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Abstract: This study proposes a partial functional partially linear single-index model

that consists of a functional linear component and a linear single-index component.

This model generalizes many well-known existing models, and is suitable for more

complicated data structures. We develop a new estimation procedure that combines

a functional principal component analysis of the functional predictors, B-spline

model for the parameters, and profile estimation of the unknown parameters and

functions in the model. We establish the consistency and asymptotic normality of

the parametric estimators. Furthermore, we derive the global convergence rate of

the proposed estimator of the linear slope function, and establish that it is optimal

in the minimax sense. We implement a two-stage procedure to estimate the non-

parametric link function of the single-index component of the model; here, we find

that the resulting estimator possesses the optimal global rate of convergence. Then,

we obtain the convergence rate of the mean squared prediction error for a predictor.

We study the empirical properties of the proposed procedures using Monte Carlo

simulations. The proposed method is illustrated by analyzing a diffusion tensor

imaging data set from the Alzheimer’s Disease Neuroimaging Initiative database.

Key words and phrases: Asymptotic normality, consistency, functional data analy-

sis, principal component analysis, single-index model.

1. Introduction

Functional data analysis is generating increasing interest in fields such as

many areas, including biology, chemometrics, econometrics, geophysics, medical

sciences, meteorology, and so on. In the neurosciences, methods are required

to analyze complex neuroimaging data collected from structural, neurochemical,

and functional images over both time and space. Functional data are made up of

repeated measurements taken as curves, surfaces, or other objects varying over a

continuum, such as time or space. In many experiments, such as clinical diagnoses

of neurological diseases from brain imaging data, functional data are the basic
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units of observations. As a natural extension to a multivariate data analysis, a

functional data analysis provides valuable information about such experiments,

takes into account the underlying smoothness of high-dimensional covariates,

and provides new approaches for solving inference problems; see Ramsay and

Silverman (2002, 2005); Ferraty and Vieu (2006); Horváth and Kokoszka (2012);

Hsing and Eubank (2015) for a general overview of functional data analysis.

In this study, we investigate the more complicated data structures for ana-

lyzing complex neuroimaging data to generate models that are comprehensive,

flexible, and adaptable. As such, we propose the following partial functional

partially linear single-index model :

Y =

∫
T
a(t)X(t)dt+W Tααα0 + g(ZTβββ0) + ε, (1.1)

where X(t) is a random function defined on some bounded interval T , a(t) is an

unknown square integrable slope function on T , W is a q×1 vector of covariates,

ααα0 is a q×1 vector of unknown coefficients, Z ∈ Rd is a d×1 vector of covariates,

βββ0 is a d × 1 coefficient vector to be estimated, g is an unknown link function,

and ε is a random error, with mean zero and variance σ2, that is independent of

the covariates (X(t),W,Z).

Model (1.1) is flexible and can deal with more complicated data structures

than those provided by current models. To the best of our knowledge, this is the

first study to propose a model containing a functional linear component and linear

single-index component. In addition, the proposed model generalizes many well-

known existing models. However, its estimation inherits several difficulties and

complexities from each of the components, thus requiring a new methodology.

Therefore, we propose a new estimation procedure that combines a functional

principal component analysis (FPCA), B-spline methods, and a profile method

to estimate the unknown parameters and functions in model (1.1). Using an

FPCA, the unknown slope function is approximated by an average value that

includes the unknown parameters and link function, the estimators of which are

obtained by solving a series of minimization problems. The proposed method

offers several advantages. First, it avoids ill-posed inverse problems that can arise

in a functional data analysis, and, second, the unknown parameters and functions

in the model can be estimated efficiently. Because a principal component basis

is very efficient for modeling functional predictors, and thus is widely used in

practice, our method should be of interest in other contexts. In particular, the

method can be generalized to models formed by a linear functional model plus
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a general model with a finite-dimensional predictor variable, such as partially

linear models, varying coefficient models, and additive models.

Model (1.1) can be interpreted from two perspectives. First, it generalizes

the partial functional linear model

Y =

∫
T
a(t)X(t)dt+W Tααα0 + ε (1.2)

by adding a nonparametric component g(ZTβββ0), with an unknown univariate

link function g. This single-index term reduces the dimensionality from one of

multivariate predictors to a univariate index ZTβββ0; thus, it avoids the curse of

dimensionality, while still capturing important features in high-dimensional data.

Furthermore, because a nonlinear link function g is applied to the index ZTβββ0,

we can model interactions between the covariates Z. The standard functional

linear model (Li and Hsing (2007); Cardot, Mas and Sarda (2007); Cai and

Hall (2006); Hall and Horowitz (2007)) with scalar response Y has the same

form as model (1.2), but without the linear part. In general, X(t) can be a

multivariate functional variable, but here we focus only on the univariate case.

Our main interest is the estimation of the functional coefficient a(t), based on

a sample (X1, Y1), . . . , (Xn, Yn), generated from the standard functional linear

model. Several studies examine the slope estimation in model (1.2) using methods

such as the penalized spline method (Cardot, Mas and Sarda (2007)), FPCA (Cai

and Hall (2006); Hall and Horowitz (2007); Yuan and Cai (2010)), and functional

partial least squares method (Delaigle and Hall (2012)), among others.

Second, model (1.1) can be considered a generalization of the partially linear

single-index model (Carroll et al. (1997); Yu and Ruppert (2002)),

Y = g(ZTβββ0) +W Tααα0 + ε, (1.3)

with an addition of functional covariates X(t). The model in (1.3) was first

explored by Carroll et al. (1997), who later considered a more general version, in

which a known link function is employed in the regression function, and model

(1.3) becomes an identity link function. Model (1.3) has also been studied by

authors including Xia and Härdle (2006); Liang et al. (2010); Wang et al. (2010).

In order to estimate the unknown quantities in model (1.1), we develop a new

method of estimation that is a combination of an FPCA, B-spline methods, and

a profile method. We believe our technique is new, and is the first to combine an

FPCA and a profile method in a functional linear model. More specifically, we
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estimate the unknown parameters (αααT0 ,βββ
T
0 )T by employing a B-spline function

to approximate the unknown link function g. In addition,we use an FPCA to

estimate the slope function a(t). Under some regularity conditions, we prove

the consistency and asymptotic normality of the proposed estimators. We also

establish a global rate of convergence for the estimator of a(t), and show it is

optimal in the minimax sense of Hall and Horowitz (2007). Using the parameter

estimate, we use another B-spline function to approximate the function g, and

then establish the optimal global convergence rate of the approximation. We also

obtain the convergence rates of the mean squared prediction error for a predictor.

We apply our model and estimation method to analyze a diffusion tensor imaging

(DTI) data set from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

database. The results indicate that model (1.1) is more flexible and efficient

than model (1.2).

To improve flexibility, and partly motivated by applications, a number of

models based on the standard functional linear model have been studied in the

literature. These include the partial functional linear regression model (1.2) (Shin

(2009); Shin and Lee (2012); Tang and Cheng (2014); Kong et al. (2016); Yao,

Sue-Chee and Wang (2017)), generalized functional linear models (Li, Wang and

Carroll (2010); Chen and Müller (2012)), single- and multiple- index functional

regression models (Chen, Hall and Müller (2011); Ma (2016)), and a functional

partial linear single-index model (Wang, Feng and Chen (2016)), among others.

The remainder of the paper is organized as follows. Section 2 describes the

proposed estimation method. Section 3 presents the asymptotic results of our

estimator. In Section 4, we conduct simulation studies to examine the finite-

sample performance of the proposed procedures. In Section 5, the proposed

method is illustrated by analyzing a DTI data set from the ADNI database

(adni.loni.ucla.edu). The proofs of the main results are provided in the online

Supplementary Material.

