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Abstract: Current-status data occur in many areas, and the analysis of such data

attracted much attention. In this study, we consider a regression analysis of

current-status data in the presence of informative censoring, for which most existing

methods either apply only to limited situations or are computationally unstable.

Here, we propose a new sieve maximum likelihood estimation procedure under

the class of semiparametric generalized odds rate frailty models. The proposed

method uses the latent variable to describe the informative censoring or relationship

between the failure time of interest and the censoring time. We develop a novel

expectation-maximization algorithm for determining the proposed estimators, and

establish their asymptotic consistency and normality. The results of a simulation

study show that the proposed method performs well in practical situations. In

addition, we demonstrate the proposed method by applying it to a set of real data

arising from a tumorigenicity experiment.
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informative censoring, sieve approach.

1. Introduction

Current-status data occur in many areas, including clinical studies, epidemi-

ology studies, and sociological surveys. By current-status data, we usually mean

that in a failure-time study, each study subject is observed only once and, thus,

the failure time of interest is known only to be either smaller or larger than

the observation time, rather than being observed exactly. In other words, each

observation is either left or right censored (Sun (2006); Jewell and Emerson

(2013)). In this study, we examine a regression analysis of such data in the

presence of dependent or informative censoring, meaning that the failure time of

interest and the observation time may be correlated.

An area that often produces current-status data with informative censoring

is that of tumorigenicity experiments about the time to tumor onset. In such

experiments, it is usually the case that only the death or sacrifice time of an

animal is observed, and one knows only the presence or absence of a tumor at the
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observation time. Thus, only current-status data are available on the tumor onset

time. It is well known that if a tumor is between lethal and nonlethal, as is often

the case, then the tumor onset time and the death time are correlated. We discuss

an example of this in Section 6. Although many methods have been proposed

for the analysis of tumorigenicity experiments, most of the existing methods are

parametric approaches (Dinse and Lagakos (1983); Lagakos and Louis (1988)).

The analysis of current-status data has recently attracted a great deal of

attention, particularly regression analysis of such data with independent or non-

informative censoring. For example, Huang (1996), Rossini and Tsiatis (1996),

and Lin, Oakes and Ying (1998) discuss the problem under the proportional

hazards (PH) model, proportional odds (PO) model, and additive hazards model,

respectively. Chen, Tong and Sun (2009) also consider the problem, but for

multivariate situations. Note that, as pointed out by Shiboski (1998) and

others, ignoring informative censoring could yield biased or misleading results

or conclusions.

Two types of semiparametric methods have been proposed for regression

analyses of current-status data with informative censoring. The first is the copula

model-based methods, which use a copula function to describe the relationship

between the failure time of interest and the observation time. The second is the

frailty-based approaches. Examples of the former include the methods of Ma,

Hu and Sun (2015) and Zhao et al. (2015), who examine situations in which the

failure time of interest marginally follows the PH model or the additive hazards

model, respectively. Du, Hu and Sun (2019), Xu et al. (2019), and Xu, Zhao

and Sun (2020) developed similar estimation procedures for cases in which the

failure time of interest marginally follows a class of generalized probit models,

a class of linear transformation models, and the accelerated failure time model,

respectively. Note that, as pointed out by Ma, Hu and Sun (2015) and others,

a drawback of the copula model-based approach is that it is usually difficult or

impossible to estimate the copula function and association parameter without

imposing some strong assumptions.

Frailty-based methods employ latent variables to describe the association

between the failure time of interest and the observation time. Among others,

Zhang, Sun and Sun (2005) and Li et al. (2017) proposed such methods under

the assumption that the failure time of interest follows the additive hazards frailty

model and the PH frailty model, respectively. It is well known that the two models

may not provide an appropriate fit to the data, because they are individual

models. As a result, Chen et al. (2012) investigated using the transformation

frailty model with a piecewise constant baseline hazard function, and developed

an expectation-maximization (EM) algorithm. However, their EM algorithm can

be inefficient and needs a large computational effort.

The class of generalized odds rate (GOR) models has recently attracted

attention, and includes the PH and PO models as special cases. For example,
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Scharfstein, Tsiatis and Gilbert (1998) and Banerjee et al. (2007) discuss fitting

the GOR model to right-censored failure time data. In addition, Zhou, Zhang

and Lu (2017) proposed an EM algorithm for the maximum likelihood estimation

of the GOR model based on interval-censored failure time data, meaning that

the failure time of interest is observed only to belong to some intervals (Sun

(2006)). However, all existing methods apply only to the case of independent

censoring. Therefore, we consider a class of GOR frailty models for a regression

analysis of current-status data with informative censoring, and propose a sieve

maximum likelihood estimation procedure (Shen and Wong (1994); Shen (1997)).

In particular, we use gamma-Poisson latent variables to develop a novel and

efficient EM algorithm.

The remainder of the paper is organized as follows. We first introduce some

notation and the GOR frailty model, and then describe the resulting likelihood

function in Section 2. The proposed estimation approach is presented in Section

3, along with the development of the novel EM algorithm for the implementation

of the proposed estimators. The method uses I-spline functions to approximate

the unknown functions involved, and in Section 4, we establish the asymptotic

properties of the proposed estimators. In Section 5, we present results from an

extensive simulation study conducted to assess the finite-sample performance of

the proposed approach that show that it works well in practice. We apply the

proposed method to data from a tumorigenicity experiment in Section 6, and

conclude the paper in Section 7.

2. Assumptions, Models, and the Likelihood Function

Consider a failure time study consisting of n independent subjects. For

subject i, let Ti denote the failure time of interest and Xi be the corresponding p-

dimensional vector of covariates. Furthermore, for subject i, let Ci and Cc
i denote

two times related to the observation on Ti, where Ci may be related to Ti and Cc
i

is independent of Ti. Suppose that each subject is observed only at time C̃i =

min(Ci, C
c
i ). That is, Ti is either left or right censored, and we have current-status

data T ′i only. In the tumorigenicity experiment example, Ci represents the time

of death and Cc
i is the sacrifice time. Define ∆i = I(C̃i = Ci), the administrative

censoring indicator, and δi = I(Ti ≤ C̃i), the observed censoring indicator. Then,

the observed data have the form O = {Oi = (C̃i,∆i, δi, Xi), i = 1, . . . , n}.
To describe the covariate effects and the relationship between Ti and Ci,

suppose that there exists a latent variable bi with mean one and variance η.

