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Abstract: The exact distribution is typically unavailable for a two-sample t-statistic

in a single test for equal population means if we have nonGaussian samples, un-

equal population variances, or unequal sample sizes n1 and n2. In this case, a

calibration method using a reference distribution offers a practically feasible sub-

stitute. This study simultaneously calibrates a diverging number m of two-sample

t-statistics for inferences of significance in high-dimensional data from a small sam-

ple. For the Gaussian calibration method, we demonstrate the following. First, the

simultaneous “general” two-sample t-statistics achieve the overall significance level,

as long as log(m) increases at a strictly slower rate than (n1 + n2)1/3 as n1 + n2

diverges. Second, directly applying the same calibration method to simultaneous

“pooled” two-sample t-statistics may substantially lose the overall level accuracy.

The proposed “adaptively pooled” two-sample t-statistics overcome such incoher-

ence, while operating as simply and performing as well as the “general” two-sample

t-statistics. Third, we propose a “two-stage” t-test procedure to effectively alleviate

the skewness commonly encountered in various two-sample t-statistics in practice,

thus increasing the calibration accuracy. Lastly, we discuss the implications of these

results using simulation studies and real-data applications.

Key words and phrases: Familywise error rate, multiple hypothesis testing, overall

significance level, simultaneous inference, skewness.

1. Introduction

With the advancement of high-throughput technology, large-scale simultane-

ous inference procedures Bourgon, Gentleman and Huber (2010); Efron (2010);

Liang and Nettleton (2012); Leek and Storey (2008); Zhang, Fan and Yu (2011);

Zhao, Wang and Wei (2013) arise naturally from high-dimensional data from

small samples, with wide applications in biology, genetics, astronomy, economics,

and neuroscience research among others. This problem is characterized by si-

multaneously carrying out a large number of hypothesis tests, where each test
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involves a relatively short data vector. For example, in microarray gene expres-

sion studies, the number of genes could be in the order of thousands or higher,

but sample sizes could be in the order of tens or hundreds. Such procedures im-

plicitly assume that some marginal quantities, such as the significance levels (or

type-I error rates) and p-values, can be calculated exactly for each of the simulta-

neous tests. In practice, such an assumption may not be realistic when the exact

distributions of the test statistics in finite-sample cases are not directly available.

This motivates the need to estimate the distributions from which the marginal

quantities are computed. However, it is unclear how good the approximation

must be for the simultaneous inference to be feasible.

This study investigates the performance of simultaneously conducting a di-

verging number m of two-sample t-tests for the equality of the mean effects of

two groups, where m frequently exceeds the sample sizes n1 and n2 in the two

groups, although the combined sample size n = n1 + n2 is still moderately large.

Three issues arise naturally from analyzing such matrix-type data. First, it is

well known that the exact distribution of an individual two-sample t-statistic for

comparing population means is typically unavailable if we have nonGaussian sam-

ples, unequal population variances, or unequal sample sizes. Indeed, this issue

remains one of the unsolved problems in the statistical literature, the so-called

Behrens–Fisher problem Welch (1938, 1947). In practice, a calibration method

using a reference distribution, such as the standard Gaussian distribution N(0, 1),

serves as a feasible substitute, provided that the approximation accuracy suffices

for finite sample sizes. Second, the two-sample problem is more important, in

a certain sense, but more complex and challenging than the one-sample prob-

lem. Moreover, unlike the one-sample t-statistic, there is no unique method for

choosing a two-sample t-statistic. The two most common choices are the “gen-

eral” two-sample t-statistic and the “pooled” two-sample t-statistic. Nonetheless,

no studies have examined whether the calibration methods for the two choices

are equally applicable. Third, in practice, asymmetric populations are common,

but reduce the accuracy of a single two-sample t-statistic. Here, no studies have

examined simultaneous inferences based on a diverging number of two-sample

t-statistics.

Owing to the popularity of two-sample t-tests, it is highly desirable to inves-

tigate how many and which two-sample t-statistics can be calibrated simultane-

ously before the overall level accuracy becomes poor. This study addresses three

new issues for two-sample t-statistics involving independent and dependent data.

Issue 1. We demonstrate that for the Gaussian calibration method, the overall
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significance level of the simultaneous “general” two-sample t-statistics can be

achieved, provided that log(m) increases at a strictly slower rate than (n1+n2)
1/3

as n1 +n2 diverges. Furthermore, we show that the choice of (m,n1, n2) controls

the false discovery rates (FDRs) of some multiple testing procedures based on

calibrated p-values.

Issue 2. In contrast, the “pooled” two-sample t-statistics may behave substan-

tially differently to the “general” two-sample t-statistics, particularly when a

“composite variance quantity” (CVQ; defined in (2.7)) exceeds one. The proposed

“adaptively pooled” two-sample t-statistics in Section 3.2 operate as simply, but

perform as well as the “general” two-sample t-statistics.

Issue 3. Moreover, we propose a “two-stage” t-test procedure in Section 3.3 to

effectively alleviate the skewness effects commonly encountered from various types

of two-sample t-statistics in practice, thus increasing the calibration accuracy.

In the case of simultaneous one-sample t-statistics under independence and

positive regression dependence on subsets Benjamini and Yekutieli (2001), cali-

bration using a Gaussian or Student’s t distribution and the bootstrap method

was studied in Fan, Hall and Yao (2007), assuming that the number m
0

of true

null hypotheses is identical to m; that is, m
0

= m, which is restrictive in applica-

tions. Here, we examine the validity of the Gaussian calibration method applied

to different choices of two-sample t-statistics under independence and general de-

pendency, where m
0
≤ m is allowed and m

0
is a nonrandom quantity. To control

the FDR asymptotically, we apply the factor model to deal with several prac-

tically motivated dependence models, including the jointly Gaussian distributed

test statistics.

The rest of the paper is organized as follows. Section 2 formulates the overall

significance level of simultaneous two-sample t-statistics that compare the means

of two populations. Section 3 addresses Issues 1–3 in detail. Section 4 discusses

the effect on the calibration method of dependence between observations. Sec-

tions 5 and 6 present our simulation studies and real-data examples, respectively.

Section 7 concludes the paper. All technical details, figures and tables are rele-

gated to the online Supplementary Material.

2. Model Structure and Significance Testing

Many applications test data from two groups, such as a normal control group

and a cancer patient group. More formally, we consider observations {Xi,j} of
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the X-group and {Yi,j} of the Y-group described by the signal plus noise model

Xi,j = µ
X;i

+ εi,j , 1 ≤ i ≤ m, 1 ≤ j ≤ n1,
Yi,j = µ

Y ;i
+ ei,j , 1 ≤ i ≤ m, 1 ≤ j ≤ n2,

(2.1)

where the index i refers to the ith test (for example, gene or brain voxel), j indi-

cates the jth sample (for example, array or subject), constants µ
X;i

and µ
Y ;i

stand

for the mean effects from the X-group and Y-group, respectively, in the ith test,

and εi,j and ei,j are the respective random errors. Some basic assumptions are

collected in conditions A1–A3 for our statistical analysis. We test the following

hypotheses:

H0,i : µ
X;i

= µ
Y ;i

against H1,i : µ
X;i
6= µ

Y ;i
, (2.2)

simultaneously for 1 ≤ i ≤ m. One-sided alternatives can be formulated similarly.

2.1. Single two-sample t-statistic

For testing a single null hypothesis H0,i in (2.2), two-sample t-statistics de-

noted by Ti;n1,n2
, along with their variants, are widely used. One version is formed

by the “general” two-sample t-statistic (Welch (1938), equation (2)),

T general
i;n1,n2

=
Xi − Y i√

s2X;i/n1 + s2Y ;i/n2
, (2.3)

where Xi =
∑n1

j=1Xi,j/n1 and Y i =
∑n2

j=1 Yi,j/n2 are the sample means within

the ith test, and s2X;i =
∑n1

j=1(Xi,j − Xi)
2/(n1 − 1) and s2Y ;i =

∑n2

j=1(Yi,j −
Y i)

2/(n2 − 1) are the sample variances within the ith test. Under conditions

A1–A3, the distribution of T general
i;n1,n2

is given as follows.

