thus, when m is small, the

largest p-values satisfying (2.2) are of order n and n2/3, respectively. Moreover,

when m = p, the largest orders of m and p for the two cases are n2/3 and n1/2,

respectively.

To illustrate this phase transition phenomenon, we present a simple simula-

tion experiment. We set Σ = Im, and estimate the type-I errors of the χ2 approx-

imation (2.1) using 104 repetitions under the following four cases: (a) fixed m =

r = 2 and p = bnηc; (b) fixed p = r = 2 and m = bnηc; (c) fixed m = 2 and p =

r = bnηc; and (d) p = m = r = bnηc. In all cases, η ∈ {1/24, . . . , 23/24}. In

Figure 2, we plot the estimated type-I errors against the η-values for n = 100

and 300. The plots show consistent patterns with the theoretical results. In

particular, when p = m = r = bnηc, the χ2 approximation begins to fail for η

around 1/2. When p and r are fixed and m = bnηc and when m is fixed and

p = r = bnηc, the χ2 approximation begins to fail for η around 2/3. When m

and r are fixed and p = bnηc, the χ2 approximation begins to fail for η larger

than the other three cases, which is consistent with the theoretical results.

Note that the necessary and sufficient constraint (2.2) also characterizes the

bias of the χ2 approximation. Specifically, under the conditions of Theorem 1,

E(−2 logLn−χ2
mr)/

√
var(χ2

mr) =
√
mr(p+m/2−r/2+1/2)n−1{1+o(1)}. Thus,

when (p,m, r) are large, such that (2.2) is violated and the χ2 approximation fails,

the bias of the χ2 approximation increases with
√
mr(p+m/2− r/2 + 1/2)n−1.

This can be seen in Figure 2, and is supported by the simulations reported in

Section 5.

In the classic regime with fixed m and p, researchers have also proposed the

Bartlett correction of the LRT, −2ρ logLn
D−→ χ2

mr, where ρ = 1 − (p − r/2 +

m/2+1/2)/n. In particular, for any z ∈ R, this corrected approximation gets rid
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Figure 1. η versus ε when r is fixed (left) and r = p (right).
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Figure 2. Estimated type I errors using χ2 approximation (2.1).

of the first-order approximation error O(n−1); that is, for any z, P (−2ρ logLn <

z)−P (χ2
mr < z) = O(n−2) when m and p are fixed. Similarly to Theorem 1, the

χ2 approximation with the Bartlett correction also fails as m and p increase with

n. The phase transition boundary is characterized in the following result.

Theorem 2. Consider n > p+m and p ≥ r.

(i) When mr → ∞ and max{p,m, r}/n → 0 as n → ∞, P{−2ρ logLn >

χ2
mr(α)} → α, for any significance level α, if and only if limn→∞

√
mr(r2 +

m2)n−2 = 0.

(ii) When mr is finite, P{−2ρ logLn > χ2
mr(α)} → α, if and only if n−p→∞.

Theorem 2 suggests that when m and r are fixed, the corrected LRT approx-

imation holds when n− p→∞. When mr →∞, the phase transition threshold

in Theorem 2 only involves m and r. In particular, when r is fixed and m = bnηc,
and when m is fixed and r = bnηc, the χ2 approximation with the Bartlett cor-

rection fails when η ≥ 4/5; when m = r = bnηc, the corrected approximation
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Figure 3. Estimated type-I error using the χ2 approximation with the Bartlett correction.

fails when η ≥ 2/3.

To illustrate this phenomenon, we present a numerical experiment on the

χ2 approximation with the Bartlett correction in Figure 3. The setup is the

same as that shown in Figure 2. The results show that when m and r are fixed

and p = bnηc, the type-I errors are well controlled for large η approaching one.

Moreover, when p and r are fixed and m = bnηc and when m is fixed and

p = r = bnηc, the corrected χ2 approximation begins to fail around η = 4/5.

When p = m = r = bnηc, the corrected χ2 approximation begins to fail around

η = 2/3. These numerical results are consistent with the theory.

More generally, to have a unified limiting distribution for analyzing high-

dimensional data under a general asymptotic region of (m, p, r, n), we derive a

corrected normal limiting distribution for the LRT statistic.

Theorem 3. When n > p+m, p ≥ r, mr →∞, and n−p−max{m−r, 0} → ∞
as n→∞, the LRT statistic Ln has the corrected form T1 satisfying

T1 :=
−2 logLn + µn

nσn

D−→ N (0, 1), (2.3)

where σ2
n = 2 log(n+ r − p−m)(n− p)− 2 log(n− p−m)(n+ r − p), and

µn = n

(
n−m− p− 1

2

)
log

(n+ r − p−m)(n− p)
(n− p−m)(n+ r − p)

+ nr log
(n+ r − p−m)

(n+ r − p)

+ nm log
(n− p)

(n+ r − p)
.