Furthermore, suppose that given Xi and the random effect bi, Ti follows the

GOR frailty model with the cumulative hazard function given by

ΛT (t|Xi, bi) = Gr {Λ1(t) exp (X ′iβ1) bi} , (2.1)
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where Λ1(t) denotes an unknown baseline cumulative hazard function, β1 is a p-

dimensional vector of regression parameters, and Gr(·) is a prespecified increasing

transformation function indexed by a nonnegative argument r. It is easy to see

that this model includes many commonly used models as special cases. For

example, by setting G0(x) = x and Gr(x) = log(1 + rx)/r, with r = 1, model

(2.1) gives the PH frailty model and the PO frailty model, respectively. Under

model (2.1) with Gr(x) = log(1 + rx)/r, the survival function of Ti given Xi and

bi can be written as

ST (t) =

 exp
{
−Λ1(t)eXi

′β1bi
}

r = 0{
1 + rΛ1(t)eXi

′β1bi
}−1/r

r > 0
.

In practice, covariates may also affect Ci. To describe this, assume that given

Xi and bi, the cumulative hazard function of Ci has the form

ΛC (t|Xi, bi) = Λ2(t) exp (X ′iβ2) bi , (2.2)

where Λ2(t) and β2 are defined as Λ1(t) and β1, respectively. That is, Ci follows

the PH frailty model. Let SC(t) = exp{−Λ2(t) exp (X ′iβ2) bi} and fC(t) =

dΛ2(t) exp (X ′iβ2) biSC(t) be the survival and density functions, respectively, of

Ci given Xi and bi, and assume that Ti and Ci are independent given bi. Then,

the likelihood function of θ = (β′1,β
′
2, η,Λ1,Λ2)

′
can be written as

Ln(θ|O) =
n∏
i=1

[∫ ∞
0

{
1− ST (C̃i)

}
fC(C̃i)f (bi; η) dbi

]δi∆i

×
{∫ ∞

0

ST (C̃i)fC(C̃i)f (bi; η) dbi

}(1−δi)∆i

×
[∫ ∞

0

{
1− ST (C̃i)

}
SC(C̃i)f (bi; η) dbi

]δi(1−∆i)

×
{∫ ∞

0

ST (C̃i)SC(C̃i)f (bi; η) dbi

}(1−δi)(1−∆i)

, (2.3)

where f(·; η) denotes the density function of b′i, which is assumed to be known

up to η.

To estimate θ, one natural method is to directly maximize the aforementioned

likelihood function. However, this may be difficult and unreliable because of the

complex structure of the likelihood function. To address these problems, we first

introduce a sieve approximation, and then develop an efficient EM algorithm by

incorporating gamma-Poisson latent variables in the maximization process.
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3. Sieve Maximum Likelihood Estimation

In this section, we estimate the regression parameters β1 and β2, among

others. As discussed earlier, it may not be easy to deal with unknown functions

Λ1(t) and Λ2(t) based on the likelihood function Ln(θ|O). Here, following

Ramsay (1988) and others, we employ a sieve approach to approximate Λ1(t)

by using I-splines. One can use the same method for the function Λ2(t), but it

is usually much easier to estimate it directly. Let Θ denote the parameter space

of θ, and define the sieve space

Θn =
{
θn =

(
(β′1,β

′
2, η)

′
,Λ1n,Λ2

)}
= B ⊗M1

n ⊗M2,

where B is compact subset of R2p+1,

M1
n =

{
Λ1n(t) =

Kn∑
l=1

γlIl(t),M1 ≥ γl ≥ 0, l = 1, . . . ,Kn

}
,

M2 =

{
Λ2(t) :

1

M2

≤ Λ2(t) ≤M2

}
,

withM1 andM2 being some positive constants. In the above, I ′l are nondecreasing

integrated spline basis functions, each ranging from zero to one, and γ =

(γ1, . . . , γKn
) are nonnegative coefficients that ensure the monotonicity of Λ1n(t).

The number of the spline basis functions, Kn, is equal to the number of interior

knots plus the degree.

As mentioned above, even with the approximation, maximizing the likelihood

function is still not easy, owing to its complex form and the involvement of the

latent variables b′i. To deal with this, a typical approach is to develop a standard

EM algorithm, as in Chen et al. (2012), but it may not be stable or efficient. To

overcome these issues, following McMahan, Wang and Tebbs (2013) and Li et al.

(2017), we use the gamma-Poisson data augmentation, which greatly simplifies

the computional burden and yields stable and efficient estimators. Before we

present the proposed EM algorithm, note that if b′i were known, we would have

the following pseudo-complete data likelihood function:

L(θ|O, b) =
n∏
i=1

{1−ST (C̃i)}δiST (C̃i)
1−δi{dΛ2(C̃i) exp (X ′iβ2) bi}∆iSC(C̃i)f (bi; η) ,

conditional on b = (b1, . . . , bn).

Let φ be a random variable following the gamma distribution Γ(1/r, r), with

r > 0. Then, the survival function of Ti can be rewritten as

ST (t) =
{

1 + rΛ1(t)eXi
′β1bi

}−1/r

=

∫ ∞
0

exp{−φΛ1(t)eXi
′β1bi}f(φ; r)dφ.
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Note that limr→0{1 + rΛ1(t)eXi
′β1bi}−1/r = exp{−Λ1(t)eXi

′β1bi}, meaning that

φ degenerates to a constant one for r = 0. Thus, we can consider the new

pseudo-complete data likelihood function

L1(θ|O,b,φ, r) =
n∏
i=1

[
1− exp

{
−φiΛ1(C̃i) exp (X ′iβ1) bi

}]δi
×
[
exp

{
−φiΛ1(C̃i) exp (X ′iβ1) bi

}]1−δi

×
{
dΛ2(C̃i) exp (X ′iβ2) bi

}∆i

× exp
{
−Λ2(C̃i) exp (X ′iβ2) bi

}
f (bi; η) f(φi; r),

based on b and φ = (φ1, . . . , φn), where φi
i.i.d.∼ Γ(1/r, r), for i = 1, 2, . . . , n.

