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Abstract: Testing the independence or block independence of high-dimensional ran-

dom vectors is important in multivariate statistical analysis. Recent works on high-

dimensional block-independence tests aim to extend their validity beyond specific

distributions (e.g., Gaussian) or restrictive block sizes. In this paper, we propose

a new and powerful test for the block-structured correlation of high-dimensional

random vectors, for sparse or nonsparse alternatives, without strict distributional

assumptions. The statistical properties of the proposed test are developed under

the asymptotic regime that the dimension grows proportionally with the sample

size. Empirically, we find that the proposed test outperforms existing tests for a

variety of alternatives, and works quite well when there are few existing tests at our

disposal.

Key words and phrases: High-dimension, multivariate statistical analysis, non-

sparse alternatives, sparse alternatives, testing block-independence.

1. Introduction

Driven by a wide range of scientific applications, testing the independence

of random vectors is of great importance in multivariate statistical analysis. In

the conventional low-dimensional setting with p/n→ 0, where p is the dimension

of the random vector and n is the sample size, complete and block indepen-

dence tests are well established. For complete independence, Anderson (2003)

proposed a likelihood ratio test (LRT) for Gaussian populations. For block in-

dependence, Wilks (1935) and Sugiura and Fujikoshi (1969) developed effective

LRTs for Gaussian populations and derived their asymptotic distributions under

regularity conditions.

In the high-dimensional setting, the classical LRT is invalid or cannot be

defined as the dimension p becomes greater than the sample size n. In recent

years, researchers have made great advances related to high-dimensional indepen-

dence tests. For complete independence, Bai et al. (2009) proposed a corrected

LRT when p/n → y ∈ (0, 1). Jiang and Yang (2013) studied the LRT when
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p/n→ y ∈ (0, 1]. Schott (2005) developed a test based on the Frobenius norm of

the sample correlation matrix for p > n. Zhou (2007) and Cai and Jiang (2011)

extended the results of Jiang (2004) to obtain the extreme distribution of coher-

ence of the sample correlation matrices. Li and Xue (2015) proposed a quadratic-

type statistic and an extreme-value-type statistic. For high-dimensional block

independence, Jiang, Bai and Zheng (2013) developed a corrected LRT and trace

test when p/n→ y ∈ (0, 1). Jiang and Yang (2013) studied the LRT for Gaussian

populations when p/n→ (0, 1]. Bao et al. (2017) proposed a Schott-type statistic

when the dimension of every block of random variables is less than the sample

size. Yamada, Hyodo and Nishiyama (2017) allowed a more general setting by

using the Frobenius norm of the sample covariance matrix. Paindaveine and

Verdebout (2016) proposed a high-dimensional sign test for the block-structured

correlation between the random variables of two blocks under appropriate sym-

metry assumptions.

This study develops a new and powerful test for the block-structured corre-

lation of a high-dimensional random vector, for sparse or nonsparse alternatives

and with no strict distributional assumptions, under the asymptotic regime of

p/n → y ∈ (0,∞). To this end, we propose a two-term test statistic. The first

term is Tn1 = tr[Sn − diag(S11, . . . ,SKK)]2, where the sample covariance matrix

Sn is a natural estimator of the population covariance matrix, and the block-

diagonal matrix diag(S11, . . . ,SKK) is a population covariance matrix estimator

under a block-structured correlation. The statistic Tn1 does not impose any con-

ditions on the dimension because it does not involve a matrix inversion. The

statistic Tn1 is the sum of the squared entries of Sn − diag(S11, . . . ,SKK), and

captures the overall difference between Sn and diag(S11, . . . ,SKK), even if the

individual entries of Sn−diag(S11, . . . ,SKK) are small. That is, Tn1, similarly to

the test of Yamada, Hyodo and Nishiyama (2017), has good power for nonsparse

alternatives. The second term is a screening term, Tn0, which is added to Tn1 to

enhance the power under sparse alternatives. Thus, the proposed test statistic

Tn1 +Tn0 is effective for both nonsparse and sparse alternatives. To examine the

performance of the proposed test statistic, the limiting null distribution is derived

as p/n→ y ∈ (0,∞), allowing y to be greater than one. Simulation studies show

that the type-I errors of the proposed test can be well maintained. Moreover,

under the alternative hypothesis, the limiting distribution of the proposed test is

discussed, and the asymptotic unbiasedness of the proposed test is proved. When

the dimension is smaller than the sample size, simulation studies are conducted

to compare our proposed test with existing tests for Gaussian populations. In

the empirical power comparison, our proposed test outperforms other tests de-
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signed for high dimensions. Even when the population is nonGaussian and the

dimension is greater than the sample size, our proposed test performs well.

