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Abstract: Surrogate modeling based on Gaussian processes (GPs) is becoming

increasingly popular in analysis of complex problems in science and engineering.

However, despite the many studies on GP modeling, few focus on functional

inputs. Motivated by an inverse scattering problem in which functional inputs

representing the support and material properties of the scatterer are involved in

the partial differential equations, we propose a new class of kernel functions for

functional inputs of GPs. Based on the proposed GP models, we derive the

asymptotic convergence properties of the resulting mean squared prediction errors,

and demonstrate the finite-sample performance using numerical examples. In the

application to inverse scattering, we construct a surrogate model with functional

inputs, which is crucial to recovering the reflective index of an inhomogeneous

isotropic scattering region of interest for a given far-field pattern.

Key words and phrases: Computer experiments, functional data analysis, scalar-

on-function regression, surrogate model, uncertainty quantification.

1. Introduction

Computer experiments that study real systems using mathematical models,

such as partial differential equations, are increasingly being used to analyze

complex problems in science and engineering. Such experiments typically require

a great deal of time and computing resources. Therefore, based on a finite

sample of computer experiments, it is crucial to build a surrogate for the

actual mathematical models, which we then use for prediction, inference, and

optimization. The Gaussian process (GP) model, also called kriging, is popular

as a surrogate model because of its flexibility, interpolating property, and ability

to perform uncertainty quantification using the predictive distribution. For

additional discussions on computer experiments and surrogate modeling using

GP models, see Santner, Williams and Notz (2018) and Gramacy (2020).

This study is motivated by an inverse scattering problem in computer
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Figure 1. Illustration of the inverse scattering problem.

experiments that involve functional inputs and, therefore, the analysis and

inference rely on a surrogate model that can take functional inputs into account.

Figure 1 illustrates inverse scattering. Let the functional input g represent the

material properties of an inhomogeneous isotropic scattering region of interest,

shown in the middle of Figure 1. For a given functional input, the far-field

pattern, us, is obtained by solving partial differential equations (Cakoni, Colton

and Haddar (2016)), which is computationally intensive. Given a new far-field

pattern, the goal of inverse scattering is to recover the functional input using

a surrogate model. To achieve this, we require a surrogate model applicable to

functional inputs. In addition to inverse scattering (Cakoni, Colton and Haddar

(2016); Kaipio et al. (2019)), problems with functional inputs are frequently found

in engineering applications of non-destructive testing, where measurements on the

surface or exterior of an object are used to infer the interior structure. Similar

problems also occur in electrical impedance tomography, where we need to recover

the functional input that represents the electric conductivity from the measured

current-to-voltage mapping; see, for example, Mueller and Siltanen (2020) for a

discussion of the electrical impedance tomography model. Another important

application is the use of computerized tomography in medical studies for interior

reconstruction (Courdurier et al. (2008); Li et al. (2019)).

However, despite there being extensive studies on surrogate modeling using

GPs (Gramacy (2020)), few of them focus on functional inputs. To the best

of our knowledge, most of the existing research on GPs with functional inputs

is restricted to specific applications. For example, Nguyen and Peraire (2015)

propose a functional-input GP with bilinear covariance operators, and apply it

to linear partial differential equations. Morris (2012) develops a kriging model

with a covariance function specifically for time-series data. Chen et al. (2021)

propose a spectral-distance correlation function, and apply it to three-dimensional

printing.

In functional data analysis, research that involves functional inputs is often

referred to as scalar-on-function regression (Ramsay and Silverman (2005);
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Kokoszka and Reimherr (2017); Reiss et al. (2017)). Some approaches reduce the

dimension of functional inputs by using a basis-expansion approximation, and

then perform a linear or nonlinear model in the reduced Euclidean space (see,

e.g., Cardot, Ferraty and Sarda (1999); Ait-Säıdi et al. (2008); Yao and Müller

(2010); Müller, Wu and Yao (2013); McLean et al. (2014)). Other methods handle

the functional inputs directly using spline approaches (see, e.g., Ferraty and Vieu

(2006); Preda (2007); Báıllo and Grané (2009); Shang (2013). However, very

few of these approaches incorporate GP assumptions that allow for uncertainty

quantification when constructing surrogate models.

This study introduces a new class of GP surrogate models for functional

inputs. Recent studies on surrogate modeling apply GP to functional inputs

based on a truncated basis expansion (Shi and Wang (2008); Tan (2019); Li

and Tan (2022)). Ideas along this line are intuitive and easy to implement;

however, there are three drawbacks. First, a basis expansion requires an explicit

specification of the basis functions. Second, a basis expansion approximates the

functional input and achieves dimension reduction by using a finite truncation of

the basis functions, which can introduce additional bias into the model. Third,

the curse of dimensionality makes it difficult to scale the techniques developed

using a basis expansion to include high-dimensional functional inputs.

To address these problems, we propose a new GP surrogate by introducing

a new class of kernel functions that are defined directly on a functional space.