(a1) In the special case of Gaussian errors εi,j ∼ N(0, σ2ε;i) and ei,j ∼ N(0, σ2e;i),

with equal variances σ2ε;i = σ2e;i and equal sample sizes n1 = n2, T
general
i;n1,n2

under H0,i of (2.2) follows the t2n1−2-distribution.

(a2) In other cases, the exact distribution of T general
i;n1,n2

under H0,i is typically un-

available, but the central limit theorem (CLT) and Slutsky’s theorem Das-

Gupta (2008) give

T general
i;n1,n2

D→ N(0, 1), under H0,i, (2.4)

as n1 →∞ and n2 →∞, where
D→ denotes convergence in distribution.

Another commonly used form is the “pooled” two-sample t-statistic (Welch
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(1938), equation (1); Bickel and Doksum (2007), Section 4.9.3; Efron (2010),

Section 2.1; Bourgon, Gentleman and Huber (2010)),

T pool
i;n1,n2

=
Xi − Y i

spoolX;Y ;i

√
1/n1 + 1/n2

, (2.5)

where s2poolX;Y ;i
= {(n1 − 1)s2X;i + (n2 − 1)s2Y ;i}/(n1 + n2 − 2) acts as a pooled

sample variance within the ith test. Under conditions A1–A3, the distribution of

T pool
i;n1,n2

is given as follows.

(b1) In the special case of Gaussian errors εi,j ∼ N(0, σ2ε;i) and ei,j ∼ N(0, σ2e;i),

with equal variances σ2ε;i = σ2e;i, T
pool
i;n1,n2

under H0,i of (2.2) follows the

tn1+n2−2-distribution.

(b2) In other cases, the exact distribution of T pool
i;n1,n2

under H0,i is typically un-

available. In a large sample analysis, if n1 → ∞ and n2 → ∞ such that

n1/(n1 + n2)→ ρ ∈ (0, 1), then it can be shown that

T pool
i;n1,n2

D→ N(0, σ2ρ;θ(ε,e);i), under H0,i, (2.6)

where

σ2ρ;θ(ε,e);i =
(1− ρ) + ρ θ(ε,e);i

ρ+ (1− ρ) θ(ε,e);i
, with θ(ε,e);i =

σ2e;i
σ2ε;i

. (2.7)

The derivation of (2.6) is relegated to Appendix A. We call σ2ρ;θ(ε,e);i the CVQ,

which aggregates the ratio of sample sizes and the ratio of population variances.

Clearly, σ2ρ;θ(ε,e);i = 1 holds only in Case 1 or Case 2 below:

Case 1.

ρ =
1

2
, that is, equal sample sizes with n1 = n2; (2.8)

Case 2.

θ(ε,e);i = 1, that is, equal population variances with σ2ε;i = σ2e;i. (2.9)

Note too that σ2ρ;θ(ε,e);i > 1 holds only if n1 < n2 and σ2ε;i > σ2e;i, or if n1 > n2
and σ2ε;i < σ2e;i. In general, the limiting distribution in (2.6) cannot be used

directly, because the population variances σ2ε;i and σ2e;i in θ(ε,e);i are typically

unknown in practical settings.

2.2. Simultaneous two-sample t-statistics

When calibrating multiple two-sample t-tests {Ti;n1,n2
}mi=1 simultaneously,

the accuracy of the overall significance level is used to control some aspects
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of the overall error rate. We first use the “general” two-sample t-statistics

{T general
i;n1,n2

}mi=1 to introduce some necessary notation. We discuss extensions to

alternative choices {T pool
i;n1,n2

}mi=1 in Section 3.2. For a critical value t, the signifi-

cance level of the ith test is

αi;n1,n2
(t) = PH0,i

(|T general
i;n1,n2

| > t), (2.10)

where PH0,i
denotes the probability calculated when H0,i is true. When test-

ing m null hypotheses simultaneously, the indices of the true null hypotheses

are collected in the set I0 = {i : H0,i is true}, with cardinality m
0

= |I0|.
The overall significance level is captured by the family-wise-error-rate (abbre-

viated as FWER or FWER1), FWER(t) = P(Vm(t) ≥ 1), where Vm(t) =∑m
i=1 I(H0,i is true, |T general

i;n1,n2
| > t) =

∑
i∈I0 I(|T general

i;n1,n2
| > t) denotes the number

of false rejections, with an indicator operator I(·). More generally, for integers

k ≥ 1, FWERk(t) = P(Vm(t) ≥ k) denotes the k-fold family-wise-error-rate

(abbreviated as FWERk, see Lehmann and Romano (2005)).

Recall from Section 2.1 that exact values of αi;n1,n2
(t) based on the exact null

distribution of T general
i;n1,n2

are unavailable in many practical settings. However, when

n1 → ∞ and n2 → ∞, the null distribution of T general
i;n1,n2

can be approximated by

N(0, 1), as seen in (2.4). This result motivates the approximation using N(0, 1)

random variables {T a
i }mi=1. It is thus natural to use the quantities,

αa
i (t) = P(|T a

i | > t), V a
m(t) =

∑
i∈I0

I(|T a
i | > t),

FWERa(t) = P(V a
m(t) ≥ 1), FWERa

k(t) = P(V a
m(t) ≥ k),

which are computationally feasible, as substitutes for αi;n1,n2
(t), Vm(t), FWER(t),

and FWERk(t), respectively, when n1 and n2 are large.

In this study, we examine the relation between the number of tests m and

the sample sizes n1 and n2 within each test. Here, applying appropriate choices

of the critical values taα;m and taα;m;k (obtained from the calibrated distributions

(through {T a
i }mi=1)) to the two-sample t-statistics {T general

i;n1,n2
}mi=1 and {T pool

i;n1,n2
}mi=1

guarantees that

FWER1(t
a
α;m) ≤ α+ o(1), (2.11)

FWERk(t
a
α;m;k) ≤ α+ o(1), (2.12)

as m → ∞, n1 → ∞, and n2 → ∞, where α is the control level. Similarly,

it is ideal to control the FDR based on a certain threshold τα;m;n for the true
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p-values {Pi}; that is, FDR(τα;m;n) ≤ α+ o(1), where FDR(τ) = E[
∑

i∈I0 I(Pi ≤
τ)/{{

∑m
i=1 I(Pi ≤ τ)} ∨ 1}], with a ∨ b = max{a, b}. When the exact {Pi} are

unavailable, it is more realistic to control the corresponding FDR based on some

threshold τaα;m;n for the calibrated p-values {P a
i }mi=1, such that

FDR(τaα;m;n) ≤ α+ o(1). (2.13)

3. Error Controls with Independent Data

3.1. “General” two-sample t-tests for (2.2)

We first discuss error controls using the “general” two-sample t-statistics

{T general
i;n1,n2

}mi=1, for which we require additional assumptions A4–A7. We further

assume that the rates of growth of m, n1, and n2 are connected via

log(m) = o(n1/3), (3.1)

with the combined sample size n = n1 + n2.

3.1.1. Controlling FWER1(taα;m) in (2.11) and FWERk(t
a
α;m;k) in (2.12)

The validity of the calibration method is supported by (3.3) of Proposition

1, which states that the overall significance level converges to a limit that does

not exceed the nominal level, the desirable property in (2.11).

Proposition 1 (control FWER1(t
a
α;m) under independence between tests). As-

sume model (2.1) and that conditions A1–A7 hold. For α ∈ (0, 1), m
0
/m→ π

0
∈

(0, 1], m → ∞, and n → ∞, if the general two-sample t-statistics {T general
i;n1,n2

}mi=1

are used, (m,n) satisfies (3.1), and

taα;m = Φ−1
(

1 + (1− α)1/m

2

)
, (3.2)

where Φ denotes the cumulative distribution function (C.D.F.) of an N(0, 1) vari-

able, then

FWER1(t
a
α;m) = FWERa

1(t
a
α;m) + o(1),

FWERa
1(t

a
α;m) = 1− (1− α)m0/m ≤ α.

