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Abstract: We propose a new spectral-based approach to hypothesis testing for

populations of networks. The primary goal is to develop a test to determine whether

two given samples of networks come from the same random model or distribution.

Our test statistic is based on the trace of a centered and scaled adjacency matrix to

the third power, which we prove converges to the standard normal distribution as the

number of nodes tends to infinity. We also provide the asymptotic power guarantee

of the test. We explore the relationship between the number of networks and the

number of nodes in each network when characterizing the theoretical properties of

the proposed test statistic. Our test can be applied to both binary and weighted

networks, operates under a very general framework in which the networks are

allowed to be large and sparse, and can be extended to multiple-sample testing.

We present a simulation study that demonstrates the superior performance of our

tests over that of existing methods, and apply our tests to three real data sets.

Key words and phrases: Hypothesis testing, populations of networks, random matrix

theory.

1. Introduction

In this work, we consider an inference problem related to populations of

networks in which each sample or data point is a network. Most existing works

on statistical network analysis focus on models and algorithms that can be used to

analyze a single network. However, the increasing prevalence of multiple-network

data sets, in which the network is the fundamental data object, has motivated

the need for statistical inference methods for populations of networks, from which

we can extract useful scientific information.

For example, in the brain network data examined in Section 5, one may be

interested in testing whether a brain network structure from a group of individuals

with schizophrenia differs from that of a group of healthy controls. Given a

collection or sample of such networks, one might also be interested in estimating

some mean network feature, which would enable us to average networks or cluster

networks into groups (Mukherjee, Sarkar and Lin (2017)). These are all inference
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tasks for one or two samples of network objects, both of which have been explored

in the literature.

Ginestet et al. (2017) consider two-sample testing for networks, with

applications to functional neuroimaging. Kolaczyk et al. (2020) extended this

work using a geometric and statistical framework for inference on populations

of unlabeled networks. They did so by providing a geometric characterization

of the space of unlabeled networks and deriving a central limit theorem for the

sample Fréchet mean. Supervised and unsupervised learning, such as clustering,

regression, and classification for network objects, have also been considered in

the literature. See, for example, Arroyo Relión et al. (2019) and Josephs et al.

(2020); the former consider network classification in neuroimaging, and the latter

use Bayesian methods for classification, anomaly detection, and survival analysis.

Here, we focus on the problem of two-sample hypothesis testing for popula-

tions of networks. There are several such hypothesis tests in the literature, but

these typically make assumptions on the network model. For example, Tang et al.

(2017) study whether or not two networks (m = 2) defined on different vertex sets

are generated from the same random dot product graph model. Ghoshdastidar

et al. (2020) study two-sample problems from a minimax perspective that test

whether two samples of binary networks of n nodes are generated from the

same link probability matrix, against an alternative that the two link probability

matrices are ρ apart with respect to some matrix norm. Their work focuses on a

theoretical characterization of minimax separation with respect to the number of

networks m, the number of nodes n, and different matrix norms. Ghoshdastidar

and von Luxburg (2018) apply the same test statistic, and prove that it converges

to a normal distribution asymptotically. Recently, Yuan and Wen (2021) modified

the test statistic in Ghoshdastidar and von Luxburg (2018), proposing a new test

for weighted graph two-sample hypothesis testing.

One straightforward alternative to two-sample testing for networks is to

convert the networks into vector values, and then to apply a two-sample, high-

dimensional mean test. This strategy has been widely studied in the literature

(Chen and Qin (2010); Cai, Liu and Xia (2014); Xu et al. (2016)). Although

this approach is model free, it may lose information in the conversion process,

which essentially ignores the interconnectedness that defines the network data.

We return to this discussion in Section 4.

In contrast to most existing works, such as Ginestet et al. (2017), in which

the number of nodes is fixed, we consider a general framework that allows both

the number of nodes and the sample size (the number of networks) to grow. Our

test statistics are spectral based and not restricted to a given network structure.

We use the trace of the third power of a centered and scaled adjacency matrix,

which is proven to converge to the standard normal distribution as the number

of nodes tends to infinity. In addition, we show that the asymptotic power tends

to one as the number of nodes increases. Because we also want to understand
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the limiting behavior as the sample size increases, we explore the relationship

between the asymptotics in the number of networks and in the number of nodes for

each network when characterizing the theoretical properties of our proposed test

statistics. These statistics are conceptually simple and computational friendly,

and we discuss an extensive simulation study that we conducted under various

models to demonstrate the superior performance of our test over that of existing

methods. In almost all cases we examine here, the proposed test statistics achieve

the nominal rejection rate under the null, and a power close to one under the

alternative. We also apply our test to three real data sets of weighted and binary

networks.

The idea of applying a spectral method based on random matrix theory

to network data is a natural one, because network data (e.g., the adjacency or

Laplacian matrix) can naturally be viewed as a random matrix. Our method

is motivated by Dong, Wang and Liu (2020), who propose a spectral-based

hypothesis test for testing the community structure within a single network.

The authors prove that their test statistic, which is similar to that in Bickel

and Sarkar (2016), converges quickly to the normal distribution. However, it

is limited to testing the presence of a community structure in a single network

versus the null Erdős–Rényi model. In our work, we extend the statistic to

test the difference between arbitrary network models. The proposed statistic

can be applied to either binary or weighted networks in both two-sample and

multiple-sample frameworks. A spectral-based test based on a Tracy–Widom

law for hypothesis testing of populations of networks and change-point detection

in networks can also be found in Chen, Lin and Zhou (2020) and Chen, Zhou

and Lin (2021). Compared with these two works, our spectral-based test has

an asymptotic standard normal distribution, and a much faster convergence rate

under the null compared with the slow convergence of tests based on a Tracy–

Widom law. Furthermore, our test statistics require much milder conditions for

the theoretical performance guarantees: we need an error estimate of the link

probability estimates of op(1), compared with the error condition of op(n
−2/3)

required by Chen, Lin and Zhou (2020).