The remainder of the paper is organized as follows. In Section 2, we propose

the test statistic, derive its limiting distribution under the null and alternative

hypotheses, and present the asymptotic power function to show that the proposed

test is asymptotically unbiased. In Section 3, we conduct simulation studies to

compare the proposed test with several existing tests. A real data set is analyzed

in Section 4 for illustration. Section 5 concludes the paper.

2. Test on Block-Structured Correlation

Let {x1, . . . ,xn} be a random sample from the p-dimensional population

random vector x = (x1, . . . , xp)
> with mean vector µ and covariance matrix Σ.

Let x̄ = n−1
∑n

i=1 xi and Sn = (n − 1)−1
∑n

i=1(xi − x̄)(xi − x̄)> be the sample

mean and sample covariance matrix, respectively. Without loss of generality, the

random vector x = (x1, . . . , xp)
T can be formulated using K random variable

blocks: {x1, . . . , xp1}, {xp1+1, . . . , xp1+p2}, . . . , {xp1+p2+···+pK−1+1, . . . , xp}, where

p = p1 + · · · + pK , and K is permitted to increase with n at some rate. Let

Σij be the covariance matrix of the ith and jth random variable blocks. The

population and sample covariance matrices can be partitioned into Σ = (Σij)
K
i,j=1

and Sn = (Sij)
K
i,j=1, respectively. Testing the block-structured correlation of x

can be formulated as testing

H0 : Σ = diag(Σ11, . . . ,ΣKK), (2.1)

where diag(Σ11, . . . ,ΣKK) is the block-diagonal matrix from K blocks {Σkk, k =

1, . . . ,K}. A natural estimator of Σ is Sn. Under the null hypothesis, a natu-

ral estimator of Σ is diag(S11, . . . ,SKK). For a Gaussian population, the LRT

statistic is Wilks (1935)

log |Sn| − log |diag(S11, . . . ,SKK)|,

which is the entropy loss of Sn and diag(S11, . . . ,SKK). The entropy loss for

the covariance matrix estimation can be found in James and Stein (1961) and

Muirhead (1982). Jiang, Bai and Zheng (2013) proposed the following trace test

statistic for the case of K = 2:

tr

[(
S
−1/2
11 S12S

−1/2
22

)(
S
−1/2
11 S12S

−1/2
22

)>]
,
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which is the quadratic loss of Sn and diag(S11,S22). The quadratic loss for

the covariance matrix estimation can be found in Olkin and Selliah (1977), Haff

(1980), and Muirhead (1982). For the block-structured correlation, regardless

of the entropy loss or quadratic loss for the covariance matrix estimation, the

inversion of a sample covariance matrix or log-determinant of Skk is involved; as

a result, the block dimension cannot be larger than the sample size.

We propose a test statistic with two terms, where one term is the distance

between Sn and diag(S11, . . . ,SKK), and the other term is a screening term.

Motivated by the Frobenius distance between matrices, we propose the following

statistic:

Tn1 = tr[Sn − diag(S11, . . . ,SKK)]2.

Note that the statistic Tn1 as used in Yamada, Hyodo and Nishiyama (2017) is the

sum of the squared entries of Sn−diag(S11, . . . ,SKK), which captures the overall

difference even when the individual entries of Sn− diag(S11 ,. . ., SKK) are small

nonzero numbers. Therefore, the statistic Tn1 is not only suitable for low and

high dimensions, but is also expected to perform well for nonsparse alternatives.

Furthermore, to enhance the power of Tn1 when Σ− diag(Σ11, . . . ,ΣKK) is very

sparse, a screening term Tn0 is added to Tn1. A similar idea is used in Fan, Liao

and Yao (2015). Let the screening term be

Tn0 = p2δ{max(`1,`2)∈A0 n(s`1`2 )2(θ̂`1`2 )−1>s∗(n,p)},

where δ{·} is an indicator function, s∗(n, p) is a threshold depending on (n, p),

Sn = (s`1`2)
p
`1,`2=1, θ̂`1`2 = n−1

∑n
i=1[(x`1i − x̄`1)(x`2i − x̄`2)− s`1`2 ]2, and the set

A0 = {(`1, `2) : `1 ∈ {p̃i−1 + 1, . . . , p̃i}, `2 ∈ {p̃j−1 + 1, . . . , p̃j}, 1 ≤ i < j ≤ K},
(2.2)

with p̃i = p1 + · · · + pi, xi = (x1i, . . . , xpi)
>, x̄`1 = n−1

∑n
i=1 x`1i, and x̄`2 =

n−1
∑n

i=1 x`2i. The screening term Tn0 shows that if some s`1,`2 is sufficiently

large, then Tn0 is at least of order p2. Thus, the screening term Tn0 captures

the difference between Sn and diag(S11, . . . ,SKK), even when Σ− diag(Σ11, . . . ,

ΣKK) is very sparse. Our proposed test statistic is the sum of the two terms;

that is,

Tn = Tn1 + Tn0 (2.3)

= tr[Sn − diag(S11, . . . ,SKK)]2 + p2δ{max(`1,`2)∈A0 n(s`1`2 )2(θ̂`1`2 )−1>s∗(n,p)}.