Theorem 3 covers the asymptotic regime where mr →∞, max{p,m, r}/n→
0, and the constraint (2.2) holds. Under this region, we can show that µn →
−mr and (nσn)2 → 2mr, which are consistent with the mean and variance,
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respectively, of the χ2
mr approximation. In addition, although Theorem 3 requires

mr →∞, the normal approximation (2.3) could still perform well when m or r is

small, as long as mr is sufficiently large. The simulations in Section 5 show that

the χ2 and normal approximations can perform similarly in low dimensions.

Alternatively, under some high-dimensional settings, we can check that no

χ2 or even noncentral χ2 distribution matches the asymptotic mean and variance

of −2 logLn in Theorem 3. Specifically, if the distribution of −2 logLn can be

approximated by some χ2 distribution, we should have −(nσn)2/µn → 2, which

is, however, not satisfied as p/n,m/n and r/n increase. If the distribution of

−2 logLn can be approximated by some noncentral χ2 distribution with degrees

of freedom kn, then we should have kn = −2µn − n2σ2
n/2, which can become

negative as p/n,m/n and r/n increase. Thus, the χ2-type approximation for

−2 logLn can fail fundamentally under high dimensions.

Remark 1. A similar result on the asymptotic normality of logLn in Theorem

3 is proved in Zheng (2012) and Bai et al. (2013). However, there are several

differences between our result and theirs. First, our asymptotic regime is more

general. Specifically, Zheng (2012) and Bai et al. (2013) require that m < r,

min{m, r} → ∞, and m/(n − p) converges to a constant in (0, 1), whereas we

only need mr →∞ and n−p−max{m−r, 0} → ∞. Our analysis covers the case

when m/(n− p)→ 0, and even when the limit does not exist. Second, the proofs

of Zheng (2012) and Bai et al. (2013) are based on random matrix theory, whereas

we prove Theorem 3 using a moment-generating function technique motivated by

the work of Jiang and Yang (2013).

3. Power Analysis and an Enhanced LRT

Although the limits of LRTs for high-dimensional data have been explored

for various problems, the power of these tests is less well studied and remains

a challenging problem, as discussed in Jiang and Yang (2013). In this section,

we focus on the high-dimensional multivariate linear regression and analyze the

power of the LRT statistic. Moreover, based on the theoretical results, we propose

a more powerful LRT.

To examine the power of the LRT statistic, we introduce the classic canon-

ical form of the LRT problem, which expresses H0 : CB = 0 in an equivalent

form as follows (Muirhead (2005)). Specifically, consider the matrix decompo-

sition X = O[Ip,0p×(n−p)]
ᵀD, where O is an n × n orthogonal matrix, and D

is a p × p nonsingular real matrix. Given D, we have a similar decomposition

CD−1 = E[Ir,0r×(p−r)]V , where E is an r × r nonsingular matrix, and V is a
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p × p orthogonal matrix. Therefore, CB = CD−1DB = E[Ir,0r×(p−r)]V DB,

and, thus, H0 : CB = 0r×m is equivalent to M1 = 0r×m, where we define

M1 = [Ir,0r×(p−r)]V DB = E−1CB.

We next describe the relationship between M1 and the LRT statistic through

a linear transformation of Y . Let V1 denote the first r rows of V . Define

Y ∗1 = [V1,0r×(n−p)]O
ᵀY and Y ∗2 = [0(n−p)×p, In−p]O

ᵀY . We then know that

Y ∗1
ᵀY ∗1 = SX and Y ∗2

ᵀY ∗2 = SE . We further define S̃X = Σ−1/2SXΣ−1/2,

S̃E = Σ−1/2SEΣ−1/2, and Ω = Σ−1/2Mᵀ
1 M1Σ−1/2. Then, we can write the LRT

statistic −2 logLn = n
∑min{m,r}

i=1 log(1 +λi), where λ is an eigenvalue of S̃−1
E S̃X .

Given that E(S̃−1
E S̃X) = (rIm + Ω)/(n − p) (Muirhead (2005)), we expect the

power of the LRT to depend on an averaged effect of all eigenvalues of Ω.

We focus on the alternatives where the signal matrix Ω is of low rank and

(p,m, r) increase proportionally with n. In particular, we assume Ω has a fixed

rank m0, and write Ω = n∆, where ∆ has fixed nonzero eigenvalues δ1, . . . , δm0
.

Note that this is reasonable when the entries in M1Σ−1/2 are O(1), because the

entries in Ω could be O(n), with r proportional to n. The following theorem

specifies how the power of the LRT statistic T1 depends on the eigenvalues of Ω.