2. Proposed Estimation Method

In this section, we develop a new estimation procedure that combines an

FPCA, B-spline methods, and a profile method to estimate the unknown param-

eters and functions in model (1.1).

Let Y be a real-valued response variable, and {X(t) : t ∈ T } be a mean-

zero second-order (i.e., EX(t)2 < ∞, for all t ∈ T ) stochastic process with

sample paths in L2(T ), where T is a bounded closed interval, and L2(T ) denotes

adni.loni.ucla.edu
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the set of all square integrable functions on T . Let 〈·, ·〉 and ‖ · ‖ denote the

L2(T ) inner product and norm, respectively. Denote the covariance function

of the process X(t) by K(s, t) = cov(X(s), X(t)). We suppose that K(s, t) is

positive definite. Then, K(s, t) admits a spectral decomposition in terms of

strictly positive eigenvalues λj :

K(s, t) =

∞∑
j=1

λjφj(s)φj(t), s, t ∈ T , (2.1)

where λj and φj are the eigenvalue and eigenfunction pairs, respectively, of the

linear operator with kernel K, the eigenvalues are ordered such that λ1 > λ2 >

· · · > 0, and the eigenfunctions φ1, φ2, . . . form an orthonormal basis for L2(T ).

This leads to the Karhunen–Loéve representation X(t) =
∑∞

j=1 ξjφj(t), where

ξj =
∫
T X(t)φj(t)dt are uncorrelated random variables with mean zero and vari-

ance Eξ2
j = λj . Let a(t) =

∑∞
j=1 ajφj(t). Then, model (1.1) can be written

as

Y =

∞∑
j=1

ajξj +W Tααα0 + g(ZTβββ0) + ε. (2.2)

By (2.2), we have

aj =
1

λj
E{[Y − (W Tααα0 + g(ZTβββ0))]ξj}. (2.3)

Let (Xi(t),Wi, Zi, Yi), for i = 1, . . . , n, be independent realizations of (X(t),W,

Z, Y ), generated from model (1.1). Then, the empirical versions of K and its

spectral decomposition are

K̂(s, t) =
1

n

n∑
i=1

Xi(s)Xi(t) =

∞∑
j=1

λ̂jφ̂j(s)φ̂j(t), s, t ∈ T . (2.4)

Analogously to the case of K, (λ̂j , φ̂j) are (eigenvalue, eigenfunction) pairs for

the linear operator with kernel K̂, ordered such that λ̂1 ≥ λ̂2 ≥ · · · ≥ 0. We take

(λ̂j , φ̂j) and ξ̂ij = 〈Xi, φ̂j〉 to be the estimators of (λj , φj) and ξij = 〈Xi, φj〉,
respectively, and set

ãj =
1

nλ̂j

n∑
i=1

[
Yi − (W T

i ααα0 + g(ZTi βββ0))
]
ξ̂ij . (2.5)

In order to estimate g, we adapt spline approximations. We assume that
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‖βββ0‖ = 1, and that the last element β0d of βββ0 is positive; this ensures identifia-

bility. Let βββ−d = (β1, . . . , βd−1)T and βββ0,−d = (β01, . . . , β0(d−1))
T . Because β0d =√

1− (β2
01 + · · ·+ β2

0(d−1)) > 0, there exists a small constant ρ0 ∈ (0, 1), such

that βββ0 ∈ Θρ0 = {βββ = (β1, . . . , βd)
T : βd =

√
1− (β2

1 + · · ·+ β2
d−1) ≥ ρ0}. Let

D denote the convex hull of the discrete set of the observed Zi, for i = 1, . . . , n.

Denote U∗ = infz∈D,βββ∈Θρ0
zTβββ and U∗ = supz∈D,βββ∈Θρ0

zTβββ. We first split the in-

terval [U∗, U
∗] into kn subintervals, with knots {U∗ = un0 < un1 < · · · < unkn =

U∗}. For fixed βββ, there exist positive integers l and kβββ, such that un(l−1) <

infz∈D z
Tβββ ≤ unl < un(l+kβββ) ≤ supz∈D z

Tβββ < un(l+kβββ+1). Let Uβββ = unl and

Uβββ = un(l+kβββ). For any fixed integer s ≥ 1, let Sskβββ(u) be the set of spline func-

tions of degree s, with knots {Uβββ = unl < un(l+1) < · · · < un(l+kβββ) = Uβββ}; that is,

a function f(u) belongs to Sskβββ(u) if and only if f(u) belongs to Cs−1[unl, un(l+kβββ)]

and its restriction to each [unk, un(k+1)) is a polynomial of degree at most s. Put

Bkβ(u) = (ũnk − ũn(k−s−1))[ũn(k−s−1), . . . , ũnk](w − u)s+, k = 1, . . . ,Kβ, (2.6)

where Kβββ = kβββ + s, [ũn(k−s−1), . . . , ũnk]f denotes the (s + 1)th-order divided

difference of the function f , ũnk = unl for k = −s, . . . ,−1, ũnk = un(l+k) for

k = 0, 1, . . . , kβββ, and ũnk = unkβββ for k = kβββ + 1, . . . ,Kβββ. Then {Bkβββ(u)}Kβββk=1 form

a basis for Sskβββ(u) (Schumaker (1981)).

For fixed ααα and βββ, we use
∑m

j=1 ãj ξ̂j to approximate
∑∞

j=1 ajξj in (2.2), and

use
∑Kβββ

k=1 bkBkβββ(u) to approximate g(u), for u ∈ [Uβββ, U
βββ]. We then estimate g(·)

by minimizing

n∑
i=1

{
Yi −

m∑
j=1

ξ̂ij

nλ̂j

n∑
l=1

Yl −W T
l ααα−

Kβββ∑
k=1

bkBkβββ(ZTl βββ)

 ξ̂lj
−W T

i ααα−
Kβββ∑
k=1

bkBkβββ(ZTi βββ)

}2
(2.7)

with respect to b1, . . . , bKβββ , where m is a smoothing parameter that denotes a

frequency cutoff. Define ξ̃il =
∑m

j=1 ξ̂ij ξ̂lj/λ̂j , Ỹi = Yi − (1/n)
∑n

l=1 Ylξ̃il, W̃i =

Wi − (1/n)
∑n

l=1Wlξ̃il, and B̃kβββ(ZTi βββ) = Bkβββ(ZTi βββ) − (1/n)
∑n

l=1Bkβββ(ZTl βββ)ξ̃il.

Then, (2.7) can be written as

n∑
i=1

Ỹi − W̃ T
i ααα−

Kβββ∑
k=1

bkB̃kβββ(ZTi βββ)


2

. (2.8)
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Denote B̃BBβββ(ZTi βββ) = (B̃1βββ(ZTi βββ), . . . , B̃Kββββββ(ZTi βββ))T , B̃BB(βββ) = (B̃BBβββ(ZT1 βββ), . . . , B̃BBβββ(

ZTnβββ))T , ỸYY = (Ỹ1, . . . , Ỹn)T , W̃WW = (W̃1, . . . , W̃n)T , and bbb = (b1, . . . , bKβββ)T . If

B̃BB
T

(βββ)B̃BB(βββ) is invertible, then the estimator b̃bb(ααα,βββ) = (b̃1(ααα,βββ), . . . , b̃Kβββ(ααα,βββ))T

of bbb is given by

b̃bb(ααα,βββ) =
{
B̃BB
T

(βββ)B̃BB(βββ)
}−1

B̃BB
T

(βββ)(ỸYY − W̃WWααα). (2.9)

We solve the minimization problem

min
ααα,βββ

{
ỸYY − W̃WWααα− B̃BB(βββ)b̃bb(ααα,βββ)

}T {
ỸYY − W̃WWααα− B̃BB(βββ)b̃bb(ααα,βββ)