We show that the proposed kernels are closely connected to the idea of a basis

expansion, without needing to specify individual bases, and without the loss

of efficiency due to finite truncation. The procedure is general and provides a

parsimonious model, especially for high-dimensional problems, in which basis-

expansion approaches often require a significant number of basis functions to

achieve a high quality approximation. We use simulations to compare the

proposed method with those based on a basis expansion for functional inputs,

and apply the proposed method to the inverse scattering problem. Our empirical

results show that the proposed surrogate model outperforms those based on a

basis expansion in terms of prediction accuracy and uncertainty quantification.

Although the proposed surrogate models extend conventional GPs to func-

tional inputs, the theoretical results are nontrivial extensions. These results

include the convergence rates of the mean squared prediction errors (MSPEs)

and the connections to the experimental design. Defining the kernels directly

on a functional space reduces the model bias compared with using a basis

expansion, but introduces technical challenges to the theoretical derivations.

Additional scattered data approximation techniques, such as the local polynomial

reproduction (Wendland (2004)), have to be applied rigorously to the study

of convergence rates. These rates are further explored using the notion of fill

distances, which provides a concrete connection between the performance of the

proposed model and the experimental design in a functional space.
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The remainder of the paper is organized as follows. In Section 2, we introduce

a functional-input GP model. Then, in Section 3, we discuss a new class of

kernel functions, including a linear and a nonlinear kernel, and their theoretical

properties. In Section 4, we use a numerical analysis to examine the prediction

accuracy of the proposed models. In Section 5, we apply the proposed framework

to construct a surrogate model for an inverse scattering problem. Section 6

concludes the paper. Detailed theoretical proofs and the data and R code needed

to reproduce the numerical results are provided in the Supplementary Material.

2. Functional-Input GP

Suppose that V is a functional space consisting of functions defined on a

compact and convex region Ω ⊆ Rd, and all functions g ∈ V are continuous on

Ω, that is, V ⊂ C(Ω). A functional-input GP, f : V → R, is denoted by

f(g) ∼ FIGP(µ,K(g, g′)), (2.1)

where µ is an unknown mean, and K(g, g′) is a semi-positive kernel function for

g, g′ ∈ V . A new class of kernel K(g, g′) for functional inputs is discussed in

Section 3.

Given a properly defined kernel function, the estimation and prediction

procedures are similar to those of the conventional GP. Assume there are

n realizations from the functional-input GP, where g1, . . . , gn are the inputs

and f(g1), . . . , f(gn) are the outputs. We have f(g1), . . . , f(gn) following a

multivariate normal distribution, Nn(µn,Kn), with mean µn = µ1n and

covariance Kn, where 1n is a size-n all-ones vector and (Kn)j,k = K(gj, gk). The

unknown parameters, including µ and the hyperparameters associated with the

kernel function, can be estimated using likelihood-based or Bayesian approaches;

for details of the estimation methods, refer to Santner, Williams and Notz (2018)

and Gramacy (2020).

Suppose g ∈ V is an untried new function. By the property of the conditional

multivariate normal distribution, the corresponding output f(g) follows a normal

distribution with the mean and variance given by

E[f(g)|yn] = µ+ kn(g)
TK−1

n (yn − µn) and (2.2)

V[f(g)|yn] = K(g, g)− kn(g)
TK−1

n kn(g), (2.3)

respectively, where yn = (y1, . . . , yn)
T , yi = f(gi), and kn(g) = (K(g, g1), . . . ,

K(g, gn))
T . The conditional mean of (2.2) is used to predict f(g), and the

conditional variance of (2.3) can be used to quantify the prediction uncertainty.
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3. A New Class of Kernel Functions

In this section, we introduce a new class of kernel functions for functional-

input GPs. Based on the proposed models, we also derive the asymptotic

convergence properties of the resulting MSPEs. Section 3.1 focuses on a linear

kernel, and Section 3.2 extends the discussion to a nonlinear kernel. Practical

guidance on selecting an optimal kernel is provided in Section 3.3. For notational

simplicity, the mean in (2.1) is assumed to be zero in this section, but the results

can be extended easily to include nonzero cases.

3.1. Linear kernel for functional inputs

We first introduce a linear kernel for functional inputs g1 and g2:

K(g1, g2) =

∫
Ω

∫
Ω

g1(x)g2(x
′)Ψ(x,x′)dxdx′, (3.1)

where g1, g2 ∈ V , and Ψ is a positive-definite function defined on Ω × Ω. The

following proposition shows that this kernel function is semi-positive definite.

Proposition 1. The linear kernel K defined in (3.1) is semi-positive definite on

V × V .