Theorem 4. Consider the setting where (p,m, r) increase proportionally with

n, and p/n = ρp, m/n = ρm, and r/n = ρr, where ρp, ρm, ρr ∈ (0, 1) are fixed

constants and ρp + ρm < 1. Given ∆ = Ω/n with fixed nonzero eigenvalues

δ1, . . . , δm0
, define W∆ =

∑m0

j=1 log[1 + δj(1 +ρr−ρp)−1]. There exists a constant

A1 > 0 such that P (T1 > zα) → 1 − Φ(zα − A1W∆), where Φ(·) and zα denote

the cumulative distribution function and the upper α-quantile, respectively, of

N (0, 1).

Theorem 4 establishes the relationship between the eigenvalues of Ω and

the power of T1 under high-dimensional and low-rank signals. It implies that

when W∆ is large, T1 has high power. Alternatively, the LRT could be highly

underpowered when W∆ is small. Because in real applications the truth is usu-

ally unknown, we require a testing procedure with high statistical power against

various alternatives.

To enhance the power of the LRT, we propose combining it with Roy’s test

statistic based on the largest eigenvalue of S−1
E SX (Roy (1953)). In particular,

Johnstone (2008, 2009) extended Roy’s test to high-dimensional settings, and

proposed the largest eigenvalue test statistic T2 = [log{θn,1/(1− θn,1)} − µ̃n]/σ̃n.

Here, θn,1 = λmax{(SE + SX)−1SE}, with λmax(·) denoting the largest eigen-

value, and µ̃n = 2 × log tan{(φ+ γ/2)} and σ̃3
n = 16(n − p + r − 1)−2{sin2(φ +

γ) sinφ sin γ}−1, with sin2(γ/2) = {min(m, r)−1/2}/(n−p+r−1) and sin2(φ/2) =
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{max(m, r) − 1/2}/(n − p + r − 1). Moreover, Johnstone (2008) proved that

under the high-dimensional null hypothesis, T2
D−→ TW, where T W denotes a

Tracy–Widom distribution. Under the alternative hypothesis, Dharmawansa,

Johnstone and Onatski (2018) studied the spiked alternative with Ω = rUHUᵀ,

where U is an m × m0 matrix with orthonormal columns and fixed m0, and

H = diag(h1, . . . , hm0
) with h1 > · · · > hm0

. They showed that the phase transi-

tion threshold for h is a constant that depends on the limit of (p/n,m/n, r/n).

Note that with fixed r/n, there exists a constant c2 > 0 such that δ1 = c2h1.

This implies that when δ1 is a sufficiently large constant, the power of T2 can

converge to one, whereas the LRT statistic T1 may only have power less than

one, by Theorem 4. On the other hand, when δ1 is below the phase transition

threshold, T1 may be more powerful than T2.

We therefore propose a combined test statistic T3 = T1 + T2 ∗ I(T2 ≥ Fn),

where Fn is a positive constant. With properly chosen Fn, the proposed test

statistic T3 may enhance the power of T1 under alternative hypotheses, whereas

T3
D−→ N (0, 1) under H0. Specifically, under the null hypothesis, the type-I error

rate of T3 is controlled if P{T2 ≥ Fn} → 0. On the other hand, under alternative

hypotheses, we have P (T3 > zα) ≥ P (T1 > zα) because T2 ∗ I{T2 > Fn} ≥ 0

for Fn > 0. This guarantees that the power of T3 is at least as large as that

of the LRT statistic T1. Moreover, consider the case when W∆ is relatively

small, but δ1 is significantly above the phase transition threshold, where T2 is

more powerful than T1. Then if Fn does not grow too quickly, T3 would also be

powerful. Thus, we can choose Fn to be a slow-varying function, in which case the

combined test statistic T3 may improve the power of T1 with little size distortion.

Through extensive simulation studies, we find F (n) = max{log log n, 2} exhibits

good performance; please see Section 5.

4. Likelihood Ratio Test When p > n

When the number of predictors is large, such that p > n, SE becomes sin-

gular, and the test statistics T1, T2, and T3 cannot be applied directly. To deal

with this issue, we propose a multiple data-splitting procedure that repeatedly

splits the data into two random subsets. We use the first subset to perform the

dimension reduction and obtain a manageable size of predictors. Then we apply

the proposed LRT to the second subset. The test statistics from different data

splittings are aggregated to provide the final test statistic. The random splits of

data ensure correct size control of the test’s type-I error. Similar ideas are used

in other high-dimensional problems (Meinshausen, Meier and Bühlmann (2009);
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Berk et al. (2013) etc.). We next describe the proposed procedure.