}
(2.10)

to obtain the estimators α̂αα and β̂ββ. A Newton–Raphson algorithm can be applied

for the minimization. An estimator of bbb is obtained by solving the following

minimization problem:

b̂bb = min
bbb

n∑
i=1

{
Ỹi − W̃ T

i α̂αα− bbbTB̃BBβ̂ββ(ZTi β̂ββ)
}2
. (2.11)

Then, b̂bb is given by

b̂bb = b̃bb(α̂αα, β̂ββ) =
{
B̃BB
T

(β̂ββ)B̃BB(β̂ββ)
}−1

B̃BB
T

(β̂ββ)(ỸYY − W̃WWα̂αα). (2.12)

Let g̃(u) =
∑Kβ̂ββ

k=1 b̂kBkβ̂ββ(u), for u ∈ [U
β̂ββ
, U β̂ββ]. We then choose a new tuning

parameter m̃, and the estimator of a(t) is given by

â(t) =

m̃∑
j=1

âjφ̂j(t), (2.13)

with

âj =
1

nλ̂j

n∑
i=1

{
Yi −W T

i α̂αα− g̃(ZTi β̂ββ)
}
ξ̂ij . (2.14)

In order to construct an estimator of g that achieves the optimal rate of

convergence, we select new knots and a new B-spline basis using α̂αα and β̂ββ. Let

{U
β̂ββ

= ūn0 < ūn1 < · · · < ūnk∗n) = U β̂ββ} be new knots, and {B∗k(u)}K
∗
n

k=1 be a new

basis, where K∗n = k∗n + s. Then, B∗kβββ(ZTi βββ), BBB∗βββ(ZTi βββ), and BBB∗(βββ) are defined

similarly to B̃kβββ(ZTi βββ), B̃BBβββ(ZTi βββ), and B̃BB(βββ), respectively. We then solve the
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minimization problem

min
bbb∗

n∑
i=1

{
Ỹi − W̃ T

i α̂αα− bbb∗
TBBB∗

β̂ββ
(ZTi β̂ββ)

}2
(2.15)

to obtain an estimator of bbb∗, where bbb∗ = (b1, . . . , bK∗n)T . If BBB∗T (β̂ββ)BBB∗(β̂ββ) is

invertible, then the estimator of bbb∗ is given by

b̂bb
∗

= bbb∗(α̂αα, β̂ββ) =
{
BBB∗T (β̂ββ)BBB∗(β̂ββ)

}−1
BBB∗T (β̂ββ)(ỸYY − W̃WWα̂αα). (2.16)

Then, the second-stage estimator of g(u) is equal to ĝ(u) =
∑K∗n

k=1 b̂
∗
kB
∗
k(u), for

u ∈ [U
β̂ββ
, U β̂ββ].

To implement our estimation method, appropriate values for m, kn, m̃, and

K∗n are necessary. The values for the tuning parameter m and for kn can be

selected using the Bayesian information criterion (BIC), given by

BIC(m, kn) =

log

 1

n

n∑
i=1

Yi −Wiα̂ααm,kn −
m∑
j=1

âj ξ̂ij − g̃(ZTi β̂ββm,kn)

2+
log(n)(m+ kn + s)

n
,

where α̂ααm,kn and β̂ββm,kn depend on m and kn. Large values of BIC indicate a

poor fit. Here, m and kn are used to estimate the parameters ααα and βββ. From

our simulation in Section 4 below, we observe that the parametric estimators α̂αα

and β̂ββ are not sensitive to the choices of m and kn; thus, for simplicity, we choose

kn = c0n
1/(2s−1), with some positive constant c0.

After m and kn are determined, the value for the tuning parameter m̃ can

be selected using the following BIC:

BIC(m̃) = log

 1

n

n∑
i=1

Yi −Wiα̂αα−
m̃∑
j=1

âj ξ̂ij − g̃(ZTi β̂ββ)

2+
log(n)m̃

n
.

A value for K∗n can also be selected using the following BIC:

BIC(K∗n) = log

{
1

n

n∑
i=1

(
Ỹi − W̃iα̂αα− b̂bb

∗T
BBB∗
β̂ββ
(ZTi β̂ββ)

)2
}

+
log(n)K∗n

n
.

In practice, the proposed estimation method is implemented as follows:
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Step 1. Choose an m, and fit a partial functional linear model; that is, solve

the minimization problem in (2.8), with the link function g replaced by a

linear function to obtain initial values for α̂αα(0) and β̂ββ
(0)

1 . Then, set β̂ββ
(0)

=

β̂ββ
(0)

1 /‖β̂ββ
(0)

1 ‖; multiply by −1, if necessary.

Step 2. Compute U
β̂ββ

(0) and U β̂ββ
(0)

, and construct the B-spline basis {B
kβ̂ββ

(0)(

u)}
K
β̂ββ
(0)

k=1 . Then, obtain b̃(α̂αα(0), β̂ββ
(0)

), from (2.9) and solve the minimization

problem in (2.10) to obtain the estimators α̂αα and β̂ββ.

Step 3. Compute b̂ and âj from (2.12) and (2.14), respectively, and obtain the

estimator â(t).

Step 4. Compute U
β̂ββ

and U β̂ββ, and construct the basis {B∗k(u)}K
∗
n

k=1. Then, obtain

the estimator b̂∗ from (2.16) and obtain the estimator ĝ(u).

Remark 1. In practical applications, X(t) is only observed discretely. Without

loss of generality, suppose Xi(t) is observed at ni discrete points 0 = ti1 < · · · <
tini = 1, for each i = 1, . . . , n. Then, linear interpolation functions or spline

interpolation functions can be used to estimate Xi(t).

Remark 2. Although the basis function Bkβββ(u) depends on βββ, we see from

(2.6) that the total number of all different Bkβββ(u) is kn + s. In certain practical

applications in which the sample size n is not sufficiently large and kn is not

large, we can choose Uβββ = infz∈D z
Tβββ and Uβββ = supz∈D z

Tβββ, and construct the

basis {Bkβββ(u)}Kβββk=1 with knots {Uβββ < un(l+1) < · · · < un(l+kβββ−1) < Uβββ} to make

full use of the data. That is, the intervals [unl, un(l+1)] and [un(l+kβββ−1), un(l+kβββ)]

are replaced by [Uβββ, un(l+1)] and [un(l+kβββ−1), U
βββ], respectively.

3. Asymptotic Properties

In this section we state the main results on the asymptotic normality and

convergence rates of the estimators proposed in the previous section. Before

discussing the main results, we state a few assumptions that are necessary to

prove the theoretical results.

Assumption 1. E(Y 4) < +∞, E(‖W‖4) < +∞, and
∫
T E(X4(t))dt < ∞.

E(ξj |ZTβββ) = 0 and E(ξiξj |ZTβββ) = 0, for i 6= j, i, j = 1, 2, . . . ; and βββ ∈ Θρ0. For

each j ≥ 1, E(ξ2r
j |ZTβββ) ≤ C1λ

r
j for r = 1, 2, where C1 > 0 is a constant. For

any sequence j1, . . . , j4, E(ξj1 . . . ξj4 |ZTβββ) = 0, unless each index jk is repeated.
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Assumption 2. There exists a convex function ϕ defined on the interval [0, 1],

such that ϕ(0) = 0 and λj = ϕ(1/j), for j ≥ 1.

Assumption 3. For the Fourier coefficients aj, there exist constants C2 > 0

and γ > 3/2, such that |aj | ≤ C2j
−γ, for all j ≥ 1.

Assumption 4. The function g(u) is an s-times continuously differentiable func-

tion, such that |g(s)(u′) − g(s)(u)| ≤ C3|u′ − u|ς , for U∗ ≤ u′, u ≤ U∗ and

p = s + ς > 3, with constants 0 < ς ≤ 1 and C3 > 0. The knots {U∗ =

un0 < un1 < · · · < unkn = U∗} satisfy that h0/min1≤k≤kn hnk ≤ C4, where

hnk = unk − un(k−1), h0 = max1≤k≤kn hnk, and C4 > 0 is a constant.

