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Abstract: Computer experiments can build computationally cheap statistical

models to study complex computer models. These experiments are commonly

conducted using maximin distance Latin hypercube designs (LHDs), generated

using heuristic algorithms or algebraic methods in the literature. However, the

performance of these algorithms deteriorates as the number of factors increases,

and the algebraic methods work only for numbers of runs that are of a special

kind, say, a prime number. To overcome these limitations, we introduce an

integer programming algorithm to construct maximin distance LHDs of flexible

sizes. Our algorithm leverages recent advances in the field of optimization, as

implemented in commercial optimization solvers. Moreover, it benefits from the

attractive algebraic structures given by good lattice point sets and the Williams

transformation. Using comprehensive numerical experiments, we show that, with

a few exceptions, our proposed algorithm outperforms benchmark algorithms and

methods for constructing LHDs with up to 113 runs.

Key words and phrases: Exact algorithm, Gaussian process, Gurobi, L1-distance,

level permutation, space-filling design.

1. Introduction

Computer experiments enable us to study complex systems that are simu-

lated using computer models (Fang, Li and Sudjianto (2006); Santner, Williams

and Notz (2018)). A computer model uses algorithms and sets of mathematical

equations to provide the best representation possible of the link between the

input factors and the responses of the system. However, many of these models

are computationally expensive, because they require solving complicated partial

differential equations numerically. Therefore, one of the main goals of a computer

experiment is to build an efficient, computationally cheap surrogate model that

approximates the computer model well. To this end, they demand cost-effective

experimental designs that gather high-quality data from the computer model,

using a limited number of runs.

Space-filling designs are attractive for computer experiments because their

runs are conducted at points that fill the experimental region evenly. A space-
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filling design can be constructed by maximizing the minimum distance between

its points or, alternatively, by minimizing the maximum distance between its

points and all other points in the region (Johnson, Moore and Ylvisaker (1990)).

Designs that achieve the former and latter objectives are called maximin and

minimax distance designs, respectively. A different construction method for

space-filling designs involves minimizing a discrepancy function, that measures

the distance between the empirical distribution of the design points and the

uniform distribution over the entire region (Fang et al. (2000)). Another

construction method minimizes the so-called total potential energy function,

yielding design points that are as apart as possible, but that follow a user-

specified distribution (Joseph et al. (2015)). Pronzato and Müller (2012) provide

a comprehensive review of space-filling designs generated in other ways. Here,

we adopt the maximin distance criterion and construct space-filling designs for

computer experiments with many input factors.

The surrogate for a computer model commonly involves a (stationary)

Gaussian process. The key component of this process is the covariance function

describing the covariance between any two responses in terms of the distance

between their corresponding design points. Johnson, Moore and Ylvisaker (1990)

show that, when these covariances decrease rapidly as the distance between the

points increases, maximin distance designs are asymptotically D-optimal under

a Gaussian process.

To construct maximin distance designs, it is attractive to restrict to the

class of Latin hypercube designs (LHDs), because they fill the domain of each

individual factor uniformly. This class also reduces the search space of maximin

distance designs. Several algorithms construct LHDs using metaheuristics, such

as simulated annealing (Morris and Mitchell (1995); Ba, Myers and Brenneman

(2015)), particle swarm optimization (Chen et al. (2013)), iterated local search

(Grosso, Jamali and Locatelli (2009)), genetic algorithms (Liefvendahl and Stocki

(2006)), evolutionary methods (Jin, Chen and Sudjianto (2005)), and multi-

start methods (Ye, Li and Sudjianto (2000); Moon, Dean and Santner (2011)).

Although these algorithms do not guarantee the optimality of the LHDs, they can

generate attractive designs with up to 300 runs and up to 30 factors. However,

for larger numbers of factors or runs, their performance deteriorates in terms of

design quality or computing time, because these problems are challenging.

To overcome the limitations of these algorithms, several authors have

introduced algebraic methods for constructing large maximin distance LHDs that

use combinatorial structures, such as orthogonal and nearly orthogonal arrays

(Xiao and Xu (2018)), good lattice point (GLP) sets (Zhou and Xu (2015)), and

Costas arrays (Xiao and Xu (2017)). To further improve the LHDs obtained

from these structures, we can use linear permutations (Zhou and Xu (2015))

and the Williams transformation (Wang, Xiao and Xu (2018)). However, the

algebraic construction methods apply only for specific numbers of runs and
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factors, preventing them from being flexible.

Computer models with a large number of factors are common in practice.

For example, McKay (1995) describes an 84-factor simulator for the flow of a

material in an ecosystem, and a 36-factor simulator for the environmental impact

of severe accidents at nuclear power plants. Houston et al. (2001) discuss a

65-factor simulator for the management dynamics in software development. It is

therefore important to develop good construction methods for maximin distance

LHDs that can address these situations.

In this article, we introduce an elegant algorithm rooted in integer program-

ming (Wolsey (2020)) to construct flexible LHDs that optimize the maximin

distance criterion. Our algorithm, called IP, has two key elements. The first is a

candidate set of attractive columns from which to obtain the designs. We generate

this set by concatenating the LHDs constructed by Wang, Xiao and Xu (2018),

and then removing fully correlated columns, as identified by novel theoretical

results. We choose these LHDs because they exhibit good performance in terms

of the maximin distance criterion. The second element of the IP algorithm is a

problem formulation that, when supplied to state-of-the-art optimization solvers

such as Gurobi, CPLEX, or MOSEK, identifies the candidate columns that form

the optimal LHD. Using optimization solvers allows our algorithm to leverage

recent advances in the theory and practice of integer programming; see Bixby

(2012) and Achterberg and Wunderling (2013). For a given candidate set, the

solvers not only provide probably optimal LHDs, but also an upper bound on the

maximin distance criterion.

Using numerical experiments, we demonstrate that the IP algorithm is

computationally effective for design problems with up to 30 runs and up to

29 factors. Moreover, with a few exceptions, it matches or improves upon the

performance of existing benchmark algorithms and algebraic methods in the

literature.