Consider the setting when p > n and m < n. Denote B = [b1, . . . ,bp]
ᵀ and

M∗ = {k : bk 6= 0, 1 ≤ k ≤ p}. We assume a “sparsity” structure in which the

responses depend only on a subset of the predictors (or transformed predictors),

such that n > m+ |M∗|. Let XM∗ be the n×|M∗| submatrix of X with columns

indexed byM∗, and let BM∗ be the |M∗|×m submatrix of B with rows indexed

by M∗. The underlying model then satisfies Y = XM∗BM∗ + E. Under this

model, for any subset M ⊆ {1, . . . , p} such that M ⊇ M∗ and n > m + |M|,
testing CB = 0 is equivalent to CMBM = 0, and the LRT is then applicable.

Here, CM denotes the r× |M| submatrix of C with columns indexed byM, and

BM denotes the |M| ×m submatrix of B with rows indexed by M.

To obtain such a set M ⊇M∗, we propose a screening method for a multi-

variate linear regression. The seminal work of Fan and Lv (2008) first introduced

a sure independence screening procedure that significantly reduces the number of

predictors, while preserving the true linear model with an overwhelming proba-

bility. This procedure has been extended in various settings (e.g., Fan and Song,

2010; Wang and Leng, 2016; Barut, Fan and Verhasselt, 2016). However, many

of these works focus on the settings with a univariate response variable.

To use the joint information from multivariate response variables, we propose

a screening method that selects the columns of X based on their canonical correla-

tions with Y . The canonical correlation is a widely used dimension-reduction cri-

terion inferring information from cross-covariance matrices in a multivariate anal-

ysis (Muirhead (2005)). Specifically, for each column vector xj = (x1,j , . . . , xn,j)
ᵀ,

for j = 1, . . . , p, we first compute its canonical correlation with Y , denoted by

ωj = max
a∈Rm

aᵀ(Y − 1nȲ )ᵀ(xj − x̄j1n)√
{aᵀ(Y − 1nȲ )ᵀ(Y − 1nȲ )a} × {(xj − x̄j1n)ᵀ(xj − x̄j1n)}

,

where x̄j =
∑n

i=1 xi,j/n, Ȳ is the row mean vector of Y , and 1n is an all-one

column vector of length n. Then, for 0 < δ < 1, we select bδpc columns of X

with the highest canonical correlations with Y , and define the selected column

set asMδ = {j : |ωj | is among the largest bδpc of all, 1 ≤ j ≤ p}. In practice, we

choose an integer bδpc, such that nT > bδpc+m, to apply the LRT. On the other

hand, we keep bδpc large to increase the probability ofMδ ⊇M∗. The following

theoretical result provides the desired screening property that P (M∗ ⊆Mδ)→ 1

for properly chosen δ.

Theorem 5. Under Conditions 1–3 given in Supplementary Material Section

S5.1, for some constant c0 > 0, P (M∗ ⊆ Mδ) = 1 − O[exp{−c0n
1−ι/ log n}],
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where the constant ι < 1 is defined in Condition 3.

Remark 2. When testing the coefficients of the first r predictors of X, such

as C = [Ir,0r×(p−r)], we can keep the first r predictors, denoted by X1, in the

model, while screen the remaining predictors, denoted by X2. In particular, we

can apply the screening procedure to the residuals R̃, from the regression of Y

on X1, and X2. More generally. when C is a matrix of rank r, we can use

this conditional screening procedure by employing a linear transformation of the

data. In particular, given the singular value decomposition C = UV Dᵀ, we can

transform X and B into X̃ = XD and B̃ = DᵀB, respectively. Then, testing

H0 : CB = 0r×m is equivalent to testing H0 : [Ir,0r×(p−r)]B̃ = 0r×m under the

model of the transformed data Y = X̃B̃+E. A theoretical result similar to that

in Theorem 5 can be obtained under properly adjusted assumptions.

Remark 3. The proposed procedure uses the canonical correlation, which is an

extension of the marginal correlation in Fan and Lv (2008). The computation of

a canonical correlation is fast, and is pre-implemented in many software packages.

Moreover, the proposed method aggregates the joint information of the response

variables, and thus may be better than simply applying marginal screening to each

response variable. On the other hand, the correlation-based method has potential

issues when the predictors are highly correlated (Wang, Dutta and Roy (2020)).

To study the effect of highly correlated predictors, we performed a preliminary

simulation, documented in the Supplementary Material, Section S7.4. Here, we

compared our method with that of using a Lasso with cross-validation to select

predictors, which is expected to account for the dependence in the predictors, but

not in the responses. Under the considered settings with correlated predictors,

our method outperforms the Lasso. The comparison results also show that over-

and under-selecting predictors can both cause substantial loss of test power. To

further enhance this power, we may extend existing high-dimensional screening

methods, such as Wang and Leng (2016), to a multivariate regression setting. In

this way, we account for the dependence in both the predictors and responses.

This topic is left to future research.