By Mercer’s theorem (Rahman (2007)), we have

Ψ(x,x′) =
∞∑
j=1

λjϕj(x)ϕj(x
′), (3.2)

where x,x′ ∈ Ω, and λ1 ≥ λ2 ≥ · · · > 0 and {ϕk}k∈N are the eigenvalues and the

orthonormal basis, respectively, in L2(Ω). Given the positive-definite function Ψ,

we can construct a GP using the Karhunen–Loève expansion:

f(g) =
∞∑
j=1

√
λj⟨ϕj, g⟩L2(Ω)Zj, (3.3)

where Zj are independent standard normal random variables, and ⟨ϕj, g⟩L2(Ω) is

the inner product of ϕj and g, which is ⟨ϕj, g⟩L2(Ω) =
∫
Ω
ϕj(x)g(x)dx. It can be

shown that the covariance function of the constructed GP in (3.3) is K(g1, g2),

defined in (3.1), that is,

Cov(f(g1), f(g2)) =
∞∑
j=1

λj⟨ϕj, g1⟩L2(Ω)⟨ϕj, g2⟩L2(Ω)

=
∞∑
j=1

λj

∫
Ω

∫
Ω

g1(x)ϕj(x)g2(x
′)ϕj(x

′)dxdx′

=

∫
Ω

∫
Ω

g1(x)g2(x
′)Ψ(x,x′)dxdx′, (3.4)
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for any g1, g2 ∈ V .

The proposed surrogate model is equivalent to a basis expansion as a result of

the Karhunen–Loève expansion in (3.3), but the proposed method requires only

a specification of the kernel function in (3.1), rather than an explicit specification

of each individual basis ϕj. Furthermore, we do not apply any dimension

reduction or approximation to the functional input, and thus no additional bias is

introduced to the surrogate. More specifically, the proposed model preserves the

most information without a finite truncation of a basis expansion, because the

kernel representation (3.1) is equivalent to representing each input g as an element

in L2(Ω) using a basis expansion with respect to {ϕj}∞j=1. These advantages are

common in kernel-based methods, such as support-vector machines (SVMs), the

kernel principal components analysis (KPCA), and the kernel ridge regression

(KRR) (Hastie, Tibshirani and Friedman (2009)).

Proposition 2. The GP, f(g), constructed as in (3.3), is linear; that is, for any

a, b ∈ R and g1, g2 ∈ V , it follows that f(ag1 + bg2) = af(g1) + bf(g2).

The proposed kernel function has an intuitive interpretation that connects

it to Bayesian modeling. In a Bayesian linear regression, the conditional mean

function is assumed to be f(x) = xTw, where w is typically assumed to have a

multivariate normal prior, that is, w ∼ N (0,Σw). Hence, for any two points, x

and x′, the covariance of f(x) and f(x′) is Cov(f(x′), f(x′)) = xTΣwx
′, which

can be interpreted as a weighted inner product of x and x′. The proposed model

(3.3) can be viewed as an analogy to the Bayesian linear model with functional

inputs, and the covariance (3.4) can be viewed as a weighted inner product of the

two functions g1 and g2.

To understand the performance of the proposed predictor of (2.2) with the

kernel function defined in (3.1), we first characterize the MSPE in the following

theorem. Denote the reproducing kernel Hilbert space (RKHS) associated with

a kernel Ψ as NΨ(Ω).

Theorem 1. Let f̂(g) = E[f(g)|yn] as in (2.2). For any continuous function

g ∈ V ⊂ L2(Ω), define a linear operator on L2(Ω),

T g(x) =
∫
Ω

g(x′)Ψ(x,x′)dx′.

The MSPE of f̂(g) can be written as

E
(
f(g)− f̂(g)

)2
= min

(u1,...,un)∈Rn

∥∥∥∥∥T g −
n∑
j=1

ujT gj

∥∥∥∥∥
2

NΨ(Ω)

, (3.5)

where ∥·∥NΨ(Ω) is the RKHS norm of NΨ(Ω).
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By Proposition 10.28 in Wendland (2004), T g ∈ NΨ(Ω), and therefore the

right-hand side of (3.5) exists. Theorem 1 provides a new representation of the

MSPE for functional-input GPs that is an analogue to that of conventional GPs

in the L2 input space, and has not yet been explored in the literature. According

to Theorem 1, the MSPE can be represented as the distance between T g and its

projection on the linear space spanned by {T g1, . . . , T gn}. This distance can be

reduced if gj is designed so that the spanned space well approximates the space

V . We highlight some designs of gj in the following two corollaries, which discuss

the MSPE convergence rates explicitly.

In the following corollaries, the kernel function Ψ is assumed to be a Matérn

kernel (Stein (1999)):

Ψ(x,x′) = ψ(∥Θ(x− x′)∥2) with (3.6)

ψ(r) =
σ2

Γ(ν)2ν−1
(2
√
νr)νBν(2

√
νr), (3.7)

where Θ is a lengthscale parameter that is a d × d positive diagonal matrix,

∥ · ∥2 denotes the Euclidean norm, σ2 is a positive scalar, Bν is the modified

Bessel function of the second kind, and ν represents a smoothness parameter.

We consider the Matérn kernel here because it is widely used in the computer

experiment and spatial statistics literature (Santner, Williams and Notz (2018);

Stein (1999)). The corollaries can also be extended to a general positive kernel

that has k continuous derivatives, such as Wendland’s compactly supported kernel

(Wendland (2004)); see Wendland (2004) and Haaland and Qian (2011). Without

loss of generality, we assume that Θ is an identity matrix and σ2 = 1 for the

theoretical developments in this section. These parameters, including Θ, σ2, and

ν, are discussed in greater detail in Section 4.