To tackle larger design problems, we modify the IP algorithm in two ways.

First, we use a smaller candidate set with columns that have a prime number of

elements. Second, we implement a systematic method to remove rows from the

optimal LHD obtained from this candidate set, in order to obtain LHDs with

flexible run sizes. We show that these modifications allow the IP algorithm to

outperform benchmark algorithms for design problems with 34 to 72 factors and

44 to 97 runs, as well as for problems with 10 and 11 factors and 101 to 113 runs.

To the best of our knowledge, the IP algorithm is the first integer-programming-

based approach for constructing maximin distance LHDs of practically relevant

sizes.

The rest of the paper is organized as follows. Section 2 introduces background

notation and concepts, and Section 3 reviews the method of Wang, Xiao and

Xu (2018) for constructing LHDs. Section 4 presents the IP algorithm and a

comprehensive comparison with benchmark methods available in the literature.
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Section 5 shows the modifications to the IP algorithm and their evaluation

using numerical experiments. Section 6 concludes the paper with remarks and

directions for future research.

2. Preliminaries

We denote the integer part of x as ⌊x⌋, the set of positive integers as Z+,

and ZN = {0, 1, . . . , N − 1}. For a matrix Y = (yi,j) with yi,j ∈ ZN , the entries

of the linearly permuted matrix Y + b (mod N) are yi,j + b (mod N).

An n-factor N -run LHD X = (xi,j) is an N ×n matrix in which each column

is a permutation of the elements in ZN . We denote the ith row and jth column

of X as xi and x(j), respectively.

Let d(xi,u, xj,u) = |xi,u − xj,u|, where xi,u is the ith element of x(u), for u =

1, . . . , n. For each x(u), we define an N(N − 1)/2× 1 vector of absolute element-

wise distances

a(u) = (d(x1,u, x2,u), d(x1,u, x3,u), . . . , d(xN−1,u, xN,u))
T
.

We define the distance matrix as A =
[
a(1);a(2); . . . ;a(n)

]
, which collects the

absolute element-wise distance vectors of all columns in X. Let Aq = (aq
i,j), with

ai,j denoting the entries of A and q a positive integer. The Lq-distances between

any two distinct rows in X are given by the element-wise qth root of Aq1n, where

1n is an n × 1 vector of ones. The distance matrix is a key component of our

method for generating LHDs.

The Lq-distance of an LHDX, denoted as dq(X), is the minimum Lq-distance

between any two distinct rows of the design. That is,

dq(X) = min


(

n∑
j=1

aq
i,j

)1/q

: i = 1, . . . ,
N(N − 1)

2

 .

When comparing two LHDs, the one with the largest minimum Lq-distance

between any two distinct rows is preferred, according to the maximin distance

criterion. An LHD that maximizes dq(X) is called a maximin Lq-distance LHD

(Johnson, Moore and Ylvisaker (1990)). Here, we set q = 1, thereby adopting

the L1-distance. However, our methodology works for other values of q as well.

Two vectors are fully correlated if the correlation between them is either 1

or −1. The following lemma shows that fully correlated vectors induce the same

absolute element-wise distance vectors.

Lemma 1. Let x and y be N × 1 vectors with elements that are permutations of

ZN . Let ax and ay be the N(N − 1)/2 × 1 distance vectors constructed from x

and y, respectively. If y = (N − 1)1N − x, then ax = ay.
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3. Construction Methods Based on GLP sets and the Williams

Transformation

We now review the method of Wang, Xiao and Xu (2018) to construct LHDs

using GLP sets (Zhou and Xu (2015)), linear permutations, and the Williams

transformation (Williams (1949)). We also provide new theoretical results to

characterize these LHDs. Section S1 of the Supplementary Material contains

proofs of these and other results presented in this paper.

3.1. GLP sets and linear permutations

Let H = {h1, . . . , hn} be a set of positive integers smaller than and coprime

to N , such that h1 < h2 < · · · < hn. An N × n GLP set X has elements

xi,j = ihj (mod N), for i = 1, . . . , N and j = 1, . . . , n; see Zhou and Xu (2015).

The last row of X is a vector of zeros. Each column of X is a permutation of the

elements in ZN . Therefore, a GLP set is an LHD. We can construct an N × n

GLP set for any n ≤ ϕ(N), where ϕ(N) is the number of positive integers smaller

than and coprime to N . We assume that N > 3 and, thus, ϕ(N) must be even.

If N is a prime, ϕ(N) = N − 1.

Zhou and Xu (2015) show that linear permutations of the columns of a GLP

set X may produce a better LHD in terms of the L1-distance. More specifically,

they prove that Xb = X+b (mod N) is an LHD with d1(Xb) ≥ d1(X), for b ∈ ZN .

When N is a prime and n = N − 1, the LHDs Xb with the optimal value of b are

competitive with those obtained using the simulated annealing (SA) algorithm

of Ba, Myers and Brenneman (2015) in terms of the L1-distance. Moreover, the

former are computationally cheaper to generate than the latter.

3.2. The Williams transformation and some theoretical results

Wang, Xiao and Xu (2018) show that the performance of the linearly

permuted GLP sets can be further improved using the Williams transformation

(Williams (1949)). For an integer N and y ∈ ZN , the Williams transformation is

W (y) =

{
2y for 0 ≤ y < N/2;

2(N − y)− 1 for N/2 ≤ y < N.

This transformation is a permutation of elements in ZN . Therefore, for an LHD

X, W (X) = (W (xi,j)) is also an LHD.

Given a GLP set X, Wang, Xiao and Xu (2018) propose evaluating all LHDs

Zb = W (Xb), for b = 0, . . . , N − 1, and selecting the best in terms of the L1-

distance. However, it turns out that not all the designs have to be evaluated.