The remainder of the paper is organized as follows. In Section 2, we

describe our proposed spectral-based test statistic, and derive its asymptotic null

distribution and an asymptotic power result. We extend our test for weighted

networks and multiple-sample testing in Section 3. In Section 4, we report the

results of extensive simulation studies, and in Section 5, we analyze three real

network data sets. We conclude the paper in Section 6.

2. A New Spectral-Based Test for Binary Networks

In this section, we first propose a new spectral-based test for testing the

difference between distributions of two samples of binary networks. Specifically,
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we consider two samples of networks on the same n nodes with possibly

different sample sizes’ m1 and m2, respectively. We assume that we observe

the independent and identically distributed (i.i.d.) symmetric binary adjacency

matrices A
(1)
1 , . . . , A

(m1)
1 , with conditionally independent entries generated from

a symmetric link probability matrix P1, that is,

A
(k)
1,ij ∼ Bernoulli(P1,ij),

for k = 1, 2, . . . ,m1 and i, j = 1, 2, . . . , n. Similarly, we observe a second sample

of adjacency matrices A
(1)
2 , . . . , A

(m2)
2 with

A
(k)
2,ij ∼ Bernoulli(P2,ij),

generated from the same model with link probability matrix P2. Assume that

there are no self-loops, that is, A
(k)
u,ii = 0, for u = 1, 2, i = 1, . . . , n, and k =

1, . . . ,mu. Our goal is to test whether the two samples of networks have the same

graph structure, which is equivalent to testing

H0 : P1 = P2 versus H1 : P1 6= P2. (2.1)

To address this, we propose a new statistic that uses results from random

matrix theory. For some background on the spectral properties of inhomogeneous

networks, which are used heavily in this work, see the online Supplementary

Material.

2.1. New spectral test for binary networks

Given two samples of networks {A(k)
1 }m1

k=1 and {A(k)
2 }m2

k=1, sampled from the

link probability matrices P1 and P2, respectively, we introduce the normalized

matrix with elements as follows:

Zij =


Ā1,ij−Ā2,ij√

n{(1/m1)P1,ij(1−P1,ij)+(1/m2)P2,ij(1−P2,ij)}
if i 6= j

Bij if i = j
, (2.2)

where Āu is the sample average of the adjacency matrices in the uth group, for

u = 1, 2,

Āu =
1

mu

mu∑
k=1

A(k)
u , (2.3)

and B is an n×n diagonal matrix with, Bii given by i.i.d. random variables such

that

P

(
Bii = − 1√

n

)
= P

(
Bii =

1√
n

)
= 1/2, (2.4)

for i = 1, . . . , n.
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Consider the test statistic

θ =
1√
15

Tr(Z3), (2.5)

where Tr(·) represents the trace operator. This statistic is an extension of that

in Dong, Wang and Liu (2020), which was inspired by a result in Bai and

Silverstein (2010). Under the null hypothesis, we have the following theorem

on the asymptotic distribution of θ.

Theorem 1. Let Z be given as in (2.2). Assume the sample size satisfies mu =

O(nαu), for some αu > 0, u = 1, 2. Then, under the null hypothesis P1 = P2, for

the scaled test statistic θ = (1/
√

15)Tr(Z3), we have

θ
d→ N (0, 1) as n→∞, (2.6)

where
d→ denotes weak convergence.

We defer the details of the proof to the Supplementary Material. However, an

overview of the argument is as follows. First, under the null hypothesis of P1 = P2,

Z is a Wigner matrix satisfying E(Zij) = 0 and Var(Zij) = 1/n. Then, we verify

that X =
√
nZ satisfies conditions (1)–(3) of Lemma 1 in the Supplementary

Material, after which, the asymptotic normality of θ follows. Lastly, we obtain

the mean and variance following Dong, Wang and Liu (2020).

To formalize a testing framework using θ in (2.5), we need to account for

the fact that the diagonal matrix B in (2.4) is random. We do so by employing

a Monte Carlo procedure, which we describe in Algorithm 1. Our output is an

empirical significance level, which is the rejection rate based on the test statistics

computed from the Monte Carlo samples of B.

Remark 1. In Algorithm 1, we deliberately do not output a p-value. For Q = 1,

we can obtain a p-value using 2P
(
θ > |θ(Q=1)

obs |), as in Bickel and Sarkar (2016)

and Dong, Wang and Liu (2020), where θ
(Q=1)
obs is the sample test statistic and

θ follows the null distribution of the test statistic. However, in this case, the

p-value is implicitly conditional on B, and the authors’ simulations reveal that

the randomness of B leads to highly variable p-values. Instead, for our test,

we propose computing many θ
(q)
obs in parallel to reduce the noise induced by B.

The analogous p-value estimate combining these Monte Carlo test statistics is

2P
(
θ > |θ̄obs|

)
, where θ̄obs = (1/Q)

∑Q
q=1 θ

(q)
obs.
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Algorithm 1: Procedure for testing using the statistic in (2.5). The output
is an empirical significance level based on Monte Carlo test statistics, where
I(·) is an indicator function and µα/2 is the α/2 upper quantile of N (0, 1).