(3.3)

Similarly, (3.6) of Proposition 2 implies that FWERk(t
a
α;m;k) ≤ α + o(1),

which is desirable in (2.12). A common feature of Propositions 1–2 is that as the

proportion π
0

of true nulls approaches one, FWER(taα;m) and FWERk(t
a
α;m;k)

approach the control level α, and hence the inequalities in (2.11)–(2.12) become

equalities.
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Proposition 2 (control FWERk(t
a
α;m;k) under independence between tests).

Assume model (2.1) and that conditions A1–A7 hold. For k ≥ 2, α ∈ (0, 1),

m
0
/m→ π

0
∈ (0, 1], m→∞, and n→∞, if the general two-sample t-statistics

{T general
i;n1,n2

}mi=1 are used, (m,n) satisfies (3.1), and

taα;m;k = Φ−1
(

1−
(βk;α/2)

m

)
, (3.4)

where βk;α denotes the solution of equation

Gk(βk;α) = α, (3.5)

with Gk(β) = 1−
∑k−1

j=0 β
j/j!e−β for β ∈ (0,∞), then

FWERk(t
a
α;m;k) = FWERa

k(t
a
α;m;k) + o(1),

FWERa
k(t

a
α;m;k) = Gk(π0

βk;α) + o(1) ≤ α+ o(1).
(3.6)

3.1.2. Controlling the FDR in (2.13) for multiple testing procedures

Similarly to the marginal significance levels, the true marginal p-values {Pi}
are unknown in advance or are not directly available when the exact distribu-

tions of the two-sample t-statistics are unknown, and thus need to be approxi-

mated from the calibrated distribution. The practical implication is that using

the approximate p-values {P a
i } means the resulting multiple testing procedure,

such as the Bonferroni correction, is still valid. This because the FDR under

the conditions of Proposition 1 is asymptotically bounded by the level α if the

approximation errors of the p-values are o(1/m).

Analogously, consider the Benjamini–Hochberg (BH) multiple testing pro-

cedure Benjamini and Hochberg (1995), which rejects the null hypotheses H0,i

when Pi ≤ P
(k̂)

, where k̂ = max{j : P(j) ≤ αj/m}, and P(1) ≤ · · · ≤ P(m) de-

note the ordered p-values {Pi}. Then, FDRBH = E(VBH/(RBH ∨ 1)) gives the

FDR of the BH procedure, where VBH =
∑

i∈I0 I(Pi ≤ P
(k̂)

) and RBH = k̂.

For the calibration method, applying the approximate p-values {P a
i } instead

of {Pi} to the BH procedure yields the number V a
BH of false rejections and

the number Ra
BH of total rejections, and the corresponding FDR defined by

FDRa
BH = E(V a

BH/(R
a
BH ∨ 1)). More generally, for the p-values {Pi} used in

the BH procedure, FDRBH = FDR(τα;m;n) (Storey, Taylor and Siegmund (2004),

Lemma 1), where FDR(t) = E{VP ;m(t)/(RP ;m(t)∨1)}, for t ∈ [0, 1], and τα;m;n =

sup{t : F̂DR(t) ≤ α}, with F̂DR(t) = mt/RP ;m(t), VP ;m(t) =
∑

i∈I0 I(Pi ≤ t),

and RP ;m(t) =
∑m

i=1 I(Pi ≤ t). Similarly, for the approximate p-values {P a
i },
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define FDRa(t) = E{V a
P ;m(t)/(Ra

P ;m(t) ∨ 1)} and τaα;m;n = sup{t : F̂DR
a
(t) ≤ α},

where F̂DR
a
(t) = mt/Ra

P ;m(t), V a
P ;m(t) =

∑
i∈I0 I(P a

i ≤ t), and Ra
P ;m(t) =∑m

i=1 I(P a
i ≤ t).

Proposition 3 shows that the resulting FDR(τaα;m;n) can be controlled under

mild conditions; Figure 13 presents simulation evaluations. Additional assump-

tions A5′, A7′, A8–A10 are needed.

Proposition 3 (control FDR(τaα;m;n) of the BH procedure under independence

between tests). Assume model (2.1) and that conditions A1–A5, A5′, A6, A7′,

and A8–A10 hold. Define by F a
P (·;n) and faP (·;n) the C.D.F. and p.d.f., respec-

tively, of the approximate p-values {P a
i }mi=1. For α ∈ (0, 1), let

ςα;n = sup{t : H(t;n) ≤ α}, ςaα;n = sup{t : Ha(t;n) ≤ α},

where H(t;n) = t/FP (t;n) and Ha(t;n) = t/F a
P (t;n). Suppose H ′(t;n) is bounded

below for t in an open interval with endpoints ςα;n and ςaα;n, and faP (ςaα;n;n)

< α−1 < faP (0;n). If the general two-sample t-statistics {T general
i;n1,n2

}mi=1 are used

and

Φ−1(1− ςaα;n) ∈ ( 0, o(n1/6) ), (3.7)

then as m→∞ and n→∞,

FDR(τaα;m;n) ≤ α+ o(1). (3.8)

Remark 1. Similarly to Lemma A.1 of Jing, Kong and Zhou (2014), we obtain

τaα;m;n = ςaα;n +OP(m−1/2), where τaα;m;n gives the threshold for the approximate

p-values. Therefore, condition (3.7) becomes

Φ−1(1− τaα;m;n +OP(m−1/2)) ∈ ( 0, o(n1/6) ), (3.9)

which implicitly describes the relationship between m and n. For example, if

τaα;m;n is of order m−b with probability tending to one, where 0 < b ≤ 1/2, then

a sufficient condition for (3.9) is log(m) = o(n1/3), as characterized by (3.1).

Remark 2.

(i) Using similar arguments for Corollary 2.1 in Liu and Shao (2014), we can

show that log(m) = o(n1/3) is also a necessary condition for controlling

FDR asymptotically. More precisely, if log(m) ≥ c0 n
1/3 for some constant

c0 > 0, we obtain lim inf(n,m)→∞ FDR(τaα;m;n) ≥ β, with a constant β > α.

In particular, if log(m)/n1/3 → ∞, we obtain FDR(τaα;m;n) → 1, implying

that the FDR is not controlled as m→∞ and n→∞.
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(ii) On the other hand, the condition log(m) = o(n1/3) can be relaxed to a

better rate log(m) = o(n1/2) with additional conditions, such as that of

symmetric errors and a stronger large deviation result for the two-sample t-

tests T general
i;n1,n2

: PH0,i
(T general
i;n1,n2

≥ x)/{1− Φ(x)} = exp(−3−1κ3,ix
3n−1/2){1 +

θ(1 + x)2/n1/2}, where κ3,i = [E{(Xi,1−µX;i
)3}/ρ2−E{(Yi,1−µY ;i

)3}/(1−
ρ)2]/{σ2X;i/ρ + σ2Y ;i/(1− ρ)}3/2, and θ = θ(x, n) satisfies |θ(x, n)| ≤ C uni-

formly in x ∈ (0, o(n1/4)). The justification for this large deviation result is

beyond the scope of this study. See Section 3.3 for a related discussion.

(iii) The condition A5′, “two-sample t-statistics corresponding to true non-nulls

are identically distributed,” simplifies the technical proof for Proposition 3.

In the simulation studies in Section 5, where the differences (µ
X;i
− µ

Y ;i
)

under the true non-nulls vary with i, Figure 13 indicates that Proposition 3

continues to hold in cases where condition A5′ is relaxed.

Remark 3. In Propositions 1–3, the Gaussian distribution is used to approxi-

mate the distribution of the test statistics T general
i;n1,n2

. These results can be easily

generalized to the t-distribution approximation by replacing Φ(·) with the C.D.F.

of the tn1+n2−2 distribution.