This is expected to perform well for both nonsparse and sparse alternatives. The
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conditions needed on the threshold s∗ are given later.

2.1. Limiting null distribution of Tn

To facilitate the formulation, we use the following independent component

structure model for the data.

Assumption 1. Let {xi}ni=1 satisfy the independent component structure xi =

(x1i, . . . , xpi)
T = µ+ Σ1/2wi, where wi = (w1i, . . . , wpi)

>, and all elements {wji :

j = 1, . . . , p, i = 1, . . . , n} are independent and identically distributed (i.i.d.)

with E(wji) = 0, E(w2
ji) = 1, and finite fourth moments.

Remark 1. In fact, by (1.8) of Bai and Silverstein (2004), the existence of the

finite fourth moment of wji implies that there exists a sequence {ηn} satisfying

ηn → 0, ηnn
1/4 → +∞, and η−4

n Ew4
jiδ(|wji|>ηn

√
n) → 0.

Assumption 2. Assume that the number of blocks satisfies Kη2
n = o(1). More-

over, the spectral norm of Σ is bounded uniformly in p. The convergence regime

p/n→ y ∈ (0,∞), for some constant y, is satisfied.

In Assumption 1, moment conditions are imposed that are distribution free.

For example, the Gaussian distribution and many other distributions readily sat-

isfy the independent component structure. In Assumption 2, Kη2
n = o(1) allows

K to increase with n at some rate. In particular, for the Gaussian distribution,

we have

η−4
n Ew4

jiδ(|wji|>ηn
√
n) ≤ η−(4+m)

n n−m/2Ew4+m
ji δ(|wji|>ηn

√
n)

= o(η−(4+m)
n n−m/2) = o(1),

for any even m, if η−2
n = O(nm/(m+4)). Then, K can be of order o(n1−ε), for any

ε > 0.

Lemma 1. Under Assumptions 1 and 2, and under H0 specified by (2.1), we

have
Tn1 − µ

σ
→ N(0, 1) and

Tn1 − µ̂
σ0

→ N(0, 1),

where

µ =
(n2 − n− 1)[(trΣ)2 −

∑K
k=1(trΣkk)

2]

n(n− 1)2
,

µ̂ =
(n2 − n− 1)[(trSn)2 −

∑K
k=1(trSkk)

2]

n(n− 1)2
,
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σ2
0 = 4(n−1trΣ2)2 − 4

K∑
k=1

(n−1trΣ2
kk)

2,

σ2 = σ2
0 + 4n−3

K∑
k=1

(trΣkk − trΣ)2

[
2 trΣ2

kk + βw

pk∑
`=1

(e>`kΣkke`k)
2

]
,

βw = E(w4
ji)− 3.

Here, e` is a p-dimensional vector with the `th element equal to one and all other

elements equal to zero, and e`k is a pk-dimensional vector with the `th element

equal to one and all other elements equal to zero.

Note that we have suppressed the subscript n in many of the quantities we

use, such as µ and σ2. The proof of Lemma 1 is provided in supplementary file

1. The asymptotic variance σ2
0 depends on the unknown parameters tr(Σ2) and

tr(Σ2
kk), for k = 1, . . . ,K. However,

(n− 2)−1[tr(S2
kk)− (n+ 2)−1(trSkk)

2]− n−1tr(Σ2
kk) = op(1), k = 1, . . . ,K,

which can be used to estimate σ2
0; see the proof in supplementary file 1. Moreover,

under H0, we have tr(Σ2) =
∑K

k=1 tr(Σ2
kk); thus,

(n− 2)−1
K∑
k=1

[tr(S2
kk)− (n+ 2)−1(trSkk)

2]− n−1tr(Σ2) = op(1).

Therefore, σ2
0 can be consistently estimated by

σ̂2
0 = 4(n− 2)−2

{
K∑
k=1

[tr(S2
kk)− (n+ 2)−1(trSkk)

2]

}2

−4(n− 2)−2
K∑
k=1

[tr(S2
kk)− (n+ 2)−1(trSkk)

2]2.