Given a proper screening approach, we propose a data-splitting procedure

to apply the LRT. We randomly split n observations into two independent sets:

the screening data {XS , YS} of size nS , and the test data {XT , YT } of size nT .

We use {XS , YS} to select M, and apply the proposed LRT to {XT , YT } using

the selected predictors inM. Data splitting avoids the influence of the screening

step on the inference step and provides a valid inference, as is widely recognized

in the literature (Berk et al. (2013); Taylor and Tibshirani (2015)). We also
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demonstrate that the type-I error rate cannot be controlled without splitting the

data in the simulation studies in Section 5.

The result of a test based on a single random split is known to be sen-

sitive to the arbitrary split choice, making it difficult to reproduce the result

(Meinshausen, Meier and Bühlmann (2009); Meinshausen and Bühlmann (2010)).

Therefore we propose using multiple splits and aggregating the results. Note that

computing test statistics by splitting the data can be viewed as a resampling

method. Such methods usually do not perform well when approximating statis-

tics that depend on the eigenvalues of high-dimensional random matrices (Karoui

and Purdom (2016)). Furthermore, the test statistics computed after splitting

the data are correlated. As a result, it is challenging to combine the statistics

into a valid and efficient method.

In this study, we adopt the general p-value combination method proposed

by Meinshausen, Meier and Bühlmann (2009). Specifically, we randomly split

the data J times, and compute the J p-values for different splits. For each

j = 1, . . . , J , we compute the p-value p(j) with data splitting. Then, for γ ∈
(0, 1), define Q(γ) = min{1, qγ({p(j)/γ; j = 1, . . . , J})}, where qγ denotes the

empirical γ-quantile function. Because a proper selection of γ may be difficult,

we use the adaptive version below. Let γmin ∈ (0, 1) be a lower bound for γ,

and define the adjusted p-value pt as pt = min{1, (1− log γmin) infγ∈(γmin,1)Q(γ)}.
The extra correction factor 1 − log γmin ensures the type-I error is controlled,

despite the adaptive search for the best quantile. For the adaptive multi-split

adjusted p-value pt, the null hypothesis is rejected when pt < α, where α is the

prespecified threshold. Following the proof of Theorem 3.2 in Meinshausen, Meier

and Bühlmann (2009), we have the proposition below.

Proposition 1. Under H0, for any J random sample splits, if Theorem 5 holds

for each split, then lim supn→∞ P (pt ≤ α) ≤ α.

Proposition 1 shows that the multi-split and aggregation procedure can con-

trol the type-I error. To apply the multi-split procedure, we need to choose two

parameters, J and γmin. In practice, we choose J slightly large and of the same

order of n. We next discuss the choice of γmin. To improve the test power, we

want to choose γmin such that lim supn→∞ P (pt ≤ α) in Proposition 1 is max-

imized to be close to α under H0. By the proof of Proposition 1, it suffices to

make argmaxγ∈(0,1)P{Q(γ) ≤ α} ∈ (γmin, 1), because the adaptive search of γ

in pt is adjusted by the correction factor 1 − log γmin. Note that {Q(γ) ≤ α} is

equivalent to {ψ(αγ) ≥ γ}, with ψ(u) = J−1
∑J

j=1 1{p(j) ≤ u}. It is then equiv-

alent to finding the γ-value such that P{ψ(αγ) ≥ γ} is the closest to the upper
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bound α. To evaluate this, we consider two extreme cases for a given J . When

the p(j) are highly dependent, P{ψ(αγ) ≥ γ} ' P{p(1) ≤ αγ} = αγ, which ap-

proaches α when γ is close to one. When the p(j) are nearly independent, Jγ ≤ 1,

and αγ is small, P{ψ(αγ) ≥ γ} ' P{minj p
(j) ≤ αγ} ' 1 − (1 − αγ)J ' Jαγ;

then, Jαγ → α if γ → J−1. When the dependence between the p(j) is between

these two extreme cases, we expect the maximum P{ψ(αγ) ≥ γ} to be achieved

at some γ ∈ [J−1, 1). Because the true correlation is unknown in practice, in

the simulations, we recommend taking γmin slightly smaller than J−1 so that the

candidate γ range contains [J−1, 1). We performed a simulation study to illus-

trate how the value of P{ψ(αγ) ≥ γ} depends on the correlations of the p-values.

The results are provided in the Supplementary Material, Section S7.3, and are

consistent with the theoretical analysis presented here.

The following is a summary of the testing procedure for large p.

Procedure For j = 1, . . . , J ,

1. Randomly split the data into a screening data set {XS , YS} and a test data

set {XT , YT }.

2. On {XS , YS}: compute the canonical correlations between YS and each col-

umn of XS ; then, select the columns with the largest bδpc corresponding

correlations. The selected column indices form a set SC ⊆ {1, . . . , p}.

