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SYNTHESIS OF ORDER-OF-ADDITION MODELS
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Abstract: Numerous models have been proposed for experiments that vary the order

in which components are added, or steps are performed. Some models have a linear

effect of each component’s position in the sequence, and others have added quadratic

effects and product terms. Kriging models based on a component’s position have

also been proposed. Before models based on each component’s position were

introduced, models based on the relative position of each pair of components were

popular. Here, we connect these models and provide lack-of-fit tests to assist with

model selection and the interpretability of the parameters. Three examples from

the literature illustrate the need for these varied models.

Key words and phrases: Component-position model, experimental design, pairwise

order model, sequence effects.

1. Introduction

The literature on the design and analysis of experiments has recently

expanded to include experiments that vary the order of steps or components.

Typifying such order-of-addition experiments, Voelkel and Gallagher (2019)

describe a series of experiments involving up to six components of a new premium

automotive clearcoat. The primary response optimized is the clearcoat’s viscosity,

which affects the coating’s desired smooth appearance. Each experiment varied

the sequencing for adding components to the mixture, while holding the mixture

proportions fixed. Studying the sequencing of components distinguishes these

from traditional mixture experiments. The literature on mixture experiments

that vary the proportions of components is extensive, from the seminal work of

Scheffe (1958) to that of Cornell (2002), among others. However, prior to 2019,

we know of just one proceedings article (Van Nostrand (1995)) that discusses

models for order-of-addition data. For a review of the history of order-of-addition

experiments, see Lin and Peng (2019, Sec. 1) and Voelkel (2019b).

Order-of-addition experiments are not limited to mixture applications. Many

other situations involve ordering problems, such as web search bid-for-placement

ad orders, drug treatment sequencing, job scheduling, and so on. In many such

applications, experiments can be used to identify sequence effects.
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Van Nostrand (1995) proposed using pairwise order (PWO) factors, a model

that has become popular in the literature; see Voelkel (2019a,b), Voelkel and

Gallagher (2019), Lin and Peng (2019), Mee (2020), Chen, Peng and Lin (2021),

Tsai (2021), Wang and Mee (2022), and Zhao, Lin and Liu (2022). If m

components are to be sequenced, then estimating the PWO model requires that

we explore at least 1+m(m− 1)/2 of the m! possible sequences. Peng, Mukerjee

and Lin (2019) proposed a PWO model with diminishing effects for pairwise

factors as the separation in the pair’s positions in the sequence increases; Mee

(2020) proposed adding PWO factor interactions to account for sequencing effects

not accounted for by pairwise main effects alone. Voelkel and Gallagher (2019)

found that Van Nostrand’s original PWO model sufficed for each of the clearcoat

experiments. In fact, in the experiment discussed later involving six clearcoat

components, a model with just three of the 15 PWO factors seems satisfactory,

with R2 ≈ 92%.

Recently, a second class of models has been proposed, based on each

component’s position in the sequence. Yang, Sun and Xu (2020) proposed a

component-position (CP) model for order-of-addition using categorical (nominal)

explanatory variables. Stokes and Xu (2022) proposed three CP models using

quantitative variables, rather than nominal variables, and Xiao and Xu (2021)

proposed two Kriging models in which distance is based on the components’

positions in each sequence. The full CP model with nominal variables requires

estimating 1 + (m − 1)2 parameters, and even more if interactions are added.

In contrast, the three Stokes and Xu models require only m, 2m − 1, and

(m + 2)(m − 1)/2 parameters, respectively. The Kriging models of Xiao and

Xu (2021) require only m + 2 and 3m + 2 parameters, respectively. Certainly,

parsimony is an advantage, provided the models fit satisfactorily.

The full m! design is optimal for PWO models (Peng, Mukerjee and Lin

(2019)) and CP models (Yang, Sun and Xu (2020); Stokes and Xu (2022)).

However, fractional designs are needed for m ≥ 5, because the full m! design is

prohibitively large. Voelkel (2019a) defined order-of-addition orthogonal arrays

(OofA-OAs), which have the same normalized information matrix as the full

design for Van Nostrand’s PWO model. This work improved greatly on Van

Nostrand’s early attempts to construct smaller designs for the PWOmodel. Yang,

Sun and Xu (2020) proposed component orthogonal arrays (COAs), which are

optimal for their CP model and for two Stokes and Xu (2022) CP models. COAs,

also known as permutation orthogonal arrays (Wang, Xu and Ding (2020)), have

run sizes restricted to a multiple of m(m − 1). Although we focus on modeling

and inference, some results presented later assume that an estimation is based

on one of these optimal designs.

The remainder of this paper is organized as follows. In Section 2, we review

all parametric PWO and CP models in the literature, and provide the covariance

matrix of the least squares estimators, assuming an optimal (OofA-OA or COA)
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design. In Section 3, we show how the Stokes and Xu CP models are nested within

other CP and PWO models. This nesting leads to lack-of-fit tests, which show

whether a fitted model is satisfactory, aiding model selection and interpreting the

parameters. In Section 4, we present three examples to illustrate the insights from

Sections 2 and 3, highlighting the need for different models. Section 5 concludes

the paper, helping readers to understand and use order-of-addition models to

analyze experiments.

2. Review of Order-of-Addition Models

Suppose we have m components, denoted by 1, . . . , m. Let S = [sij ] denote

an n×m matrix defining the n sequences of an experiment. That is, sij identifies

the component appearing in position j of sequence i. Let O = [oij ] denote the

corresponding n×m matrix, where oij is the position of component j in sequence

i. Sections 2.1–2.6 define the parametric models that have been proposed for

order-of-addition data, beginning with the PWO models. Section 2.7 summarizes

the Kriging models of Xiao and Xu (2021).

2.1. Van Nostrand’s main-effects PWO model

The PWO model of Van Nostrand (1995) is based on m(m − 1)/2 pairwise

order factors, P(jk) (1 ≤ j < k ≤ m). Define P = [pi(jk)], where, for i = 1, . . . , n

and 1 ≤ j < k ≤ m,

pi(jk) =

{
1 if oij < oik,

−1 if oij > oik.