3.2. Proposed “adaptively pooled” two-sample t-tests for (2.2)

We now discuss error controls using the “pooled” two-sample t-statistics

{T pool
i;n1,n2

}mi=1. Recall from (A.11) and (A.26) in the Appendix A that the con-

clusions of Propositions 1–3 rely on the tail distribution of T general
i;n1,n2

under the null

H0,i, approximated by that of the N(0, 1) distribution, fulfilling∣∣∣∣PH0,i
(T general
i;n1,n2

≥ x)

1− Φ(x)
− 1

∣∣∣∣→ 0

uniformly in x up to a point of order o(n1/6). Applying similar derivations to the

“pooled” version of the test statistics T pool
i;n1,n2

, we observe that if the condition

∣∣∣∣PH0,i
(T pool
i;n1,n2

≥ x)

1− Φ(x)
− 1

∣∣∣∣→ 0 (3.10)

holds uniformly up to the point x of order o(n1/6), then (2.11) and (2.12) are

also applicable to {T pool
i;n1,n2

}mi=1. Indeed, condition (3.10) holds when the CVQ is

equal to one, that is, σρ;θ(ε,e);i = 1, in either Case 1 with n1 = n2, as discussed

in (2.8), or Case 2 with σ2ε;i = σ2e;i, as discussed in (2.9). Numerical evidence is

provided in Figure 3 with σ2ε;i = σ2e;i, where the performance of the calibration
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method applied to the “pooled” choices (in the second column panels) is nearly

identical to that applied to the “general” choices (in the first column panels).

Next, we examine the effect on (3.10) if the CVQ is allowed to differ from

one. If the original form (2.5) of T pool
i;n1,n2

is used, then the result in (2.6) indicates

PH0,i
(T pool
i;n1,n2

≥ x)

1− Φ(x)
=

{
1− Φ

(
x

σρ;θ(ε,e);i

)}
/{1− Φ(x)}{1 + o(1)}. (3.11)

To analyze the ratio on the right-hand side of (3.11), the panels of Figure 1

plot the function {1−Φ(x/σ)}/{1−Φ(x)}, which behaves very differently in the

cases of σ > 1 and σ < 1. The maximum value of {1 − Φ(x/σ)}/{1 − Φ(x)}
is unbounded when σ > 1, but is at most one when σ < 1. This difference

ultimately affects (3.10) in the following ways.

(i) If σρ;θ(ε,e);i > 1, then the maximum value of |PH0,i
(T pool
i;n1,n2

≥ x)/{1− Φ(x)}−
1| will always be much larger than zero.

(ii) If σρ;θ(ε,e);i < 1, then the maximum value of |PH0,i
(T pool
i;n1,n2

≥ x)/{1− Φ(x)}−
1| will potentially approach zero, particularly when σρ;θ(ε,e);i approaches one.

Hence, condition (3.10) may fail if σρ;θ(ε,e);i > 1, and the overall level accuracy

may be lost by directly applying the calibration method to the simultaneous

“pooled” two-sample t-statistics T pool
i;n1,n2

. See the numerical illustrations in Figure

5 associated with σρ;θ(ε,e);i > 1.

To circumvent the incoherence of T pool
i;n1,n2

with T general
i;n1,n2

, particularly in the

case of CVQ > 1, we propose an “adaptively pooled” version, which follows

an approximately N(0, 1) distribution under the null. Following (2.6), a natural

choice is given by

T pool;A
i;n1,n2

=
T pool
i;n1,n2

σ
ρ;θ̂(ε,e);i

, (3.12)

where θ̂(ε,e);i = s2Y ;i/s
2
X;i serves as an estimate of θ(ε,e);i = σ2e;i/σ

2
ε;i. The simula-

tion results in Section 5 support that the performance of the calibration method

applied to the “adaptively pooled” choice {T pool;A
i;n1,n2

}mi=1 is comparable to that

applied to the “general” choice {T general
i;n1,n2

}mi=1.

3.3. Proposed “two-stage” t-test procedure for (2.2)

In practice, T general
i;n1,n2

and T pool;A
i;n1,n2

could be skewly distributed under H0,i, yield-

ing a slower convergence rate to N(0, 1) and a lower calibration accuracy by

N(0, 1). See also Remark 2(ii). For T general
i;n1,n2

, its theoretical form of the skewness-
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“adjusted” two-sample t-statistic,

T adjust;T
i;n1,n2

=

((
Xi − Y i

)
+
µ3,X;i/n

2
1 − µ3,Y ;i/n

2
2

6(s2X;i/n1 + s2Y ;i/n2)
(3.13)

+
µ3,X;i/n

2
1 − µ3,Y ;i/n

2
2

3(s2X;i/n1 + s2Y ;i/n2)
2

(
Xi − Y i

)2)/√s2X;i

n1
+
s2Y ;i

n2
,

can be derived from Johnson (1978), used for the “adjusted” one-sample t-

statistic, where

µ3,X;i = E{(Xi,1 − µX;i
)3}, µ3,Y ;i = E{(Yi,1 − µY ;i

)3}. (3.14)

A form similar to (3.13) can be found in equation (2.16) of Cressie and Whitford

(1986). As expected, T adjust;T
i;n1,n2

alleviates the skewness effects from T general
i;n1,n2

and,

thus, is more symmetric under H0,i. Clearly, if µ3,X;i/n
2
1 − µ3,Y ;i/n

2
2 = 0, then

T adjust;T
i;n1,n2

reduces to T general
i;n1,n2

. Hence, the quantity

µ3,X;i

n21
−
µ3,Y ;i

n22
= E[{(Xi − Y i)− E(Xi − Y i)}3], (3.15)

serves as a valid measure of skewness of T general
i;n1,n2

, assuming conditions A1–A3. In

practice, T adjust;T
i;n1,n2

is infeasible for the skewness adjustment, because the quantity

µ3,X;i/n
2
1−µ3,Y ;i/n

2
2 is unknown. However, it can be estimated using the sample’s

third moments, leading to the empirical form of the skewness-“adjusted” two-

sample t-statistic,

T adjust;E
i;n1,n2

=

((
Xi − Y i

)
+
µ̂3,X;i/n

2
1 − µ̂3,Y ;i/n

2
2

6(s2X;i/n1 + s2Y ;i/n2)
(3.16)

+
µ̂3,X;i/n

2
1 − µ̂3,Y ;i/n

2
2

3(s2X;i/n1 + s2Y ;i/n2)
2

(
Xi − Y i

)2)/√s2X;i

n1
+
s2Y ;i

n2
,

where µ̂3,X;i =
∑n1

j=1(Xi,j −Xi)
3/n1 and µ̂3,Y ;i =

∑n2

j=1(Yi,j − Y i)
3/n2.

With regard to the choice between T general
i;n1,n2

and T adjust;E
i;n1,n2

, we discuss two

cases. If µ3,X;i/n
2
1 − µ3,Y ;i/n

2
2 = 0 exactly or approximately, then T general

i;n1,n2
is

expected to be more symmetrically distributed under H0,i than is T adjust;E
i;n1,n2

, and

will outperform T adjust;E
i;n1,n2

(owing to the variability of sample third moments). On

the other hand, if µ3,X;i/n
2
1 − µ3,Y ;i/n

2
2 is far from zero, then T adjust;E

i;n1,n2
will be

effective in correcting the skewness, whereas T general
i;n1,n2

may not be.

Hence, before selecting T general
i;n1,n2

or T adjust;E
i;n1,n2

, we first need to assess the ade-
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quacy of

H
(1)
0,i :

µ3,X;i

n21
−
µ3,Y ;i

n22
= 0. (3.17)

Note that (3.14) and (3.17) motivate us to consider the t-statistic

µ̂3,X;i/n
2
1 − µ̂3,Y ;i/n

2
2√

σ̂23,X;i/n
5
1 + σ̂23,Y ;i/n

5
2

, (3.18)

where σ̂23,X;i and σ̂23,Y ;i denote the sample variances of {(Xi,j − Xi)
3}n1

j=1 and

{(Yi,j−Y i)
3}n2

j=1, respectively. Under the null hypothesis (3.17), (3.18)
D→ N(0, 1),

by the CLT and Slutsky’s theorem, assuming finite sixth moments of Xi,1 and

Yi,1.