Assumption 5. nh2p
0 → 0, n−1/2mλ−1

m → 0, n−1m4λ−1
m h−6

0 logm → 0, and

m−2γh−2
0 → 0.

Assumption 5′. m → ∞, h0 → 0, n−1/2mλ−1
m → 0, n−1m4λ−1

m h−2
0 logm → 0,

and (nh3
0)−1(log n)2 → 0.

Assumption 6. The marginal density function fβββ(u) of ZTβββ is bounded away

from zero and infinity for u ∈ [Uβββ, U
βββ], and satisfies that 0 < c1 ≤ fβββ(u) ≤ C5 <

+∞, for βββ in a small neighborhood of βββ0 and u ∈ [Uβββ0
, Uβββ0 ], where c1 and C5

are positive constants.

Let A denote the class of the random variables such that V ∈ A if V =∑∞
j=1 vjξj , and |vj | ≤ C0j

−γ for all j ≥ 1, where γ is defined in Assumption 3

and C0 > 0 is a constant. To derive the asymptotic distribution of the para-

metric estimators, we first adjust for the dependence of W = (W1, . . . ,Wq)
T

and X(t), which is a common complication in semiparametric models. Denote

Vr =
∑∞

j=1 vrjξj . Let V ∗r =
∑∞

j=1 v
∗
rjξj , such that

V ∗r = arginf
Vr∈A

E

[(
Wr −

∞∑
j=1

vrjξj

)2]
.

Because

E

[(
Wr−

∞∑
j=1

vrjξj

)2]
=E[(Wr−E(Wr|X))2]+E

[(
E(Wr|X)−

∞∑
j=1

vrjξj

)2]
,

we have

V ∗r = arginf
Vr∈A

E

[(
E(Wr|X)−

∞∑
j=1

vrjξj

)2]
.
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Thus, V ∗r are projections of E(Wr|X) onto the space A. In other words, V ∗r is

an element that belongs to A, and it is the closest to E(Wr|X) of all the random

variables in A. Let V̆r = Wr − V ∗r , for r = 1, . . . , d, and V̆ = (V̆1, . . . , V̆d)
T .

Under Assumption 4, and according to Corollary 6.21 of Schumaker (1981,

p.227), there exists a spline function g0(u) =
∑Kβββ0

k=1 b0kBkβββ0
(u) and a constant

C6 > 0, such that

sup
u∈[Uβββ0 ,U

βββ0 ]

|R(k)(u)| ≤ C6h
p−k
0 , (3.1)

for k = 0, 1, . . . , s, where R(u) = g(u) − g0(u) and R(k)(u) = dkR/duk. Let

BBBβββ(u) = (B1βββ(u), . . . , BKββββββ(u))T and bbb0 = (b01, . . . , b0Kβββ0 )T . Define

G(ααα,βββ) =(ααα−ααα0)TE(V̆ V̆ T )(ααα−ααα0)− 2bbbT0 E[BBBβββ0
(ZTβββ0)V̆ T ](ααα−ααα0)

+ bbbT0 Γ(βββ0,βββ0)bbb0 −ΠT (ααα,βββ)Γ−1(βββ,βββ)Π(ααα,βββ) + σ2,
(3.2)

where Γ(βββ1,βββ2) = (γkk′(βββ1,βββ2))Kβββ1×Kβββ2 , with γkk′(βββ1,βββ2) = E[Bkβββ1
(ZTβββ1)Bk′βββ2

(ZTβββ2)] and Π(ααα,βββ) = Γ(βββ,βββ0)bbb0−E[BBBβββ(ZTβββ)V̆ T ](ααα−ααα0). Set θθθ = (αααT ,βββT )T ,

θθθ−d = (αααT ,βββT−d)
T , θ̂θθ−d = (α̂ααT , β̂ββ

T

−d)
T and θθθ0,−d = (αααT0 ,βββ

T
0,−d)

T . Define

G∗(θθθ−d) = G∗(ααα,βββ−d) = G(ααα, β1, . . . , βd−1,
√

1− ‖βββ−d‖2),

and its Hessian matrix H∗(θθθ−d) = ∂2G∗(θθθ−d)/∂θθθ−d/∂θθθ
T
−d.

Assumption 7. G∗(θθθ−d) is locally convex at θθθ0,−d, such that for any ε > 0,

there exists some ε > 0, such that ‖θθθ−d − θθθ0,−d‖ < ε holds whenever |G∗(θθθ−d)−
G∗(θθθ0,−d)| < ε. Furthermore, the Hessian matrix H∗(θθθ−d) is continuous in some

neighborhood of θθθ0,−d, and H∗(θθθ0,−d) > 0.

Assumption 8. The knots {U
β̂ββ

= ūn0 < ūn1 < · · · < ū
n~kn)

= U β̂ββ} satisfy

h/min
1≤k≤~kn h̄nk ≤ C7, where h̄nk = ūnk − ūn(k−1), h = max

1≤k≤~kn h̄nk, and

C7 > 0 is a constant. Furthermore, h→ 0 and n−1m4λ−1
m h−4 logm→ 0.

Assumptions 1 and 3 are standard conditions for functional linear models;

see, for example, Cai and Hall (2006); Hall and Horowitz (2007). Assumption 2

is slightly less restrictive than (3.2) of Hall and Horowitz (2007). The quantity p

in Assumption 4 is the order of smoothness of the function g(u). Assumption 5

can be verified easily and is discussed further below. Assumption 6 ensures the

existence and uniqueness of the spline estimator of the function g(u). Assumption

7 ensures the existence and uniqueness of the estimator of θθθ0,−d in a neighborhood

of θθθ0,−d.
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Remark 3. If λj ∼ j−δ, m ∼ nι, and h0 ∼ n−τ , then Assumption 5 holds when

ι < min(1/(2(1 + δ)), 1/(δ + 4)) and 1/(2p) < τ < (1− ι(δ + 4))/6, where δ > 1,

ι > 0, and τ > 0 are constants, and the notation an ∼ bn means that the ratio

an/bn is bounded away from zero and infinity.

Theorem 1. (i) Suppose that Assumptions 1–4, 5′, 6, and 7 hold. Then, as

n→∞,

α̂αα
P→ ααα0, β̂ββ−d

P→ βββ0,−d, (3.3)

where
P→ means convergence in probability.

(ii) Suppose that Assumptions 1 to 7 hold. Then,

α̂αα−ααα0 = op(h0), β̂ββ−d − βββ0,−d = op(h0). (3.4)

In order to establish the asymptotic distributions of the estimators α̂αα and

β̂ββ−d, we first introduce some notation. Define

G̃n(θθθ) = G̃n(ααα,βββ) =
1

n

n∑
i=1

Ỹi − W̃ T
i ααα−

Kβββ∑
k=1

b̃k(ααα,βββ)B̃kβββ(ZTi βββ)


2

. (3.5)

Note that (3.5) is related to (2.10). By (3.4), if un(l−1) < infz∈D z
Tβββ0 < unl,

we have U
β̂ββ

= Uβββ0
= unl, for sufficiently large n. If infz∈D z

Tβββ0 = unl, then

we modify unl such that infz∈D z
Tβββ0 < unl, and we then have U

β̂ββ
= Uβββ0

= unl.