To see this, we first introduce two lemmas that state a relationship between the

columns in the LHDs Zb when N is even or odd.
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Lemma 2. Let N be even, n = ϕ(N), X be an N × n GLP set, Xb = X +

b (mod N), and Zb = W (Xb), with b ∈ ZN . Let z
(j)
b be the jth column of Zb, for

j = 1, . . . , n. We have that z
(j)
b = (N − 1)1N − z

(j)
N/2+b, for b = 0, 1, . . . , N/2− 1.

Lemma 3. Let N be odd, Zb be as in Lemma 2, and z
(j)
b be its jth column. For

j = 1, . . . , n, we have the following:

(i) There exists an element b⋆ ∈ ZN such that z
(j)
b⋆ = (N − 1)1N − z

(n+1−j)
b⋆ . If

(N − 1)/2 is even, b⋆ = (N − 1)/4. Otherwise, b⋆ = (3N − 1)/4.

(ii) For b ̸= b⋆ and b′ = (N − 1)/2− b (mod N), z
(j)
b = (N − 1)1N − z

(n+1−j)
b′ .

Lemmas 1 and 2 imply that when the number of runs is even, we only have

to evaluate the LHDs Zb obtained using the first half of the linear permutations,

because the other LHDs have similar distance matrices. We state this formally

below.

Theorem 1. Let N be even and Zb be as in Lemma 2. The distance matrices of

Zb and ZN/2+b are the same for b = 0, . . . , N/2− 1.

When the number of runs is odd, Lemmas 1 and 3 imply the next result.

Theorem 2. For N an odd number, let Zb, b⋆, b, and b′ be as in Lemma 3.

The distance matrix of Zb⋆ has n/2 repeated columns. Moreover, for each of the

(N − 1)/2 pairs (b, b′), the distance matrices of Zb and Zb′ are the same up to

column permutations.

LHDs with distance matrices that are the same up to column permutations have

the same Lq-distance. From Theorem 2, we need to evaluate only one LHD, say

Zb, for each pair of linear permutations given by b and b′, in addition to Zb⋆ . The

next example illustrates Lemma 3 and Theorem 2.

Example 1. We consider N = 11, where ϕ(11) = 10 and H = {1, 2, 3, 4, 5, 6,
7, 8, 9, 10}. The GLP setX is an 11×10 LHD with elements xi,j = ij (mod 11), for

i = 1, . . . , 11 and j = 1, . . . , 10. For b = 0, . . . , 10, we obtain Xb = X+b (mod 11)

and Zb = W (Xb). Theorem 2 implies that there are five pairs (b, b′), for which

the distance matrices of Zb and Zb′ are the same up to column permutations. To

illustrate this, Table 1 shows the L1-distances of the 10 LHDs Zb. We see that

Zb and Zb′ have the same L1-distance for (b, b′) = (0, 5), (1, 4), (2, 3), (6, 10), and

(7, 9). All these pairs satisfy b′ = (11− 1)/2− b (mod 11). Since (N − 1)/2 = 5

is odd, Lemma 3(i) implies that b⋆ = (3N − 1)/4 = 8. Table 1 shows that this is

the case, because Z8 has an L1-distance of 30, which is different from that of the

other designs. Note that the value of b⋆ does not necessarily result in the best

Zb.

Lemmas 1, 2, and 3 are relevant to our IP algorithm.
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Table 1. L1-distance of Zb for different values of b in Example 1.

b 0 1 2 3 4 5 6 7 8 9 10

d1(Zb) 10 39 31 31 39 10 28 34 30 34 28

3.3. Strengths and limitations

For N a prime number and n = N − 1, the method of Wang, Xiao and Xu

(2018) outperforms that of Xiao and Xu (2017), which constructs LHDs using the

arrays of Costas (1984). Moreover, with a few exceptions, it outperforms the SA

algorithm of Ba, Myers and Brenneman (2015) for n = ϕ(N) and 7 ≤ N ≤ 30 in

terms of the L1-distance. When N is a prime, Wang, Xiao and Xu (2018) gives

a formula to obtain the linear permutation that creates the best N -run (N − 1)-

factor LHD in terms of the L1-distance. This LHD is asymptotically optimal

in terms of the maximin distance criterion, because the ratio of its L1-distance

and the theoretical optimum converges to one for large N . Moreover, its average

absolute correlation between two columns is smaller than 2/(N − 2). Thus, the

larger the run size, the smaller its average absolute correlation.

Despite these attractive features, the method of Wang, Xiao and Xu (2018)

has two limitations. First, it is unknown whether it can generate good LHDs

with a prime number of runs and fewer than N − 1 factors in terms of the L1-

distance. Second, when N is not a prime, the largest number of factors of an

LHD obtained using this method is ϕ(N) < N − 1. For example, if N is 20, 24,

or 30, the maximum number of factors is eight. Therefore, LHDs with these run

sizes and more than eight factors cannot be constructed using this method. Our

IP algorithm, which we introduce next, overcomes these limitations.

4. Integer Programming Algorithm

We first briefly review integer programming. Next, we present the candidate

set, problem formulation, and implementation of the IP algorithm. We end the

section by using numerical experiments to assess the performance of the proposed

algorithm.

4.1. Background

Integer programming is an optimization method used to determine the values

of a set of discrete or continuous decision variables so as to optimize a linear

objective function, while satisfying a set of linear constraints (Wolsey (2020)).

To use integer programming in practice, we need a problem formulation and an

optimization solver to find its optimal solution. A problem formulation has the

following general form:

max
x

cTx subject to (4.1)
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Gx = b, Hx ≤ d, x ≥ 0n, (4.2)

xi ∈ Z, ∀i ∈ J , (4.3)

where x = (x1, x2, . . . , xn)
T is an n× 1 vector of decision variables, c is an n× 1

vector, G is an m1 × n matrix, H is an m2 × n matrix, b is an m1 × 1 vector, d

is an m2 × 1 vector, 0n is an n × 1 vector of zeros, and J is a nonempty set of

indices. If J = {1, 2, . . . , n}, the problem is called the integer linear programming

problem. Otherwise, it is called the mixed-integer linear programming (MILP)

problem.