New Spectral-Based Hypothesis Test
(
{A(k)

1 }
m1

k=1, {A
(k)
2 }

m2

k=1, α,Q
)
;

Input : Adjacency matrices {A(k)
1 }

m1

k=1 and {A(k)
2 }

m2

k=1 for groups 1 and 2
Significance level α
Number of Monte Carlo samples Q

Output: Empirical significance level rej rate
Compute Āu for u = 1, 2 using (2.3);
for q = 1, . . . , Q do in parallel

Sample B(q) satisfying (2.4);

Compute Z(q) in (2.2) using B(q);

Compute θ(q) in (2.5) using Z(q);

end

rej rate = (1/Q)
∑Q
q=1 I

(
|θ(q)| > µα/2

)

Remark 2. The rejection rate from our Monte Carlo estimator has the property

that its expectation under the null is the nominal significance level:

E

(
1

Q

Q∑
q=1

I
(
|θ(q)| > µα/2

))
= P

(
|θ(q)| > µα/2

)
= α.

2.2. Test statistic based on estimated link probability matrices

Theorem 1 assumes that the true link probability matrices P1 and P2 are

known, which is not the case in practice. Therefore, θ cannot be used directly as

a test statistic. A natural alternative is to plug in appropriate estimates of P1

and P2, with the hope that the plug-in estimator for the test statistic retains its

asymptotic normality.

We denote the plug-in estimates of P1 and P2 by P̂1 and P̂2, respectively.

Then, the empirical version of the normalized matrix Z in (2.2) can be written

as

Ẑij =


Ā1,ij−Ā2,ij√

n{(1/m1)P̂1,ij(1−P̂1,ij)+(1/m2)P̂2,ij(1−P̂2,ij)}
if i 6= j

Bij if i = j
. (2.7)

The resulting test statistic is

θ̂ =
1√
15

Tr(Ẑ3), (2.8)

which has the following limiting law.

Theorem 2. Under the two-sample framework of binary networks, let Ẑ be given

in (2.7). As before, assume the sample size mu = O(nαu), and P̂u is some
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estimate of Pu, for some αu > 0, u = 1, 2. If maxi,j |P̂u,ij − Pu,ij| = op(1), then,

under the null hypothesis P1 = P2, we have the following asymptotic distribution

of the scaled test statistic θ̂ = (1/
√

15)Tr(Ẑ3):

θ̂
d→ N (0, 1) as n→∞.

Again, we defer the proof to the Supplementary Material, which relies on

rewriting

Tr(Ẑ3) = Tr(Z3) + 3Tr
{
Z2(Z ◦H)

}
+ 3Tr

{
Z(Z ◦H)2

}
+ Tr

{
(Z ◦H)3

}
,

where ◦ denotes the Hadamard product, and H is an n × n matrix with entries

Hij = op(1). Each term on the right-hand side of this equality can be proven to

be op(1).

2.3. Estimating link probability matrices

As it is, our test statistic in (2.8) is really for a two-sample matrix testing

problem for a difference of means. However, this becomes a network test when

we estimate the link probability matrices. Here, we propose three methods that

satisfy the conditions in Theorem 2, which require that the sample sizes of the

observed networks grow with n at a rate of nα, for any α > 0, and maxi,j |P̂u,ij −
Pu,ij| = op(1).

The simplest estimator of Pu,ij is the sample mean of all (i, j) elements in

the adjacency matrices of group u. We refer to this spectral method based on

simple averages as SPE-AVG. It is not difficult to see that maxi,j |P̂u,ij −Pu,ij| =
op(m

−1/2
u log n) by applying Bernstein’s inequality (Bernstein (1946)). Intuitively,

SPE-AVG requires large sample sizes to achieve good performance. This is

confirmed empirically by our extensive simulation studies, in which SPE-AVG

typically yields inferior performance compared with that of other methods.

Another possible average estimator of Pu,ij is based on the stochastic block

model (SBM). The key idea is to approximate a graph with an SBM, which, for

large networks, is reasonable, by Szemerédi’s regularity lemma (Lovász (2012)).

The membership vector of nodes can be obtained using community algorithms,

such as the method proposed in Ng, Jordan and Weiss (2002). After the

membership vector has been estimated, we can simply approximate Pu,ij using

the sample mean of all entries in the submatrix over all A(k)
u , for k = 1, 2, . . . ,mu,

restricted to the corresponding block consisting of the communities of i and j.

We refer to this test method based on an SBM as SPE-SBM. Assuming the true

community number is Ku, the estimation error satisfies maxi,j |P̂u,ij − Pu,ij| =

op(Kum
−1/2
u n−1 log n). Thus, the rate of SPE-SBM is better than that of SPE-

AVG as long as Ku < m1/2
u n1−β, with β a small positive number, which is very

easily satisfied. However, the property may be limited by the assumption that
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the network topologies follow an SBM structure.

Finally, we introduce a new estimation method based on the modified

neighborhood smoothing (MNBS) proposed in Zhao, Chen and Lin (2019).

The idea is to perform neighborhood smoothing on the matrix Ā, which

is the weighted average of m networks, and then to apply the smoothing

procedure to a shrunken neighborhood size. This results in a better bias–

variance trade-off leading to a better estimate of the link probability matrix,

with a smaller error. Note that MNBS is essentially an NBS method applied

to Ā instead of to the adjacent matrix of a single network, and with a

shrunken neighborhood size. This reduces the variance due to the multiple

networks available in the each sample. From Lemma 9.3 in Zhao, Chen

and Lin (2019), the size of a neighborhood is Op((n log n/mu)1/2) . Using

this and Bernstein’s inequality, the estimation error of the link probability is

|P̂u,ij − Pu,ij| = max
(
Op
(
(mun log n)−1/4

)
, On(n−1 log n), On((mun/ log n)−1/2)

)
.