Similarly, if supz∈D z
Tβββ0 = un(l+kβββ), then we modify un(l+kβββ) such that un(l+kβββ) <

supz∈D z
Tβββ0, and we have U β̂ββ = Uβββ0 = un(l+kβββ). Therefore, if necessary, we

first modify the knots {unk}
kn
k=0 so that there exists a neighborhood δ∗(βββ0,−d; r

∗)

of βββ0,−d, such that Uβββ = Uβββ0
and Uβββ = Uβββ0 for βββ ∈ δ∗(βββ0,−d; r

∗), and β̂ββ ∈
δ∗(βββ0,−d; r

∗), for sufficiently large n. Let Kn = Kβββ0
, Bk(u) = Bkβββ0

(u), and

B̃k(u) = B̃kβββ0
(u). For βββ ∈ δ∗(βββ0,−d; r

∗), we have Kβββ = Kn, Bk(u) = Bkβββ(u), and

B̃k(u) = B̃kβββ(u). Furthermore, we have

G̃n(ααα,βββ) =
1

n

n∑
i=1

{
Ỹi − W̃ T

i ααα−
Kn∑
k=1

b̃k(ααα,βββ)B̃k(Z
T
i βββ)

}2

=
1

n

{
ỸYY − W̃WWααα− B̃BB(βββ)b̃bb(ααα,βββ)

}T {
ỸYY − W̃WWααα− B̃BB(βββ)b̃bb(ααα,βββ)

}
.

Set Gn(θθθ−d, bbb) = Gn(ααα,βββ−d, bbb) = (1/n){ỸYY − W̃WWααα − B̃BB(βββ−d)bbb}T {ỸYY − W̃WWααα −
B̃BB(βββ−d)bbb}, where
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B̃BB(βββ−d) = B̃BB
(
β1, . . . , βd−1,

√
1− (β2

1 + · · ·+ β2
d−1)

)
.

Because (α̂αα, β̂ββ) is the minimizer of G̃n(ααα,βββ), (α̂αα, β̂ββ−d, b̂bb) is the minimizer of Gn(ααα,

βββ−d, bbb), where b̂bb = b̃bb(θ̂θθ−d) = b̃bb(α̂αα, β̂ββ−d) = {B̃BBT
(β̂ββ−d)B̃BB(β̂ββ−d)}−1(B̃BB

T
β̂ββ−d)(ỸYY −W̃WWα̂αα).

Hence,

∂Gn(ααα,βββ−d, bbb)

∂ααα

∣∣∣∣
(ααα,βββ−d,bbb)=(α̂αα,β̂ββ−d,b̂bb)

= − 2

n
W̃WW

T
{
ỸYY − W̃WWα̂αα− B̃BB(β̂ββ−d)b̂bb

}
= 0, (3.6)

∂Gn(ααα,βββ−d, bbb)

∂βr

∣∣∣∣
(ααα,βββ−d,bbb)=(α̂αα,β̂ββ−d,b̂bb)

= − 2

n

{
ỸYY − W̃WWα̂αα− B̃BB(β̂ββ−d)b̂bb

}T ˙̃Br(β̂ββ−d)b̂bb

= 0, (3.7)

for r = 1, . . . , d−1, where ˙̃Br(βββ−d) = ∂B̃BB(βββ−d)/∂βββr. Set Ġn(θθθ−d, bbb) = ∂Gn(θθθ−d, bbb)

/∂θθθ−d = (∂Gn(ααα,βββ−d, bbb)
T /∂ααα, ∂Gn(ααα,βββ−d, bbb)

T /∂βββ−d)
T . Then, from (3.6) and

(3.7), and using a Taylor expansion, we obtain

Ġn(θθθ0,−d, b̃bb(θθθ0,−d)) + G̈n(θθθ∗−d, b̃bb(θθθ
∗
−d))(θ̂θθ−d − θθθ0,−d) = 0, (3.8)

where G̈n(θθθ−d, b̃bb(θθθ−d)) = ∂Ġn(θθθ−d, b̃bb(θθθ−d))/∂θθθ−d is a (q + d − 1) × (q + d − 1)

matrix, and θθθ∗−d is between θ̂θθ−d and θθθ0,−d. Let

Ω0 = ($kr)(q+d−1)×(q+d−1), (3.9)

$kr = E(V̆kV̆r)−E[BBB(ZTβββ0)V̆k]
TΓ−1(βββ0,βββ0)E[BBB(ZTβββ0)V̆r], for k, r = 1, . . . , q,

$k(q+r) = E[ḂBBr(Z
Tβββ0)V̆k]

Tbbb0 − E[BBB(ZTβββ0)V̆k]
TΓ−1(βββ0,βββ0)Hr(βββ0,βββ0)bbb0

and $(q+r)k = $k(q+r), for k = 1, . . . , q; r = 1, . . . , d− 1, and

$(q+k)(q+r) = bbbT0
{
Rrk(βββ0,βββ0)−HT

r (βββ0,βββ0)Γ−1(βββ0,βββ0)Hk(βββ0,βββ0)
}
bbb0,

for k, r = 1, . . . , d−1, whereBBB(ZTβββ) = (B1(ZTβββ), . . . , BKn(ZTβββ))T and ḂBBr(Z
Tβββ)

= ∂BBB(ZTβββ)/∂βr, and Γ(βββ,βββ′), Hr(βββ,βββ
′), and Rrk(βββ,βββ

′) are Kn ×Kn matrices

with (l, l′)th element equal to E[Bl(Z
Tβββ)Bl′(Z

Tβββ′)], E[Bl(Z
Tβββ)Ḃl′r(Z

Tβββ′)], and

E[Ḃlr(Z
Tβββ)Ḃl′k(Z

Tβββ′)], respectively, and Ḃlr(Z
Tβββ) = ∂Bl(Z

Tβββ)/∂βr.

Theorem 2. Suppose that Assumptions 1 to 7 hold, and that Ω0 is invertible.

Then, we have √
nΩ

1/2
0 (θ̂θθ−d − θθθ0,−d)

D→ N(0, σ2Iq+d−1), (3.10)
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where
D→ means convergence in distribution, and Iq+d−1 is the (q+d−1)×(q+d−1)

identity matrix.

Next, we establish the convergence rates of the estimators â(t) and ĝ(u).

Theorem 3. Assume that Assumptions 1 to 7 hold. In addition, assume that the

tuning parameter m̃ in (2.13) satisfies m̃ → ∞, and that n−1m̃2λ−1
m̃ log m̃ → 0.

Then,

∫
T
{â(t)− a(t)}2 dt = Op

 m̃

nλm̃
+

m̃

n2λ2
m̃

m̃∑
j=1

j3a2
j

λ2
j

+
1

nλm̃

m̃∑
j=1

a2
j

λj
+ m̃−2γ+1

 .

(3.11)

If λj ∼ j−δ, for δ > 1, m̃ ∼ n1/(δ+2γ), γ > 2, and γ > 1 + δ/2, then∑m̃
j=1 j

3a2
jλ
−2
j ≤ C̄(log m̃ + m̃2δ+4−2γ)) and

∑m̃
j=1 a

2
jλ
−1
j < +∞, where C̄ is a

positive constant. Then, we have the following corollary.

Corollary 1. Under Assumptions 1 to 7, if λj ∼ j−δ, for δ > 1, m̃ ∼ n1/(δ+2γ),

and γ > min(2, 1 + δ/2), then it follows that∫
T
{â(t)− a(t)}2 dt = Op

(
n−(2γ−1)/(δ+2γ)

)
. (3.12)

The global convergence result (3.12) indicates that the estimator â(t) attains

the same convergence rate as those of the estimators of Hall and Horowitz (2007),

which are optimal in the minimax sense.

Remark 4. Note that the tuning parameter m̃ is used only to obtain the es-

timator â(t) defined by (2.13). In contrast, the tuning parameter m is used to

estimate the unknown coefficient vectors ααα0 and βββ0. Corollary 1 shows that the

estimator â(t) attains the optimal convergence rate whenever m̃ ∼ n1/(δ+2γ).