Commercial optimization solvers, such as Gurobi, CPLEX, and MOSEK,

can solve the problem formulation in (4.1)–(4.3). They use a branch-and-bound

algorithm (Wolsey (2020, Chap. 7)) that conducts a systematic exploration of the

solution space using an enumeration tree. The nodes of the tree are subproblems

of the problem in (4.1)–(4.3) that result from branching on the integer variables.

Using bounds for the objective function’s value of the subproblems, the branch-

and-bound algorithm prunes the branches (and thus the nodes) of the tree. In

this way, the algorithm avoids having to explore all feasible solutions, which

speeds up the computation. To further increase the computational performance,

the solvers use other state-of-the-art optimization techniques, such as disjunctive

programming for branching rules, primal heuristics, linear optimization methods,

cutting plane theory, preprocessing techniques, and symmetry breaking methods

(Jünger et al. (2010)).

During the optimization routine, the solvers provide both feasible solutions

and bounds for the objective function’s optimal value of the problem in (4.1)–

(4.3). As a solver progresses toward the optimal solution, the bounds improve and

provide an increasingly better guarantee of optimality, which is especially useful

if the solver is stopped before it converges to the global optimum. This feature

is not shared by algorithms developed from metaheuristics, which do not provide

certificates of optimality of their solutions. Integer programming has been used

successfully to solve many optimization problems, such as the bus and driver

scheduling problem (Kang, Chen and Meng (2019)), multi-trip vehicle routing

problem (Neira et al. (2020)), and generalized traveling salesman problem (Yuan

et al. (2021)).

To the best of our knowledge, there are only two integer-programming-based

approaches for constructing LHDs that optimize the maximin distance criterion.

van Dam, Husslage and Hertog (2007) propose an MILP problem to find LHDs

that maximize the L1- and L∞-distances. However, their approach is limited to

LHDs with two factors only. van Dam, Rennen and Husslage (2009) show an

MILP problem to obtain bounds on the L1-, L2-, and L∞-distances of LHDs with

more than two factors. A core component of their problem is a candidate set of

permutations of the elements in ZN . More specifically, this set comprises N !/2

elements of the full set of permutations of the elements in ZN . The problem
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also involves integer variables, one for each column in the candidate set. A

major limitation of their approach is that it is computationally demanding and

often infeasible to solve, which prevents it from being practically relevant. For

example, to construct LHDs with 12 runs or more, the MILP problem has at

least 200 million integer decision variables!

4.2. The candidate set

The initial candidate set C that we consider is constructed by concatenating

LHDs obtained from GLP sets, linear permutations, and the Williams transfor-

mation. More specifically, we first consider C = [Z0,Z1, . . . ,ZN−1], with Zb as in

Section 3.2. This candidate set allows the IP algorithm to inherit the strengths

of the LHDs of Wang, Xiao and Xu (2018). However, from Lemmas 1, 2, and 3,

this set has pairs of fully correlated columns, which is undesirable because they

imply factors with linear effects that are fully aliased. To overcome this issue, we

remove one column from each pair of fully correlated columns from the candidate

set. Therefore, when the number of runs N is even, the final candidate set we

use to construct the LHDs is

C = [Z0,Z1, . . . ,ZN/2−1]. (4.4)

This candidate set has nN/2 columns, with n = ϕ(N).

When N is odd, the final candidate set depends on whether (N − 1)/2 is

even or odd, because this defines the structures of (b, b′) and the value of b⋆ in

Lemma 3. To define this set, we need additional notation. Let Yb be the matrix

involving the first n/2 columns of Zb and g(N) = (N − 1)/2 + 1. The final

candidate set we use to construct LHDs with N odd is as follows:

• If (N − 1)/2 is even,

C = [Z0,Z1, . . . ,Zb⋆−1,Zg(N),Zg(N)+1, . . . ,Zw,Yb⋆ ], (4.5)

where b⋆ = (N − 1)/4 and w = ⌊(3N − 1)/4⌋.

• If (N − 1)/2 is odd,

C = [Z0,Z1, . . . ,Zw,Zg(N),Zg(N)+1, . . . ,Zb⋆−1,Yb⋆ ], (4.6)

where b⋆ = (3N − 1)/4 and w = ⌊(N − 1)/4⌋.

In both cases, the set has n(N − 1)/2 + n/2 = nN/2 columns, with n = ϕ(N).

The next result shows that when N is an odd prime, the candidate set is of

the highest quality in terms of the L1-distance.

Theorem 3. If N is an odd prime, the candidate set C in (4.5) and (4.6) is a

maximin L1-distance LHD with N runs, N(N −1)/2 factors, and an L1-distance

equal to N(N2 − 1)/6.
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Example 2. Consider a simple case with N = 5, ϕ(5) = 4, and g(5) = 3. Let X

be the 5× 4 GLP set, Xb = X+ b (mod 5), and Zb = W (Xb) be
2 4 3 1
4 1 2 3
3 2 1 4
1 3 4 2
0 0 0 0

 ,


4 3 1 0
3 0 4 1
1 4 0 3
0 1 3 4
2 2 2 2

 ,


3 1 0 2
1 2 3 0
0 3 2 1
2 0 1 3
4 4 4 4

 ,


1 0 2 4
0 4 1 2
2 1 4 0
4 2 0 1
3 3 3 3

 ,


0 2 4 3
2 3 0 4
4 0 3 2
3 4 2 0
1 1 1 1

 ,

for b = 0, . . . , 4, respectively. Since (N − 1)/2 = 2 is even, we have that b⋆ = 1

and w = 3. Indeed, the first and second columns of Z1 are fully correlated with

the fourth and third columns, respectively. This is because the elements in the

first and second columns are equal to four minus the elements in the fourth and

third columns, respectively. The first two columns of Z1 then form the 5 × 2

matrix Y1. Using a similar argument, columns one, two, three, and four of Z0

are fully correlated with columns four, three, two, and one, respectively, of Z2.