Corollary 1. Suppose gj, for j = 1, . . . , n, are the first n eigenfunctions of Ψ,

that is, gj = ϕj. For g ∈ V ⊂ L2(Ω), there exists a constant C1 > 0 such that

E
(
f(g)− f̂(g)

)2
≤ C1∥g∥2L2(Ω)n

−2ν/d. (3.8)

Furthermore, if g ∈ NΨ(Ω), then there exists a constant C2 > 0 such that

E
(
f(g)− f̂(g)

)2
≤ C2∥g∥2NΨ(Ω)n

−4ν/d. (3.9)

Corollary 1 represents the convergence rate analogue to that of conventional

GPs (Tuo and Wang (2020)), and shows that if we design the input functions to

be eigenfunctions of Ψ, the convergence rate of the MSPE is polynomial. If the

functional space is further assumed to be the RKHS associated with the kernel

Ψ (i.e., g ∈ NΨ(Ω)), which is smaller than L2(Ω), the convergence rate becomes

faster, as shown by (3.9). This result indicates a significant difference between
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the proposed GP defined on a functional space and the conventional one defined

on a Euclidean space. That is, the convergence results of (3.8) and (3.9) depend

on the norm of the functional space in which the input g lies, which is different

to that of conventional GPs, which involves only the Euclidean norm.

Instead of selecting the input functions to be eigenfunctions, an alternative is

to design the input functions using a set of knots in Ω, that is, Xn ≡ {x1, . . . ,xn},
where xj ∈ Ω, for j = 1, . . . , n, and the convergence rate is derived in the following

corollary. We first denote hXn,Ω as the fill distance of Xn, that is,

hXn,Ω := sup
x∈Ω

min
xj∈Xn

∥x− xj∥2.

Furthermore, denote qXn
= min1≤j ̸=k≤n ∥xj − xk∥/2, and a design Xn satisfying

hXn,Ω/qXn
≤ C ′, for some constant C ′, is called a quasi-uniform design.

Corollary 2.

(1) Suppose gj(x) = Ψ(x,xj), where x,xj ∈ Ω, for j = 1, . . . , n. For g ∈
NΨ(Ω), there exists a constant C3 > 0 such that

E
(
f(g)− f̂(g)

)2
≤ C3∥g∥2NΨ(Ω)h

2ν
Xn,Ω

.

(2) For a quasi-uniform design Xn, there exists a positive constant C such that

hXn,Ω ≤ Cn−1/d (Wendland (2004);Müller (2009)). Therefore, there exists

a constant C4 > 0 such that

E
(
f(g)− f̂(g)

)2
≤ C4∥g∥2NΨ(Ω)n

−2ν/d. (3.10)

Compared with the results in Corollary 1, the convergence rate of the quasi-

uniform designs in (3.10) is slower than the choice of eigenfunctions in (3.9).

Nevertheless, despite the slower rate of convergence, designing functional inputs

as Ψ(xj, ·) with space-filling xj can be relatively easier in practice than finding

eigenfunctions of Ψ. However, if the eigenfunctions of Ψ are available, then we

recommend the design based on Corollary 1 (i.e., the first n eigenfunctions),

because the convergence rate is faster. Some kernel functions have closed-

form expressions, such as Gaussian kernels (Zhu et al. (1997)). More generally,

the eigenfunctions can be approximated numerically using Nyström’s method

(Williams and Seeger (2000)).

The proposed linear kernel can be naturally modified to accommodate the

potential nonlinearity in f by enlarging the feature space using a prespecified

nonlinear transformation M on g, that is, M : V → V1, where V1 is a function

class. The resulting kernel function can be written as

K(g1, g2) =

∫
Ω

∫
Ω

M◦ g1(x)M◦ g2(x′)Ψ(x,x′)dxdx′,
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and the corresponding GP can be constructed as

f(g) =
∞∑
j=1

√
λj⟨ϕj,M◦ g⟩L2(Ω)Zj. (3.11)

The MSPE convergence results can be extended to (3.11). There are many

possible ways to define M so that the feature space can be enlarged; however,

this flexibility comes with a higher estimation complexity. In the next section, we

propose an alternative to address the nonlinearity using a kernel function, which

is computationally more efficient.

3.2. Nonlinear kernel for functional inputs

In this section, we introduce a new type of kernel function for functional

inputs that takes the nonlinearity into account by using a radial basis function.

Let ψ(r) : R+ → R be a radial basis function, the corresponding kernel of which in

Rd is strictly positive definite for any d ≥ 1. Note that the radial basis function of

(3.7), which has a Matérn kernel, satisfies this condition. Define K : V × V → R
as

K(g1, g2) = ψ(γ∥g1 − g2∥L2(Ω)), (3.12)

where ∥·∥L2(Ω) is the L2-norm of a function, defined by ∥g∥L2(Ω) = (⟨g, g⟩L2(Ω))
1/2,

and γ > 0 is a parameter that controls the decay of the kernel function with

respect to the L2-norm.