We order the columns of P as P(12), P(13), . . . , P(1m), P(23), . . . , P((m−1)m). The

main-effects PWO model is

Y = 1nα0 +Pα+ e, (2.1)

where α0 and α = [α(12), α(13), . . . , α(1m), α(23), . . . , α((m−1)m)]
Tare unknown

parameters, e is a vector of independent and identically distributed (i.i.d.) normal

random variables with mean zero and variance σ2, and Y is an n × 1 vector of

observed responses. For OofA-OAs, the normalized information matrix is given

in Peng, Mukerjee and Lin (2019, Thm. 2) and Schoen and Mee (2023, Equation

4); these designs are D-, A-, and I-optimal for model (2.1).

Peng, Mukerjee and Lin (2019) proposed a PWO model with tapering, where

the elements of P are replaced with pi(jk)c(hi(jk)), where hi(jk) = |oij − oik| and
c(h) is a decreasing nonlinear function of h, such as c(h) = 1/h or Ch−1, for some

constant 0 ≤ C < 1. For C = 0, the pairwise effect only affects the response

when the components are adjacent, that is, when |oij − oik| = 1. Piepho and

Williams (2021) proved that linear tapering (c(h) = m − h) results in a model

equivalent to the standard PWO model (2.1).
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2.2. PWO model with interactions

Mee (2020) proposed adding interactions to the main-effects PWO model

(2.1). Two-factor interactions (2FIs) that share a common component are called

triplet interactions. Voelkel (2019a) refers to P(ij) ∗ P(ik) and P(ik) ∗ P(jk) as

synergistic triplet interactions, because they sum to m!/3 in the full design, and

refers to P(ij) ∗ P(jk) as an antagonistic triplet interaction, because it sums to

−m!/3. To avoid linear dependencies, the triplet PWO model includes at most

two of the three interactions from each subset of three components, because

P(ij) ∗ P(ik) + P(ik) ∗ P(jk) − P(ij) ∗ P(jk) = 1n. The triplet PWO model is

Y = 1nα0 +Pα+Tτ + e, (2.2)

where τ = [τ12∗13, . . . , τ(m−2)m∗(m−1)m]
T and T is the n×2

(
m
3

)
matrix of synergistic

interactions.

Let U denote the n× 3
(
m
4

)
matrix corresponding to all P(ij) ∗ P(kl) for i < j,

k < l, and i, j, k, l all distinct. The 2FI PWO model is

Y = 1nα0 +Pα+Tτ +Uψ + e, (2.3)

where ψ = [ψ12∗34, . . . , ψ(m−3)(m−2)∗(m−1)m]
T . The full 2FI PWO model has 1 +(

m
2

)
+ 2

(
m
3

)
+ 3

(
m
4

)
parameters.

2.3. Nominal CP model

Yang, Sun and Xu (2020) proposed a CP model using indicator variables zkp
that equal one if component k is in the pth position, and zero otherwise. Let Z

denote an n× (m− 1)2 matrix, with the columns of Z ordered as (kp) = 11, 12,

. . . , 1(m− 1), 21, 22, . . . , 2(m− 1), 31, . . . , (m− 1)(m− 1), and let Z* denote

the n×m2 matrix with columns (kp) = 11, 12, . . . , 1m, 21, 22, . . . , 2m, 31, . . . ,

mm. Their CP model (with baseline constraints) is

Y = 1nγ0 + Zγ + e, (2.4)

where γ0 and γ = [γ11, γ12, . . . , γ1(m−1), γ21, . . . , γ(m−1)(m−1)]
Tare unknown param-

eters. Yang, Sun and Xu (2020) also proposed using a stepwise regression with

all m2 columns of Z* as candidates, as well as possible interactions zkpzk′p′ , if

necessary.

The CP model (2.4) can be fit in several ways. One can compute the sum of

squares (SS) attributable to the kth component {zk1, . . . , zk(m−1)} (k = 1, . . . ,m−
1), by including the columns of O as categorical variables. Alternatively, one can

compute the SS attributable to the pth position in the sequence {z1p, . . . , z(m−1)p}
(p = 1, . . . ,m − 1), by including the columns of S as categorical variables. The

first approach seems less useful, because it disregards the meaningful ordering of

the levels of the columns of O. Each method compares the included components
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(or positions) with the omitted one. Thus, when we omit the last position, we

expect the earliest positions to be the most significant. For example, when Wang,

Xu and Ding (2020) omit the last position of m = 5, they find positions 1 and 2

to be the most significant. If the first position is omitted instead of the last one,

positions 5 and 4 are the most significant. Model (3.4) shows a third (better)

way to partition the SS for model (2.4).

2.4. The first-order CP model

The Stokes and Xu models are based on the columns of O, after centering

and scaling. Define c0 = (m+1)/2, c1 = (12/(m2−1))1/2, and B∗ = c1(O− c0J),

where J is an n × m matrix of ones. The matrix B∗ is a centered and scaled

version of O, such that each row sums to zero and has sum of squares of m; that

is, the squared elements of B∗ average one. Denote the columns of B∗ by x1, . . . ,

xm. Because x1 + · · · + xm is a vector of zeros, we must drop one column when

constructing the models. Let d denote the deleted column and B(−d) denote the

resulting n× (m− 1) matrix. Stokes and Xu (2022) drop the mth column of B∗.

Thus, for convenience, we denote B(−m) as B, without a superscript. That is, B

= [x1, . . . , xm−1].

The Stokes and Xu first-order component-position (FOCP) model is

Y = 1nβ0 +Bβ1 + e, (2.5)

where (β0, β
T
1 ) = (β0, β11, . . . , β1(m−1)) is a vector ofm unknown parameters. The

model matrix for model (2.5) is XFOCP = [1n,B] = [1n,x1, . . . ,xm−1]. Schoen

and Mee (2023) proved that for the full m! design, the normalized information

matrix is

MFOCP =
XT

FOCPXFOCP

m!
= diag

{
1,

1

m− 1
(mIm−1 − Jm−1)

}
, (2.6)

and the corresponding precision matrix is M−1
FOCP = diag{1,V}, where

V = (1−m−1)(Im−1 + Jm−1). (2.7)

Given the form of V, the following lemma is easily proved.

Lemma 1. For any n-run design with normalized information matrix MFOCP for

model (2.5), the standard errors for the least squares estimators β̂1i and β̂1i− β̂1j

are both SE = σ(V IF/n)1/2, where the variance inflation factor (V IF ) is equal

to 2(1−m−1).