Bai and Saranadasa (1996) suggested a uniformly minimum variance unbiased

estimator of tr(Σ2) under the normality assumption, but we have used an asymp-

totic approximation with a finite-sample correction factor to better control type-I

errors. Let

p2
0 = p2 − p2

1 − · · · − p2
K . (2.4)

The following result provides the asymptotic justification for the proposed test.

Theorem 1. Under Assumptions 1 and 2, and under H0 specified by (2.1),
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if lim infn→∞ inf(i,j)∈A0
var[(x1i − Ex1i)(x1j − Ex1j)][var(x1i)var(x1j)]

−1/2 > 0,

s∗(n, p) − 4 log p0 → +∞, and sup1≤`≤p E exp(t0|x`1|m0) < ∞, for some con-

stants t0 > 0 and 0 < m0 ≤ 2, then we have

σ̂−1
0 (Tn − µ̂)→ N(0, 1).

Note that Tn has the same null distribution as Tn1 in the asymptotic sense,

and the second term Tn0 plays a role mainly when the alternative hypothesis is

true. The one-sided rejection region for H0 at the nominal level α is

{x1, . . . ,xn : Tn − µ̂ > σ̂0q1−α}, (2.5)

where qα is the αth quantile of the standard normal distribution.

Remark 2. To apply the proposed test in practice, we need to choose the thresh-

old s∗(n, p). There are many choices for the threshold, as long as it satisfies

s∗(n, p)− 4 log p0 → +∞. For simplicity, in this paper, the threshold is taken to

be

s∗(n, p) = [4 + (log log n− 1)2](log p0 − 0.25 log log p0) + q, (2.6)

where q satisfies exp[−(8π)−1/2 exp(−q/2)] = 0.99. The threshold ensures that

even if n and p0 are small, the probability of the event Tn0 = 0 is bounded by

0.01 under H0, because max(`1,`2)∈A0
n(s`1`2)

2 θ̂−1
`1`2
−4 log p0 +log log p0 converges

to a type-I extreme value distribution, exp[−(8π)−1/2 exp(−t/2)], under the null

hypothesis (see Xiao and Wu (2013)). The probability of the event Tn0 = 0 be-

comes negligible under H0 when either n or p0 is moderately large. For example,

if n = 200 and p0 = 250, the relevant probability is only 0.002.

Remark 3. Our proposed hypothesis test (2.5) is a global test on correlations

between different blocks. If the null hypothesis is rejected, under the sparsity

assumption, we may use the multiple testing method of Cai and Liu (2016) to

identify individual nonzero correlations in two steps. Let

Tij =

∑n
`=1(xi` − x̄i)(xj` − x̄j)√

nθ̂ij

, (2.7)

where θ̂ij = n−1
∑n

`=1[(xi` − x̄i)(xj` − x̄j)− sij ]2.

Step 1: bootstrap procedure. Let {x∗j1, . . . , x∗jn} be a sample drawn randomly

with replacement from {xj1, . . . , xjn}, for every j ∈ {1, . . . , p}. Let x∗` =

(x∗1`, . . . , x
∗
p`)

T , for ` = 1, . . . , n, and compute the bootstrap test statistic

T ∗ij from x∗1, . . . ,x
∗
n, as in (2.7). When the above bootstrap procedure is
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repeated N times, we have N bootstrap test statistics T ∗ij1, . . . , T
∗
ijN . Let

G∗n,N (t) =
2

Np2
0

N∑
`=1

∑
(i,j)∈A0

I{|T ∗ij`| ≥ t},

where A0 is given in (2.2).

Step 2: Large-scale correlation tests with bootstrap given in Cai and

Liu (2016). Let

t̂ = inf

{
0 ≤ t ≤

√
4 log p0 − 2 log(log p0) :

G∗n,N (t)(p2
0)/2

max{
∑

(i,j)∈A0
I{|Tij | ≥ t}, 1}

≤ α
}
.

If t̂ does not exist, then let t̂ =
√

4 log p0. We reject H0ij : σij = 0 whenever

|Tij | ≥ t̂, for (i, j) ∈ A0.

Remark 4. On the surface, it seems that we need the eighth moment of xi to

calculate the variance of Tn1. In fact, Yamada, Hyodo and Nishiyama (2017)

require a finite eighth moment condition. However, our Lemma 1 and Theorem

2 require only the fourth moment of xi.