Although other distance metrics can be used to define the distance between

two functions, such as the Fréchet distance or L∞-norm, the resulting kernel

functions are not necessarily semi-positive definite, which is a required property

when defining a kernel function. For example, consider an L∞-norm distance

for the kernel function, that is, K(g1, g2) = ψ(γ∥g1 − g2∥L∞(Ω)), for any g1, g2 ∈
L∞(Ω), where ψ has the form of (3.7), with ν = 2.5 and σ2 = 1. Given the

four training functional inputs, g1(x1, x2) = x2
1, g2(x1, x2) = x2

2, g3(x1, x2) = 1 +

x1, g4(x1, x2) = 1 + x2, and γ = 0.5, the kernel matrix is

Kn =


1 0.8286 0.7536 0.5240

0.8286 1 0.5240 0.7536

0.7536 0.5240 1 0.8286

0.5240 0.7536 0.8286 1

 .
Then, for a vector a = (1,−1,−1, 1)T , it follows that aTKna = −0.2331 < 0,

which implies that the kernel function is not semi-positive. Conditions on the

metric ∥ · ∥ that make the resulting kernel function positive definite are left to

future work. In the following proposition, we show that the kernel function with

∥ · ∥L2(Ω), defined as in (3.12), is positive definite.



1892 SUNG ET AL.

Proposition 3. The function K defined in (3.12) is positive definite on V × V .

Assume that there exists a probability measure P on V such that∫
V
g(t)2dP (g) < ∞, for t ∈ Ω (Ritter (2007)). Based on the positive-definite

function K in (3.12), we can construct a GP using the Karhunen–Loève

expansion, as follows:

f(g) =
∞∑
j=1

√
λjφj(g)Zj, (3.13)

where φj is the orthonormal basis obtained using a generalized version of Mercer’s

theorem, K(g1, g2) =
∑∞

j=1 λjφj(g1)φj(g2) (Steinwart and Scovel (2012)), with

respect to the probability measure P .

The nonlinear kernel in (3.12) can be viewed as a basis expansion of the

functional input based on the fact that ∥g1 − g2∥2L2(Ω) =
∑∞

j=1⟨ϕj, g1 − g2⟩2L2(Ω),

where {ϕj}∞j=1 are orthonormal basis functions in L2(Ω). By a finite truncation

of the basis expansion, the input g can be approximated by {ϕj}Mj=1 in RM , for

a positive integer M , and, therefore, f(g) can be approximated by a GP with

the correlation function ψ(γ∥ · ∥2), where ∥ · ∥2 is the Euclidean norm on RM .

However, as in Section 3.1, the finite truncation introduces additional bias and

requires an explicit specification of the orthonormal functions {ϕj}Mj=1 and M in

advance. Instead, the proposed method directly evaluates the correlation on a

functional space using the nonlinear kernel without an approximation, requiring

only that we select a proper kernel function.

Note that the L2-norm in (3.12) can be replaced by any Hilbert space norm,

such as the RKHS norm. Therefore, the nonlinear kernel (3.12) is flexible, and

can be generalized to any target space of interest, in practice. Nevertheless,

the L2-norm can be approximated using numerical integration methods, such as

Monte Carlo integration (Caflisch (1998)), which is computationally more efficient

than, for example, the RKHS norm, which requires inverting an N ×N matrix,

where N is the number of grid points.

Based on the proposed nonlinear kernel, the next theorem gives the

convergence rate of the MSPE.

Theorem 2. Suppose that Φ is a Matérn kernel function with smoothness ν1,

and ψ is the radial basis function of (3.7), the corresponding kernel of which is

Matérn with smoothness ν. Let τ = min(ν, 1). For any n > N0, with a constant

N0, there exist n input functions such that for any g ∈ NΦ(Ω) with ∥g∥NΦ(Ω) ≤ 1,

the MSPE is bounded by

E
(
f(g)− f̂(g)

)2
≤ C5(log n)

−[(ν1+d/2)τ ]/d log logn. (3.14)

Based on (3.14), it appears that the convergence rate is slower than that of the

conventional GP, where the inputs are defined in the Euclidean space. Although
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this rate can be improved, a slower rate of convergence for functional inputs is not

surprising, because the input space is much larger than the Euclidean space. Note

that because the RKHS generated by a Matérn kernel function with smoothness

ν1 is equivalent to the (fractional) Sobolev space Hν1+d/2(Ω) (Wendland (2004)),

the assumption of g ∈ NΦ(Ω) in Theorem 2 is equivalent to g ∈ Hν1+d/2(Ω).

If Φ is a squared exponential kernel, then the corresponding RKHS is within

the RKHS generated by a Matérn kernel function with any smoothness ν2. Thus,

one can choose a large ν2 > ν1, and apply Theorem 2 to obtain the same

convergence rate as in (3.14) by replacing ν1 with ν2. Therefore, we conclude that

the convergence rate of the RKHS generated by a squared exponential kernel is

faster than that of the RKHS generated by a Matérn kernel function with a fixed

ν1.

3.3. Selection of kernels

We have shown that the linear kernel of (3.1) results in a less flexible model,

leading to a lower prediction variance, but higher bias, whereas the nonlinear

kernel of (3.12) results in a more flexible model, leading to a higher variance

and lower bias (Hastie, Tibshirani and Friedman (2009)). To find an optimal

kernel function that balances the bias–variance trade-off, we use cross-validation

to select the kernel by minimizing the estimated prediction error.