For the technical details, see Section S4.1 in the Supplementary Material. We

refer to this test method based on MNBS as SPE-MNBS. Note that SPE-MNBS

places no structure conditions on the networks. Therefore, we expect the method

to be generally applicable.

2.4. Asymptotic power guarantee

Next, we consider the power of the test based on θ̂ in (2.8), which we

summarize in the following theorem.

Theorem 3. Consider the alternative model of P1 6= P2 under the assumptions

of Theorem 1. Let Z ′′ be an n×n matrix with zero diagonals and, for any i 6= j,

Z ′′ij =
P1,ij − P2,ij√

n{(1/m1)P1,ij(1− P1,ij) + (1/m2)P2,ij(1− P2,ij)}
. (2.9)

Define the partition {1, . . . , n}3 = Sa ∪ Sb ∪ Sc, where (i, k, l) ∈ Sa, Sb, and Sc
indicates that Z ′′ikZ

′′
klZ
′′
li > 0, Z ′′ikZ

′′
klZ
′′
li < 0, and Z ′′ikZ

′′
klZ
′′
li = 0, respectively. Let

|Sa| = an3, |Sb| = bn3, and |Sc| = cn3, with a, b, c ∈ [0, 1] satisfying a+ b+ c = 1.

If either

(i) an3 min
(i,k,l)∈Sa

(Z ′′ik)
3 + bn3 min

(i,k,l)∈Sb

(Z ′′ik)
3 > 0 or

(ii) − an3 max
(i,k,l)∈Sa

(Z ′′ik)
3 − bn3 max

(i,k,l)∈Sb

(Z ′′ik)
3 > 0

is satisfied, then

lim
n→∞

P (|θ̂| > µα/2) = 1, α > 0.

The proof is given in the Supplementary Material.
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Remark 3. Note that there is a slight abuse of notation in our conditions

(i) and (ii), where the minimum or maximum operator is taken over all pairs

of indices among (i, j, k). These conditions characterize the minimum signal

difference between P1 and P2 required for Theorem 3 to hold, which implies that

the power is asymptotically one when either of the sets Sa or Sb is sufficiently

large. For a better understanding of this, consider the case in which P1,ij ≥ P2,ij,

for all i and j, that is, Z ′′ij ≥ 0, and Theorem 3 holds as long as a > O((mun)−3/2),

which is a very mild condition.

Remark 4. The separation conditions in Theorem 3 arise in our proof as a

characterization of the signal difference between two link probability matrices.

Importantly, this characterization is on the whole network, rather than on the

method of network moments or on motifs for network data (the frequencies of

particular patterns such as triangles, stars, or wheels), which are studied in Gao

and Lafferty (2017), Banerjee and Ma (2017), Jin, Ke and Luo (2021), Zhang

and Xia (2020), and Bhattacharya, Das and Mukherjee (2020).

3. Extending our Test to Other Settings

In this section, we extend our test for weighted networks, and for multiple

samples, in a manner analogous to a one-way analysis of variance (ANOVA).

3.1. Extension to weighted networks

We now consider a more general framework that focuses on weighted

networks. Let F1 = {F1,ij} and F2 = {F2,ij}, for i, j = 1, . . . , n, be two sequences

of distributions defined on bounded intervals and specified by some parameters.

Let A
(1)
1 , . . . , A

(m1)
1

i.i.d.∼ F1 and A
(1)
2 , . . . , A

(m2)
2

i.i.d.∼ F2 be symmetric weighted

adjacency matrices for networks that are undirected and without self-loops, that

is, A
(k)
u,ii = 0, for u = 1, 2, i = 1, . . . , n, and k = 1, . . . ,mu. Let Σu denote an

n × n matrix in which the (i, j) element is the variance of A
(k)
u,ij. Note that its

diagonal elements are zero, because A
(k)
u,ii = 0. Finally, let Σ̂u,ij be an estimate of

Σu,ij.

Our approach for weighted networks is to replace Pu,ij(1−Pu,ij) in (2.2) and

P̂u,ij(1− P̂u,ij) in (2.7) with Σu,ij and Σ̂u,ij, respectively. Just as in Section 2.3,

the estimates Σ̂u,ij can be obtained using various methods, which are discussed

later. For simplicity, we use the same notation as in Section 2.3.

For the weighted case, the testing problem in (2.1) is equivalent to

H0 : F1 = F2 versus H1 : F1 6= F2. (3.1)

We define the normalized matrix Z as
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Zij =


Ā1,ij−Ā2,ij√

n{(1/m1)Σ1,ij+(1/m2)Σ2,ij}
if i 6= j

Bij if i = j
, (3.2)

where B is defined as in (2.4). Then, the asymptotic distribution of θ =

(1/
√

15)Tr(Z3) follows a standard normal distribution under the null hypothesis,

as stated in the following theorem.

Theorem 4. Under the two-sample framework of weighted networks, let Z be

given in (3.2). Assume a sample size mu = O(nαu), for some αu > 0, u =

1, 2. Then, under the null hypothesis F1 = F2, for the scaled test statistic θ =

(1/
√

15)Tr(Z3), we have

θ
d→ N (0, 1) as n→∞. (3.3)

The proof is omitted because it is similar to that of Theorem 1.

Remark 5. Although the two-sample testing framework for binary networks

is a special case of that in (3.1), we discuss the two cases separately. In the

binary case, our test statistic is obtained by plugging in an estimate of the link

probability matrix P , whereas our test statistic for the weighted networks requires

a plug-in estimate of the variance of each edge weight. Hence, the estimation

methods differ for these two cases.