From Remark 3, note that the asymptotic normality of the estimator θ̂θθ−d can be

derived whenever m ∼ nι, with 0 < ι ≤ n1/(δ+2γ). If m̃ = m, then (3.11) still

holds with m̃ replaced by m, provided Assumptions 1–7 hold.

Theorem 4. Suppose that Assumptions 1 to 8 hold. Then,∫ Uβββ0

Uβββ0

{ĝ(u)− g(u)}2 du = Op
(
(nh)−1 + h2p

)
. (3.13)
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Furthermore, if h = O(n−1/(2p+1)) in Assumption 8, then∫ Uβββ0

Uβββ0

{ĝ(u)− g(u)}2 du = Op

(
n−2p/(2p+1)

)
. (3.14)

The global convergence result (3.14) indicates that the estimator ĝ(u) attains

the optimal convergence rate.

Remark 5. Under Assumptions 1–7, and from a proof similar to that of Theo-

rem 4, we have∫ Uβββ0

Uβββ0

{g̃(u)− g(u)}2 du = Op

(
(nh0)−1 + h2p

0

)
= Op

(
(nh0)−1

)
.

Because nh2p
0 → 0, g̃(u) does not attain the global convergence rate of Op(

n−2p/(2p+1)), which is the optimal rate for nonparametric models. In fact, the

assumption nh2p
0 → 0 is made to make the bias of the estimator β̂ββ−d in Theorem

2 negligible. This results in a slower global convergence rate for the estimator

g̃(u).

Let S = {(Yi, Xi,Wi, Zi) : i = 1, . . . , n}. Suppose (Yn+1, Xn+1,Wn+1, Zn+1)

is a new vector of outcome and predictor variables, taken from the same pop-

ulation as that of the data S, but independent of S. Then the mean squared

prediction error (MSPE) of Ŷn+1 is given by

MSPE =E

[{∫
T
â(t)Xn+1(t)dt+W T

n+1α̂αα+ ĝ(Zn+1β̂ββ)

−
(∫
T
a(t)Xn+1(t)dt+W T

n+1ααα0 + g(Zn+1βββ0)

)}2∣∣∣S].
Theorem 5. Under Assumptions 1 to 4 and 6 to 8: if λj ∼ j−δ; m̃ ∼ n1/(δ+2γ),

where γ > min(2, 1 + δ/2); h0 ∼ n−τ , with 1/(2p) < τ < (γ− 2)/(3(δ+ 2γ)); and

h = O(n−1/(2p+1)), then it follows that

MSPE = Op

(
n−(δ+2γ−1)/(δ+2γ)

)
+Op

(
n−2p/(2p+1)

)
. (3.15)

Furthermore, if δ + 2γ = 2p+ 1, then

MSPE = Op

(
n−(δ+2γ−1)/(δ+2γ)

)
. (3.16)

Remark 6. In Theorem 5, we assume that h0 ∼ n−τ and 1/(2p) < τ < (γ −
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2)/(3(δ + 2γ)). If δ + 2γ = 2p+ 1, then the conditions p > γ and γ > 5 + 3/(2p)

are required. The preceding conditions hold when p > γ ≥ 5.3.

4. Simulation Results

In this section, we present two Monte Carlo simulation studies to evaluate

the finite-sample performance of the proposed estimator. The data are generated

from the following models:

Yi =

∫
T
a(t)Xi(t)dt+ α0Wi + sin

(
π(ZTi βββ0 − E

)
/(F − E)) + εi, (4.1)

Yi =

∫
T
a(t)Xi(t)dt+ α1Wi1 + α2Wi2 − 2ZTi βββ0 + 5 + εi, (4.2)

where T = [0, 1], and the trivariate random vector Zi has independent compo-

nents that follow the uniform distribution on [0, 1]. In model (4.1), α0 = 0.3,

βββ0 = (1, 1, 1)T /
√

3, E =
√

3/2− 1.645/
√

12, and F =
√

3/2 + 1.645/
√

12. We let

Wi = 0 for odd i and Wi = 1 for even i, and εi are independent errors following

N(0, 0.52). We take a(t) =
∑50

j=1 ajφj(t) and Xi(t) =
∑50

j=1 ξijφj(t), where a1 =

0.3 and aj = 4(−1)j+1j−2, for j ≥ 2; φ1(t) ≡ 1 and φj(t) = 21/2 cos((j−1)πt), for

j ≥ 2; and ξij is independently and normally distributed withN(0, j−δ). In model

(4.2), we have α1 = −2, α2 = 1.5, βββ0 = (1, 2, 2)T /3, and Xi(t) =
∑50

j=1 ξijφj(t),

where ξij is independently and normally distributed with N(0, λj), where λ1 = 1,

λj = 0.222(1−0.0001j)2 for 2 ≤ j ≤ 4, and λ5j+k = 0.222((5j)−δ/2−0.0001k)2 for

j ≥ 1 and 0 ≤ k ≤ 4. Furthermore, Wik = W̌ik+Vik and W̌ik =
∑50

j=1 kj
−2ξij , for

k = 1, 2. There Vik are independently and normally distributed with N(−1, 22)

and N(2, 32), respectively, and are independent of ξij . Finally, the errors εi in

(4.2) are independent N(0, 1) random variables.

For the functional linear part of model (4.1), the eigenvalues of the operator

K are well spaced; the latter part of model (4.1) was investigated by Carroll et

al. (1997) and Yu and Ruppert (2002). In model (4.2), the eigenvalues of the

operator K are closely spaced, and the link function g(u) = −2u + 5 is a linear

function. All results are reported based on the average over 500 replications for

each setting. In each sample, we first use a linear function to replace g(u) and

use the least squares estimates for the partial functional linear model as an initial

estimator. The function g(u) is approximated using a cubic spline with equally

spaced knots. Note that our simulation results (see Table 3) suggest that the

parametric estimators are not sensitive to the choices of parameters m and h0,

which is O(k−1
n ). Here, we take m = 5 and h0 = cn−1/5, with c = 1. When we
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Table 1. Results of Monte Carlo experiments for model (4.1).

n=100 n=200

LSPFL ORACLE Proposed method LSPFL ORACLE Proposed method

α̂0 bias −0.0019 0.0034 −0.0008 −0.0025 0.0002 0.0002

sd 0.0836 0.0330 0.0307 0.0565 0.0159 0.0122

β̂01 bias −0.3678 −0.0066 −0.0056 −0.3365 −0.0037 0.0006

sd 0.5445 0.0441 0.0464 0.5141 0.0202 0.0206

β̂02 bias −0.3780 −0.0075 −0.0031 −0.3283 −0.0041 −0.0018

sd 0.5449 0.0457 0.0479 0.5201 0.0263 0.0178

β̂03 bias −0.0771 0.0082 0.0016 −0.0553 0.0058 -0.0001

sd 0.2695 0.0506 0.0599 0.2694 0.0307 0.0239

ĝ(u) MISE 0.0090 0.0007

â(t) MISE 0.1205 0.0189 0.0218 0.0756 0.0082 0.0084

compute the estimators of g(u) and a(t), we select the parameter Kn and the

tuning parameter m using the BIC given in Section 2.

Table 1 reports the biases and standard deviations (sd) of the estimators

α̂0 and β̂ββ0 = (β̂01, β̂02, β̂03)T obtained using the proposed method in Section 2,

and the mean integrated squared error (MISE) of the estimators ĝ(u) and â(t)

for model (4.1), based on δ = 1.5 and sample sizes n = 100, 200. Figure 1

displays the true curves and the mean estimated curves (over 500 simulations,

with sample size n = 100) of g(u), a(t), and their 95% pointwise confidence

bands. Table 2 reports the biases and standard deviations (sd) of the estimators

α̂k, for k = 1, 2, and β̂ββ1 = (β̂11, β̂12, β̂13)T , as well as the MISE of the estimators

ĝ(u) and â(t) for model (4.2), with δ = 1.5 and n = 100, 200. For comparison

purposes, Tables 1 and 2 also list the simulation results based on the least squares

partial functional linear (LSPFL) estimators, which are obtained using a linear

function to approximate the link function g. Furthermore, Table 1 includes the

simulation results based on the nonlinear least squares (ORACLE) estimation

method when the exact form of the sinusoidal model is known.