Although cross-validation methods are typically expensive to implement, the

leave-one-out cross-validation (LOOCV) of GP models can be expressed in a

closed form, which makes the computation less demanding (Zhang and Wang

(2010); Rasmussen andWilliams (2006); Currin et al. (1988)). Specifically, denote

ỹi as the prediction mean based on all data except the ith observation, and yi as

the real output of the ith observation. For a kernel candidate K, which can be

either the linear kernel (3.1) or the nonlinear kernel (3.12), the LOOCV error is

1

n

n∑
i=1

(yi − ỹi)
2 =

1

n
∥Λ−1

n K−1
n (yn − µn)∥22, (3.15)

where Λn is a diagonal matrix with the element (Λn)j,j = (K−1
n )j,j. Thus, we can

select the optimal of the linear and nonlinear kernels by minimizing the LOOCV

error.

3.4. Generalization to multiple functional-input variables

The linear and nonlinear kernel functions developed in Sections 3.1 and 3.2,

respectively, can be extended naturally to multiple functional-input variables.

For example, we have two functional-input variables, g ∈ V and h ∈ V , and we

collect n inputs, {(g1, h1), . . . , (gn, hn)}. In such cases, the linear kernel (3.1) can
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be rewritten as

K((g1, h1), (g2, h2)) =

∫
Ω

∫
Ω

(g1(x)g2(x
′) + h1(x)h2(x

′))Ψ(x,x′)dxdx′,

and the nonlinear kernel (3.12) can be rewritten as

K((g1, h1), (g2, h2)) = ψ

((
γ1∥g1 − g2∥2L2(Ω) + γ2∥h1 − h2∥2L2(Ω)

)1/2)
,

where γ1, γ2 > 0 are the parameters.

The nonlinear kernel can also be generalized naturally to a mixture of

functional inputs and scalar inputs. That is, suppose that in addition to the

two functional-input variables, g, h ∈ V , there exists a scalar input variable in

the experiment, denoted by z ∈ Ω′ ⊆ R. Then, we can define a kernel function as

K((g1, h1, z1), (g2, h2, z2)) =

ψ

((
γ1∥g1 − g2∥2L2(Ω) + γ2∥h1 − h2∥2L2(Ω) + γ3(z1 − z2)

2
)1/2)

,

where γ3 > 0.

4. Numerical Study

In this section, we use numerical experiments to examine the performance of

the proposed method. In the Supplementary Material S8, we explore the sample

paths of the functional-input GP with different parameter settings.

In these numerical studies, we use the quasi-Monte Carlo integration

(Morokoff and Caflisch (1995)) to numerically evaluate the integrals in the kernels.

Specifically, suppose that Ω is a unit cube. Then, the linear kernel (3.1) can be

approximated by

K(g1, g2) ≈
1

N2

N∑
i=1

N∑
j=1

g1(xi)g2(x
′
j)Ψ(xi,x

′
j), (4.1)

where {xi}Ni=1 and {x′
j}Nj=1 are low-discrepancy sequences from a unit cube, for

which the Sobol sequence (Sobol’ (1967); Bratley and Fox (1988)) is considered

here. The number of points in the sequence, N = 5,000, is set. Similarly, the

L2-norm in the nonlinear kernel (3.12) can be approximated by

∥g1 − g2∥L2(Ω) ≈
(

1

N

N∑
i=1

(g1(xi)− g2(xi))
2

)1/2

. (4.2)

We examine the prediction performance of the proposed method using three

synthetic examples, namely, a linear operator, f1(g) =
∫
Ω

∫
Ω
g(x)dx1dx2, and
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Table 1. The leave-one-out cross-validation (LOOCV) errors and the mean squared
errors (MSEs) for three testing functions, where f1(g) =

∫
Ω

∫
Ω
g, f2(g) =

∫
Ω

∫
Ω
g3, and

f3(g) =
∫
Ω

∫
Ω
sin(g2). The errors corresponding to the optimal kernel are boldfaced.

Measurements Kernel f1(g) f2(g) f3(g)

LOOCV
linear 7.9× 10−7 1.813 0.454

nonlinear 2.2× 10−6 0.227 0.017

MSE
linear 6.4× 10−10 1.087 0.140

nonlinear 3.1× 10−7 0.012 0.016

two nonlinear operators, f2(g) =
∫
Ω

∫
Ω
g(x)3dx1dx2 and f3(g) =

∫
Ω

∫
Ω
sin(g(x)2)

dx1dx2, where x = (x1, x2) ∈ Ω ≡ [0, 1]2 and g(x) : [0, 1]2 → R. We consider eight

functional inputs, shown in the first row of Table S1, for each of the synthetic

examples; their outputs are given in Table S1.

Three types of functional inputs are tested for the predictions: g9(x) =

sin(α1x1 + α2x2), g10(x) = β + x2
1 + x3

2, and g11(x) = exp{−κx1x2}, where

α1, α2, β, κ ∈ [0, 1]. Based on 100 random samples of α1, α2, β, and κ from [0, 1],

we evaluate the prediction performance by averaging the mean squared errors

(MSEs), where MSE = (1/3)
∑11

j=9(f(gj)− f̂(gj))
2.