Let {Zi, i = 1, . . . , n} be a set of independent Poisson random variables

with means φiΛ1(C̃i) exp (X ′iβ1) bi, given φi and bi. It is easy to show that the

likelihood function L1(θ|O,b,φ, r) can be equivalently written as

L1(θ|O,b,φ, r) =
n∏
i=1

P (Zi > 0)δiP (Zi = 0)1−δi
{
dΛ2(C̃i) exp (X ′iβ2) bi

}∆i

× exp
{
−Λ2(C̃i) exp (X ′iβ2) bi

}
.

This suggests that we should consider the pseudo-complete data likelihood

function

L2(θ|O,b,φ,Z, r) =
n∏
i=1

[
1

Zi!

{
φiΛ1(C̃i) exp(X ′iβ1)bi

}Zi

e−φiΛ1(C̃i) exp(X′iβ1)bi

]
×
{
dΛ2(C̃i) exp (X ′iβ2) bi

}∆i

exp
{
−Λ2(C̃i) exp (X ′iβ2) bi

}
f (bi; η) f(φi; r),

based on b,φ, and Z = (Z1, . . . , Zn), and with the constraint δiI (Zi > 0) + (1−
δi)I (Zi = 0) = 1, for i = 1, . . . , n.

Finally note that we can decompose Zi as the sum of Kn independent latent

variables Z ′il, with Zil following a Poisson distribution with mean φiγlIl(C̃i)

exp (X ′iβ1) bi, conditional on φi and bi, for l = 1, . . . ,Kn. Thus, we propose

to basing our EM algorithm on the pseudo-complete data likelihood function

Lc(θ) =
n∏
i=1

[
Kn∏
l=1

1

Zil!

{
φiγlIl(C̃i) exp(X ′iβ1)bi

}Zil

e−φiγlIl(C̃i) exp(X′iβ1)bi

]
×{dΛ2(C̃i) exp (X ′iβ2) bi}∆i exp{−Λ2(C̃i) exp (X ′iβ2) bi}f (bi; η) f(φi; r),

based on {b,φ,Zl = (Z1l, . . . , Znl) , l = 1, . . . ,Kn}, and with the constraint
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δiI(
∑Kn

l=1 Zil > 0) + (1 − δi)I(
∑Kn

l=1 Zil = 0) = 1, for i = 1, . . . , n. Note that

by integrating over b,φ, and Z ′l , Lc(θ) reduces to the observed data likelihood

function given in (2.3).

Let lc (θ) = logLc (θ) and define θ = (θ′1,θ
′
2, η)′, with θ1 = (β′1,Λ1n)′ and

θ2 = (β′2,Λ2)′. In the E-step of the EM algorithm, we need to determine the

conditional expectation of lc (θ) with respect to all latent variables. Specifically,

at the mth iteration, the conditional expectation of lc (θ) can be expressed as the

summation of four parts

Q
(
θ;θ(m)

)
= Q1

(
θ1;θ(m)

)
+Q2

(
θ2;θ(m)

)
+Q3

(
η;θ(m)

)
+Q4

(
θ(m)

)
,

where

Q1

(
θ1;θ(m)

)
=

n∑
i=1

Kn∑
l=1

{log (γl) +X ′iβ1} Ê (Zil)− γlIl(C̃i) exp (X ′iβ1) Ê (φibi) ,

Q2

(
θ2;θ(m)

)
=

n∑
i=1

∆i(log dΛ2(C̃i) +X ′iβ2)− Λ2(C̃i) exp (X ′iβ2) Ê (bi) ,

Q3

(
η;θ(m)

)
= nη−1 log η−1 − n log Γ

(
η−1
)

+ η−1
n∑
i=1

[Ê {log (bi)} − Ê (bi)],

and Q4(θ(m)) denotes a function of θ(m) free of θ. In the above, Ê(Zil), Ê(φibi),

Ê(bi), and Ê (log bi) denote the conditional expectations with respect to all latent

variables.

In the calculation of the conditional expectations above, note that

Ê(Zi) = ∆iΛ1n(C̃i) exp(X ′iβ1)Ebi

{
bi

1− ST (C̃i)

}
.

Using Zil | Zi ∼ Binomial[Zi, φiγlIl(C̃i) exp(X ′iβ1)bi/{φiΛ1n(C̃i) exp(X ′iβ1)bi}]
and applying the iterated rule of expectations, we have that

Ê(Zil) =
γlIl(C̃i)

Λ1n(C̃i)
Ê(Zi) = ∆iγlIl(C̃i) exp(X ′iβ1)Ebi

{
bi

1− ST (C̃i)

}
,

and

Ê(φibi) = Ebi

biST (C̃i)
r(1−δi)

{
1− ST (C̃i)

r+1

1− ST (C̃i)

}δi .
It is clear that none of the above conditional expectations have closed forms;

thus, we can approximate them using the Monte Carlo method. Specifically, the

conditional expectation of any arbitrary function h(bi) and sufficiently large L

can be calculated using
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Ebi{h (bi) | Oi, θ̂(m)} =

∫∞
−∞ h (bi) Ψi(bi; θ̂

(m))f(bi; η̂
(m))dbi∫∞

−∞Ψi(bi; θ̂(m))f(bi; η̂(m))dbi

≈ L−1
∑L

i=1 h (bil) Ψi(bil; θ̂
(m))

L−1
∑L

i=1 Ψi(bil; θ̂(m))
,

where

Ψi(bi;θ) = {1− ST (C̃i)}δiST (C̃i)
1−δi{dΛ2(C̃i) exp (X ′iβ2) bi}∆iSC(C̃i),

and {bil, l = 1, . . . , L} are generated form the density function f(bi; η
(m)).