3. On {XT , YT }: choose the columns of XT indexed by SC to obtain XSC . Use

{XSC , YT } to compute the test statistic T3 and obtain the p-value p(j).

After obtaining the set of p-values, {p(j) : j = 1, . . . , J}, we compute the adjusted

p-value pt. Reject the null hypothesis if pt ≤ α.

Remark 4. When the dimension of the response Y is large (m > n), we also

need to reduce the dimension of the response vectors in order to apply the LRT.

We can use a principal component analysis (PCA) or factor analysis method to

perform the dimension reduction. In the simulation studies, we select the first

m0 principal components of YS as the columns of a matrix Ŵ , where m0 satisfies

m0 + p < nT and can be chosen using a parallel analysis (Buja and Eyuboglu

(1992); Dobriban and Owen (2019)). Then, we transform the responses YT in the

test data to obtain µ̂T = YT Ŵ , which only has m0 columns. We then use the

transformed data {XT , µ̂T } to examine CBŴ = 0. The independence between

the screening and test data sets ensures that the test is valid. Under the sparse

model setting, the signal matrix XM∗BM∗ has a low rank decomposition; thus,

we expect the dimension-reduction procedure to maintain high power. This is
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verified by the simulation studies in Section 5, which show that reducing the

dimensions of the responses may even boost the power of certain sparse models.

Alternatively, other dimension-reduction techniques can be applied (e.g.,Yuan

et al. (2007); Ma (2013)). When both m and p are large, we can apply the

dimension reduction to Y and X simultaneously to reduce both m and p.

5. Simulations

In this section, we report the results of several simulation studies used to

evaluate the theoretical results and proposed methods for n > p + m and n <

p+m.

5.1. n > p+m

For n > p+m, we conduct simulations under null and alternative hypotheses

to examine the type-I error and power of our proposed test statistics.

In the first setting, we sample the test statistics by simulating data following

the canonical form introduced in Section 3. Specifically, we generate random

matrices Y ∗1 of size r ×m and Y ∗2 of size (n− p)×m, where the rows of Y ∗1 and

Y ∗2 are independent m-variate Gaussian with covariance Im, and E(Y ∗1 ) = M1

and E(Y ∗2 ) = 0. Under the canonical form, we know H0 is equivalent to M1 = 0,

as discussed. In the following, each simulation is based on 10,000 replications

with significance level 0.05.

Under the null hypothesis, we compare the traditional χ2 approximation

(2.1) with the normal approximations for T1 in (2.3) and T3. In particular, we

study how the dimension parameters (p,m, r) influence these approximations by

varying one parameter each time. Figure 4 gives the estimated type-I errors as p

increases. The figure shows that as p becomes larger, the χ2 approximation (2.1)

performs poorly, whereas the normal approximations for T1 and T3 still control

the type-I error well. Other simulation results with varying m or r are given in

the Supplement Material Section S7.1; similar patterns are observed.

Under the alternative hypotheses, we compare the power of the test statistics

T1, T2, and T3, and show the power improvement of T3 over T1 and T2. Specif-

ically, under the canonical form, we simulate data with M1 = diag(δ1, . . . , δrk ,

0, . . . , 0), that is, a diagonal matrix with rk nonzero elements. It follows that

Ω = diag(δ2
1 , . . . , δ

2
rk , 0, . . . , 0) has rank rk. Under this setup, we test four cases:

(a) rk = 1; (b) rk = 2 and δ1 = δ2; (c) rk = 2 and δ1 = 10δ2; and (d) rk =

3 and δ1 = δ2 = δ3. In all cases, n = 100,m = 20, p = 50, and r = 30. For each

case, we plot the estimated power versus tr(Ω)/m in Figure 5. The results show
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Figure 4. Estimated type I error versus p.
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Figure 5. Powers of T1, T2 and T3 versus tr(Ω)/m.

that when the rank of Ω, rk, is small or the significant entries in Ω have low rank,

T2 is more powerful than T1; however, when rk or the rank of significant entries in

Ω increases, T1 becomes more powerful. Moreover, in both sparse and nonsparse

cases, the combined statistic T3 has power close to the better of T1 and T2, with

the type-I error well controlled. These patterns are consistent with the results of

our theoretical power analysis in Section 3.

In addition, we conduct simulations when X and Y are generated following
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Y = XB + E, where the rows of E follow multivariate Gaussian distributions.

The results are given in the Supplementary Material, Section S7.1, and show that

T3 is powerful under both dense and sparse B cases. Moreover, we conduct similar

studies when X and Y take discrete values and when the statistical error follows a

heavy-tail t distribution. The results are provided in the Supplementary Material,

Section S7.1. We observe similar patterns to the normal cases in Section S7.1,

which suggests that the proposed test statistic is robust to the normal assumption

of the statistical error.