For the proposed method, we use a Matérn kernel function with smoothness

parameter ν = 5/2, which leads to a simplified form of (3.7):

ψ(r) =

(
1 +

√
5r +

5

3
r2
)
exp

(
−
√
5r
)
. (4.3)

Other parameters, including Θ, σ2, and γ, are estimated using a maximum

likelihood estimation. We use both the linear kernel (3.1) and the nonlinear

kernel (3.12) for the proposed functional input GP, and report their LOOCV

errors in Table 1. Following Section 3.3, the LOOCV is then used to identify the

optimal kernel. By minimizing the LOOCV errors, the linear kernel is identified

as the optimal choice for the linear synthetic example, f1(g), and the nonlinear

kernel is identified as the optimal choice for the nonlinear synthetic examples,

f2(g) and f3(g). The MSEs for the three synthetic examples are summarized

in Table 1. It appears that the optimal kernels selected using the LOOCV are

consistent with the selections based on minimizing the MSEs, showing that the

LOOCV is a reasonable indicator of the optimal kernel when the ground truth is

unknown.

The computational cost is also assessed for the two kernel choices. The

numerical experiments were performed on a MacBook Pro laptop with an Apple

M1 Max Chip and 32 GB of RAM. The computation for the linear kernels in

each of the examples takes about 9 seconds, and that for the nonlinear kernels

takes less than 1 second, indicating that the linear kernel requires a greater

computation than the nonlinear kernel does. This is not surprising, because
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the computation for linear kernels involves double integrals (see (3.1)), which

require N2 evaluations for the quasi-Monte Carlo integration in (4.1), whereas the

nonlinear kernel (see (3.12) and (4.2)) requires only N evaluations. Furthermore,

the linear kernel has d lengthscale parameters that need to be estimated, whereas

the nonlinear kernel has only one lengthscale parameter. Nonetheless, fitting

the functional-input GP model is reasonably efficient with either a linear or a

nonlinear kernel, both of which take less than 10 seconds.

As a comparison, we consider the basis-expansion approach discussed in

Section 3.2. That is, consider a functional principal component analysis (FPCA)

with truncated components (Rice and Silverman (1991); Wang, Chiou and Müller

(2016)):

gi(x) ≈ u(x) +
M∑
j=1

zijψj(x),

with the leading M eigenfunctions {ψj(x)}Mj=1 and the corresponding coefficients

{zij} given by

ψj(x) = argmax
∥ϕ∥2=1,

⟨ϕ,ψl⟩=0,∀l<j

n∑
i=1

{∫
(gi(x)− u(x))ϕ(x)dx

}2

,

zij =

∫
(gi(x)− u(x))ψj(x) dx, (4.4)

respectively, where n = 8 in this example. The number of components, M = 3,

is chosen to explain 99.46% of the variance; see Wang, Chiou and Müller (2016)

and Mak et al. (2018). Given the training input-output pairs, {zi, yi}ni=1, where

zi = (zi,1, . . . , zi,M), we use a conventional GP (with a Matérn kernel) to fit the

training data. The test input {zi}11i=9 can be obtained similarly using (4.4), and

their outputs are predicted using the fitted GP.

In addition to the FPCA, we consider a Maclaurin series expansion of degree

3, which is a Taylor series expansion of a function evaluated at zero truncated to

degree 3 (labeled T3). That is,

gj(x) ≈
∑

a=0,b=0
a+b≤3

∂a+bgj(0, 0)

∂xa1∂x
b
2

xa1x
b
2.

The series expansion approximates the functional inputs of the examples

reasonably well, with only a few nonzero coefficients. For example, the training

functional input g1(x) = x1 + x2 has the coefficient one for x1 and x2, and zero

for other terms.

To evaluate the prediction performance and quantify the uncertainty, in

addition to the MSEs, we consider two numerical measurements: the average

coverage rate of the 95% prediction intervals, and the average proper scores. The
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coverage rate is the proportion of times that the interval contains the true value,

and the proper score is the scoring rule of Gneiting and Raftery (2007), which is

an overall measure of the accuracy of the combined prediction mean and variance

predictions. Specifically, the proper score has the following form:

proper score = −
(
y − µP
σP

)2

− log σ2
P ,

where y is the true output, µP is the predictive mean, and σ2
P is the predictive

variance. A larger proper score indicates a better prediction. The results

are summarized in Table S2, which shows that the proposed method, FIGP,

outperforms the two basis-expansion approaches in terms of both predictions

and uncertainty quantification. The average coverage rates of FIGP are close to

the nominal coverage 95%, and the scores of FIGP are much higher than those of

the two basis-expansion approaches.

5. Applications to Inverse Scattering Problem

In this section, we revisit the inverse scattering problem shown in Figure 2.

Let D ⊂ R2 denote an inhomogeneous isotropic scattering region of interest, and

the functional input g, the support of which is D, is related to the refractive

index for the region D of the unknown scatterer. Given a set of finite-element

simulations as the training data, the goal of inverse scattering is to recover the

functional input from a given far-field pattern. To achieve this goal, an important

task is to construct a surrogate model for the functional inputs.