We observe from Table 1 that the LSPFL method gives poor estimates. In

contrast, our proposed estimates are far more accurate, and can be as accurate as

those obtained from the ORACLE method when the exact form of the sinusoidal

model is known. Figure 1 shows that the true curves and the mean estimated

curves are very similar, and that the bias is very small in the estimates. Fur-

thermore, the 95% pointwise confidence bands are reasonably close to the true

curve, showing very little variation in the estimates. Table 2 shows that even
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Table 2. Results of Monte Carlo experiments for model (4.2). The biases (×10−4) and
sds (×10−4) of parametric estimators and MISE (×10−4) of ĝ(u) and MISE of â(t).

n=100 n=200

LSPFL Proposed method LSPFL Proposed method

α̂1 bias (sd) 0.078 ( 6.815) 0.100 ( 6.870) 0.186 ( 4.415) 0.173 ( 4.435)

α̂2 bias (sd) −0.071 ( 4.612) −0.085 ( 4.666) 0.359 ( 3.038) 0.373 ( 3.056)

β̂11 bias (sd) −0.707 (22.725) −0.753 (23.162) 0.942 (14.762) 0.816 (14.896)

β̂12 bias (sd) −1.670 (18.370) −1.720 (18.347) 0.711 (11.939) 0.735 (11.906)

β̂13 bias (sd) 1.936 (17.630) 2.007 (17.655) −1.220 (11.944) −1.181 (11.919)

ĝ(u) MISE 3.852 2.503

â(t) MISE 0.0087 0.0096 0.0047 0.0044

if the unknown link function g(u) is a linear function, our proposed estimates

perform as well as the LSPFL estimates do. Both tables indicate that the pro-

posed method yields accurate estimates and outperforms the LSPFL estimates

when the link function is nonlinear. Furthermore, it is comparable to the LSPFL

estimates when the link function is a linear function.

To study the prediction performance of the proposed method, we generated

samples of n = 100, 200 from models (4.1) and (4.2), with δ ∈ {1.1, 1.5, 2} for

the estimation, where δ is related to the eigenvalue of the operator with kernel

K. We also generated test samples of size 300 to compute the prediction mean

absolute error (MAE), defined by MAE = (1/N)
∑N

i=1 |Ỹn+i − Ŷn+i|, where
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Figure 2. Box plots of MAE for model (4.1). Label 1 is the box plot for δ = 1.1, 2 is
the box plot for δ = 1.5, and 3 is the box plot for δ = 2.
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Figure 3. Box plots of the MAE for model (4.2); 1 is the box plot for δ = 1.1; 2 is the
box plot for δ = 1.5, and 3 is the box plot for δ = 2.

Ỹn+i =
∫
T a(t)Xn+i(t)dt+W T

n+iααα0 + g0(ZTn+iβββ0) and Ŷn+i =
∫
T â(t)Xn+i(t)dt+

W T
n+iα̂αα+ ĝ(ZTn+iβ̂ββ). Figures 2 and 3 display the box plots of the MAE based on

500 replications and N = 300. We observe that the proposed method shows good

prediction performance for both models, and that the MAEs are quite small, even

when n = 100. Figures 2 and 3 also show that the MAE decreases as n increases

or as δ increases.

For different m and h0, Table 3 exhibits the MSEs of the estimators α̂0 and

β̂01 for model (4.1), with δ = 1.5 and sample size n = 200. We observe from

Table 3 that the MSEs of α̂0 and β̂01 are not sensitive to changes of m and h0,

and that the estimators of α0 and β01 are efficient under a broad range of values

for m and h0. The MSEs of β̂02 and β̂03 show similar behavior; these results

reported here, for brevity.
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Table 3. MSE (×10−3) of α̂0 and β̂01 in model (4.1). The sample size is n = 200.

h0 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10

α̂0 0.2 1.4 0.9 0.5 0.3 0.4 0.5 0.6 0.4 0.6

0.3 1.4 0.8 0.3 0.3 0.4 0.4 0.6 0.2 0.3

0.4 1.4 0.8 0.3 0.2 0.4 0.3 0.6 0.4 0.6

0.5 1.4 0.6 0.3 0.3 0.3 0.4 0.6 0.6 0.4

β̂01 0.2 1.8 2.0 1.0 0.5 0.9 1.1 0.8 0.9 1.6

0.3 1.5 1.5 0.7 0.6 1.4 0.3 1.1 0.7 1.4

0.4 1.5 1.5 0.7 0.6 1.1 0.3 1.1 1.1 1.4

0.5 2.5 1.6 1.5 0.8 0.6 1.0 1.6 1.2 1.0

5. Real-Data Example

In this section we analyze real data using the proposed method. For this

purpose, we use DTI data on 217 subjects from the NIH ADNI study. For more

information on how these data were collected, see http://www.adni-info.org.

The DTI data were processed in two key steps, including a weighted least squares

estimation method (Basser, Mattiello and LeBihan (1994); Zhu et al. (2007)), to

construct the diffusion tensors and a TBSS pipeline in FSL (Smith et al. (2006)).

This enables us to register DTIs from multiple subjects and, thus, create a mean

image and a mean skeleton. These data have been analyzed by numerous authors,

using different models; see, for example, Yu, Kong and Mizera (2016); Li, Huang

and Zhu (2016), and the references therein.

We wish is to predict mini-mental state examination (MMSE) scores, The

MMSE is a screening test, widely used to provide brief and objective measures

of cognitive functioning over a long period. The MMSE scores are viewed as

a reliable and valid clinical measure quantitatively used to assess the severity

of cognitive impairment. Originally, it was believed that MMSE scores were

affected by demographic features, such as age, education and cultural back-

ground (Tombaugh and McIntyre (1992)), gender (Pöysti (2012); O’Bryant et

al. (2008)), and possibly genetic factors, such as, AOPE polymorphic alleles (Liu

et al. (2013)).

After cleaning the raw data that failed the quality control or that included

missing data, the sample contained 196 individuals. The response of interest

Y is the MMSE score. The functional covariate comprises fractional anisotropy

(FA) values along the corpus callosum (CC) fiber tract, with 83 equally spaced

grid points, which can be treated as a function of the pAc AAlA arc-length.

FA measures the inhomogeneous extent of local barriers to water diffusion, and

http://www.adni-info.org
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Table 4. The parametric estimators for models (5.1) and (5.2).

model α1 α2 α3 α4 α5 α6 β1 β2
(5.1) 0.0758 0.4317 0.1105 0.6875 0.5581 -0.0239 -0.0429 -0.1865

(5.2) -0.0754 0.1814 0.1138 0.5961 0.5245 -0.0305 0.1957 0.9807

the averaged magnitude of local water diffusion (Basser and Pierpaoli (1996)).

The scalar covariates of primary interest include gender (W1), handedness (W2),

education level (W3), genotypes for apoe4 (W4,W5, categorical data with three

levels), age (W6), ADAS13 (Z1), and ADAS11 (Z2). The genotypes apoe4 is one

of three major alleles of apolipoprotein E (ApoE), a major cholesterol carrier that

supports lipid transport and injury repair in the brain. ApoE polymorphic alleles

are the main genetic determinants of Alzheimer’s disease risk (Liu et al. (2013)).