For practical applications, we need to estimate the covariance matrices Σ1

and Σ2, assuming some conditions to ensure that the asymptotic normality of the

new test statistic still holds. For Σ̂1 and Σ̂2, the plug-in estimates of Σ1 and Σ2,

respectively, the empirical normalized matrix of Z in (3.2) can be written with

entries as

Ẑij =


Ā1,ij−Ā2,ij√

n{(1/m1)Σ̂1,ij+(1/m2)Σ̂2,ij}
if i 6= j

Bij if i = j
. (3.4)

Therefore, our test statistic is

θ̂ =
1√
15

Tr(Ẑ3). (3.5)

Then, we have the following limiting law.

Theorem 5. Under the two-sample framework of weighted networks, let Ẑ be

given as in (3.4). Assume the sample size mu = O(nαu) and Σ̂u is some estimate

of Σu, for some αu > 0, u = 1, 2. If maxi,j |Σ̂u,ij − Σu,ij| = op(1), then under

the null hypothesis F1 = F2, we have the following asymptotic distribution of the

scaled test statistic θ̂ = (1/
√

15)Tr(Ẑ3):

θ̂
d→ N (0, 1) as n→∞.
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The proof is similar to that of Theorem 2, so we include only the key

differences in the Supplementary Material; the remainder of the proof can be

completed in a straightforward manner.

We consider two estimates of Σu,ij. The first is obtained simply as the sample

variance of each element over all adjacency matrices in the same group. For

convenience, we still refer to this method as SPE-AVG. Then, we have

max
i,j
|Σ̂u,ij − Σu,ij| = op(m

−1/2
u logmu). (3.6)

The proof of (3.6) is available in the Supplementary Material (see Section S4.6).

The order of the error is the same as the binary case, which implies that SPE-AVG

is suitable for large sample sizes.

The second estimate of Σu,ij is obtained similarly to SPE-SBM for unweighted

networks: assume each network comes from an SBM, approximate the community

membership vector, and compute the sample covariance within each community

as the sample variance of the nodes corresponding to that community block

(rather than the sample mean). Again, we refer to this method as SPE-SBM,

as in the binary case. Using a similar argument to that in the proof in the

Supplementary Material, we have maxi,j |Σ̂u,ij − Σu,ij| = op(Kum
−1/2
u n−1 log n).

Therefore, the error condition in Theorem 5 is satisfied as long as Ku < m1/2
u n1−β,

with β a small positive number, which should hold for most cases.

The power of the test for weighted networks is presented in the following

theorem.

Theorem 6. Under the assumptions of Theorem 4 and the alternative model

F1 6= F2, let Z ′′ be an n× n matrix with zero diagonals, and for any i 6= j,

Z ′′ij =
P1,ij − P2,ij√

n(m1
−1Σ1,ij +m2

−1Σ2,ij)
.

Define Sa and Sb as in Theorem 3, based on the above Z ′′. If either

(i) an3 min
(i,k,l)∈Sa

(Z ′′ik)
3 + bn3 min

(i,k,l)∈Sb

(Z ′′ik)
3 > 0 or

(ii) − an3 max
(i,k,l)∈Sa

(Z ′′ik)
3 − bn3 max

(i,k,l)∈Sb

(Z ′′ik)
3 > 0

is satisfied, then

lim
n→∞

P (|θ̂| > µα/2) = 1, α > 0.

Again, the proof is omitted, because it is similar to that of Theorem 3.

3.2. Extension to multiple-sample testing

Finally, we consider the case when S > 2 groups are present. Assume

we observe the symmetric binary adjacency matrices A(1)
s , . . . , A(ms)

s that are
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generated from a symmetric link probability matrix Ps, that is,

A
(k)
s,ij ∼ Bernoulli(Ps,ij),

for s = 1, . . . , S, k = 1, . . . ,ms, and i, j = 1, . . . , n. Our goal is to test whether

there are any differences in the distributions of the S groups, which is equivalent

to testing

H0 : P1 = P2 = · · · = PS versus H1 : Ps are not all equal. (3.7)

This is analogous to a one-way ANOVA.

We define the pairwise normalized matrices with elements as follows:

Z
(s)
ij =


Ās,ij−Āij√

n{(1/ms−2/m)Ps,ij(1−Ps,ij)+(1/m2)
∑S

s=1msPs,ij(1−Ps,ij)}
if i 6= j

Bij if i = j
, (3.8)

where Ās is the sample average of the adjacency matrices in group s, as in (2.3),

Ā is the overall sample average of all the adjacency matrices,

Ā =
1

m

S∑
s=1

ms∑
k=1

A(k)
s ,

m is the total sample size,

m =
S∑
s=1

ms,

and B is defined as in (2.4).

If θ(s) = (1/
√

15)Tr{(Z(s))3}, then, under the null distribution and appropri-

ate conditions on ms, Theorem 2 gives

θ(s) d→ N (0, 1) as n→∞,

and it follows that (
θ(s)
)2 d→ χ2(1) as n→∞.

Unfortunately, θ(1), . . . , θ(S) are not independent, so the sum of their squares

is not χ2(S). However, Ferrari (2019) shows that the sum of dependent χ2 random

variables can be approximated by a gamma distribution. Therefore, we have

θ ≡
S∑
s=1

(
θ(s)
)2 ≈ Γ

(
S

u
, u

)
as n→∞, (3.9)

where the scale parameter u is given by
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u = 2

(
1 +

2
∑S

q 6=r ρqr

S

)
,

with ρqr the pairwise correlation between the statistics
(
θ(q)
)2

and
(
θ(r)
)2

.