5.2. n < p+m

This section presents the results of the simulations for n < p+m and evaluates

the performance of our proposed procedure in Section 4. Specifically, we take C =

[Ir,0r×(p−r)], and let B be a p×m diagonal matrix with σs in the first rk diagonal

entries, where σs represents the signal size that varies in the simulations. The

rows of X and E are independent multivariate Gaussian with covariance matrices

Σx = (ρ|i−j|)p×p and Σ = (ρ|i−j|)m×m, respectively. We set n = 100, p = 120,

and r = 120, and test the cases when m ∈ {20, 120}, rk ∈ {5, 10}, and ρ ∈
{0.3, 0.7}. We conduct each simulation with 200 replications, and split the data

into screening and test data sets with ratio 3:7 (the ratios 2:8 and 4:6 performed

similarly in our simulations). Figure 6 reports the simulation results when rk =

10; all other results are presented in the Supplementary Material, Section S7.2.

In Figure 6, “screening” represents the proposed screening procedure on X (with

20% features selected); “PCA” represents the PCA on Y , as in Remark 4; and J

represents the number of splits, where J = 0 represents a test on the same data

without splitting.

Figure 6 shows that when we do not split the data (J = 0), the type-I errors

cannot be controlled under all cases. If we split the data once (J = 1), the

type-I errors become closer to the significance level, but can still be unstable.

If we use the multi-split method with 200 splits (J = 200), the type-I errors

become well controlled. The results imply that data splitting is necessary for

the proposed two-stage testing procedure, and show that multiple splits help us

to obtain stable results. In addition, in the four cases, the multi-split method

(J = 200) achieves higher power than that of the single split (J = 1) as the signal

size increases. Moreover, for cases (a) and (b) in Figure 6, with the single split

of data (J = 1), we also compare the test power when screening only on X with

that when performing a dimension reduction on both X and Y . The results are

given by the curves “J = 1, only screening” and “J = 1, PCA & screening”,

respectively. We observe that the test power is slightly enhanced by performing
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Figure 6. Estimated powers versus signal sizes when n < m+ p.

a dimension reduction on both X and Y .

In addition, we conduct similar studies when X and Y take discrete values

and when the statistical error follows a heavy-tail t distribution; see the Supple-

mentary Material, Section S7.2. We observe similar patterns to those in Figure

6, which suggests that the proposed method is robust to the normal assumption

of the statistical error.

6. Real-Data Analysis

We demonstrate our proposed method by analyzing the breast cancer dataset

from Chin et al. (2006), which was also studied by Chen, Dong and Chan (2013)

and Molstad and Rothman (2016). The data set is available in the R package

PMA, and consists of measured gene expression profiles (GEPs) and DNA copy-

number variations (CVNs) for n = 89 subjects. Prior studies have demonstrated

a link between DNA copy-number variations and cancer risk (see, e.g.,Peng et al.

(2010)). Here, we examine the relationship between CNVs and GEPs using a

multivariate regression method.

We examine the three chromosomes 8, 17, and 22, and test whether they are

related (i.e., C = Ip). We report the regression results for the CNVs on the GEPs



LIKELIHOOD RATIO TEST IN MULTIVARIATE LINEAR REGRESSION 1233

Table 1. Decision results

Chromosome pair
p0 8→ 8 17→ 17 22→ 22 8→ 17 17→ 22 8→ 22
40 x x x x x X
45 x x x x x X
50 x x x x x X

in this section; we provide the regression results for the GEPs on the CNVs in the

Supplementary Material, Section S8, where similar patterns are observed. Here,

the m-variate response is the CNV data and the p-variate predictor is the GEP

data, where the dimension parameters are (p,m) = (673, 138), (1,161, 87), (516, 18)

for the respective chromosomes. Because the parameters p and m are either com-

parable to or larger than the sample size n = 89, we apply the proposed testing

procedure in Section 4. In particular, we choose the screening data size nS = 26

and the test data size nT = 63, where nS : nT is approximately 3 : 7. We reduce

the dimension of the response CNV data matrix using a parallel analysis, and

select the columns of the GEP data matrix using the screening method in Sec-

tion 4. To include as much information on the predictors as possible, we select

between 40 and 50 predictors when screening. For each chromosome, we split

the data J = 2,000 times. Then, we obtain the corresponding p-values, p(j), for

j = 1, . . . , J , from the limiting distribution of the test statistic T3. Lastly, we

compute the final p-value, pt, and reject the null hypothesis if pt < α.