The same is true for Z3 and Z4. The final candidate set is

C =


2 4 3 1 1 0 2 4 4 3

4 1 2 3 0 4 1 2 3 0

3 2 1 4 2 1 4 0 1 4

1 3 4 2 4 2 0 1 0 1

0 0 0 0 3 3 3 3 2 2

 .

Since N is a prime number, Theorem 3 implies that C is a maximin L1-distance

LHD with five runs and 10 factors. Indeed, this design has an L1-distance of 20,

which is equal to the upper bound of van Dam, Rennen and Husslage (2009).

4.3. Problem formulation

For each column in the candidate set C, we define a binary variable yu
that is equal to one if and only if the uth column of C is in the LHD. For our

problem formulation, the relevant element of the candidate set is its distance

matrix. Consider the r × p L1-distance matrix A1 of C, with r = N(N − 1)/2

and p = Nϕ(N)/2. The integer programming problem formulation to construct

an N -run k-factor LHD that maximizes the L1-distance is

max
y, t

t subject to (4.7)

1T
p y = k,A1y ≥ t1r, (4.8)

t ∈ Z+, yu ∈ {0, 1}, u = 1, . . . , p. (4.9)

This problem formulation has p binary decision variables contained within

y = (y1, y2, . . . , yp)
T , an integer decision variable t, and r + 1 linear constraints

contained within (4.8). It is straightforward to recast this formulation in the form

of the general integer programming formulation in (4.1)–(4.3).
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The linear objective function in (4.7) is expressed in terms of the decision

variable t only. The first constraint in (4.8) implies that the final LHD has exactly

k columns, and the other constraints ensure that the L1-distances between any

two distinct rows of the LHD, given by A1y, must be larger than or equal to

t. Maximizing t then maximizes the minimum L1-distance between two rows of

the LHD. The constraints in (4.9) ensure that t is a positive integer and that the

variables yu are binary.

The rows of A1 define the inequality constraints within (4.8). Ideally, this

matrix has no repeated rows. Otherwise, some constraints appear more than

once in the problem formulation. These repetitions are thus redundant. The

next result shows a candidate set with a distance matrix that has repeated rows.

Theorem 4. For N even, the distance matrix of the candidate set in (4.4) has

(N/2)((N/2)− 1) pairs of repeated rows.

In this case, we recommend removing one row from each pair of repeated rows

in the distance matrix, before using the problem formulation. Thus, when N is

even, the number of constraints within (4.8) is (N/2)2+1.

The problem formulation in (4.7)–(4.9) is similar in spirit to that of van Dam,

Rennen and Husslage (2009). However, it has Nϕ(N)/2 binary decision variables

instead of the N !/2 integer variables in the latter study. This is because our

problem formulation is tailored to an attractive candidate set, the columns of

which can be either included once or excluded from the LHD.

After solving the problem formulation (4.7)–(4.9) to optimality, the output

is the vector y, where nonzero yu-values indicate the columns of C that are in

the N -run k-factor LHD, that maximizes the L1-distance. This LHD is optimal

among all k-factor subsets of C. In principle, we can obtain N -run LHDs with

a number of factors as large as Nϕ(N)/2, which is the size of the candidate set.

However, we focus on LHDs with up to N − 1 factors, because they are more

relevant in practice. Note that LHDs that optimize the general Lq-distance can

be obtained by replacing A1 with Aq in (4.8), for a positive integer q.

4.4. Implementation in Gurobi

To solve the IP problem formulation, we use the solver Gurobi v.9.1.1. We

use the default settings for all the tuning parameters of the solver, except for

the TimeLimit parameter, which controls the maximum time allowed for the

optimization. To ensure that all our experiments are computationally feasible,

we set TimeLimit to 300 seconds. All our numerical experiments were carried

out at the computer cluster of the Department of Statistics at UCLA. The cluster

has 256 GB of RAM and 48 cores, with an Intel(R) Xeon(R) Platinum 8160 CPU

with 2.10 GHz.

The Gurobi solver reports information on the current progress of the

optimization, the most relevant of which is the relative gap. This gap is equal
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to (b− o)/o, where o is the objective function value of the current best solution,

and b is the best upper bound of the objective function value found so far. If the

solver is stopped prematurely, a relative gap larger than zero indicates that the

solver did not prove the optimality of the best solution found. A relative gap of

zero means the solver found the optimal solution.

4.5. Computational results and comparisons

Here, we discuss numerical experiments to compare the performance of

the IP algorithm with that of algebraic methods and benchmark algorithms

in the literature. Section S2 of the Supplementary Material shows additional

experiments used to validate the components of the IP algorithm. More

specifically, Section S2.1 demonstrates that our candidate set embeds attractive

LHDs in terms of the maximin distance criterion. Section S.2.2 shows that the

IP problem generates better LHDs than those obtained by selecting columns at

random from the candidate set.

We consider the design problems in Table 2, which we obtained from Wang,

Xiao and Xu (2018). They involve LHDs with seven to 30 runs and four to

28 factors. For these design problems, Wang, Xiao and Xu (2018) report the

L1-distances of the LHDs obtained using their method, the methods of Zhou and

Xu (2015) and Xiao and Xu (2017), and the SA algorithm of Ba, Myers and

Brenneman (2015). The SA algorithm was executed 100 times with its default

parameters values, and the best design in terms of the L1-distance was reported.

This algorithm is implemented in the “SLHD” package in the statistical software

R. For completeness, Table 2 reproduces the L1-distances in Wang, Xiao and Xu

(2018) for these methods.

As an additional benchmark algorithm, we consider the genetic algorithm

of Liefvendahl and Stocki (2006), because this and the SA algorithm are the

best algorithms available for constructing good LHDs in terms of the maximin

distance criterion; see Zhou and Xu (2015), Xiao and Xu (2018), and Wang,

Xiao and Mandal (2021). For the genetic algorithm, we use its recommended

parameter settings and its implementation in the “LHD” package in R. To limit

its computing time, the R implementation has a tuning parameter called the

number of generations, which we set to 500, following Wang, Xiao and Mandal

(2021). Table 2 includes the L1-distances of the genetic algorithm.