As before, the true link probability matrices Ps are unknown and need

to be estimated. We can estimate each Ps as in Section 2.3, and then

substitute these estimates into Z(s) in (3.8). Furthermore, although the pairwise

correlations ρqr are not analytically tractable, they can be estimated easily

using the Monte Carlo simulations in Algorithm 1, which does not add to the

computational complexity. The simulation results in the Supplementary Material

(see Section S1.3) demonstrate that using these estimates in the approximation

in (3.9) is very accurate, even for small m and n.

Moreover, using this setup, it is possible to follow the same development

of Theorem 2 to prove the convergence of the plug-in estimator θ̂ that uses

the estimated link probability matrices and estimated pairwise correlations.

Similarly, (3.8) can be extended to weighted networks, as in Section 3.1.

4. Simulation Studies

In this section, we demonstrate the performance of our proposed tests by

means of a simulation study. For binary networks, we evaluate three plug-

in estimators for the link probability matrices (AVG, SBM, and MNBS), and

compare the results with those of the test proposed in Ghoshdastidar and von

Luxburg (2018). The latter test involves an estimated distance between two

network distributions based on the Frobenius measure for binary networks that

allows n to go to infinity. To evaluate the approach of conducting a high-

dimensional mean test directly on the vectorized networks, we compare our

method with that of Chen and Qin (2010), which is based on sum-of-squares-

type statistics. We refer to these five tests as SPE-AVG, SPE-SBM, SPE-MNBS,

DFRO, and VEC, respectively. We do not include the test proposed in Ginestet

et al. (2017) in the comparison, because their results are asymptotic in the sample

size with a fixed number of nodes, and the authors expect that their test will lose

power in larger dimensions, that is, with more nodes.

We evaluate the test performance by estimating the power when the

alternative is true, as well as the null rejection rate (rejection rate under the null).

We also vary the number of nodes, n ∈ {100, 200, . . . , 1000}, and the sample sizes,

m1 = m2 = m ∈ {10, 50}. In each example, we set the significance level α = 0.05.

We follow the procedure described in Algorithm 1, with Q = 1, and report the

empirical significance level as the average rejection rate on 5,000 separate samples

of networks from the underlying distributions. Note that sampling new networks

allows us to use Q = 1, but the results are similar if we use 5,000 separate samples

of networks with Q > 1.
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Using this design, we consider three types of random graph model for

sampling binary networks. In the Supplementary Material, we also include

additional simulations for weighted networks, networks from an exponential

random graph model that introduce edge dependencies, and multiple-sample

testing. The conclusions are as follows. Overall, it appears that SPE-MNBS is

the most robust to different network structures and sample sizes. If the networks

are drawn from an SBM, then, unsurprisingly, SPE-SBM is suitable. Throughout,

SPE-AVG shows significant improvement as the sample size increases. Finally,

all three plug-in estimates of the link probability matrices yield superior results

for our test compared with those for DFRO and VEC.

Finally, note that in our simulations, VEC always rejects H0, even for the

null settings. Furthermore, VEC is too computationally expensive for networks

with many nodes, for example, vectorizing a network with n = 200 results in a

dimension of almost 20,000. For these reasons, we omit the results of VEC from

our figures, and conclude that this approach is inadequate for two-sample testing

of nontrivial networks.

4.1. Stochastic block model (SBM)

In the first example, we consider an SBM structure with a block matrix given

as

PSBM =

[
0.5 + ε1 0.25

0.25 0.5

]
, (4.1)

where ε1 depends on our hypothesis. The membership of the ith node is

M(i) = I

(
1 ≤ i ≤

⌊
n

3

⌋)
+ 2I

(⌊
n

3

⌋
+ 1 ≤ i ≤ n

)
,

where b·c is the floor operator.

The first group of networks, {A(k)
1 }m1

k=1, is generated from PSBM with ε1 = 0.

In the null setting, the second group of networks, {A(k)
2 }m2

k=1, is also generated

from PSBM with ε1 = 0, whereas ε1 = 1/(5 logm) in the alternative setting. The

results are shown in the first row of Figure 1.

To investigate the performance of the tests for sparser networks, we consider

the same setting, except now with ε1 = 2/(5 logm) and with the link probability

matrix PSBM scaled by a factor ρ = 10 log(n)/n. The corresponding results are

shown in the second row of Figure 1.

In the first row of Figure 1, where the networks are dense, SPE-SBM and

SPE-MNBS are close to the nominal level α = 0.05 under H0, and both achieve

good power under H1. Furthermore, SPE-AVG is the most powerful under H1,

but its rejection rates are too high under H0 when m = 10. However, this issue is

mitigated when we increase the sample size to m = 50, even though this makes
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Figure 1. Simulation results for testing networks with an SBM structure for different
network orders and sample sizes. The first and second rows represent dense and sparse
networks, respectively. (a) Null rejection rate. (b) Power under the alternative.

ε1 smaller, that is, the underlying SBM structures are more similar. DFRO has

a zero rejection rate under H0, and increases to unit power more slowly than our

proposed tests do.

In the sparser settings, shown in the bottom row, similar results hold for

SPE-SBM and SPE-MNBS, except for small m = 10, which is also difficult for

the other methods. Moreover, DFRO performs comparably with SPE-SBM and

SPE-MNBS, and SPE-AVG suffers a low rejection rate under H0 with increasing

n.