In the M-step of the EM algorithm, by setting ∂Q1(θ1;θ(m))/∂γl = 0, we

calculate γl using the following closed-form expression:

γl =

∑n
i=1 Ê (Zil)∑n

i=1 Il(C̃i) exp (X ′iβ1) Ê (φibi)
, l = 1, . . . ,Kn. (3.1)

By substituting the estimators above into Q1(θ1;θ(m)), we obtain the score

functions for β1 as

n∑
i=1

Kn∑
l=1

Ê (Zil)

{
Xi −

∑n
i=1 Il(C̃i) exp (X ′iβ1) Ê (φibi)Xi∑n
i=1 Il(C̃i) exp (X ′iβ1) Ê (φibi)

}
= 0. (3.2)

To determine the updated estimators of β2 and Λ2(t), by treating Λ2(t) as a

piecewise constant function between the uncensored observation times, we have

the following score function:

∂Q2(θ2,θ
(m))

∂β2

=
n∑
i=1

∫ ∞
0

{
Xi − X̄ (t,β2)

}
dNi(t) = 0, (3.3)

where Ni(t) = I(C̃i ≤ t,∆i = 1) and

X̄ (t,β2) =

∑n
i=1 Yi(t) exp (X ′iβ2) Ê (bi)Xi∑n
i=1 Yi(t) exp (X ′iβ2) Ê (bi)

,

with Yi(t) = I(C̃i ≥ t). Thus, the estimator Λ̂
(m+1)
2 can be updated using the

Breslow-type estimator

Λ̂
(m+1)
2 (t) =

n∑
i=1

∫ t

0

dNi(s)∑n
i=1 Yi(s) exp(X ′iβ

(m+1)
2 )Ê (bi)

. (3.4)

Finally, we obtain the updated estimator of η by solving the score equation

∂Q3(η;θ(m))

∂η
= 0.



CURRENT STATUS DATA WITH INFORMATIVE CENSORING 75

The following EM algorithm combines the above steps.

Step 0. Select an initial estimate of θ(0), such as β
(0)
1 = β

(0)
2 = 0,γ(0) = 1,

η = 1, and a prespecified value of r;

Step 1. At the (m+1)th iteration, generate the random sample {bil, l = 1, . . . , L,

i = 1, . . . , n} from the density function f(bi; η
(m));

Step 2. Calculate the conditional expectations Ê(Zil), Ê(φibi), Ê(bi), and

Ê{log(f(bi; η))} based on θ(m);

Step 3. Update β̂
(m+1)
1 based on (3.2) by using the Newton−Raphson method,

and then determine γ
(m+1)
l using (3.1) for l = 1, . . . ,Kn;

Step 4. Update β̂
(m+1)
2 based on (3.3) by using the Newton−Raphson method,

and then determine Λ̂
(m+1)
2 using (3.4);

Step 5. Calculate η(m+1) by solving ∂Q3(η;θ(m))/∂η = 0;

Step 6. Repeat Steps 1-5 until the difference between the eatimates of two

consecutive iterations is less than a prespecified constant, such as 0.0001.

To implement this EM algorithm, we need to choose the degree of the splines

and the number of interior knots. Here, a popular approach is to arrange the

knots so that thay are equally spaced or based on the quartiles, and to set the

degree of the splines to two or three. An alternative is to try different values,

and then apply Akaike’s information criterion (AIC), defined as

AIC = −2ln(θ̂n) + 2dfk,

to choose the optimal model. In the above, θ̂n = (β̂′1, β̂
′
2, η̂, Λ̂1n, Λ̂2)′ denotes

the estimator, ln(θ̂n) = logLn(θ̂n), and dfk denotes the number of parameters to

be estimated. The same AIC can be used to choose the nonnegative argument

r, which we assume to be known, although this may not be true in practice.

Specifically, we can perform a grid search by considering a sequence of values for

r and choosing the value that gives the smallest AIC value.

4. Asymptotic Properties

In this section, we discuss the asymptotic properties of the proposed

estimator. Let θ0 = (β10,β20, η0,Λ10,Λ20) denote the true value of θ, and for

two different θ̌n and θ̃n ∈ Θn, define the norm

d(θ̌n, θ̃n)

=
(
‖Λ̌1n − Λ̃1n‖22 + ‖Λ̌2 − Λ̃2‖22 + ‖β̌1 − β̃1‖2E + ‖β̌2 − β̃2‖2E + ‖η̌ − η̃‖2E

)1/2

,
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where ‖ · ‖2 and ‖ · ‖E denote the L2 and Euclidean norms, respectively. For the

asymptotic properties, we need the following regularity conditions.

(C1) The maximum spacing of the knots satisfies ∆̃ = max2≤j≤kn+2 |tj − tj−1| =
O (n−ν), with v ∈ (0, 0.5). Moreover, there exists a constant M > 0 such

that ∆̃/δ̃ ≤ M uniformly in n, where δ̃ = min2≤j≤kn+2 |tj − tj−1| and kn is

the number of interior knots.

(C2) The covariates X ′i have a bounded support in Rp.

(C3) The true cumulative hazard functions, Λ10(t) and Λ20(t), are increasing

functions. In addition, the κth derivative of Λ10(t) is bounded and

continuous, and Λ20(t) satisfies 1/M2 ≤ Λ20(t) ≤M2.

(C4) Define ϑ = (β′1,β
′
2, η)

′
and

L(ϑ,y1,y2)(δ,∆, X) =

∫ ∞
0

{1− ST (c̃;ϑ, y1)}δ ST (c̃;ϑ, y1)
1−δ

fC (c̃;ϑ, y2)
∆

×SC (c̃;ϑ, y2)
1−∆

f(b; η)db.