Table 2 shows that the IP algorithm matches or improves upon the

benchmark methods for most design problems. More specifically, for 16, 19, 20,

23, 25, 27, and 28 runs, the LHDs obtained using the IP algorithm outperform all

benchmark designs in terms of the L1-distance. For the other cases, our algorithm

generated LHDs that have the same L1-distance as the best benchmark designs,

except for 9, 10, 15, 18, 24, and 29 runs; see Table 2. The 10-, 15-, 18-, and 24-run

LHDs obtained using the genetic algorithm have an L1-distance that is one or

two units larger than our designs. For 9 and 29 runs, the LHDs obtained using
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Table 2. L1-distances of N -run k-factor LHDs, with k = ϕ(N).

N k IP SA GA ZX WXX XX N k IP SA GA ZX WXX XX

7 6 16 15 15 13 16 14 19 18 118 108 110 106 115 106

8 4 11 11 10 8 10 20 8 47 43 46 32 42

9 6 17 18 17 15 16 21 12 77 73 77 66 76

10 4 11 11 12 8 11 22 10 68 61 64 60 68

11 10 39 36 38 34 39 34 23 22 172 160 161 154 168 158

12 4 13 13 13 8 10 24 8 53 50 54 32 36

13 12 54 52 52 54 52 48 25 20 163 153 153 147 162

14 6 24 23 24 22 24 26 12 98 87 91 84 98

15 8 36 35 37 29 36 27 18 157 145 147 135 156

16 8 43 37 39 32 36 28 12 104 92 97 72 94

17 16 94 86 89 84 94 86 29 28 270 254 254 250 274 250

18 6 28 28 30 18 28 30 8 63 57 63 40 61

IP: IP algorithm; SA: simulated annealing algorithm; GA: genetic algorithm; ZX: Zhou and Xu (2015);
WXX: Wang, Xiao and Xu (2018); XX: Xiao and Xu (2017). The largest L1-distance for each design
problem is shown in bold.

the SA algorithm and the method of Wang, Xiao and Xu (2018), respectively,

have a larger L1-distance than that of our designs.

Except for LHDs with 19, 23, 25, 27, and 29 runs, the Gurobi solver certified

that all LHDs constructed using the IP algorithm have the best possible L1-

distance among those obtained from the candidate set in Section 4.2. Therefore,

9-, 10-, 15-, 18-, and 24-run LHDs with L1-distances larger than those in Table 2

cannot be obtained using our candidate sets. For the LHDs with 19, 23, 25, 27,

and 29 runs, the upper bounds on the L1-distance are 119, 176, 168, 162, and 280,

respectively. This means that the relative gaps between the best solutions and

the upper bounds range from 1.69% to 3.32% in these cases. Therefore, better

LHDs may be obtained if we increase the computing time of the solver.

Here, we focused on constructing N -run LHDs with ϕ(N) factors, where N

ranges from seven to 30. However, our IP algorithm can construct LHDs with

more or fewer factors than ϕ(N). For instance, it can generate an LHD with up

to N − 1 factors for each value of N in Table 2.

5. A Modified IP Algorithm for Constructing Large Designs

The integer programming problem in Section 4.3 is a cardinality-constrained

optimization problem that is NP-hard (Bienstock (1996)). However, our previous

computational experiments show that the Gurobi solver can find good, or even

optimal solutions for design problems with up to 30 runs and up to 29 factors,

within five minutes. This renders our IP algorithm as computationally feasible

for constructing LHDs of small and moderate sizes.
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For larger-sized LHDs, our algorithm inevitably suffers from the complexity

of the integer programming problem. To overcome this issue, we reduce the

candidate set and include an extra step in the IP algorithm. We now present

these modifications and a numerical evaluation of the resulting performance.

5.1. A reduced candidate set and the leave-one-out method

The reduced candidate set, which we denote as D, is the best N -run (N−1)-

factor LHD, with N a prime number, from the method of Wang, Xiao and Xu

(2018). More specifically, D is constructed using the N × (N − 1) GLP set,

the Williams transformation, and the linear permutation that results in the best

LHD in terms of the L1-distance; see Wang, Xiao and Xu (2018) for a formula

to obtain this permutation. We choose this candidate set because it allows us to

generate LHDs with up to N − 1 factors. Moreover, D is asymptotically optimal

in terms of the maximin distance criterion and has small correlations between its

columns.

Using D instead of the full candidate set in (4.5) or (4.6) results in a problem

formulation with the same number of constraints, but p = N − 1 binary decision

variables; see (4.7)–(4.9). Although the resulting problem formulation is still

NP-hard, it has a smaller solution space than the original formulation, which

involves N(N − 1)/2 binary decision variables. Compared with the latter, the

smaller solution space of the former allows the Gurobi solver to generate LHDs

with large N and k values.

With the reduced candidate set, we can constructN -run LHDs with a number

of factors k ≤ N − 1, where N is a prime number. To generate LHDs with fewer

than N runs, we sequentially apply the leave-one-out method (Fang and Wang

(1981)). Let M be the run size of the desired LHD and assume that M < N .

First, we generate N reduced designs by removing each point in the N -run k-

factor LHD. Next, we convert each reduced design into an LHD by rearranging

its entries. To this end, we rearrange the entries of a reduced design column by

column. If the entry with value x ∈ ZN is removed from a column, the entries

larger than x are decreased by one. After that, we evaluate the N resulting LHDs

with N−1 runs and k factors, and select the best one in terms of the L1-distance.

To find an LHD with N − 2 runs, we repeat the whole procedure using the best

(N − 1)-run LHD as a start. Using the newly obtained smaller LHD, we repeat

the procedure again to generate an (N − 3)-run LHD, and so on, until we obtain

an M -run LHD.

5.2. Computational performance

We compare the modified IP algorithm with the SA algorithm of Ba, Myers

and Brenneman (2015) and the genetic algorithm of Liefvendahl and Stocki (2006)

for constructing large LHDs. The computational setup of the algorithms is the
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Table 3. L1-distances of N -run k-factor LHDs, with N a prime number.