2.2. Limiting distribution of Tn under the alternative hypothesis

Next, we study the theoretical property of the proposed statistic Tn under

the alternative hypothesis. Let the difference between the null hypothesis and

the alternative hypothesis be A = Σ2 − diag(Σ2
11, . . . ,Σ

2
KK).

Theorem 2. Under Assumptions 1 and 2, we have

σ−1
1 (Tn1 − µ̂− µ1)→ N(0, 1),

where µ1 = (n2 − n+ 2)trA/(n− 1)2 and

σ2
1 = σ2

0 + 4

[
2n−1trA2 + βwn

−1
p∑
`=1

.(e>`Ae`)
2

]
.

Here, e` is a p-dimensional vector with the `th element equal to one and all other

elements equal to zero, and βw = Ew4
ij − 3.

The asymptotic power function of Tn is βTn
(A) = P (Tn − µ̂ > σ̂0q1−α).

We have P (Tn − µ̂ > σ̂0q1−α) − [1 − Φ(σ−1
1 (σ0q1−α − µ1))] = o(1). Because
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trA = trΣ2 −
∑K

k=1 trΣ2
kk =

∑
1≤k1 6=k2≤K trΣk1k2Σk2k1 ≥ 0, it is easy to see

that σ2
1 ≥ σ2

0 and µ1 ≥ 0. If the population covariance matrix departs from

the null hypothesis (in the sense that trA > ε0 > 0, for any positive constant

ε0), then σ2
1 > σ2

0 and µ1 > 0. Under such an alternative hypothesis, we have

(σ0q1−α − µ1)/σ1 < q1−α; that is,

βTn
(A) > α.

Thus, the proposed test Tn is asymptotically unbiased. In fact, when n is suffi-

ciently large, βTn
(A) is an increasing function of trA, where trA measures the

departure from the null hypothesis.

Theorem 3. Under Assumptions 1 and 2 and Σ2 = diag(Σ2
11, . . . ,Σ

2
KK) + A,

( 1) we have βTn
(A) ≥ α when n is sufficiently large; in particular, when trA >

ε0 > 0, for any positive constant ε0, we have βTn
(A) > α for sufficiently

large n; and

( 2) if trA tends to infinity or P (max(`1,`2)∈A0
n(s`1`2)

2(θ̂`1`2)
−1 > s∗(n, p)) con-

verges to one, then we have βTn
(A)→ 1 as n→∞.

Theorem 3 shows that the proposed test Tn is asymptotically unbiased. If the

absolute value of at least one entry of A is greater than
√

(log p0 log n)/n, then

there exists (`1, `2) ∈ A0 such that n(s`1`2)
2(θ̂`1`2)

−1 (s∗(n, p))−1 ≈ c log n/ log

log n converges to infinity in probability under the conditions of Theorem 1.

Thus, P (max(`1,`2)∈A0
n(s`1`2)

2(θ̂`1`2)
−1 > s∗(n, p)) → 1 holds by Remark 2, and

the power converges to one.

Remark 5. Support recovery of Σ: Following the proof of Theorem 5 in Cai,

Liu and Xia (2013), under the conditions

p

n
→ y ∈ (0,+∞), min

(i,j)∈A0

θij(σiiσjj)
−1/2 > τ,

E|(xj1 − Exj1)(σjj)
−1/2|8+ε ≤ c0, ∀ 1 ≤ j ≤ p,

for some c0 > 0, ε > 0, τ > 0, with the set A0 defined in (2.2), we have

lim inf
Σ∈W0

P (Ψ̂ = Ψ)→ 1,

where

Ψ = {(i, j) : σij 6= 0, (i, j) ∈ A0},
Ψ̂ = {(i, j) : n(sij − σij)2(θ̂ij)

−1 ≥ 4 log p0, (i, j) ∈ A0},
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W0 =

{
Σ : min

(i,j)∈Ψ
n1/2|σij |(θij)−1/2 ≥ 4

√
log p0, (i, j) ∈ A0

}
,

with Σ = (σij)
p
i,j=1 and p2

0 = p2 − p2
1 − · · · − p2

K given in (2.4).

3. Simulation Studies

In this section, we evaluate the finite-sample performance of the proposed

test in terms of its type-I error rates and power. Because the proposed test

uses the Frobenius distance between the covariance matrices, we denote it as

FDS. The test proposed by Paindaveine and Verdebout (2016) was developed for

variables with mean zero. When applied to the centered variables (by removing

the sample mean) in high dimensions, the test has seriously inflated type-I errors;

therefore, we exclude it from the comparisons. The test used by Jiang, Bai and

Zheng (2013) is the same as the test of Bao et al. (2017) when K = 2, but has

slightly poorer performance when K = 3; thus, we include the latter test only.