To improve the efficiency of testing (2.2), we propose a “two-stage” t-test

procedure:

1st-stage: For each i = 1, . . . ,m, apply the first-stage two-sample t-statistic

(3.18) to test, individually, for the null hypothesis H
(1)
0,i in (3.17).

2nd-stage: For each i = 1, . . . ,m, define the second-stage two-sample t-statistic

T 2 stage
i;n1,n2

by

T 2 stage
i;n1,n2

=

{
T adjust;E
i;n1,n2

in (3.16), if (3.18) rejects (3.17),

T general
i;n1,n2

in (2.3), if (3.18) retains (3.17).
(3.19)

Use {T 2 stage
i;n1,n2

}mi=1 to perform the multiple testing procedure for (2.2).

As illustrated in the simulation studies in Section 5, T adjust;T always performs

best, but is practically infeasible. The proposed T 2 stage is as good as the better

of T general and T adjust;E.

Remark 4. For the “adaptively pooled” two-sample t-statistic T pool;A
i;n1,n2

, the skew-

ness adjustment is similar to (3.16) for T general
i;n1,n2

, except that the denominator is

σ
ρ;θ̂(ε,e);i

spoolX;Y ;i

√
1/n1 + 1/n2.

4. Error Controls Allowing Dependent Data

In practice, dependence in data sets may arise from different tests, between

the X-group and Y-group, or within the same X-group or within the same Y-

group. Section 4.1 considers the types of dependence between tests, Sections 4.2–

4.3 explore models (4.10) and (4.12), respectively, incorporating the dependence
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structure between two groups and within the same group, respectively. Appendix

B discusses extensions of (4.10) and (4.12).

4.1. Dependence between tests

Recall that Propositions 1–2 rely on condition A7, which assumes indepen-

dence between the test statistics corresponding to the true nulls. Section 4.1.1

evaluates the effect of general dependency between the test statistics on the con-

trol of the overall significance level; Propositions 4–5 remove condition A7. Sec-

tion 4.1.2 considers test statistics that are asymptotically jointly Gaussian.

4.1.1. General dependence between tests

Proposition 4 (control FWER1(t
a
α;m) under general dependence between tests).

Assume model (2.1) and that conditions A1–A6 hold. For α ∈ (0, 1), m
0
/m →

π
0
∈ (0, 1], m→∞, and n→∞, if the general two-sample t-statistics {T general

i;n1,n2
}mi=1

are used, with taα;m given in (3.2) and (m,n) satisfying (3.1), then

FWER1(t
a
α;m) ≤ π

0
β1;α + o(1), (4.1)

where β1;α = − log(1− α).

In view of (4.1), the limiting overall significance level continues to be bounded

by the nominal level α, for any π
0
≤ α/β1;α, when m tests are allowed to be

dependent. See the left panel of Figure 2 for the plot of α/β1;α with respect to

α. For example, a level α = 0.05 allows any choice of π
0

in the range (0, 0.9748],

which is wide enough for realistic applications. Interestingly, even in the special

case of π
0

= 1 (which is rare, in practice), that π
0
β1;α = β1;α and α ≤ β1;α

(with a negligible difference between α and β1;α, particularly when α is small,

as illustrated in the right panel of Figure 2) indicates that the critical value

taα;m in (3.2) offers an asymptotically slightly conservative β1;α for the resulting

FWER(taα;m).

Proposition 5 states that, when k = 1, the upper bound achievable for

FWERk(t
a
α;m;k) reduces to that for FWER(taα;m).

Proposition 5 (control FWERk(t
a
α;m;k) under general dependence between tests).

Assume model (2.1) and that conditions A1–A6 hold. For k ≥ 2, α ∈ (0, 1),

m
0
/m→ π

0
∈ (0, 1], m→∞, and n→∞, if the general two-sample t-statistics

{T general
i;n1,n2

}mi=1 are used, with taα;m;k given in (3.4) and (m,n) satisfying (3.1), then

FWERk(t
a
α;m;k) ≤

π
0
βk;α
k

+ o(1), (4.2)
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where βk;α solves (3.5).

Compared with Proposition 2, the upper bound π
0
βk;α/k in (4.2), with k ≥ 2,

is controlled by the nominal level α only when the proportion π
0

does not exceed

α/(βk;α/k), which is equal to 0.2821 for α = 0.05 and k = 2. In the extreme case

of π
0

= 1, we can show that π
0
βk;α/k = βk;α/k is invariably at least as large as

α. This reflects the cost of generalizing Proposition 2 from mutually independent

tests to cases allowing for general dependency.

4.1.2. Jointly Gaussian distributed test statistics

Consider a specific factor model for observations {Xi,j} and {Yi,j}:

Xi,j = µ
X;i

+ βTX;iuj + εi,j , 1 ≤ i ≤ m, 1 ≤ j ≤ n1,
Yi,j = µ

Y ;i
+ βTY ;ivj + ei,j , 1 ≤ i ≤ m, 1 ≤ j ≤ n2,

(4.3)

where uj are unobserved du-dimensional random vectors, with {u1, . . . ,un1
} i.i.d.∼

N(0,Σu); vj are unobserved dv-dimensional random vectors, with {v1, . . . ,vn2
}

i.i.d.∼ N(0,Σv); and (u1, . . . ,un1
) and (v1, . . . ,vn2

) are independent. For example,

the gene expressions {Xi,j : 1 ≤ i ≤ m} of the jth subject may be influenced by

common factors uj , for example, the age or other variables of the jth subject. In

addition, assume {εi,j} and {ei,j} are identical to those in model (4.10); {εi,j},
{ei,j}, {uj}, and {vj} are independent.

For model (4.3), the dependence between the two-sample t-statistics,

T general
i;n1,n2

=
(µ

X;i
− µ

Y ;i
) + (εi − ei) + (βTX;iu− βTY ;iv)√
s2X;i/n1 + s2Y ;i/n2

, i = 1, . . . ,m, (4.4)

is caused by factors u =
∑n1

j=1 uj/n1 and v =
∑n2

j=1 vj/n2, which are common

to all tests. It follows that the two-sample t-statistics can be rewritten as

(T general
1;n1,n2

, . . . , T general
m;n1,n2

)T = D •U , (4.5)

whereD = (X1−Y 1, . . . , Xm−Y m)T ; the operator • in (4.5) indicates component-

wise multiplication; and U = (U1, . . . , Um)T , with Ui = (s2X;i/n1 + s2Y ;i/n2)
−1/2.

For fixed m, the CLT gives

√
n1 + n2 D

D→ (W1, . . . ,Wm)T , (4.6)

as n1 →∞ and n2 →∞, where (W1, . . . ,Wm)T ∼ N(ν,Ω), for some ν ∈ Rm and

positive-definite matrix Ω = (ωij)1≤i,j≤m. Similarly, the law of large numbers
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gives s2X;i
P→ βTX;iΣuβX;i + σ2ε;i and s2Y ;i

P→ βTY ;iΣvβY ;i + σ2e;i, implying

(n1 + n2)
−1/2 Ui

P→ ci, 1 ≤ i ≤ m, (4.7)

where ci = {(βTX;iΣuβX;i + σ2ε;i)/ρ+ (βTY ;iΣvβY ;i + σ2e;i)/(1− ρ)}−1/2; thus,

(n1 + n2)
−1/2 U

P→ c, (4.8)

with c = (c1, . . . , cm)T . By Slutsky’s theorem DasGupta (2008), (4.5), (4.6), and

(4.8) imply that

(T general
1;n1,n2

, . . . , T general
m;n1,n2

)T
D→ (Z1, . . . , Zm)T ∼ N(ν̃, Ω̃), (4.9)

where Zi = ciWi, ν̃ = c • ν, and Ω̃ = (ci cj ωij)1≤i,j≤m.

The joint Gaussianity of the test statistics in (4.9) makes it feasible to apply

the factor model method in Fan, Han and Gu (2012) to decompose Ω̃, and then

to control the false discovery proportion (FDP; defined as the number of false

rejections divided by the number of rejections) and FDR asymptotically. On the

other hand, this method relies on knowing Ω̃ in advance. Thus, we need the

techniques used to estimate high-dimensional covariance matrices to estimate Ω̃.