N k M-IP SA GA N k M-IP SA GA
31 7 46 49 54 71 17 303 299 300

10 77 80 85 23 448 437 422
15 129 131 134 35 725 710 670
20 187 182 185 46 999 971 890
22 207 204 208 52 1,149 1,104 1,029

47 11 120 122 134 97 24 613 600 538
15 184 183 190 32 846 847 779
23 310 306 303 48 1,386 1,338 1,190
30 425 418 405 64 1,904 1,843 1,630
34 492 476 462 72 2,199 2,099 1,872

M-IP: modified IP algorithm; SA: simulated annealing algorithm; GA: genetic algorithm.

same as before. However, preliminary experiments (not shown here) revealed

the benchmark algorithms are computationally demanding for large numbers of

runs or factors. Therefore, we imposed an additional stopping rule: we set their

maximum computing time to that of the Gurobi solver. For each design problem,

we executed the SA algorithm 100 times, and reported the best LHD obtained

among all iterations that were completed within 300 seconds. Similarly, we used

500 generations of the genetic algorithm, and recorded the best LHD obtained

within this time frame.

5.2.1. Large LHDs with a prime number of runs

We begin with design problems involving 31, 47, 71, and 97 runs, all of which

are prime numbers. For each run size N , we consider five numbers of factors:

⌊(N − 1)/4⌋, ⌊(N − 1)/3⌋, ⌊(N − 1)/2⌋, ⌊2(N − 1)/3⌋, and ⌊3(N − 1)/4⌋. We

chose these numbers of factors because they range from small to large, relative to

the run size. These design problems allow us to assess the quality of the LHDs

obtained from subsets of columns of the N -run (N − 1)-factor LHDs of Wang,

Xiao and Xu (2018), with N a prime number.

Table 3 shows the L1-distances of the LHDs obtained using the modified IP

(M-IP), SA, and genetic algorithms. The M-IP algorithm outperforms the SA

and genetic algorithms in 13 of the 20 design problems in the table. In general,

the proposed algorithm outperforms the others for large run sizes.

In Table 3, all 31-run LHDs of our algorithm are optimal among the LHDs

obtained from subsets of columns of the initial 31-run 30-factor LHD. For all

other combinations of numbers of runs and numbers of factors in the table, the

Gurobi solver did not finish the search for the optimal LHD within 300 seconds.

For 47, 71, and 97 runs, the relative gaps given by the solver ranged from 1.0%

to 5.8%, 5.1% to 22.4%, and 5.4% to 20.7%, respectively.
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Table 4. L1-distances of N -run k-factor LHDs, with N not a prime number.

N k M-IP SA GA N k M-IP SA GA

44 23 292 291 286 70 35 718 705 654

30 400 390 387 46 987 951 844

34 463 447 434 52 1,134 1,089 1,014

45 23 298 296 295 94 48 1,349 1,306 1,161

30 409 399 392 64 1,851 1,790 1,591

34 473 458 437 72 2,132 2,037 1,846

46 23 304 302 298 95 48 1,361 1,313 1,170

30 416 409 402 64 1,870 1,817 1,637

34 482 471 445 72 2,154 2,054 1,814

68 35 699 687 624 96 48 1,374 1,348 1,172

46 959 935 862 64 1,889 1,827 1,609

52 1,104 1,060 987 72 2,176 2,080 1,818

69 35 709 693 650

46 972 941 861

52 1,120 1,071 981

5.2.2. Large LHDs with general run sizes

Here, we consider the design problems shown in Table 4, which involve 44

to 96 runs and 23 to 72 factors. In these cases, the number of runs is not a

prime, and thus the M-IP algorithm uses the leave-one-out method. The starting

designs for this step are the LHDs in Table 3.

Table 4 shows the L1-distances obtained using the M-IP, SA, and genetic

algorithms. For all design problems, the M-IP algorithm outperforms the

benchmark algorithms. The proposed algorithm performs particularly well for

LHDs with 68 runs or more, and 46 factors or more. This is because the L1-

distances of these designs are larger than those of the benchmark algorithms by

at least 24 units.

5.2.3. LHDs with a large number of runs relative to the number of
factors

We also investigate the performance of the M-IP algorithm when constructing

LHDs with run sizes that are considerably larger than the number of factors. For

illustrative purposes, we consider a prime number of runs N , ranging from 71 to

113. Following Loeppky, Sacks and Welch (2009), we use the number of factors

k = ⌊N/10⌋ for each of the 11 values of N .

Table 5 shows that, for all design problems with 8, 10, and 11 factors, the

M-IP algorithm produces better LHDs than those of the benchmark algorithms in

terms of the L1-distance. Therefore, the M-IP algorithm can generate attractive

LHDs with a large number of runs relative to the number of factors, particularly

when the number of factors is at least eight.
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Table 5. L1-distances of N -run k-factor LHDs, with k = ⌊N/10⌋.

N k M-IP SA GA N k M-IP SA GA

71 7 83 89 94 101 10 203 191 187

73 87 91 96 103 211 196 190

79 89 95 100 107 211 207 188

83 8 130 123 124 109 212 206 188

89 133 127 128 113 11 244 242 223

97 9 161 163 155

6. Conclusion

We have proposed an IP algorithm for constructing LHDs that optimize the

maximin distance criterion, as measured by the L1-distance. The algorithm is

rooted in integer programming and uses a candidate set of attractive columns

to generate the designs. We generated this set from the LHDs obtained by

Wang, Xiao and Xu (2018), and used novel theoretical results to avoid fully

correlated columns in the set. Remarkably, when the run size is a prime, the

candidate set is itself a maximin L1-distance LHD. Using numerical experiments,

we showed that the proposed IP algorithm is computationally effective for small

and moderate design problems. For larger design problems, we modified the

algorithm by reducing the candidate set and using the leave-one-out method to

obtain LHDs with any run size. We demonstrated that the modified IP algorithm

outperforms the benchmark algorithms in 47 of our 58 design problems. Our

algorithm is particularly effective for constructing LHDs with around 100 runs,

supporting the idea that it outperforms the benchmark algorithms for larger run

sizes.