The following three competing tests are used in our comparisons:

• “CLRT”: the test of Jiang and Yang (2013);

• “BHPZ”: the test of Bao et al. (2017);

• “YHN”: the test of Yamada, Hyodo and Nishiyama (2017);

We generate samples of size n from xi = 1p+Σ1/2wi, for i = 1, . . . , n, where

1p is a p-dimensional vector with all elements equal to one, wi = (w1i, . . . , wpi)
>,

and {wji, i = 1, . . . , n, j = 1, . . . , p} are i.i.d. as N(0, 1). To consider differ-

ent structures of Σ, we use Σ = 0.2Ip +
∑3

i=1 θiΣi for some values (θ1, θ2, θ3),

where Σ1 = (0.5|i−j|)pi,j=1 is approximately sparse in structure, Σ2 = Ip +

0.5(δ{|i−j|=1})
p
i,j=1 is sparse, and Σ3 = 0.98Ip + 0.021p1

T
p is a dense structure.

For each setting, we conduct 5,000 Monte Carlo simulations. For the type-I error

estimates, the standard errors are approximately 0.006.

At the sample size n = 200, we consider the dimension p = 60, 120, 180, and

the number of blocks K = 2, 3, with block sizes p1 = · · · = pK = p/K. The ROC

curves for the competing tests are plotted in Figure 1 under the null hypothesis

Σ = 0.2Ip and the alternative hypotheses Σ = 0.2Ip + Σi, for i = 1, 2, 3, at

n = 200 and p1 = p2 = p3 = 20. Clearly, the FDS test performs best for the

non-dense Σ. When Σ is dense, FDS and YHN are similar, but YHN is the worst

performer for the sparse alterative. Moreover, the empirical size and power of

each test are listed in Table 1 for a variety of settings. All methods maintain

type-I errors well. The proposed FDS test outperforms the other tests in terms



HYPOTHESIS TESTING FOR BLOCK-STRUCTURED CORRELATION 729

of power. In particular, when (p1, p2, p3) = (20, 20, 20) and Σ = 0.2Ip + Σ1,

the empirical power of the FDS test is about 98%, and that of the other tests is

between 36% and 53%. For (p1, p2, p3) = (60, 60, 60) and Σ = 0.2Ip + Σ2, the

empirical power of the FDS test is about 88%, whereas that of the other tests

ranges between at most 10% and 14%. Overall, the proposed FDS test is more

powerful than its competitors. When Σ is dense, FDS and YHN are similar, and

both lead the comparison.

When the dimension is much greater than the sample size, we examine the

performance of FDS, BHPZ, and YHN only, because CLRT cannot handle such

cases. In the simulation, the null hypothesis is Σ = 0.2Ip and the alternative

hypothesis is Σ = 0.2Ip+θ1Σ1 +θ2Σ
∗
2 +θ3Σ3, where Σ∗2 = Ip+ρ0(δ{|i−j|=1})

p
i,j=1,

with ρ0 = 0.3+0.3 exp(0.009p)/(0.15+exp(0.009p)) and θi = 0 or 1, for i = 1, 2, 3.

The distribution of wji is taken to be N(0, 1) or Gamma(4, 2)-2. In this study, we

consider the sample sizes n = 150, 300, dimensions p = 180, 360, 900, and number

of blocks K = 2, 3, with block sizes p1 = · · · = pK = p/K. The empirical size

and power of each test are listed in Tables 2 and 3. The type-I errors are all close

to the nominal level of 0.05. Moreover, as the dimension increases, the empirical

power of the tests increases with n. For example, when Σ = 0.2Ip + Σ∗2, p = 180

and K = 2, the power of FDS increases from 71.24% to 99.96% quickly as the

sample size increases from n = 150 to 300, whereas that of other tests rises much

less. To save space, Table 3 is given in supplementary file 1.

Note that the proposed FDS test does not always dominate the others when

p is small. We refer to the ROC curve in Figure 1 under the null hypothesis

Σ = 0.2Ip and the alternative hypotheses Σ = Σ4 = 1.2Ip+0.18(δ{|i−j|=1})
p
i,j=1+

0.1(δ{|i−j|=3})
p
i,j=1, with a sample size n = 200, dimension p = 6, and K = 3

blocks of equal sizes, p1 = p2 = p3 = 2. In this case, the population is Gaussian

and the likelihood is correctly specified, so it is not surprising that CLRT shows

slightly better performance than FDS.