Stokes and Xu (2022) showed that the full m! sequence design is D- and A-

optimal. Thus, the D- and A-efficiency of a design for model (2.5) can be assessed

relative to the the maximum scaled determinant DFOCP = det(MFOCP )
1/m =

m1−2/m/(m − 1)1−1/m and the minimum trace AFOCP = trace(MFOCP ) = 1 +
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Table 1. Estimates and p-values for Stokes and Xu’s example 1 based on B(−d).

Model Matrix β̂0 β̂11 β̂12 β̂13 β̂14

[1n,B
(−1)] 45.2167 0.0000 3.8377 −3.7426 1.8056

(4.5e−4) (5.7e−4) (0.062)

[1n,B
(−2)] 45.2167 −3.8377 0.0000 −7.5803 −2.0320

(4.5e−4) (6.8e−8) (0.038)

[1n,B
(−3)] 45.2167 3.7426 7.5803 0.0000 5.5482

(5.7e−4) (6.8e−8) (6.3e−6)

[1n,B
(−4)] 45.2167 −1.8056 2.0320 −5.5482 0.0000

(0.062) (0.038) (6.3e−6)

Mean 45.2167 −0.4752 3.3625 −4.2178 1.3305

2(m− 1)2/m = 2(m+m−1)− 3.

Stokes and Xu’s example 1 is an experiment with all 24 sequences for m = 4.

The first-order model has fitted values that do not depend on which column is

omitted, but the coefficients change dramatically. Table 1 gives the least squares

estimates, depending on whether column 1, 2, 3, or 4 of B∗ is omitted. Stokes

and Xu fit the last of these four models and drop the estimate for component 1,

because its p-value (0.062) exceeds 0.05. The null hypothesis for this test is that

components 1 and 4 do not differ in terms of their position’s effect on the mean

response. By Lemma 1, the standard error for each β̂1j and each β̂1j − β̂1j′ is

estimated by σ̂/4 = 0.915. Note that all
(
m
2

)
tests of differences can be performed

from a single model.

The numerical values of the coefficients for a single component vary between

models, because the effect of each component is compared with that of the omitted

one. When all estimated coefficients are positive and statistically significant,

as for the model based on omitting x3, to maximize the response, the omitted

component should appear first; that is, the mean response is made greater by

increasing the position number for all other components. Similarly, when all the

coefficients are negative, as they are when we omit x2, the omitted component

should appear last. If a coefficient is zero, then this component and the omitted

one are similar in terms of position effect.

To improve the interpretability of the estimates, rather than dropping one

column of B∗, one might use the model matrix [1n,B
∗], and impose the constraint

that the coefficients for x1, . . . , xm sum to zero. That is, model (2.5) is

reparameterized as

Y = 1nβ
∗
0 +B∗β∗

1 + e, where β∗
11 + · · ·+ β∗

1m = 0. (2.8)

The constrained least squares solution is equivalent to averaging the estimates

across the m different models, as shown in the last line of Table 1. Because each
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of the m models gives the same predicted values, the average of the m models

based on B(−i) (i = 1, . . . ,m) does as well. Furthermore, because the coefficients

across the m models appear in ± pairs, the mean model’s coefficients must sum

to zero. The individual coefficients β∗
1j in model (2.8) are not estimable functions;

rather, only contrasts of these are estimable.

2.5. The pure quadratic CP model

If we add squared terms to the linear effects of model (2.5), we have Stokes

and Xu’s quadratic component-position (QCP) model

Y = 1nβ0 +Bβ1 +Qβ2 + e, (2.9)

where (β0, β
T
1 , β

T
2 ) = (β0, β

T
1 , β21, . . . , β2(m−1)) is vector of 2m − 1 unknown

parameters, and the columns of Q are Qi = (c2/c1)(x
2
i − 1), for i = 1, . . . ,m− 1,

with c2 = (15/(m2− 4))1/2. The model matrix is XQCP = [1n,B,Q]. For the full

m! design, the normalized information matrix of the quadratic model is

MQCP =
XT

QCPXQCP

m!

= diag

{
1,

1

m− 1
(mIm−1 − Jm−1),

1

m− 1
(mIm−1 − Jm−1)

}
. (2.10)

Lemma 2. For any n-run design with normalized information matrix MQCP for

model (2.9), the precision matrix M−1
QCP is diag(1,V,V), where V is as defined

in (2.7). As a result, the standard errors for the least squares estimators β̂1i, β̂2i,

β̂1i − β̂1j, and β̂2i − β̂2j are all SE = σ(V IF/n)1/2, where V IF = 2(1−m−1).

Because the normalized information matrices for B and Q are identical and

BTQ = 0 for the full m! design, the determinant of (2.10) is m2m−4/(m−1)2m−2,

which is the square of the determinant for (2.6), and AQCP = trace(M−1
QCP ) =

4(m+m−1)− 7.

2.6. The second-order CP model

If we add linear-by-linear interactions to the pure quadratic model (2.9), the

result is Stokes and Xu’s second-order (SO) CP model

Y = 1nβ0 +Bβ1 +Qβ2 +Rδ + e, (2.11)

where the columns of R are the (m− 1)(m− 2)/2 interactions xixj (1 ≤ i < j ≤
m− 1). The columns of [1n,B,Q,R] involve one linear dependency, even for the

full m! design. Stokes and Xu (2022) eliminate the last column of Q to avoid this

dependency, and so take the model matrix to be XSO = [1n,B,Q{−(m−1)},R],

where Q{−(m−1)} denotes the first m − 2 columns of Q. Because the columns of

R are correlated with both the intercept column and with the pure quadratic



596 MEE

Table 2. Variance factors v for the least squares estimates of the SOCP model (2.11)
parameters.

m = 4 m = 6 m = 8

If one drops: If one drops: If one drops:

Q3 x2x3 Q5 x4x5 Q7 x6x7

β0 3.5841 1.9615 12.059 7.8056 27.175 19.342

β1i’s 3 @ 1.5000 3 @ 1.5000 5 @ 1.6667 5 @ 1.6667 7 @ 1.7500 7 @ 1.7500

β2i’s 1 @ 2.8846 3 @ 3.7407 5 @ 4.1413

2 @ 1.9615 2 @ 1.9615 4 @ 2.5556 2 @ 2.5556 6 @ 2.8370 2 @ 2.8370

δij ’s 1 @ 4.5072 6 @ 5.1143 3 @ 4.8611 15 @ 5.4355 10 @ 5.1359

2 @ 3.0649 2 @ 2.8846 4 @ 3.4939 6 @ 3.2407 6 @ 3.7235 10 @ 3.4239

Trace(M−1) 22.644 19.038 75.276 66.500 160.32 143.57

columns, the block diagonal structure of XT
SOXSO separates into only two blocks,

one for the columns of B, and a second for the remaining columns of XSO.