ADAS11 and ADAS13 are the 11-item and 13-item versions, respectively, of the

Alzheimer’s Disease Assessment Scale-Cognitive subscale (ADAS-Cog), originally

developed to measure cognition in patients at various stages of Alzheimer’s Dis-

ease (Llano, Laforet and Devanarayan (2011); Zhou et al. (2012); Podhorna et

al. (2016)).

We study the following two models:

Y =

∫ 1

0
a(t)X(t)dt+ α0 + α1W1 + α2W2 + α3W3 + α4W4 + α5W5

+α6W6 + β1Z1 + β2Z2 + ε, (5.1)

Y =

∫ 1

0
a(t)X(t)dt+ α1W1 + α2W2 + α3W3 + α4W4 + α5W5

+α6W6 + g(β1Z1 + β2Z2) + ε, (5.2)

where W1 = 1 stands for male and W1 = 0 stands for female, W2 = 1 denotes

right-handed and W2 = 0 denotes left-handed, W4 = 1 and W5 = 0 indicate type

0 for apoe4, W4 = 0 and W5 = 1 indicate type 1 for apoe4, and both W4 = 0

and W5 = 0 indicate type 2 for apoe4. The functional component X(t) is chosen

as the centered fractional anisotropy (FA) values, such that E[X(t)] = 0. Model

(5.1) is a partial functional linear model, and model (5.2) is partial functional

linear single-index model, in which ADAS13 (Z1) and ADAS11 (Z2) are index

variables.

The parametric and nonparametric components in the models are computed

using the procedure given in Section 2, with the nonparametric function g(u)

being approximated by a cubic spline with equally spaced knots. Because the
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Figure 4. (a) is the estimated curve (solid line) of a(t) in model (5.1) and its 95%
pointwise confidence intervals (dotted lines). (b) is the estimated curve of a(t) in model
(5.2) and its 95% pointwise confidence intervals. (c) is the estimated curve of g(u) in
model (5.2) and its 95% pointwise confidence intervals.

values of Z1 and Z2 are large, we choose h0 = 5.0 for model (5.2), and m =

3 for the parametric estimation. Table 4 exhibits the parametric estimators,

and Figure 4 shows the estimated curves of a(t) and g(u). For model (5.1),

α̂0 = 28.9388. The MSE of Y for models (5.1) and (5.2) are 2.8684 and 2.7782,

respectively, and can be further reduced for model (5.2) by increasing the number

of knots.

From Table 4 and Figure 4, we observe that in both models, the MMSE is

decreasing in terms of ADAS13 and ADAS11. However, in Figure 4, this decline

is found to be nonlinear, as shown by the nonlinear trends of g(u) in model (5.2).

In single-index models (5.2), we find that the MMSE is higher for females than it

is for males, which is consistent with the results in the literature (Pöysti (2012);

O’Bryant et al. (2008)); model (5.1) incorrectly finds the opposite. Although we

have not been able to perform a formal test on model fitting, these observations

show the superiority of the single-index model (5.2).

To evaluate the prediction performance of the two models, we applied a

combination of the bootstrap and the cross-validation method to the data set.

For each bootstrap sample, we randomly divided the data into 10 partitions.

Because the number of individuals is not large, we use nine folds of the data to

estimate the model and the remaining fold for the testing data set. We calculated

the MSPE for the testing data set. The MSPEs for the two models over 200

replications are reported as box plots in Figure 5. The means of the MSPEs of

the 200 replications for models (5.1) and (5.2) are 3.6996 and 3.4249, respectively.

The medians for the MSPEs for the 200 replications for models (5.1) and (5.2)

are 3.5464 and 3.3421, respectively. This figure shows that model (5.2) fits the

data better than model (5.1) does. We also calculated 95% pointwise confidence
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intervals of the estimated curves of a(t) in model (5.1), a(t) in model (5.2), and

g(u) in model (5.2), shown as (a), (b), and (c), respectively, in Figure 4. From

Figure 4, the functional slopes of both models are very similar in shape, whereas

g(u) has a clear nonlinear feature. This confirms that model (5.2) is more flexible

than model (5.1).

Supplementary Material

The online Supplementary Material provides proofs of Theorems 1 to 5, based

on several of the preliminary lemmas.

Acknowledgments

The authors sincerely thank the co-editor Dr. Yazhen Wang, associate editor,

and two referees for their helpful comments.

Q. Tang’s research was supported by the National Social Science Founda-

tion of China (16BTJ019) and Natural Science Foundation of Jiangsu Province

of China (Grant No. BK20151481). The research of L. Kong was supported by

grants from the Natural Sciences and Engineering Research Council of Canada

(NSERC) and the Canadian Statistical Sciences Institute Collaborative Research

Team (CANSSI-CRT). He also acknowledges the support of the Program on

Challenges in Computational Neuroscience (CCNS) at the Statistical and Ap-

plied Mathematical Sciences Institute (SAMSI) during his visit in 2016. D. Rup-

pert’s research was supported by NSF grant AST-1312903 and NIH grants P30

AG010129 and K01 AG030514. R.J. Karunamuni’s research was supported by a

grant from the Natural Sciences and Engineering Research Council of Canada.



130 TANG ET AL.

Part of the data collection and sharing for this project was funded by the

ADNI (National Institutes of Health Grant U01 AG024904). ADNI is funded

by the National Institute on Aging, the National Institute of Biomedical Imag-

ing and Bioengineering, and through generous contributions from the following:

Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; BioClinica,

Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharma-

ceuticals, Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd and its affi-

lated company Genentech, Inc.; GE Healthcare; Innogenetics, N.V.; IXICO Ltd.;

Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson &

Johnson Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck

& Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Novartis Phar-

maceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Synarc Inc.; and

Takeda Pharmaceutical Company. The Canadian Institutes of Health Research

provides funding in support of ADNI clinical sites in Canada. Private sector con-

tributions are facilitated by the Foundation for the National Institutes of Health

(www.fnih.org). The grantee organization is the Northern California Institute for

Research and Education, and the study is coordinated by the Alzheimer’s Dis-

ease Cooperative Study at the University of California, San Diego. The ADNI

data are disseminated by the Laboratory of Neuro Imaging at the University of

California, Los Angeles.

References

Basser, P. J., Mattiello, J. and LeBihan, D. (1994). MR diffusion tensor spectroscopy and

imaging. Biophys. J. 66, 259–267.

Basser, P. J. and Pierpaoli, C. (1996). Microstructural and physiological features of tissues

elucidated by quantitative-diffusion-tensor MRI. J. Magn. Reson., Series B 111, 209–219.

de Boor, C. (1978). A Practical Guide to Splines. Springer, New York.

Cai, T. T. and Hall, P. (2006). Prediction in functional linear regression. Ann. Statist. 34,

2159–2179.

Carroll, R. J., Fan, J., Gijbels, I. and Wand, M. P. (1997). Generalized partially linear single-

index models. J. Amer. Statist. Assoc. 92, 477–489.

Cardot, H., Mas, A. and Sarda, P. (2007). CLT in functional linear models. Probab. Theory

Relat. Fields 138, 325–361.

Chen, D., Hall, P. and Müller, H. G. (2011). Single and multiple index functional regression

models with nonparametric link. Ann. Statist. 39 1720–1747.

Chen, K. and Müller, H.-G. (2012). Conditional quantile analysis when covariates are functions,

with application to growth data. J. R. Stat. Soc. Ser. B. Stat. Methodol. 74, 67–89.

Delaigle, A. and Hall, P. (2012). Methodology and theory for partial least squares applied to

functional data. Ann. Statist. 40 322–352.



PARTIAL FUNCTIONAL PARTIALLY LINEAR SINGLE-INDEX MODELS 131

Ferraty, F. and Vieu, P. (2006). Nonparametric Functional Data Analysis. Springer, New York.

Hall, P. and Horowitz, J. L. (2007). Methodology and convergence rates for functional linear

regression. Ann. Statist. 35, 70–91.
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