Suppose that there exists t∗ in the support of the conditional distribution

of C̃ given X = x for which there are 2p+ 3 different values (δ,∆, X), such

that if(
a′1

∂

∂ϑ
+ a2

∂

∂y1

+ a3

∂

∂y2

)
logL(ϑ,y1,y2)(δ,∆, X)

∣∣∣∣
(ϑ,y1,y2)=(ϑ0,Λ1(t∗),Λ2(t∗))

= 0,

then a1 = 0 and a2 = a3 = 0, where (δ,∆) = (0, 0), (1, 0), (0, 1), or

(1, 1), SC (t;ϑ, y2(t)) = exp {−y2(t) exp (X ′β2) b}, fC {t;ϑ, y2(t)} = dy2(t)

exp (X ′β2) bSC {t;ϑ, y2(t)}, and

ST (t;ϑ, y1(t)) =

 exp
{
−y1(t)eX

′β1b
}

r = 0{
1 + ry1(t)eX

′β1b
}−1/r

r > 0
.

(C5) The matrix Σ, defined in the Supplementary Material is finite and positive

definite.

Note that the aforementioned conditions are mild and usually satisfied in

practice. In particular, Condition (C1) is the same as Condition 1 of Lu, Zhang

and Huang (2007), and is necessary for the construction of the spline sieve space

and the consistency of the spline likelihood-based estimators. The bounded

support assumption stated in Condition (C2) for covariates is commonly used in

the literature on current-status data, and is needed for the uniform convergence;

see Van der Vaart and Wellner (1996) for a detailed discussion. Condition (C3),

the smoothness assumption of the cumulative hazard functions, is standard in
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the nonparametric smoothing literature. Condition (C4) is a sufficient condition

for the identifiability of the parameters, and is common in the existing literature

(Li, Taylor and Sy (2001); Chang, Wen and Wu (2007)). The following theorems

give the asymptotic properties.

Theorem 1. Assume that Conditions (C1) − (C4) hold. Then, as n → ∞, we

have that

d(θ̂n,θ0) = Op(n
−(1−v)/2 + n−κv).

Theorem 2. Assume that Conditions (C1) − (C5) hold. Then, as n → ∞, we

have that

n1/2α′
(

(β̂1 − β10)′, (β̂2 − β20)′, (η̂ − η0)
)′

+

∫ τc

0

g(t)d
{

Λ̂2(t)− Λ20(t)
}

D−→ N(0,Σ),

where α is any (2p + 1)-dimensional vector with ‖α‖E ≤ 1, τc denotes the

longest follow-up time, g is a function with bounded variation on [0, τc],

and Σ is the semiparametric efficiency bound defined in the Supplementary

Material.

Proofs of these theorems are provided in the Supplementary Material. Note

that Theorem 1 states that the proposed estimator is consistent and achieves the

optimal convergence rate. Theorem 2 states that the proposed estimators β̂1, β̂2,

and η̂ are asymptotically efficient. In particular, by setting g = 0 in Theorem 2,

we have that

n1/2α′((β̂1 − β10)′, (β̂2 − β20)′, (η̂ − η0))′
D−→ N(0,Σβ1,β2,η).

In orderto perform an inference on β1,β2, and η, we need to estimate the

asymptotic covariance matrix of the corresponding estimators. Because it

is difficult to derive a consistent estimator of Σβ1,β2,η, we suggest using the

nonparametric bootstrap method (Efron (1981)), as follows. We first draw new

data sets of sample size n, with replacement, from the original observed data

O repeatedly Q times, where Q is a prespecified positive integer. The newly

resampled data sets are denoted by O(q), for q = 1, . . . , Q. Let β̂
(q)
1 , β̂

(q)
2 , and η̂(q)

denote the maximum likelihood estimators of β1, β2, and η, respectively, based

on the bootstrap sample O(q). Then, we can estimate the covariance matrix or

variance of β̂1, β̂2, and η̂ using the empirical covariance matrix or variance of

β̂
(q)
1 , β̂

(q)
2 , and η̂(q), respectively. The results of our simulation study, discussed

in the next section, suggest that this method works well for practical situations.
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Table 1. Simulation results for regression parameters based on simulated data with the
same baseline functions.

r Par. Bias SSE SEE CP Bias SSE SEE CP

(β11, β12, β21, β22) = (0, 0, 0, 0) (β11, β12, β21, β22) = (0.2, 0.2, 0.2, 0.2)

0 β11 0.007 0.274 0.280 95.2 0.027 0.278 0.278 95.4

β12 0.029 0.481 0.497 94.8 0.033 0.496 0.480 94.8

β21 0.006 0.264 0.262 93.0 0.062 0.258 0.255 93.4

β22 0.017 0.504 0.506 94.4 0.032 0.477 0.470 95.4

η 0.005 0.128 0.151 96.4 0.017 0.126 0.116 93.8

0.5 β11 -0.009 0.309 0.320 95.6 0.014 0.329 0.318 93.4

β12 0.019 0.562 0.565 93.8 0.072 0.560 0.551 94.2

β21 -0.009 0.259 0.257 94.4 0.044 0.279 0.251 91.6

β22 -0.014 0.482 0.494 93.0 0.043 0.492 0.469 93.6

η -0.018 0.112 0.138 95.4 -0.006 0.122 0.113 92.8

1 β11 0.004 0.347 0.353 94.8 0.013 0.360 0.360 93.4

β12 -0.005 0.624 0.630 95.8 0.038 0.607 0.620 93.4

β21 -0.004 0.253 0.249 93.6 0.045 0.258 0.248 93.4

β22 0.009 0.478 0.481 94.2 0.031 0.484 0.462 94.0

η -0.034 0.114 0.129 93.2 -0.016 0.115 0.111 92.6

2 β11 -0.001 0.442 0.431 93.2 0.026 0.431 0.432 93.6

β12 -0.031 0.782 0.751 93.2 0.051 0.783 0.750 93.2

β21 -0.009 0.253 0.242 92.8 0.054 0.274 0.243 92.2

β22 0.015 0.483 0.457 92.0 0.035 0.486 0.452 92.6

η -0.060 0.110 0.121 91.2 -0.049 0.102 0.106 92.4

5. A Simulation Study

We conducted an extensive simulation study to assess the finite-sample

performance of the proposed estimation procedure. In the study, we considered

two covariates, Xi1 and Xi2. The first covariate follows a Bernoulli distribution