Appendix A.1 presents formulae forMSO. No simple closed-form formula has

been found for the determinant or inverse ofMSO = XT
SOXSO/m!. For this model

with p = 1+(m−1)+(m−2)+(m−1)(m−2)/2 = (m−1)(m+2)/2 parameters, the

maximum values of det(MSO)
1/p, computed using the full m! design (Stokes and

Xu (2022, Thm. 3)), are 0.7759, 0.6912, 0.6704, 0.6694, 0.6758, 0.6849, 0.6950,

and 0.7052, for m = 3, . . . , 10, respectively. We can use these values to compute

the relative D-efficiency of designs for estimating model (2.11).

Instead of droppingQm−1, consider the advantages of dropping the xm−2xm−1

interaction:

� Dropping xm−2xm−1 nests the quadratic model (2.9) more naturally in the

SOCP model, which helps interpretability.

� Dropping xm−2xm−1 results in smaller variances for the intercept and many

SO parameter estimates.

To illustrate the second advantage, Table 2 gives the values of v such that the

variance of the least squares estimates is vσ2/n for any design with the same

normalized information matrix as the full m! design for m = 4, 6, and 8. In every

case, the trace is reduced by at least 10%. In general, the interaction estimates

have two variances. When dropping Qm−1, the interactions xixj (i < j ≤ m− 2)

have the larger variance and xixm−1 (i = 1, . . . ,m− 2) have the smaller variance

in Table 2. When dropping xm−2xm−1, Qm−2, Qm−1 and interactions involving

xm−2 and/or xm−1 have the smaller variance.

Piepho and Williams (2021) parameterize model (2.11) by dropping the

intercept rather than dropping a column of Q or R. This has the advantage

of model symmetry for components 1, . . . ,m − 1, but it dramatically alters

the meaning of the components of β2 and δ, making model reduction more
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complicated. Piepho and Williams (2021) also explore third-order CP models

analogous to the special cubic and full cubic Scheffe mixture models (Cornell

(2002)), but report that these extensions are not useful for the examples they

considered.

2.7. Parsimonious Kriging CP models

Xiao and Xu (2021) proposed using Kriging models for order-of-addition

experiments, where the covariance is a function of the CP-scaled distances hl =

|oil−oi′l|/m (l = 1, . . . ,m). The assumed model for the ith observation, assuming

no blocking, is

yi = µ+ Z(oi) + ei,

where µ is an unknown mean, oi is the ith row of O, and Z(oi) is a Gaussian

process with zero mean and stationary covariance function defined as

cov(Z(oi), Z(oi′)) = η2
m∏
l=1

K(hl : θl).

Xiao and Xu (2021) chose the Matern kernel with parameter 5/2 for their

examples, resulting in the following covariance function (when i ̸= i′):

cov(Z(oi), Z(oi′)) = η2
m∏
l=1

[{
1 +

√
5θlhl +

5(θlhl)
2

3

}
exp(−

√
5θlhl)

]
, (2.12)

where θ1, . . . , θm are unknown parameters, along with η2 and µ. If there is

blocking, µ is replaced by a separate parameter for each block. For i = i′,

we add σ2 to (2.12).

The simple universal Kriging (UK) model described above has, for each

component l, the same fixed scaled distance hl = 1/m between adjacent positions.

This constraint is relaxed in their mapping-based (MUK) model, where distance

is defined as hl = |gl(oil) − gl(oi′l)|/m (l = 1, . . . ,m); Xiao and Xu (2021) use

an incomplete beta function for gl. The MUK model has 3m + 2 parameters,

because each gl now depends on two additional parameters. For further details,

see Xiao and Xu (2021, Sec. 3.2).

3. Connections Between Models

We now explore the connections between the PWO models (2.1), (2.2), and

(2.3) and the parametric CP models (2.4), (2.5), (2.9), and (2.11).

3.1. The FOCP model and the main-effects PWO model

Schoen and Mee (2023) showed that the column space of B is nested within

the column space of P. Specifically, for j = 1, . . . ,m, xj = 0.5c1(
∑m

i=j+1 P(ji) −
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j−1
i=1 P(ij)). Nested column spaces and the usual (i.i.d. normal) assumptions for e

imply that we can perform a lack-of-fit test for the hypotheses H0: FOCP model

(2.5) is true versus Ha: PWO model (2.1) is true, with test statistic

F (FOCP model vs. PWO model)

=
[SSE(2.5)− SSE(2.1)]/[dfE(2.5)− dfE(2.1)]

SSE(2.1)/dfE(2.1)
, (3.1)

where SSE(i) and dfE(i) denote the error sum of squares and the error degrees

of freedom, respectively, for model (i).

The difference between the number of parameters for models (2.1) and (2.5)

is equal to 1+m(m−3)/2, which is the number of linearly independent constraints

on α implied by (2.5). Suppose we have a design for which P has full column

rank, and define the m(m− 1)/2×m− 1 matrix Cm such that PCm = B. The

matrix Cm can be defined recursively as C3 = (3/8)1/2[−1 1;−1 0; 0 − 1] and,

for m = 4, 5, . . .,

Cm =


3

m2 − 1

1/2



−1m−2 Im−2

−1 0T
m−2

0(m−1)(m−2)/2 [ (m−1)2−1

3
]1/2Cm−1




, (3.2)

where for any integer u, 1u and 0u denote column vectors of ones and zeros,

respectively, and Iu denotes the identity matrix of dimension u. If the FOCP

model (2.5) is true, then α0 = β0 and α = Cmβ. For m = 3,

α(12) =


3

8

1/2

(−β11 + β12), α(13) = −

3

8

1/2

β11, α(23) = −

3

8

1/2

β12,

which implies the constraint α(23) = α(13)−α(12). For m > 3, model (2.5) imposes

the constraints

α(jk) = α(1k) − α(1j) (2 ≤ j < k ≤ m). (3.3)

Thus, the FOCP model implies that the PWO coefficients are additive in the

sense that, for example, α(12) + α(23) + α(34) = α(14).