4.2. Graphon

In the second example, we focus on graphon structures, which have found

applications in hierarchical clustering (Eldridge, Belkin and Wang (2016)) and

link probability estimation (Zhang, Levina and Zhu (2017)). A graphon f is

defined as follows.

Definition 1 (Graphon (Zhang, Levina and Zhu (2017))). For any network with

a link probability matrix P and number of nodes n, there exists a function f :

[0, 1]× [0, 1]→ [0, 1] and a set of i.i.d. random variables ξi ∼ Uniform[0, 1], such

that

Pij = f(ξi, ξj),

with i, j = 1, . . . , n.
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Figure 2. Simulation results for testing networks with a graphon structure. The first and
second rows represent dense and sparse networks, respectively. (a) Null rejection rate.
(b) Power under the alternative.

In our simulation, we consider a graphon structure from Zhang, Levina and

Zhu (2017), in which

f(u, v) =
u2 + v2

3 cos{1/(u2 + v2)}
+ 0.15.

We generate {A(k)
1 }m1

k=1 from the probability matrix P1 according to f . For the

second group of networks, under the null hypothesis, we again sample from f to

generate {A(k)
2 }m2

k=1. Under the alternative hypothesis, we first randomly choose

a subset S ⊂ {1, 2, . . . , n}, with |S| = bn/10c, and then generate {A(k)
2 }m2

k=1 from

P2, with P2,ij = P1,ij − ε2, where

ε2 =

{
1

8 logm
if i, j ∈ S

0 if i, j 6∈ S
.

The results are presented in the first row of Figure 2. As before, we set ε2 =

2/(5 logm), for i, j ∈ S, and scale the link probability matrices P1 and P2 by

ρ = 12 log n/n to yield sparser networks. The results are shown in the second

row of Figure 2.

Figure 2 shows that SPE-MNBS outperforms the other tests in terms of both

the null rejection rate and power, except for small m = 10 and a sparse structure.

Furthermore, SPE-SBM exhibits a lower rejection rate than the nominal level in

the dense case, which suggests that the method is more sensitive to network

topologies that deviate from an SBM. SPE-AVG and DFRO behave similarly to

those in the first example, as we continue to see subpar performance, especially
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Figure 3. Simulation results for testing networks with a correlated ER structure. (a)
Null rejection rate. (b) Power under the alternative.

for small m.

4.3. Correlated Erdős–Rényi model

In the third experiment, we study the robustness of the four tests to

dependency. For this, we consider the correlated Erdős–Rényi (ER) model of

Pedarsani and Grossglauser (2011). We begin by sampling two independent ER

networks, A1 ∼ ER(n, p1) and A2 ∼ ER(n, p2). We generate {A(k)
1 }m1

k=1 with a

parameter ε3 as follows:

A
(k)
1,ij ∼

{
Bernoulli(ε3) if A1,ij = 1

0 if A1,ij = 0
.

This yields m1 networks that are marginally ER(n, p1ε3), but whose edge sets are

correlated. We similarly generate {A(k)
2 }m2

k=1 conditional on A2 with parameter

ε4. We set ε3 = ε4 = 0.8 and p1 = 0.9. Under the null hypothesis, we set

p2 = p1 = 0.9, and p2 = 0.83 under the alternative hypothesis. The results are

shown in Figure 3.

DFRO exhibits consistently high power in the alternative setting for the

entire range of n, which is matched only by our tests as n increases, with SPE-

AVG outperforming both SPE-SBM and SPE-MNBS. However, the rejection rate

under the null is below the nominal level for DFRO, whereas both SPE-SBM

and SPE-MNBS are very close to α = 0.05. SPE-AVG has a higher rejection

rate than expected when the sample size is m = 10, but this improves when

m = 50. Overall, it appears that SPE-SBM and SPE-MNBS are robust to the

independence violation when n is large.
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5. Real-Data Examples

In this section, we apply our tests to three real data sets representing three

settings of interest within the biological research community: the StarPlus,

COBRE, and MB data sets. The first two are networks constructed from fMRI

data that represent two distinct streams of fMRI usage, the former being task

based and the latter being a case/control study. The third data set is derived

from microbial measurements, an area in which network-based representations

have recently emerged as a popular technique for studying the bacteria present

within a microbiome (Layeghifard, Hwang and Guttman (2017)). A description

of the data sets can be found in the Supplementary Material.

In all three cases, the networks are weighted. Therefore, we present

results from our tests for weighted networks in Section 3.1. To understand the

performance of our tests for binary networks from Section 2.1, we also present

the results as a function of thresholding the weights to binarize the networks (as

often occurs in practice).

5.1. Results for weighted tests

We begin by applying our tests for weighted networks from Section 3.1.

We also include the method of Yuan and Wen (2021), which we refer to as

WRG. We test whether the groups defined by their respective labels, that is,

picture/sentence, schizophrenic/control, preterm/term, are different. To do so,

we specify a null hypothesis that states that the underlying random distributions

are equal against the alternative that states that they are different. We refer to

this as the “alternative setting”, because the two samples differ with respect to

their group label.

As is, we cannot apply WRG directly, because it requires that the sample

sizes for both groups be the same, which is not true of the COBRE and MB

data sets. We address this by following the authors original solution, which is to

randomly sample m2 networks from group one (assuming m1 > m2), and then to

compare this subgroup with group two.

For α = 0.05 and Q = 1000, we find that for the StarPlus networks, SPE-

AVG, SPE-SBM, and WRG correctly reject the null with rejection rates of 1,

0.726, and 1, respectively. This is consistent with the findings of previous research

on distinguishing the cognitive states of looking at a picture and a sentence

(Mitchell et al. (2004); Wang, Hutchinson and Mitchell (2003); Mitchell et al.