Our Gaussian calibration helps to simplify its diagonal entries to ones.

4.2. Dependence between groups and within a group: Model I

Consider observations {Xi,j} and {Yi,j} following Model I,

Xi,j = µ
X;i

+ εi,j +
wi
2
, 1 ≤ i ≤ m, 1 ≤ j ≤ n1,

Yi,j = µ
Y ;i

+ ei,j +
wi
2
, 1 ≤ i ≤ m, 1 ≤ j ≤ n2,

(4.10)

where the errors {w1, . . . , wm}
i.i.d.∼ N(0, σ2w), with σ2w ∈ (0,∞). For each i,

the errors {εi,1, . . . , εi,n1
} i.i.d.∼ N(0, σ2ε;i), the errors {ei,1, . . . , ei,n2

} i.i.d.∼ N(0, σ2e;i),

and {(εi,1, . . . , εi,n1
), (ei,1, . . . , ei,n2

), wi} are mutually independent. Furthermore,

{(εi,1, . . . , εi,n1
; ei,1, . . . , ei,n2

;wi) : i ∈ I0} are independent. It follows that the

two-sample t-statistics reduce to the following forms:

T general
i;n1,n2

=
εi − ei√

s2ε;i/n1 + s2e;i/n2
,

T pool
i;n1,n2

=
εi − ei

spoolε;e;i
√

1/n1 + 1/n2
, T pool;A

i;n1,n2
=

T pool
i;n1,n2

σ
ρ;θ̂(ε,e);i

.

(4.11)
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Note that this data set involves dependence between different groups, and within

the same group; however, the test statistics (using {T general
i;n1,n2

}, {T pool
i;n1,n2

} or T pool;A
i;n1,n2

)

associated with the true nulls are independent. Moreover, Model I in the case of

σ2w = 0 reduces to the counterpart of model (2.1).

With regard to Model I, we can show two distributional results for the “gen-

eral” two-sample t-statistic T general
i;n1,n2

under H0,i:

(c1) if σ2ε;i = σ2e;i and n1 = n2, then T general
i;n1,n2

∼ t2n1−2;

(c2) if n1 →∞ and n2 →∞, then T general
i;n1,n2

D→ N(0, 1).

Hence, the conclusions of Propositions 1–2 carry through to the “general” two-

sample t-statistics {T general
i;n1,n2

}mi=1.

As a comparison, for the “pooled” two-sample t-statistic T pool
i;n1,n2

under H0,i,

we draw the following two conclusions:

(d1) If σ2ε;i = σ2e;i, then T pool
i;n1,n2

∼ tn1+n2−2. In this case, the results in Proposi-

tions 1–2 continue to apply for the “pooled” choice {T pool
i;n1,n2

}mi=1.

(d2) If n1 → ∞ and n2 → ∞, such that n1/(n1 + n2) → ρ ∈ (0, 1), then (2.6)

gives T pool
i;n1,n2

D→ N(0, σ2ρ;θ(ε,e);i). Similarly to the discussion in Section 3.2,

there is no guarantee in the case of σρ;θ(ε,e);i > 1 that we can achieve level

bounds α in (2.11) and (2.12) using {T pool
i;n1,n2

}mi=1.

However, according to (4.11), the “adaptively pooled” version satisfies T pool;A
i;n1,n2

D→ N(0, 1) and, thus, the N(0, 1) calibration remains valid for {T pool;A
i;n1,n2

}mi=1.

4.3. Dependence between groups and within a group: Model II

Consider an alternative model similar to Model I, except that the signs of

the error terms wi/2 in Xi,j are negative, yielding Model II:

Xi,j = µ
X;i

+ εi,j −
wi
2
, 1 ≤ i ≤ m, 1 ≤ j ≤ n1,

Yi,j = µ
Y ;i

+ ei,j +
wi
2
, 1 ≤ i ≤ m, 1 ≤ j ≤ n2.

(4.12)

Model (4.12) is motivated from a two-sample microarray testing example in Sec-

tion 4 of Efron (2004) and Section 6.4 of Efron (2010) with n1 = n2, where wi are

small disturbances caused by unequal effects of unobserved covariates on the X-

group and Y-group. The explicit forms of the two-sample t-statistics are derived
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as follows:

T general
i;n1,n2

=
εi − ei − wi√
s2ε;i/n1 + s2e;i/n2

,

T pool
i;n1,n2

=
εi − ei − wi

spoolε;e;i
√

1/n1 + 1/n2
, T pool;A

i;n1,n2
=

T pool
i;n1,n2

σ
ρ;θ̂(ε,e);i

,

(4.13)

which differ from those in (4.11). Again, dependence between and within groups

exist in the data set, where the extent of the dependence is captured by the

magnitude of σ2w, but the two-sample t-statistics associated with the true nulls

remain independent.

In the context of Model II, we can show two results for the null distribution

of the “general” two-sample t-statistic T general
i;n1,n2

:

(e1) if σ2ε;i = σ2e;i = σ2i and n1 = n2, then T general
i;n1,n2

∼ t2n1−2 × f1, where f1 =√
1 + (n1/2)(σ2w/σ

2
i );

(e2) if n1 →∞ and n2 →∞, then

T general
i;n1,n2

= Z × f2{1 + oP(1)} P→∞, where f2 =

√
1 +

n1n2σ2w
n2σ2ε + n1σ2e

,

(4.14)

where Z ∼ N(0, 1) and
P→ denotes convergence in probability.

We can also show that T pool;A
i;n1,n2

has the same limit null distribution as T general
i;n1,n2

.

For the null distribution of the “pooled” two-sample t-statistic T pool
i;n1,n2

, we draw

two conclusions:

(f1) If σ2ε;i = σ2e;i = σ2i , then T pool
i;n1,n2

∼ tn1+n2−2 × f3, where f3 =√
1 + (n1n2/(n1 + n2))(σ2w/σ

2
i ).

(f2) If n1 →∞ and n2 →∞, such that n1/(n1 + n2)→ ρ ∈ (0, 1), then

T pool
i;n1,n2

= Z × f4{1 + oP(1)} P→∞,

where f4 =

√
(1− ρ) + ρσ2e/σ

2
ε + ((n1n2)/(n1 + n2))(σ2w/σ

2
ε)

ρ+ (1− ρ)σ2e/σ
2
ε

.
(4.15)

Thus, the conclusions of Propositions 1–2 fail for the two-sample t-statistics

{T general
i;n1,n2

}mi=1, because the factor f2 in (4.14) invariably exceeds one. As a com-

parison, Propositions 1–2 may fail for {T pool
i;n1,n2

}mi=1, particularly when the factor

f4 in (4.15) substantially exceeds one. In the case of f2 > f4, the “adaptively

pooled” versions {T pool;A
i;n1,n2

}mi=1 do not ameliorate {T pool
i;n1,n2

}mi=1.
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5. Simulation Study

We assess the finite-sample performance of the calibration method applied

to the two-sample t-test statistics {T general
i;n1,n2

}mi=1, {T
pool
i;n1,n2

}mi=1, {T
pool;A
i;n1,n2

}mi=1, {
T adjust;T
i;n1,n2

}mi=1, {T
adjust;E
i;n1,n2

}mi=1, and {T 2 stage
i;n1,n2

}mi=1, as the total sample size n = n1+n2
varies. For each k ∈ {1, 2}, we conduct the simulation 1,000 times. In each simu-

lation, we calculate the numbers of false rejections Vm(taα;m) and Vm(taα;m;k). The

empirical estimates of FWER(taα;m) and FWERk(t
a
α;m;k) are the proportion of

times that {Vm(taα;m) ≥ 1} and {Vm(taα;m;k) ≥ k}, respectively, occur in the 1,000

simulations. Set α = 0.05 as the control level. The “two-stage” t-tests use level

0.05 in the first-stage. A range of sample sizes are considered, with n1 = 10c and

n2 = 20c, for c ∈ {1, 2, . . . , 10}, yielding the combined sample size n = 30c. We

set m = 10,000, with π
0

= m
0
/m = 0.9.