with a success probability of 0.5, and the second covariate follows the uniform

distribution over (0, 1). The latent variables b′i were generated from a gamma

distribution with mean one and variance η = 0.4. To generate the observed

data, we assumed that Ti and Ci follow models (2.1) and (2.2), respectively,

with Λ1(t) = Λ2(t) = 0.05t2 or Λ1(t) = 0.5 log(1 + t), and Λ2(t) = 0.05t2. The

independent observation times Cc
i were set to the constant τc, which was chosen

to yield the desired censoring percentage. The results given below are based on

500 replications, with Q = 50, n = 200, and r = 0, 0.5, 1, or 2.

Tables 1 and 2 present the results for the estimation of the parameters by the

proposed method with the same baseline functions and various true values. The

results include the estimated bias (Bias), given by the average of the estimates

minus the true value, the sample standard error (SSE) of the estimates, the

average of the estimated standard errors (SEE), and the 95% empirical coverage
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Table 2. Simulation results for regression parameters based on simulated data with same
baseline functions.

r Par. Bias SSE SEE CP Bias SSE SEE CP

(β11, β12, β21, β22)=(0.2,0.2,-0.2,-0.2) (β11, β12, β21, β22)=(-0.2,-0.2,-0.2,-0.2)

0 β11 0.005 0.279 0.268 94.4 -0.033 0.278 0.280 93.4

β12 0.025 0.453 0.470 95.8 -0.005 0.472 0.497 95.6

β21 -0.053 0.240 0.261 96.8 -0.063 0.250 0.267 96.4

β22 -0.026 0.510 0.499 94.2 -0.024 0.485 0.498 95.4

η -0.029 0.085 0.119 95.0 -0.032 0.137 0.165 93.8

0.5 β11 -0.009 0.309 0.320 95.6 -0.006 0.323 0.326 96.0

β12 0.019 0.562 0.565 93.8 -0.009 0.556 0.570 95.6

β21 -0.009 0.259 0.257 94.4 -0.057 0.258 0.263 95.0

β22 -0.014 0.482 0.494 93.0 -0.042 0.480 0.495 95.2

η -0.018 0.112 0.138 95.4 -0.032 0.125 0.159 92.6

1 β11 -0.010 0.357 0.350 93.6 -0.003 0.362 0.361 92.4

β12 -0.029 0.605 0.612 95.0 -0.006 0.627 0.630 95.2

β21 -0.037 0.260 0.254 94.2 -0.027 0.253 0.255 95.0

β22 -0.003 0.497 0.482 92.8 -0.012 0.513 0.481 93.2

η -0.053 0.091 0.119 93.2 -0.051 0.117 0.141 92.2

2 β11 0.022 0.442 0.424 94.0 -0.002 0.418 0.433 96.4

β12 0.022 0.746 0.746 93.6 -0.011 0.742 0.758 94.2

β21 -0.032 0.248 0.247 95.0 -0.019 0.252 0.245 94.8

β22 -0.068 0.491 0.462 93.6 -0.047 0.474 0.460 92.2

η -0.059 0.090 0.114 90.8 -0.069 0.102 0.130 90.0

probability (CP). Here, for the monotone splines approximation, following Wang

et al. (2016), we used five equally spaced knots in terms of percentiles, and an

order of three for the monotone splines.

Tables 1 and 2 show that the proposed maximum likelihood estimators seem

to be unbiased, and that the bootstrap variance estimates are appropriate. In

addition, the normal approximation to the distribution of the estimators appears

to be reasonable, because all empirical coverage probabilities are close to the

nominal value. The results given in Tables 3 and 4 were obtained using different

baseline functions; the other settings were the same as those in Tables 1 and 2

on the estimation of the regression parameters. The results shown in 3 and 4 are

similar to those presented in Tables 1 and 2, again suggesting that the proposed

method performs well in practice.

Note that the proposed estimation procedure assumes that the distribution

of the latent variables b′i is known up to the parameter η; however, this may not

be true in practice. Thus, a question of interest is the robustness of the proposed

estimation procedure to the distribution. To assess this, we repeated the study

reported in Table 1, except that we generated b′i from a log-normal distribution
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Table 3. Simulation results on regression parameters based on the simulated data with
different baseline functions.

r Par. Bias SSE SEE CP Bias SSE SEE CP

(β11, β12, β21, β22) = (0, 0, 0, 0) (β11, β12, β21, β22) = (0.2, 0.2, 0.2, 0.2)

0 β11 -0.007 0.244 0.259 95.4 0.042 0.245 0.255 94.1

β12 0.032 0.438 0.456 95.2 0.076 0.423 0.443 95.5

β21 0.006 0.254 0.259 95.0 0.062 0.262 0.255 92.0

β22 -0.010 0.453 0.486 94.8 0.042 0.501 0.460 91.4

η 0.012 0.174 0.213 95.2 0.034 0.230 0.202 90.8

0.5 β11 -0.011 0.293 0.301 94.2 0.046 0.300 0.303 95.3

β12 -0.018 0.509 0.527 94.4 0.033 0.514 0.525 93.6

β21 0.019 0.264 0.258 94.6 0.049 0.267 0.260 93.6

β22 -0.005 0.471 0.483 95.0 0.034 0.513 0.471 91.2

η -0.006 0.187 0.204 94.0 -0.049 0.214 0.195 91.6

1 β11 -0.016 0.327 0.338 94.6 0.030 0.338 0.341 93.7

β12 -0.024 0.579 0.596 95.2 -0.007 0.558 0.598 96.7

β21 -0.008 0.263 0.257 95.0 0.050 0.262 0.255 93.1

β22 0.009 0.470 0.476 93.8 0.042 0.456 0.462 93.9

η -0.011 0.194 0.200 92.6 0.024 0.208 0.193 92.7

2 β11 -0.007 0.431 0.414 93.8 0.059 0.417 0.424 94.3

β12 0.046 0.749 0.730 93.2 -0.057 0.639 0.723 96.6

β21 -0.014 0.246 0.253 95.2 0.062 0.260 0.257 94.5

β22 0.010 0.475 0.468 94.6 0.040 0.455 0.464 94.1

η -0.028 0.183 0.182 90.8 -0.011 0.218 0.187 90.0

with mean one and variance η = 0.4. The estimation was still based on the

gamma distribution. The results are presented in Table 5, showing that the

proposed estimators perform well, and that the estimation procedure is robust to

a misspecification of the distribution of the latent variable. We also considered