Conversely, suppose the main-effects PWO is the true model. What is the

expected value of the least squares estimator β̂1? This depends on the design; for

the full design:

E(β̂1i) = 0.5c1


j<i

α(ji) −

j>i

α(ij) −

j<m

α(jm)


(i = 1, . . . ,m− 1).

For example, consider i = 1, for which E(β̂11) = −0.5c1(


j>1 α(1j)+


j<m α(jm)).

Thus, E(β̂11) is proportional to the negative sum of all PWO coefficients involving

component 1 and component m, including α(1m) twice.
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3.2. The QCP model and the nominal CP model

For m = 3, the QCP model (2.9) and the nominal CP model (2.4) are

equivalent, whereas for m > 3, model (2.9) is nested in model (2.4). This is

easiest to see if we extend the quadratic model by adding orthogonal polynomials

for powers 3, . . . ,m − 1. For q = 1, 2, . . . ,m − 1, let O{q} denote the orthogonal

polynomials of power q for the first m− 1 columns of the order design matrix O.

The matrices B and Q defined earlier correspond to O{1} and O{2}, respectively.

Then, we rewrite model (2.4) as

Y = 1nβ0 +Bβ1 +Qβ2 +
m−1∑
q=3

O{q}βq + e, (3.4)

where βp = (βp1, . . . , βp(m−1))
T . This model reparameterizes the nominal

CP model parameters γi1, γi2, . . . , γi(m−1) in terms of β1i, β2i, . . . , β(m−1)i, for

component i = 1, . . . ,m − 1. We can test the adequacy of the QCP model

(2.9), assuming the nominal CP model (2.4) is the true model; using the notation

introduced by equation (3.1),

F (QCP model vs. nominal CP model)

=
[SSE(2.9)− SSE(2.4)]/[(m− 3)(m− 1)]

SSE(2.4)/dfE(2.4)
.

Alternatively, for m > 4, we can partition the CP model sum of squares into the

contribution for each power. We illustrate this in Section 4.1, Table 4.

3.3. The QCP model and the triplet PWO model

The QCP model (2.9) is nested in the triplet PWO model (2.2).

Lemma 3. The ith column of Q, Qi, is equal to 0.5c1c2(Li+0.5(m− 1)− 2c−2
1 ),

where

Li =
i−2∑
j=1

i−1∑
k=j+1

P(ji) ∗ P(ki) −
i−1∑
j=1

m∑
k=i+1

P(ji) ∗ P(ik) +
m−1∑
j=i+1

m∑
k=j+1

P(ij) ∗ P(ik).

Here, Li is the linear combination of (m− 1)(m− 2)/2 interaction columns,

with “+” indicating i’s synergistic triplet interactions and “−” indicating i’s

antagonistic interactions. Thus, β2i ̸= 0 implies the presence of triplet interaction

effects involving component i. If the QCP model (2.9) is true, the symmetry with

which the (m−1)(m−2)/2 interaction columns appear in Li implies (m2−1)(m−
3)/3 constraints on the τ parameters of the triplet PWO model; see Appendix

A.2 for details.
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Table 3. Overlap between the SOCP model and the triplet PWO model.

Number of parameters for: *% of SO-CP’s variation

m SO-CP(2.11) Triplet-PWO(2.2) 2FI-PWO(2.3) explainable by Triplet-PWO

3 5 6 6 100.00

4 9 15 18 98.72

5 14 31 46 97.58

6 20 56 101 96.67

7 27 92 197 95.93

8 35 141 351 95.34

* % of variation based on trace correlation (3.6).

3.4. The SOCP model and the 2FI PWO model

The SOCP model (2.11) is nested in the 2FI PWO model (2.3). To show

that the 2FIs in U are necessary to achieve nested models, the product of the

first two columns of B is

x1x2 =
c21
2

[
m− 3

2
+

m∑
j=3

(P(12) ∗ P(2j) − P(12) ∗ P(1j))

+
1

2

m−1∑
j=3

m∑
k=j+1

(P(1j) ∗ P(2k) + P(1k) ∗ P(2j))

]
. (3.5)

Without the extra 3
(
m
4

)
interactions in U of model (2.3), the triplet PWO model

(2.2) still accounts for most of the explanatory power of the SOCP model. We

can use the trace correlation (Hopper (1959)) to quantify this measure. For the

full m! design, let XT = [1n, P, T] denote the model matrix for (2.2), and XSO

denote the full-rank model matrix for (2.11) obtained by deleting one column

from Q or R. Then,

r̄2 =
trace{(XT

SOXSO)
−1XT

SOXT (X
T
TXT )

−1XT
TXSO}

(m− 1)(m+ 2)/2
(3.6)

gives the proportion of variation in the SOCP model (2.11) that is accounted for

by the triplet PWO model (2.2). Table 3 shows this proportion for m = 3, ..., 8.

Thus, for m ≥ 4, the triplet PWO model cannot explain all the variation that

can be modeled with the SOCP model, but the proportion missed is small. The

triplet model (2.2) already has (m3 − 3m2 − m + 6)/3 more parameters than

model (2.11); to make the models fully nested requires adding 3
(
m
4

)
additional

interactions.
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First-order CP model (2.5) Main-effects PWO model (2.1)

Quadratic CP model (2.9) Triplet PWO model (2.2)

2FI PWO model (2.3)SOCP model (2.11)Nominal CP model (2.4)

Figure 1. Nesting relationship between order-of-addition models.

3.5. Summary

Figure 1 summarizes the nesting of the parametric models discussed in

Sections 3.1–3.4. The FOCP and QCP models are the most parsimonious, with

a maximum of m and 2m− 1 parameters, respectively.