To generate data under either independence or dependence, we consider the

model

Xi,j = µ
X;i

+ εi,j + signX;i

wi
2
, 1 ≤ i ≤ m, 1 ≤ j ≤ n1,

Yi,j = µ
Y ;i

+ ei,j + signY ;i

wi
2
, 1 ≤ i ≤ m, 1 ≤ j ≤ n2,

(5.1)

where µ
X;i

= µ
Y ;i

= 1, for i = 1, . . . ,m
0
. The values of µ

X;i
and µ

Y ;i
are sim-

ulated from Uniform(0.75, 1.25) and Uniform(1.75, 2.25), respectively, for i =

m
0

+ 1, . . . ,m, and {εi,j} are independent of {ei,j}. In addition, the errors

{w1, . . . , wm}
i.i.d.∼ N(0, σ2w), as described below (4.10). Note that (5.1) includes

models (2.1), (4.10), and (4.12):

if signX;i ≡ 0 and signY ;i ≡ 0, then model (5.1) reduces to model (2.1);

if signX;i ≡ +1 and signY ;i ≡ +1, then model (5.1) is Model I in (4.10);

if signX;i ≡ −1 and signY ;i ≡ +1, then model (5.1) is Model II in (4.12).

In model (5.1), the schemes for the errors {εi,j} and {ei,j} are considered in

Examples 1–5, as follows: Example 1: {εi,j}
i.i.d.∼ N(0, σ2), {ei,j}

i.i.d.∼ N(0, σ2),

with σ = 1.0; Example 2: {εi,j}
i.i.d.∼ N(0, 1), {ei,j}

i.i.d.∼ t4; Example 3: {εi,j}
i.i.d.∼

t4, {ei,j}
i.i.d.∼ N(0, 1); Example 4: {εi,j}

i.i.d.∼ χ2
2 − 2, {ei,j}

i.i.d.∼ −(χ2
2 − 2); and

Example 5: {εi,j}
i.i.d.∼ χ2

4−4, ei,j = (2bi−1)ui,j , where {ui,j}
i.i.d.∼ {Exp(1/λ)−λ},

with λ = 4, and the coefficients bi are nonrandom and equal to the sampled values

of b∗i , with {b∗1, . . . , b∗m}
i.i.d.∼ Ber(1/2). Here,Examples 4 and 5 assess the skewness

effects of the two-sample t-tests on the calibration methods.

Moreover, in model (5.1), the variances σ2w of the errors {wi} are considered
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for

model (2.1) with σw = 0; Model I with σw = 0.5; Model II with σw = 0.1.

Thus, the combination of errors {εi,j , ei,j} and errors {wi} in model (5.1) yields

15 examples, denoted as follows:

‘Example 1’, . . . , ‘Example 5’: for independent data;

‘Example 1(I)’, . . . , ‘Example 5(I)’: for dependent data;

‘Example 1(II)’, . . . , ‘Example 5(II)’: for dependent data.

Graphical illustrations are displayed in Figures 3–7 for the empirical estimates

of FWER(taα;m), in Figures 8–12 for the empirical estimates of FWERk(t
a
α;m;k)

with k = 2, and in Figure 13 for the calculated FDP of the BH procedure.

5.1. Independent data

Recall that Examples 1–5 correspond to independent data. Table 1 summa-

rizes the information on the CVQ and skewness of the error terms.

In Example 1 with Gaussian errors, the top row of Figure 3 indicates that

the estimated FWER(taα;m) of {T general
i;n1,n2

} gets closer to 0.05 as the sample size n

increases. The N(0, 1) calibration applied to {T pool
i;n1,n2

} performs similarly to that

of {T general
i;n1,n2

}, owing to the equal population variances, such that σ2ρ;θ(ε,e);i = 1

in Example 1. In this case, there is also no adverse effect of using the “adap-

tively pooled” version {T pool;A
i;n1,n2

}. The calibration methods applied to {T adjust;T
i;n1,n2

},
{T adjust;E

i;n1,n2
}, and {T 2 stage

i;n1,n2
} perform similarly to that applied to {T general

i;n1,n2
}, owing

to the symmetric distributions of {εi,j} and {ei,j}.
In addition, recall from part (b1) in Section 2.1 that T pool

i;n1,n2
in Example 1

exactly follows the tn1+n2−2-distribution under the null. The second columns

of Figures 3 and 8 overlay the true values (using red lines) of FWER(taα;m) and

FWERk(t
a
α;m;k), respectively, which match well with their empirical counterparts.

This supports the validity of the simulations. Similarly, the left column of Fig-

ure 13 compares the FDP of the BH multiple testing procedure Benjamini and

Hochberg (1995), implemented as follows: the approximate p-values calculated

from the approximate N(0, 1)-distributions for T general
i;n1,n2

, T pool
i;n1,n2

, T pool;A
i;n1,n2

, T adjust;T
i;n1,n2

,

T adjust;E
i;n1,n2

, and T 2 stage
i;n1,n2

, and the exact p-values calculated from the exact tn1+n2−2-

distribution for T pool
i;n1,n2

. As shown, when n approaches 100 (or more), the FDPs

using the N(0, 1) calibration mimic that using the exact distribution.

In Examples 2–3, with nonGaussian errors, the population variances are

σ2ε;i < σ2e;i in Example 2, and σ2ε;i > σ2e;i in Example 3. Figures 4 and 5 indi-
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cate that within each example, there is little difference in the performance of the

calibration methods applied to the test statistics {T general
i;n1,n2

}, {T pool;A
i;n1,n2

}, {T adjust;T
i;n1,n2

},
and {T 2 stage

i;n1,n2
}. However, {T pool

i;n1,n2
} behaves substantially differently in Example

2 and Example 3, where the FWERs are conservatively controlled in Example 2

(as seen in the top row, second column panel of Figure 4), but are not controlled

in Example 3 (as seen in the top row, second column panel of Figure 5, even

if n increases). Again, the difference is caused by the quantity σ2ρ;θ(ε,e);i < 1 in

Example 2, with n1 < n2 and σ2ε;i < σ2e;i, whereas σ2ρ;θ(ε,e);i > 1 in Example 3,

with n1 < n2 and σ2ε;i > σ2e;i. The comparison thus supports that the “adaptively

pooled” version T pool;A
i;n1,n2

is a valid substitute for the originally “pooled” version

T pool
i;n1,n2

, and that its performance compares with that of the “general” version

T general
i;n1,n2

.

Moreover, in Example 3, because the sixth moment does not exist for the

t4-distribution, µ̂3,X/n
2
1 − µ̂3,Y /n

2
2 performs poorly in estimating µ3,X;i/n

2
1 −

µ3,Y ;i/n
2
2. Thus, T adjust;E

i;n1,n2
deviates significantly from T adjust;T

i;n1,n2
, as seen in Fig-

ure 5. Nonetheless, T 2 stage
i;n1,n2

is as good as T general
i;n1,n2

.

Recall that for Examples 1–3, µ3,X;i/n
2
1 − µ3,Y ;i/n

2
2 = 0 (as shown in Table

1). Thus T adjust;T
i;n1,n2

and T general
i;n1,n2

are identical and the best, and T 2 stage
i;n1,n2

compares

well with T general
i;n1,n2

. As a comparison, Examples 4–5 assess the utility of the pro-

posed “two-stage” t-test procedure in the presence of skewness. In Example 4,

µ3,X;i/n
2
1 − µ3,Y ;i/n

2
2 is relatively large. Figure 6 reveals that T adjust;E

i;n1,n2
is better

than T general
i;n1,n2

, and T 2 stage
i;n1,n2

is close to the better of T general
i;n1,n2

and T adjust;E
i;n1,n2

. The

theoretical T adjust;T
i;n1,n2

still controls the FWER in the best way. In Example 5,

µ3,X;i/n
2
1 − µ3,Y ;i/n

2
2 depends on whether bi = 0 or 1, as given in Table 1. In

this case, we observe from Figure 7 that T 2 stage
i;n1,n2

outperforms both T general
i;n1,n2

and

T adjust;E
i;n1,n2

.