For 29 runs and 28 factors, the IP algorithm did not generate a better LHD

than that of the method of Wang, Xiao and Xu (2018). This may be because

the time allowed for the optimization by the Gurobi solver was not sufficient.

Indeed, additional computations revealed that, after four hours, the solver found

an LHD with an L1-distance of 275, which is larger than all of the benchmark

designs in Table 2. We therefore recommend completing the optimization of the

IP algorithm.

In principle, we could use the modified IP algorithm to generate small- and

moderate-sized LHDs. As a proof of concept, we used this alternative algorithm to

construct LHDs for the design problems in Table 2, involving a run size that is not

a prime number. However, the resulting LHDs were not better than those of the

standard IP algorithm. We therefore recommend the modified IP algorithm for

situations in which the standard IP algorithm is computationally infeasible. We

also recommend completing the optimization of the modified IP algorithm. Only

when short computing times are desired, we suggest imposing a user-specified

maximum computing time for the Gurobi solver, as we did here. In any case,
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our numerical experiments show that the standard and modified IP algorithms

can generally obtain good LHDs within five minutes, subject to using a similar

computer hardware and software to ours.

The IP algorithm is general, because it works for any candidate set and, with

simple modifications, can construct LHDs that maximize other distances, such as

the L2-distance. Although we did not generate LHDs that optimize this distance,

the Cauchy-Schwarz inequality shows that the L1-distance is a lower bound of

the L2-distance. Therefore, we expect our LHDs to perform well in terms of the

L2-distance too.

Using a modified Williams transformation, Wang, Xiao and Xu (2018)

construct maximin L1-distance LHDs with N runs and N factors, subject to

2N + 1 being a prime number. To test whether our IP algorithm can obtain

these designs, we constructed LHDs with N equal to five, six, eight, nine, 11,

14, and 15. The resulting LHDs were optimal, in terms of the L1-distance,

among all comparable LHDs obtained from subsets of columns of the candidate

set. However, they did not match the L1-distance of the maximin distance

LHDs. Therefore, these optimal LHDs are not embedded in the candidate sets we

considered. This calls for alternative candidate sets for the IP algorithm, which

we leave to future research.

Another topic for future research is to extend the problem formulation in

Section 4.3 so as to both optimize the maximin distance criterion and minimize

the correlations between the columns of the LHDs. To this end, we may use

the problem formulations of Harris, Hoffman and Yarrow (1995) and Hernandez,

Lucas and Carlyle (2012) to construct LHDs that minimize these correlations.

In contrast, with the heuristic algorithm of Joseph and Hung (2008), this multi-

objective approach would provide certificates of optimality for the LHDs.

Supplementary Material

The online Supplementary Material includes the proofs of the theoretical

results, additional numerical experiments to validate the IP algorithm, and

Python implementations of its standard and modified versions.
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(Edited by M. Jünger and G. Reinelt), 449–481. Springer, Berlin, Heidelberg.



IP ALGORITHM FOR MAXIMIN DISTANCE DESIGNS 1365

Ba, S., Myers, W. R. and Brenneman, W. A. (2015). Optimal sliced Latin hypercube designs.

Technometrics 57, 479–487.

Bienstock, D. (1996). Computational study of a family of mixed-integer quadratic programming

problems. Mathematical Programming 74, 121–140.

Bixby, R. (2012). A brief history of linear and mixed-integer programming computation.

Doumenta Mathematica. Extra Volume: Optimization Stories, 107–121.

Chen, R.-B., Hsieh, D.-N., Hung, Y. and Wang, W. (2013). Optimizing Latin hypercube designs

by particle swarm. Statistics and Computing 23, 663–676.

Costas, J. P. (1984). A study of a class of detection waveforms having nearly ideal range-doppler

ambiguity properties. In Proceedings of the IEEE 72, 996–1009.

Fang, K. T., Li, R. and Sudjianto, A. (2006). Design and Modeling for Computer Experiments.

Chapman & Hall/CRC Press, Boca Raton.

Fang, K.-T., Lin, D. K., Winker, P. and Zhang, Y. (2000). Uniform design: Theory and

application. Technometrics 42, 237–248.

Fang, K. T. and Wang, Y. (1981). A note on uniform distribution and experiment design.

Chinese Science Bulletin 26, 485–489.

Grosso, A., Jamali, A. and Locatelli, M. (2009). Finding maximin Latin hypercube designs by

iterated local search heuristics. European Journal of Operational Research 197, 541–547.

Harris, C. M., Hoffman, K. L. and Yarrow, L. A. (1995). Using integer programming techniques

for the solution of an experimental design problem. Annals of Operations Research 58, 243–

260.

Hernandez, A. S., Lucas, T. W. and Carlyle, M. (2012). Constructing nearly orthogonal Latin

hypercubes for any nonsaturated run-variable combination. ACM Transactions on Modeling

and Computer Simulation 22, 1–17.

Houston, D. X., Ferreira, S., Collofello, J. S., Montgomery, D. C., Mackulak, G. T. and Shunk,

D. L. (2001). Behavioral characterization: Finding and using the influential factors in

software process simulation models. The Journal of Systems and Software 59, 259–270.

Jin, R., Chen, W. and Sudjianto, A. (2005). An efficient algorithm for constructing optimal

design of computer experiments. Journal of Statistical Planning and Inference 134, 268–

287.

Johnson, M., Moore, L. and Ylvisaker, D. (1990). Minimax and maximin distance designs.

Journal of Statistical Planning and Inference 26, 131–148.

Joseph, V. R., Dasgupta, T., Tuo, R. and Wu, C. F. J. (2015). Sequential exploration of complex

surfaces using minimum energy designs. Technometrics 57, 64–74.

Joseph, V. R. and Hung, Y. (2008). Orthogonal-maximin distance Latin hypercube designs.

Statistica Sinica 18, 171–186.
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