4. Examples

Here, we use the connections between these models to better understand

three examples. The first example, already discussed in Section 2.4, has also

been analyzed by Mee (2020) and Yang, Sun and Xu (2020); the design is a full

4!, and involves four chemotherapeutic drugs. The second example also appears

in Mee (2020), Yang, Sun and Xu (2020), and Stokes and Xu (2022); it involves

five chemotherapeutic drugs, investigated in an experiment with two blocks of

size 20. In each case, the response is % cell inhibition, coded by subtracting

30. In Examples 1 and 2, we use the uncoded % cell inhibition values provided

by Wang, Xu and Ding (2020) as the response. Wang, Xu and Ding (2020) also

provide the names and dose levels of the chemotherapeutics, and describe multiple

experiments involving changes in both order and dose. The third example,

discussed in Section 4.3, involves six clearcoat components, and has also been

analyzed by Voelkel and Gallagher (2019).

4.1. Example 1 (m = 4, n = 24)

The following four chemotherapeutics are studied: (1) paclitaxel; (2) doxo-

rubicin; (3) mitoxantrone; (4) cisplatin. Wang, Xu and Ding (2020) perform

the full 4! design, so we may fit any of the models discussed in Sections 2 and

3. Mee (2020) found the main-effects PWO model satisfactory, with no need

for interaction terms. Yang, Sun and Xu (2020) found the nominal CP model
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Table 4. Example 1: Tests for H0 : βi = 0, (i = 1, 2, 3).

Source df Sum of squares Mean Square F p-value

CP model 9 1,066.19 118.47 8.43 0.0003

Linear 3 994.94 331.65 23.61 9.7e-6

Quadratic 3 51.43 17.14 1.22 0.34

Cubic 3 19.81 6.60 0.47 0.71

Error 14 196.63 14.045

Total 23 1,262.81

satisfactory, and fit the reduced model using just four terms:

Inhibit%̂ = 82.85− 10.86z21 − 4.41z22 − 9.18z34 − 6.09z41. (4.1)

The simpler FOCP model (2.5) also suffices, because it exhibits no lack-of-fit

vis-a-vis the main-effects PWO model or the nominal CP model. The lack-of-fit

test (3.1) is

F (FOCP model vs. PWO model)

=
[(267.87− 211.54)/(20− 17)]

211.54/17
=

18.78

12.44
= 1.51,

with p-value Pr(F3,17 > 1.51) = 0.25. Thus, the data are consistent with the

parsimonious first-order model and its constraints (3.3) on the pairwise order

effects.

Table 4 partitions the variation explained by model (2.4) into linear,

quadratic, and cubic portions. Neither the quadratic nor the cubic terms account

for the systematic variation in Inhibit%. Once again, the FOCP model proves

consistent with the data. Furthermore, the FOCP model is easier to interpret

than the reduced nominal CP model (4.1). Based on the signs of the terms in

(4.1), to maximize this fitted response, component 2 should not be in either of

the first two positions, and component 3 (4) should not be in position 4 (1); seven

of the 24 sequences satisfy these four conditions. The FOCP model’s estimates,

reported in Table 1, are more straightforward. The model indicates a preference

for component 3 in position 1 and component 2 in position 4; the only remaining

ambiguity is whether to place component 1 or 4 in position 2. If one retains

the term contrasting component 1’s position with that of component 4 (with

p-value 0.062), the optimal sequence is 3142 (mitoxantrone, paclitaxel, cisplatin,

doxorubicin).

4.2. Example 2 (m = 5, n = 40)

The following five chemotherapeutics are studied: (1) paclitaxel; (2)

doxorubicin; (3) mitoxantrone; (4) cisplatin; (5) etoposide. Example 2 is more
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Table 5. Example 2: Partitioning sum of squares for the SOCP model.

Source df Sum of squares Mean Square F p-value

SO model 14 1,412.9176

Blocks 1 166.1785

First-order | Blocks 4 873.0682 218.267 16.81 8.3e-7

Quadratic | First-order 4 121.6122 30.403 2.34 0.0827

Second-order | Quadratic 5 252.0587 50.412 3.88 0.0097

Error 25 324.6562 12.986

Total 39 1,737.5737

challenging to analyze, because neither the main-effects PWO model nor the

nominal CP model adequately account for these data. Mee (2020, Table 6) shows

that the main-effects PWO model is not satisfactory, and that some triplet terms

are needed. Yang, Sun and Xu (2020) found that the nominal CP model fits better

than the main-effects PWO model, but that two interactions are also needed for

the CP model. Stokes and Xu (2022) found that their SOCP model was preferred

to their FOCP and QCP models. Table 5 shows a sequential partitioning of the

sum of squares for the SOCP model.

Is the SOCP model adequate? Adding pure cubic terms to the SO model is

not useful (F = 9.17/13.71 = 0.67; p = 0.62). Similarly, PWO terms added to

the SOCP model are not significant (F = 2.70/16.24 = 0.17; p = 0.98). These

nonsignificant results lend support to the SOCP model, which has R2 = 81.3%.

Stokes and Xu (2022) use the AIC to select a reduced model with only two

interactions and one quadratic term. For ease of interpretation, we express their

model in terms of the elements of O, with possible values 1, . . . , 5:

Inhibit%̂ = 60.09± 2.04 + 0.18oi2 − 2.24oi3 + 0.92oi4 − 2.28oi5 (4.2)

+0.63(oi3 − 3)2 + 0.91(oi2 − 3)(oi5 − 3)− 0.82(oi3 − 3)(oi5 − 3).

The first-order terms indicate that components 3 and 5 should appear early,

and that component 4 should appear last. The quadratic term for component

3 strengthens the benefit of having component 3 first, and the 3∗5 interaction

indicates that if component 3 is first, the need to have component 5 early is

reduced. The sequence 35214 has the highest Inhibit%̂: 61.7; there are five other

sequences with Inhibit%̂ > 60.7, all beginning with component 3 (mitoxantrone):

31524, 35124, 32514, 35241, and 31452.

Consider now a PWO model with triplet interactions, selected using a

stepwise regression with the AIC; this is the same model selection procedure

used by Stokes and Xu (2022) and Yang, Sun and Xu (2020) to obtain their

models. The selected triplet PWO model is



604 MEE

Inhibit%̂ = 50.47± 2.57 + 0.84P(12) − 0.85P(13) − 1.92P(15) − 1.68P(25) (4.3)

+2.95P(34) + 0.03P(35) + 2.19P(12) ∗ P(15) − 2.67P(13) ∗ P(15) + 1.68P(34) ∗ P(35).