We summarize the test results in Table 1. The column “p0” indicates the

number of selected predictors, and the columns “k1 → k2” under “Chromosome

pair” indicate that we use GEPs from the k1th chromosome to predict the CNVs

from the k2th chromosome. For each setting, the symbols “x” and “X” indicate

that we reject and accept the null hypothesis, respectively. The test results show

that the null hypothesis is rejected when the CNVs and GEPs are from the same

chromosome, which makes biological sense. On the other hand, if we use GEPs

from the eighth chromosome to predict the CNVs from the 17th chromosome,

or use the GEPs from the 17th chromosome to predict the CNVs from the 22nd

chromosome, the null hypotheses are rejected; if we use GEPs from the eighth

chromosome to predict the CNVs from the 22nd chromosome, the null hypothesis

is accepted. These conclusions indicate different relationships between the CNVs

and GEPs of different chromosomes, which might deserve closer investigation.

To further illustrate the test results, Figure 7 provides box plots of {p(j) : j =

1, . . . , J} with respect to different chromosome pairs when p0 = 45. We find that

the medians of the p-values obtained from the regressions of 8 → 17, 17 → 22,
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Figure 7. Box plot of p-values for regressions on different chromosome pairs.

and the same chromosome pairs are smaller than 0.05, which are consistent with

the rejection decisions shown in Table 1. Moreover, for 8 → 22, the majority

of the p-values are larger than 0.05. This is thus consistent with the decision to

accept the null hypothesis when using the GEPs from the eighth chromosome to

predict the CNVs from the 22nd chromosome.

7. Conclusion

We have examined the LRT for H0 : CB = 0r×m in a high-dimensional

multivariate linear regression, where p and m are allowed to increase with n.

Under the null hypothesis, we derive the asymptotic boundary where the classical

χ2 approximation fails, and propose a corrected limiting distribution for logLn
in a general asymptotic regime of (p,m, r, n). Under alternative hypotheses, we

characterize the statistical power of logLn in the high-dimensional setting, and

propose a power-enhanced test statistic. In addition, when n < p + m and the

LRT is not well defined, we propose using a two-step testing procedure with

repeated data-splitting.

This study on the LRT of a multivariate linear regression can be extended

to vector nonparametric regression models. Specifically, for k = 1, . . . ,m, sup-

pose the kth response variable depends on the p-dimensional predictor vector

x through the regression equation yk = Mk(x) + ek, where Mk is an unknown

smooth function, and ek is an error term. We begin with the case when the

predictor is univariate. Then, we can model Mk(x) using regression splines:

Mk(x) =
∑M

j=1 bk,jφj(x), where Φ = (φj : k = 1, . . . ,M)ᵀ are some basis func-

tions. Write y = (y1, . . . , ym)ᵀ, e = (e1, . . . , em)ᵀ, and B = (bk,j)M×m; then,
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y = BᵀΦ + e, which is in the form of the multivariate linear regression. To test

the coefficients B, we can apply the proposed method. More generally, when

the predictors are multivariate, additive models (Hastie and Tibshirani (1986))

are commonly used to finesse the “curse of dimensionality”. The multivariate

functions Mk are written as Mk(x) = Mk,1(x1)+ · · ·+Mk,p(xp), for k = 1, . . . ,m,

where Mk,1(·), . . . ,Mk,p(·) are univariate functions. Suppose Φ1, . . . ,Φp are the

basis functions for Mk,1(·), . . . ,Mk,p(·), respectively. Then, y = B̃ᵀΦ̃ + e, where

B̃ = (Bᵀ
1 , . . . , B

ᵀ
p )ᵀ and Φ̃ = (Φᵀ

1 , . . . ,Φ
ᵀ
p)ᵀ. Therefore, we can apply the proposed

LRT method to test the structure of the coefficient matrix B̃.

This work establishes its theoretical results under the assumption that the er-

ror terms E follow Gaussian distributions; nevertheless, we expect our conclusions

to hold over a larger range of distributions. Numerically, we conduct simulations

when the error terms follow discrete distributions or heavy-tail t distributions,

which are provided in the Supplementary Material. The simulation results show

similar patterns to the Gaussian cases, implying that the theoretical results may

be valid. Theoretically, Bai et al. (2013) showed that the linear spectral of the

F -matrix S1S
−1
2 also has an asymptotic normal distribution, without specifying

that the distributions of the entries of S1 and S2 must be normal. However, they

assumed that entries of S1 and S2 are independent and identically distributed,

which is usually not satisfied in a general multivariate regression analysis. Re-

cently, Li, Aue and Paul (2018) proposed a modified LRT using a nonlinear

spectral shrinkage, and established its asymptotic normality without the normal

assumption on E when m is proportional to n. However, they assumed that p,

the number of predictors, is fixed. Thus, the asymptotic distribution of logLn
for general high-dimensional non-Gaussian cases remains an open question.

Supplementary Material

The online Supplementary Material includes proofs and additional simula-

tions.
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