To check the sensitivity of the threshold s∗(n, p) and any scaled version of

Tn0, we consider the rejection region

{x1, . . . ,xn : Tn(c1, c2)− µ̂ > σ̂0q1−α}, (3.1)

which is similar to (2.5), where µ̂ and σ̂0 are in (2.4), and

Tn(c1, c2) = Tn1 + c1 · Tn0(c2),

with Tn1 = tr[Sn − diag(S11, . . . ,SKK)]2 and
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Figure 1. The first three ROC curves are the results from three simulation settings given
in Section 3 with different specifications Σ1 (upper left panel), Σ2 (upper right), Σ3

(lower left), with wij being i.i.d from N(0, 1), (n, p) = (200, 60), and p1 = p2 = p3 = 20.
The ROC curve in the lower-right panel refers to the case of (n, p) = (200, 6) with K = 3
equal block sizes and Σ4. The curves for FDS and YHN are nearly identical in the
lower-left panel and lower-right panel.

Tn0(c2) = p2δ{max(`1,`2)∈A0
n(s`1`2

)2(θ̂`1`2
)−1>s∗(n,p,c2)},

s∗(n, p, c2) = c2 · [4 + (log log n− 1)2](log p0 − 0.25 log log p0) + q.

We have s∗(n, p) = s∗(n, p, 1), Tn0 = Tn0(1), and Tn = Tn(1, 1). We consider the

sample size n=200, dimension p = 60, 120, 180, and number of blocks K = 2, 3,

with block sizes p1 = · · · = pK = p/K. The parameters c1 and c2 are taken

as c1 = 0.001, 0.5, 2 and c2 = 0.5, 1, 2. The empirical test sizes and power for

different values of c1 and c2 are listed in Tables 4 and 5. The simulation results

in Table 4 show that when c1 is small or large, the empirical test sizes and

empirical power values are similar for the different values of c1. The simulation

results in Table 5 show that when c2 is small, the empirical test size cannot be

controlled. Furthermore, when c2 is large, although the empirical test size can

be controlled, the empirical power decreases. Thus, the penalty Tn0 is somewhat
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Table 1. Empirical test sizes and power (in percentage) for comparison of four methods
with n = 200, (p1, . . . , pK) = (p/K, . . . , p/K), and K = 2, 3 for Gaussian variables. The
vector (θ1, θ2, θ3) specifies the Σ matrix. The rejection region is given in (2.5).

(θ1, θ2, θ3) Methods p = 60 120 180 60 120 180

K = 2 K = 3

Empirical test sizes

(0, 0, 0) FDS 4.50 4.95 4.94 5.10 4.85 4.88

CLRT 4.74 5.52 4.86 5.02 5.30 5.12

BHPZ 4.58 5.12 4.52 4.88 5.09 4.68

YHN 4.64 5.07 5.07 5.18 4.94 4.88

Empirical powers

(1, 0, 0) FDS 87.86 76.52 69.28 98.06 93.20 88.42

CLRT 19.52 9.40 6.98 38.74 14.28 8.38

BHPZ 17.46 8.80 6.64 36.08 14.72 9.55

YHN 27.28 13.22 9.72 52.48 22.78 14.83

(0, 1, 0) FDS 86.70 75.52 68.62 97.50 92.68 88.02

CLRT 38.28 13.26 7.86 75.42 24.86 10.92

BHPZ 30.86 11.82 7.82 66.78 23.62 13.26

YHN 15.68 92.50 7.60 26.12 14.18 10.02

(0, 0, 1) FDS 32.46 69.86 90.90 38.48 78.90 95.32

CLRT 12.82 12.38 8.78 15.62 15.90 11.70

BHPZ 11.92 11.32 9.00 18.10 20.20 17.62

YHN 32.62 70.20 91.02 38.96 79.16 95.42

sensitive for the threshold s∗(n, p), but is not sensitive for the scaled version of

Tn0. Moreover, to show that our test is valid for p/n → y = 0, Table 6 presents

simulation results with n = 500, 750, 1,000 and p = 6, 12, 18. To save the space,

Tables 4–6 are given in supplementary file 1.

4. Demonstration with a Real-Data Example

To further demonstrate the power of the proposed test, we use data from

a major supermarket in northern China (see Wang (2009)). In the data set,

each record contains the daily sales volume of individual products over a 463-day

period. We are interested in understanding the correlation between vegetable

sale volumes and dairy sale volumes. We have 26 major vegetables and 58 dairy

products in the study; that is, (p1, p2) = (26, 58).

To evaluate the power of various tests at small sample sizes, we randomly

draw the sale volumes of vegetables and dairy products using p1 + p2 + 2 days;
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Table 2. Empirical test sizes and power (in percentage) for comparison of three methods
with (p1, . . . , pK) = (p/K, . . . , p/K) and K = 2, 3 for Gaussian variables. The vector
(θ1, θ2, θ3) specifies the Σ matrix. The rejection region is given in (2.5). When a test is
not applicable, the corresponding entries are marked −.