(This model differs from that of Yang, Sun and Xu (2020, Equation 10) because

they allowed interactions from U; that is, they fit terms from (2.3) rather than

(2.2).) The main effects in (4.3) indicate that sequences with “3 before 4” and

“5 before 1 before 2’” are desired. Without the interactions, whether component

3 or 5 comes first matters little, given the 0.03 coefficient for P(35). However, the

last interaction term produces a strong preference for “3 before 5.” The terms

involving P(15) are (−1.92 + 2.19P(12) − 2.67P(13)) ∗ P(15), and sequences with “1

before 2” and “3 before 1” make this 2.94P(15); thus, component 5 should come

after component 1, reversing the order indicated by α̂(15) = −1.92.

Now, we compare the favored sequences for these two models. For the

reduced triplet model (4.3), the four sequences with the order “3512” (and 4

anywhere after 3) have the same highest predicted response. For the reduced

SOCP model (4.2), the four sequences with the highest predicted response all

begin with component 3 and end with component 4. Thus, only the sequence

35124 scores among the best four for both models. These models do agree that

a main-effects model does not suffice, because the effect of chemotherapeutic 5’s

position depends on the positions of chemotherapeutics 2 and 3.

Yang, Sun and Xu (2020, Equation (11)) proposed a reduced nominal CP

model with two interactions for these data. For their model, all six sequences that

begin “35xxx” have the same maximum predicted response; the six sequences

with “3x5xx” have the next best predicted response.

Xiao and Xu (2021) analyze these data using Kriging models. There is

considerable inconsistency between the predicted best sequences according to

these various models; only the sequence 31524 is among the best for all models.

For the fitted MUK model with 18 estimated parameters, Xiao and Xu (2021)

reported that only five of the 10 sequences with the largest predicted reported

were among the 80 sequences not in the experiment. In contrast, the parametric

models consistently predict a higher percentage of the best sequences among

the two-thirds of sequences not in the experiment. Of the top 12 sequences for

the reduced nominal CP model (reduced SOCP model), 8 (7) were not in the

experiment; for the reduced triplet PWO model, 9 of 13 sequences with the top

predicted responses were not in the experiment. This difference between the

predictions with the highest (or lowest) response for parametric and Gaussian

process models is likely to occur in other applications, especially when n/m! is

small.



SYNTHESIS OF ORDER-OF-ADDITION MODELS 605

4.3. Example 3 (m = 6, n = 24)

Voelkel and Gallagher (2019) describe three order-of-addition experiments

seeking to increase the shear thinning behavior of automotive coatings. The

response variable is the log of the ratio of low shear viscosity (LSV) to high

shear viscosity (HSV). Here, a higher LSV means the coating will not separate

when stored, and a lower HSV means the coating will level well when sprayed,

producing a smoother finish. Their third experiment involved the order of the

following six components: 1) primary binder resin; 2) secondary binder resin; 3)

flow and leveling additive; 4) rheology modifier #1; 5) crosslinking resin; and 6)

rheology #2. The data for this 24-run experiment appear in Voelkel (2019c). The

full main-effects PWO model (2.1) has R2 = 95.3% (RMSE = 0.047), whereas

a model with just three of the 15 main-effect terms has R2 = 91.8% (RMSE =

0.039):

log10

(
LSV

HSV

)̂
= 0.454− 0.120P(14) − 0.024P(15) + 0.037P(16). (4.4)

Consider now the various CP models. We cannot estimate the full model

(2.4), because n < 25, but we can estimate each of the models of Stokes and Xu

(2022). The FOCP model (2.5) has R2 = 61.8% (RMSE = 0.089). Only two

terms are statistically significant, β̂1 = 0.056 and β̂4 = −0.069, indicating that

the primary binder resin should be last and the rheology modifier #1 should be

first. This is consistent with (4.4). However, if we assume model (2.1) is the

true model, model (2.5) has significant lack-of-fit, per the test in equation (3.1):

F = 0.0126/0.0022 = 5.64; p = 0.011. Before investigating this lack-of-fit, we

consider the QCP and SOCP models. Models (2.9) and (2.11) have RMSE =

0.096 and 0.110, respectively, both larger than that of the FOCP model. Thus,

adding higher-order functions of component position does not explain the order

effects here.

What does explain the lack-of-fit of the FOCP model? In (3.3), we observed

that the first-order Stokes and Xu model assumes α(jk) = α(1k) − α(1j), for all

2 ≤ j < k ≤ m. Thus, one might define individual lack-of-fit terms as

LOFjk = P(jk) − P(1k) + P(1j) for all 2 ≤ j < k ≤ m. (4.5)

Adding all
(
m−1
2

)
LOFjk columns to model (2.5) creates a model that is a

reparameterization of the PWO model (2.1). A simple analysis strategy to

assess departures from model (2.5) is to include all terms for the FOCP model,

and then to use forward selection to add the LOFjk terms. Doing so for this

example, we add the following three terms with naive p-values < 0.05: in

order, LOF46 (p = 0.002), LOF24 (p = 0.004), and LOF34 (p = 0.049). These

indicate that the constraints on the PWO coefficients α16 = α12 + α26 and
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Figure 2. a) log10(LSV/HSV) versus O4 by P(14); b) log10(LSV/HSV) versus O4 −O1.

α14 = α12 + α24 = α13 + α34 required by the FOCP model are contradicted

by the data.

Figure 2a reveals how log10(LSV/HSV) is not affected by the position of

component 4 once we control for the pairwise order P14. Finally, if we include

xi (i = 1, . . . , 6) and the 15 P(ij) factors as eligible terms, and perform forward

selection, the first five terms to enter are PWO factors; when x3 enters in step

6, its p-value = 0.28. These results indicate the importance of pairwise orders,

especially relative to component 1, the primary binder resin.