5.2. Dependent data

For Model I associated with the dependence mechanism in Examples `(I),

for ` = 1, . . . , 5, it is apparent that the top and middle rows of Figures 3–12

are nearly indistinguishable, regardless of the magnitude of σw > 0. This agrees

with the analysis in Section 4.2. By the same argument, the calculated FDPs of

the BH procedure in the left column of Figure 13 resemble those in the middle

column of Figure 13.

In striking contrast, for Examples `(II), for ` = 1, . . . , 5, with a dependence

mechanism described by Model II, the loss of control over FWER1 and FWER2

is noticeable in the bottom rows of Figures 3–7 and Figures 8–12, even if σw
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is as low as 0.1, lending support to the discussion in Section 4.3. The right

column of Figure 13 shows that the FDPs based on the N(0, 1) calibration for

approximating the p-values no longer mimic the actuals proportions. Again,

this is because when the data are generated from Model II, the variances in the

asymptotic distributions of T general
i;n1,n2

(as well as T pool;A
i;n1,n2

) and T pool
i;n1,n2

escalate by

factors f2 in (4.14) and f4 in (4.15), respectively. As anticipated, the exact

tn1+n2−2 calibration, available for T pool
i;n1,n2

in Example 1(II), continues to perform

well.

6. Real-Data Examples

We apply the Gaussian calibration for two-sample t-tests to analyze three

real-data sets. As expected, Table 2 reveals a discrepancy between the results

delivered by the “pooled” and “general” versions. Nonetheless, the results based

on the “adaptively pooled” version always agree well with those of the “general”

version. This lends further support to the superiority of the “adaptively pooled”

version to the “pooled” version in statistical practice. The proposed “two-stage”

procedure resembles the “general” version.

First, we analyze the prostate cancer data set of Efron (2010), which contains

genetic expression levels for 6,033 genes, obtained for 102 men, comprising 50

normal control subjects and 52 prostate cancer patients. The primary goal of

this study was to discover a small number of “interesting” genes that have ex-

pression levels that differ between the prostate and normal subjects. Using the

BH multiple-testing procedure, Table 2 compares the number of genes detected

as significant, where the p-values are calculated from the N(0, 1)-distribution for

T general
i;n1,n2

, tn1+n2−2-distribution for T pool
i;n1,n2

, and N(0, 1)-distributions for T pool
i;n1,n2

,

T pool;A
i;n1,n2

, and T 2 stage
i;n1,n2

. Recall that the simulation studies in Figure 13 support

the Gaussian calibration used in the BH procedure with independent data, with

the combined sample size n around 100 and m as large as 10,000. The differ-

ence between the detected numbers 21 (using the t-distribution) and 51 and 50

(using the N(0, 1) calibration methods) could be caused by the nonGaussian sam-

ples or the unequal population variances; as a result, T pool
i;n1,n2

may not follow the

tn1+n2−2-distribution.

Second, we apply the calibration method to the gene expression data produced

by Kim et al. (2007) in a study on prostate cancer progression. The study aims to

identify genes that show evidence of differential expression in cancerous tumors.

The data set includes gene expressions for m = 8,648 genes using prostate cell

populations from low-grade (n1 = 27) and high-grade (n2 = 17) samples of can-
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cerous tissue. Using the BH multiple-testing procedure, where p-values are calcu-

lated from the N(0, 1)-distribution for T general
i;n1,n2

, tn1+n2−2-distribution for T pool
i;n1,n2

,

and N(0, 1)-distributions for T pool
i;n1,n2

, T pool;A
i;n1,n2

, and T 2 stage
i;n1,n2

, the numbers of genes

declared to be significant are 565, 196, 436, 563, and 565, respectively; see Table

2. In this example, the detection difference between using the t-distribution and

using the approximate N(0, 1)-distribution could be caused by the nonGaussian

samples or the unequal population variances; as a result, the tn1+n2−2-distribution

may not be valid for T pool
i;n1,n2

. The difference may also be because the sample size

n = 44 is not large enough for the Gaussian calibration. Interestingly, the “adap-

tively pooled” two-sample t-statistics {T pool;A
i;n1,n2

} continue to detect a comparable

number of significant genes to those of its “general” counterparts {T general
i;n1,n2

}.
As a third illustration, we analyze the Acute Lymphoblastic Leukemia (ALL)

data set. Refer to Bourgon, Gentleman and Huber (2010) for details of the ALL

data set, containing data on 12,625 genes measured for two groups of samples

sizes, 37 and 42. Table 2 presents the number of genes differentially expressed

in the BCR/ABL versus NEG comparison for the four methods. The “pooled”

two-sample t-statistics T pool
i;n1,n2

using the tn1+n2−2-distribution identify 169 genes

(identical to that given in Table S2 of Bourgon, Gentleman and Huber (2010)),

which differs from the results of the other four calibration methods. Again, we

observe that the numbers of genes identified by the “two-stage,” “adaptively

pooled,” and “general” two-sample t-statistics are comparable.

7. Discussion

We have examined the validity of a calibration method used simultaneously

in two-sample t-tests, the exact distributions of which are typically unknown in

many practical applications. In that instance, the inaccuracy of the distributional

approximation, associated with realistic samples sizes n1 and n2 will degrade the

overall significance level, ultimately limiting the effective number of tests m. The

relationship between m and (n1, n2) is studied to ensure control of the overall level

accuracy, as well as to control the FDR for some multiple-testing procedures. A

distinction is made between the choice of “general” and “pooled” two-sample t-

statistics in cases where the typical form of the independence assumption between

tests either holds or is violated. The proposed “adaptively pooled” two-sample

t-statistics, when used simultaneously in the calibration method, perform as well

as the simultaneous “general” version, whereas the original “pooled” version may

behave abnormally. The proposed “two-stage” procedure compares well with the

above methods when the errors are symmetric, but outperforms the others when
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the errors are skewed and is less sensitive to error asymmetry.

Simulation studies demonstrate that under appropriate independence as-

sumptions, the calculated FDPs of some conventional multiple-testing procedures,

such as the BH procedure, can be controlled when the p-values are approximated

using the calibrated distribution for the “general,” “two-stage,” and “adaptively

pooled” two-sample t-statistics.

The dependence structure poses challenges related to controlling the overall

significance level and FDR. In Section 4, we demonstrated that the FWER and

FWERk can be controlled under arbitrary dependence between tests, but that

the FDR would not be controlled if we simply followed the same procedure in

Section 3 without any modification. To deal with the jointly Gaussian distributed

test statistics, we introduce the factor model to decompose these dependent test

statistics into nearly independent test statistics, such that the FDP and FDR

can both be controlled asymptotically. In addition, we addressed explicitly the

performance of the “general,” “pooled,” and “adaptively pooled” two-sample t-

statistics in the more interesting and practically motivated models (4.10), (4.12),

and (B.1), allowing dependence between and within groups.

Several issues are left to future research. First, the bootstrap method pro-

vides an alternative method for the calibrated distribution of the two-sample

t-tests, potentially relaxing log(m) = o(n1/3) to log(m) = o(n1/2), at the expense

of requiring more technical restrictions and a much heavier computational cost.

Second, the power of a given multiple-testing procedure can be improved when the

p-values need to be approximated, and should be studied on a case-by-case basis.

Third, in Propositions 1, 2, 4, and 5, the condition π
0
∈ (0, 1] excludes π

0
= 0,

which is the case of “dense true non-nulls.” In practice, information on m
0

or

π
0

can be learned from prior knowledge or estimated using empirical procedures

Benjamini, Krieger and Yekutieli (2006); Kim and Zhang (2014); Storey, Taylor

and Siegmund (2004). If the resulting π
0

is close to zero, it is more reasonable to

use other approaches that suit the dense case well.

Supplementary Material

All technical details, figures, and tables are relegated to the online Supple-

mentary Material.
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