(θ1, θ2, θ3) n Methods p=180 360 900 180 360 900

K = 2 K = 3

Empirical test sizes

(0, 0, 0) 150 FDS 5.11 4.72 4.22 4.86 4.78 4.48

BHPZ 4.62 — — 5.08 4.76 —

YHN 5.50 4.94 5.06 5.26 4.86 5.24

300 FDS 5.08 4.92 4.93 5.08 5.08 5.02

BHPZ 5.08 4.70 — 5.26 5.30 —

YHN 5.04 5.08 5.33 5.42 5.32 5.12

Empirical powers

(1, 0, 0) 150 FDS 38.22 25.78 14.06 57.02 38.85 21.80

BHPZ 6.14 — — 7.84 5.26 —

YHN 8.74 6.22 5.44 12.41 7.66 5.66

300 FDS 97.74 94.16 87.52 99.95 99.51 97.74

BHPZ 8.74 5.92 — 13.76 7.48 —

YHN 12.42 8.14 6.60 22.86 11.36 7.72

(0, 1, 0) 150 FDS 71.24 59.54 41.78 89.52 80.20 61.92

BHPZ 9.32 — — 20.72 7.10 —

YHN 7.68 5.86 5.32 10.22 7.18 5.24

300 FDS 99.96 99.88 99.74 100 100 100

BHPZ 32.22 10.50 — 74.24 27.82 —

YHN 10.42 7.2 6.70 16.02 9.85 7.00

(0, 0, 1) 150 FDS 76.18 98.48 100 84.28 99.38 100

BHPZ 7.24 — — 11.20 6.48 —

YHN 76.87 98.52 100 84.56 99.46 100

300 FDS 99.36 100 100 99.82 100 100

BHPZ 14.84 9.16 — 34.16 21.02 —

YHN 99.34 100 100 99.82 100 100

that is, the sample size is n = p1 + p2 + 2. Based on 10,000 random draws at this

sample size, FDS and YHN reject the null hypothesis that the sale volumes of veg-

etables and dairy products are uncorrelated 100% of the time. The tests CLRT

and BHPZ reject the null hypothesis 58.71% and 84.22% of the time, respec-
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tively. For the sensitivity analysis with (c1, c2) = (0.001, 1), (5, 1), (1, 0.5), (1, 2),

the proposed FDS test still rejects the null hypothesis 100% of the time.

When we take a small number of days randomly from the data set, auto-

correlation is negligible. To use the whole sample to understand or confirm the

correlation between the prices of these two products, we use an autoregressive

AR(1) model to fit the data, and then examine the residuals. In this case, all the

tests we considered reject the null hypothesis of no correlation at the level 0.001.

The fact that the proposed test is able to detect the correlation with high power,

even when the sample size is slightly above the total dimension, indicates that

the test is valuable in the analysis of moderately high-dimensional problems.

5. Discussion

We have proposed a test for detecting block-structured correlation in high-

dimensional variables. The validity of the test is established under a framework

where the dimension of the variables grows linearly with the sample size. For

an explanation of why the framework of p/n tending to a constant is useful

for high-dimensional data analysis, refer to Marcenko and Pastur (1967) and

Bai and Silverstein (2010). The test can be used in a wide range of problems

for Gaussian or nonGaussian variables, and attains good power for sparse or

nonsparse alternatives. Our simulations show that the proposed test performs

very well in terms of both the type-I error rate and power relative to existing

tests, when the latter are applicable. Unlike the other tests, the proposed method

does not invert any covariance matrices and requires only finite fourth moments

of the random variables. More importantly, the proposed test performs quite

well, even when the dimension exceeds the sample size. When p is small and n

is large, and the data are Gaussian, the proposed test loses some power against

the LRT, but the loss of power is limited even in these situations in our empirical

studies.

Supplementary Material

The first online Supplementary Material file contains proofs of Lemma 1 and

Theorems 1–3. The second file contains three lemmas and detailed proofs of

(S2.6)–(S2.8) in the first file. These proofs are conducted under Assumptions

1–2. The sample covariance matrix Sn of 84 major vegetables and 58 dairy

products in Section 4 is available at https://math127.nenu.edu.cn/shuxue/

HData/webpage/covariancematrix.zip.

https://math127.nenu.edu.cn/shuxue/HData/webpage/covariancematrix.zip
https://math127.nenu.edu.cn/shuxue/HData/webpage/covariancematrix.zip
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