Building on the ideas of Peng, Mukerjee and Lin (2019), Voelkel and

Gallagher (2019) considered several tapered PWO models. The largest extra

tapering parameter found was for P(14), but it was not statistically significant

(p = 0.094). Figure 2b shows some evidence of the P(14) effect diminishing

when component 4 precedes component 1 as the distance increases, but none

when component 4 follows component 1. Finally, Voelkel and Gallagher (2019)

commented that component 6 is less sensitive to order effects, and so imparts

shear thinning to all samples. In Section 5, we show how to detect whether a

component has any effect.

5. Discussion

This paper synthesizes the parametric CP models and the pairwise order

models, showing their connections and identifying lack-of-fit tests. Building on

the results of Schoen and Mee (2023) for the FOCP model, we provide closed-

form expressions for the information matrix for the QCP and SOCP models,

provided that the design has the same normalized information matrix as that
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of the full m! design. The FOCP model by Stokes and Xu (2022) is nested

in both the main-effects PWO model (2.1) and the nominal CP model (2.4).

Example 1 illustrated the FOCP model’s advantage in terms of interpreting which

sequences are best. Example 2 illustrated a case requiring interactions to fit the

data satisfactorily. Section 3.4 discussed connections between CP and PWO

models with interactions, and Example 2 illustrated the potential similarity of

the PWO models with triplet interactions and the Stokes and Xu (2022) SOCP

model (2.11). Example 3 illustrated how to use single degree-of-freedom lack-of-fit

terms (4.5) to identify whether the simplifying assumptions (3.3) of the FOCP

model are contradicted by the data. When the FOCP model has significant lack-

of-fit vis-a-vis the main PWO model, the example in Section 4.3 showed how

to include single degree of freedom lack-of-fit terms to determine which PWO

parameters are needed. These examples show why it is useful to have a variety

of order-of-addition models.

Although we focus on parametric order-of-addition models, Example 2

afforded an opportunity to compare the Kriging CP models of Xiao and Xu (2021)

with the parametric CP models. Whether the Kriging models or the parametric

models better identify the best sequences based on fractional designs is worthy

of further investigation. As mentioned at the end of Example 2, it is relevant to

compare alternative models in terms of their ability to identify the sequence that

is best. Mee and Li (2024) give a methodology for multiple comparisons with the

best (MCB) inference.

Order-of-addition experiments with fixed levels are ill-equipped to determine

whether a component has any effect at all. This question seems to require

experiments in which a step is omitted or a dose level is set to zero. One might

conceive of designs with runs that drop one component. This approach, and

the larger class of experiments that vary both the sequence and the dose, are

important areas of ongoing research on design construction and modeling; see

Wang, Xu and Ding (2020), Rios, Winker and Lin (2022), and Jiang and Zhang

(2022).
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Appendices

A.1. Second-order CP model information matrix

Here we present the normalized information matrix for the two versions of

the second-order model presented in Section 2.6. First, consider the model matrix
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arranged as XSO = [1n,B,Q,R]. For the full n = m! design,

XT
SOXSO

n
=

1

n




1 0 0 1T
nR

0 BTB 0 0

0 0 QTQ QTR

RT1n 0 RTQ RTR


 . (A.2)

From Section 2.5, we know that BTB/n = QTQ/n = (m− 1)−1(mIm−1 −Jm−1),

and that RT1n/n = −(m− 1)−11(m−1)(m−2)/2.

Lemma 4. Let c(ij)∗(kl) denote an element of RTR/n corresponding to the cross-

product of xixj and xkxl, Then the diagonals and off-diagonals of RTR/n are

c(ij)∗(ij) =
m3 − 1.8m2 −m+ 4.2

m3 −m2 −m+ 1
(A.3)

c(ij)∗(jk) =
−m2 + 1.6m+ 4.2

m3 −m2 −m+ 1
(A.4)

c(ij)∗(kl) =
3m+ 4.2

m3 −m2 −m+ 1
. (A.5)

Lemma 5. Let c(ij)∗Qk
denote an element of RTQ/n corresponding to the cross-

product of xixj and Qk = (c2/c1)(x
2
k − 1). Then

c(ij)∗Qk
=




−
√
0.8

m− 1


m2 − 4

m2 − 1
if i = k or j = k,

4

m− 1


m+ 2

5(m2 − 1)(m− 2)
otherwise.

(A.6)

The formulae (A.3)–(A.6) were determined with the aid of symbolic compu-

tation.

Since XSO does not have full column rank, one must drop a column from Q

or a column from R. In Section 2.6, we argued for dropping a column from R.

A.2. Constraints from the quadratic CP model on the triplet PWO

parameters

Here we elucidate the constraints imposed by the quadratic CP model (2.9)

on the triplet model’s τ parameters. Lemma 3 shows that each Qi is a linear

combination of
�
m−1
2


triplet interaction terms, one for each {ijk} triplet: P(ij) ∗

P(ik) if i < j < k; P(ji) ∗ P(ik) if j < i < k; P(ji) ∗ P(ki) if j < k < i.

Assume that model (2.9) is the true model. The coefficient of Qi, β2i, implies

a coefficient of ±0.5c1c2β21 to
�
m−1
2


triplet interactions. For instance, for i = 2,

the m − 2 antagonistic interactions P(12) ∗ P(2k) (3 ≤ k ≤ m) have coefficient

−0.5c1c2β21, while the
�
m−2
2


synergistic interactions P(2j) ∗P(2k) (3 ≤ j < k ≤ m)

have coefficient 0.5c1c2β21. If we write the triplet model in terms of the 2
�
m
2


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synergic interactions, then we replace each antagonistic interaction term using

the equality P(ji) ∗P(ik) = P(ji) ∗P(jk)+P(jk) ∗P(ik)−1n. For the full triplet model

with all synergistic interactions, the quadratic model implies the constraints

τij·ik
0.5c1c2

= β2i − β2j ∀ 1 ≤ i < j < m; k = j + 1, . . . ,m,

τik·jk
0.5c1c2

= β2k − β2j ∀ 1 < j < k ≤ m; i = 1, . . . , j − 1,

where we take the convention that β2m = 0. These constraints imply an additive

structure for sets of PWO interaction coefficients. For example, for m ≥ 5,

τ12·15 + τ23·25 + τ34·35
0.5c1c2

= (β21 − β22) + (β22 − β23) + (β23 − β24)

= (β21 − β24) =
τ14·15
0.5c1c2

.
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