other setups, including different sample sizes and different numbers of knots and

orders for the monotone splines. As expected, the performance improved when

the sample size increased, and the results were stable with respect to different

numbers of knots and orders.

6. An Application

In this section, we apply the proposed methodology to data from the

tumorigenicity experiment described in Sun (2006), among others. The data

set contains data on 144 RFM mice, and current-status data are available only

for the time to tumor onset, the variable of interest, because the status of the

tumor was examined only at death. The experiment involves two treatments,

namely, a germ-free environment (48 mice) and a conventional environment (96

mice). Among the animals in the two groups, 35 and 27 mice, respectivelt, were
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Table 4. Simulation results for regression parameters based on simulated data with
different baseline functions.

r Par. Bias SSE SEE CP Bias SSE SEE CP

(β11, β12, β21, β22)=(0.2,0.2,-0.2,-0.2) (β11, β12, β21, β22)=(-0.2,-0.2,-0.2,-0.2)

0 β11 -0.016 0.228 0.260 96.0 -0.031 0.264 0.260 92.7

β12 -0.010 0.439 0.460 94.8 -0.041 0.438 0.453 94.2

β21 -0.030 0.262 0.276 94.4 -0.044 0.247 0.250 93.6

β22 -0.061 0.531 0.504 92.0 -0.035 0.452 0.446 93.1

η 0.042 0.227 0.246 95.2 -0.067 0.167 0.208 91.8

0.5 β11 -0.042 0.290 0.305 95.2 -0.023 0.293 0.298 94.0

β12 -0.003 0.481 0.530 96.2 -0.041 0.527 0.522 94.9

β21 -0.038 0.272 0.270 93.8 -0.037 0.242 0.247 94.2

β22 -0.051 0.471 0.498 93.6 -0.009 0.428 0.453 93.7

η 0.017 0.228 0.230 95.0 -0.064 0.166 0.196 91.5

1 β11 -0.067 0.326 0.343 94.2 -0.016 0.356 0.333 91.6

β12 -0.016 0.587 0.600 94.0 -0.021 0.583 0.594 94.1

β21 -0.049 0.252 0.268 96.0 -0.036 0.250 0.251 92.7

β22 -0.029 0.504 0.496 93.4 -0.021 0.462 0.449 93.2

η 0.018 0.220 0.224 94.4 -0.080 0.173 0.196 90.7

2 β11 -0.019 0.440 0.426 93.0 -0.014 0.405 0.401 94.8

β12 -0.029 0.734 0.737 94.0 -0.028 0.709 0.713 94.8

β21 -0.043 0.242 0.263 95.6 -0.036 0.236 0.244 94.0

β22 -0.071 0.486 0.484 95.0 -0.037 0.442 0.456 95.5

η -0.003 0.214 0.210 94.0 -0.086 0.177 0.196 89.8

observed to have tumors at the time of death, and because lung tumors are

between lethal and nonlethal, we have dependent or informative censoring. One

objective of the study was to compare the tumor growth rates between the two

different environments or treatments.

To apply the proposed estimation procedure, let Ti denote the time to tumor

onset, and define Xi = 1 if the ith mouse was in a germ-free environment, and

zero otherwise. For the analysis, we need to select the degree of the splines,

the number of knots of splines, and the nonnegative argument r. To do so,

we used a three-dimensional grid search based on the AIC values. Specifically,

we considered two, three, and four for the degree of the monotone splines, and

varied the number of interior knots from three to eight to provide sufficient model

flexibility and less of a computational burden. For r, we considered values from

zero to two with increments of 0.1. The optimal frailty model is given by two

degrees of splines with four interior knots and r = 0.4.

Table 6 shows the results under the optimal model for the estimation of

the effects of the covariates, the estimated standard errors, and the p-values for

testing no covariate effect. For comparison, we also include results based on three
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Table 5. Simulation results for regression parameters based on a misspecified distribution
with one covariate X ∼ B(1, 0.5).

n = 200 n = 400

r Par. Bias SSE SEE CP Bias SSE SEE CP

(β1, β2) = (0, 0)

0 β1 0.008 0.261 0.260 93.8 0.004 0.186 0.179 92.6

β2 -0.011 0.191 0.184 93.8 -0.006 0.130 0.131 95.0

0.5 β1 -0.012 0.311 0.309 95.0 -0.002 0.200 0.214 95.8

β2 0.008 0.185 0.184 95.2 -0.003 0.137 0.130 93.6

1 β1 -0.002 0.362 0.357 94.4 0.000 0.238 0.244 95.0

β2 0.010 0.192 0.183 93.6 -0.008 0.134 0.131 94.4

2 β1 0.011 0.435 0.435 93.4 -0.009 0.301 0.307 94.6

β2 0.003 0.186 0.184 94.0 -0.005 0.135 0.132 94.2

(β1, β2) = (0.5, 0.5)

0 β1 0.047 0.283 0.272 94.3 0.033 0.192 0.190 92.4

β2 0.013 0.192 0.191 94.7 0.010 0.138 0.137 93.7

0.5 β1 0.032 0.319 0.315 93.9 0.022 0.217 0.219 94.9

β2 0.017 0.200 0.189 94.9 0.011 0.138 0.134 93.5

1 β1 -0.009 0.359 0.356 94.1 0.001 0.242 0.246 94.4

β2 0.008 0.191 0.187 96.1 0.009 0.138 0.133 93.0

2 β1 -0.017 0.423 0.431 94.9 -0.015 0.289 0.303 94.6

β2 0.014 0.183 0.186 94.3 0.012 0.129 0.133 95.6

and four degrees of splines, with the selected r and number of interior knots, as

well as the corresponding results obtained under the PH frailty model and the

PO frailty model. The results in Table 6 all seem to be consistent, suggesting

that the animals in the germ-free environment had significantly longer survival

times than those in the conventional environment, but that the animals in the two

groups have similar risks of developing tumors. In addition, the results indicate

that the tumor onset time and the death time were significantly correlated.