(2003)). For the COBRE and MB data sets, we find a rejection rate of one for

both SPE-AVG and SPE-SBM. On the other hand, WRG rejects the null with

rates of 1 and 0.749 for the COBRE and MB data sets, respectively.

Next, we perform an in silico experiment using the real data by subsampling

within one of the classes. We refer to this as the “null setting.” The rationale for

this setup is that we do not actually know whether the groups are generated by
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different underlying distributions, for example, one for schizophrenic and another

for non-schizophrenic. Therefore, we want to check whether the null rejection rate

is close to the nominal level in an experiment in which all of the networks are

from the same group.

To do so, we test the entire NetP, non-schizophrenic, and term delivery groups

against a subsample (with half of the original sample size) of the same group for

the StarPlus, COBRE, and MB data sets. For WRG, we test two subsamples of

the two groups, both with half of the original sample size.

After 1,000 random subsamples of the networks and Q = 1 for each sub-

sample, for the StarPlus networks, SPE-SBM fails to reject the null hypothesis,

with a rejection rates of 0.006, which is expected, because the samples are drawn

from the same population. However, SPE-AVG and WRG reject the null with

inflated rates of 0.12 and 0.873, respectively. For the COBRE networks, we obtain

null rejection rates of 0.763, 0.668, and 1 for SPE-AVG, SPE-SBM, and WRG,

respectively. The null rejection rates improve for the MB networks, with 0.655,

0.489, and 0.956 for SPE-AVG, SPE-SBM, and WRG, respectively. Although

SPE-AVG and SPE-SBM outperform WRG, the null rejection rates are still very

inflated compared with the nominal α = 0.05.

We speculate that this is happening because, even within one class, there is

a lot of variation. That is, one subsample of brain networks with schizophrenia

may look very different to another sample of brain networks with schizophrenia,

because we are not controlling for potential factors such as age and sex. We refer

to this issue as having too much heterogeneity within a class. This heterogeneity

can lead to inflated null rejection rates, because the underlying distributions of

the two samples are different, but the difference is not the one we are trying to

isolate.

5.2. Results for binary tests

Because the results for the weighted tests showed inflated rejection rates

in our simulated null setting, there is reason to believe that the networks are

too heterogeneous within each class. Furthermore, many of the weights could

represent spurious correlations. Therefore, this is a setting in which binarizing

the weights could improve the signal-to-noise ratio. This idea is related to a

common problem in the neuroscience literature related to the issue of sensitivity

to thresholding edges (Ginestet, Fournel and Simmons (2014); Garrison et al.

(2015)).

To evaluate this, we apply the binary tests from Section 2.1 by binarizing the

weights, which are all correlation values in [−1, 1], based on thresholding their

magnitude. Specifically, we set the adjacency matrix entries to one when the

absolute values of the corresponding weights are larger than the threshold, and

zero otherwise. This threshold relates directly to the density of the networks.

Note that WRG is for weighted networks, and is therefore excluded. Using the
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Figure 4. Figures (a) and (b) show the null rejection rate and power, respectively, for
different thresholds for binarizing the StarPlus networks.

0.00

0.25

0.50

0.75

1.00

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Threshold for Edges

N
u

ll
 R

ej
ec

ti
o

n
 R

at
e

(a)

0.00

0.25

0.50

0.75

1.00

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Threshold for Edges

P
o

w
er

(b)

SPE-AVG SPE-SBM SPE-MNBS

Figure 5. Figures (a) and (b) show the null rejection rate and power, respectively, for
different thresholds for binarizing the COBRE networks.

same procedures as in Section 5.1, the results are given in Figures 4–6. The

dashed lines for the null rejection rate in these figures all indicate the nominal

level of 0.05.

The plots illustrate the trade-off between the false positive rate in our null

setting and the true positive rate in our alternative setting, which are both

functions of the threshold. As the threshold for an edge increases, the network

becomes more sparse, resulting in a higher rejection rate in our null setting. For

thresholds above 0.6, some of the networks become too sparse, even resulting in

some null graphs. On the other hand, for a low threshold, there is less power to

detect a difference in our alternative setting. Such curves as a function of the

threshold could provide practitioners with a way to understand the signal-to-noise

ratio of their edge weights.

For the COBRE and MB networks, we have high power for a wide range

of threshold values, which is consistent with our findings using the weighted
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Figure 6. Figures (a) and (b) show the null rejection rate and power, respectively, for
different thresholds for binarizing the MB networks.

networks directly. Moreover, we find a low rejection rate in our null setting,

especially for a threshold of 0.1, which seems to provide the best trade-off. This

suggests that the signal-to-noise ratio in the weights is too low, which can be

mitigated by using thresholding. For the StarPlus networks, a threshold between

0.1 and 0.2 seems to provide the best balance between signal and noise for SPE-

AVG, whereas 0.4 is better for SPE-SBM and SPE-MNBS.

6. Conclusion

In this work, we have proposed new spectral-based statistics for hypothesis

testing of populations of networks that applies to both binary and weighted

networks under a very general framework. The test statistics are simple,

computationally friendly, and supported theoretically by our derivations of

the limiting null distribution and the asymptotic power guarantees. We have

demonstrated our method using a simulation study and a real-data analysis.

In future work, we will focus on spectral-based methods for studying inference

problems for networks with additional constraints or structures, such as directed

networks.

Supplementary Material

The online Supplementary Material contains two additional simulations

(for weighted networks and multiple-sample testing), a description of the three

datasets in the applications, background on spectral theory, and the proofs for

the results in the main text.
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