In this study, 10 functional inputs, namely, 1, 1 + x1, 1 − x1, 1 + x1x2, 1 −
x1x2, 1 + x2, 1 + x2

1, 1 − x2
1, 1 + x2

2, and 1 − x2
2, are used in the training set,

and the corresponding far-field patterns are shown in Figure 2. Note that

the inputs are given with explicit functional forms. In applications in which

discrete realizations of the functions are available, the kernel functions can

be approximated numerically using the discrete realizations in (4.1) and (4.2).

As a preprocessing step, we reduce the dimension of the output images using

a principal component analysis (PCA). The first three principal components,

denoted by ul ∈ R1024, for l = 1, 2, 3, are shown in Figure S3, and explain more

than 99.99% of the variability of the data. Therefore, given the functional input

gi, for i = 1, . . . , 10, the output of the far-field images can be approximated by∑3
l=1 fl(gi)ul, where f1(gi), f2(gi), f3(gi) are the first three principal component

scores.

After the dimension reduction, we assume the three-dimensional outputs

f1(g), f2(g), and f3(g) are mutually independent and follow the functional-input

GP as the surrogate model. For any untried functional input g ∈ V , based on

the results of (2.2) and (2.3), we predict the far-field pattern using the following
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Figure 2. Training data in the application of the inverse scattering problem.

normal distribution:

N
(

3∑
l=1

kl(g)
TK−1

n,l(fl − µl1n)ul,
3∑
l=1

(Kl(g, g)− kl(g)
TK−1

n,lkl(g))ulu
T
l

)
,

where fl = (fl(g1), . . . , fl(gn)), kl(g) = (Kl(g, g1), . . . ,Kl(g, gn))
T , (Kn,l)i,j =

Kl(gi, gj), and Kl is the kernel function with hyperparameters estimated based

on fl.

We use both the linear kernel of (3.1) and the nonlinear kernel of (3.12).

The optimal kernel is selected by comparing the LOOCV errors when predicting

the far-field pattern. The LOOCV error based on the linear kernel is 3.6× 10−6,

which is smaller than that of the nonlinear kernel, 1.2×10−5. Therefore, we apply

the linear kernel and examine its prediction performance for the test function,

g(x) = 1 − sin(x2). Similarly to Section 4, we compare two basis-expansion

approaches, FPCA and T3. The images of the true far-field patterns and their

predictions, along with their variances (in logarithm), are illustrated in Figure S4.

Compared with the ground truth, the predictions of FIGP capture the underlying

structures reasonably well, with some discrepancies appearing on the lower right

corner. On the other hand, the predictions of FPCA and T3 both appear to

deviate more from the ground truth. The MSEs and average scores are reported in

Table 2, and show that the proposed method outperforms the two basis-expansion

approaches in terms of prediction accuracy and uncertainty quantification.

6. Conclusion

Although GP surrogates are widely used in analysis of complex systems as

an alternative to direct analysis using computer experiments, the results of most

existing studies do not apply to problems with functional inputs. To address
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Table 2. Prediction performance of the FIGP and basis-expansion approaches in the
inverse scattering problem application (FPCA indicates an FPCA expansion approach
and T3 indicates the Taylor series expansion of degree 3), including MSEs and average
proper scores, in which the values with better performance are boldfaced.

Measurements FIGP FPCA T3

MSE 1.10× 10−6 1.07× 10−4 9.06× 10−5

Score 12.13 6.89 6.39

this issue, we introduce two new types of kernel functions for functional-input

GPs, namely, a linear and a nonlinear kernel. We also discuss the theoretical

properties of the proposed surrogates, such as the convergence rate of the MSPE.

The results of numerical studies and an application to surrogate modeling in

an inverse scattering problem show that the proposed method exhibits high

prediction accuracy.

There are extensive studies on experimental design for conventional GP

surrogate models, but few on optimal designs for GPs with functional inputs.

Here, we show that space-fillingness is a desirable property in terms of controlling

the convergence rate of the MSPE. An interesting topic for future research

is to explore the construction procedure for efficient space-filling designs with

functional inputs. In addition to experimental designs, another important avenue

for future work is to explore systematic approaches to efficiently identify the

functional input, given an observed far-field pattern, which is the ultimate goal

of inverse scattering problems. Based on the proposed GP surrogate, we aim to

explore a Bayesian inverse framework that integrates computer experiments and

real observations. Lastly, even though the numerical studies in the Supplementary

Material S8 indicate that the smoothness parameter ν in the linear kernel function

does not have a significant effect on the sample paths, it is worth exploring the

theoretical properties related to the choice of the parameter. This topic is left to

future work.

Supplementary Material

The online Supplementary Material includes the theoretical proofs for

Propositions 1 and 3, Theorems 1 and 2, and Corollaries 1 and 2, the sample

paths of the functional-input GP, the supporting tables and figures for Sections

4 and 5, and the data, and R code needed to reproduce the results in Sections 4

and 5.
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