Also for comparison, we reanalyzed the data, imposing a noninformative

censoring or independence assumption between the tumor onset time and the

death time by setting bi = 1 in models (2.1) and (2.2); the results are shown in

Table 6. In this case, the animals in the germ-free environment had a significantly

higher rate of tumor growth than those in the conventional environment. In other

words, ignoring informative censoring may yield incorrect results.

7. Conclusion

We have proposed a sieve semiparametric maximum likelihood estimation

procedure for a regression analysis of current-status data in the presence of

informative censoring. The method uses the GOR frailty model to describe the

covariate effects and the association between the failure time of interest and the
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Table 6. Estimated covariate effects for the lung tumor study.

Degree Model β̂1 SEE p-value β̂2 SEE p-value η̂ SEE p-value

With informative censoring

2 PH frailty 0.599 0.423 0.157 -2.104 0.289 < 0.001 0.080 0.040 0.043

PO frailty 1.020 0.592 0.085 -2.101 0.201 < 0.001 0.079 0.039 0.044

Optimal model 0.691 0.429 0.107 -2.119 0.283 < 0.001 0.090 0.034 0.008

3 PH frailty 0.674 0.448 0.132 -2.091 0.289 < 0.001 0.072 0.033 0.031

PO frailty 1.061 0.590 0.072 -2.100 0.204 < 0.001 0.078 0.039 0.043

Optimal model 0.769 0.470 0.102 -2.113 0.247 < 0.001 0.086 0.035 0.013

4 PH frailty 0.604 0.362 0.095 -2.129 0.266 < 0.001 0.096 0.037 0.010

PO frailty 1.010 0.552 0.067 -2.075 0.247 < 0.001 0.062 0.022 0.006

Optimal model 0.747 0.444 0.092 -2.117 0.228 < 0.001 0.088 0.043 0.041

Without informative censoring

2 PH frailty 0.933 0.401 0.020 -1.966 0.258 < 0.001 - - -

PO frailty 1.845 0.430 < 0.001 -1.966 0.268 < 0.001 - - -

Optimal model 1.080 0.463 0.020 -1.966 0.273 < 0.001 - - -

3 PH frailty 0.933 0.391 0.017 -1.966 0.229 < 0.001 - - -

PO frailty 1.842 0.424 < 0.001 -1.966 0.242 < 0.001 - - -

Optimal model 1.074 0.452 0.017 -1.966 0.275 < 0.001 - - -

4 PH frailty 0.937 0.383 0.014 -1.966 0.305 < 0.001 - - -

PO frailty 2.058 0.471 < 0.001 -1.966 0.260 < 0.001 - - -

Optimal model 1.074 0.501 0.032 -1.966 0.275 < 0.001 - - -

observation time. We have also presented a novel EM algorithm with which to

implement the methodology. In particular, the observed data are augmented

by introducing latent variables and the proposed algorithm is computationally

efficient. In addition, the proposed estimators are shown to be consistent and

asymptotically normal, and the numerical results suggest that the proposed

procedure work well in practice.

To address informative censoring, an alternative to the proposed frailty-based

approach is the copula model-based approach. However, there are differences

between the two methods. First, the former method gives unique estimators,

whereas the latter may have an identifiability issue. In particular, the correlation

parameters are only included in the joint distribution function for the latter

method, but are included in both the marginal and the joint distribution functions

for the former method.

The proposed method uses I-spline functions to approximate the unknown

functions and to reduce the estimation of an infinite-dimensional function to one

of finite parameters. As an alternative, one can use other smooth functions,

such as B-spline functions; the method is similar. We further assume that the

observation time C follows the PH frailty model, which helps to reduce the

computational burden. Instead, one could use other models, such as the PO

frailty model or the GOR frailty model, to model the covariate effects on C. In

this case, the proposed approach can still be applied.
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Note that although the proposed approach applies to a general class of GOR

frailty models characterized by the nonnegative argument r, we assume that r is

known. Thus, it would be useful to develop simultaneous estimation procedures

for r. However, this is usually not possible without some extra assumptions

or information. An alternative is to choose r based on some selection criterion

to indicate the preferred model, as in the real-data analysis. Note that GOR

frailty models do not include the additive hazards frailty model as a special case.

Furthermore, it remains challenging to develop statistical methods to assess the

goodness-of-fit of each model and compare the appropriateness of both models.

With respect to the distribution of the frailty, in the numerical study, we

focused on the gamma distribution, because it has a large left tail, and thus is

more appropriate for strong late dependence (Hougaard (1995)), which is usually

the case for tumorigenicity experiments. Nevertheless, our numerical results

suggest that the proposed estimation procedure is robust to a misspecification of

the distribution of bi. Of course, caution is required, because only limited studies

were performed.

There are several possible directions for future research. First, we focus on

current-status data. However, one may encounter informative interval-censored

failure time data, which include current-status data as a special case (Sun (2006)).

Thus, it would be useful to generalize the proposed method to the latter situation.

Second, it would be useful to generalize the proposed method to allow for

multivariate failure times of interest. Model checking is also important for these

models, but is yet to be studied.

Supplementary Material

All technical proofs are given in the online Supplementary Material.
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