
Statistica Sinica 31 (2021), 79-105
doi:https://doi.org/10.5705/ss.202018.0060

ENVELOPE QUANTILE REGRESSION

Shanshan Ding, Zhihua Su, Guangyu Zhu and Lan Wang

University of Delaware, University of Florida,

University of Rhode Island and University of Minnesota

Abstract: The quantile regression method is a valuable complement to the classical

mean regression, helping to ensure robust and comprehensive data analyses in a

variety of applications. We propose a novel envelope quantile regression (EQR)

method that adapts a nascent technique called enveloping to improve the efficiency

of the standard quantile regression. The proposed method aims to identify the ma-

terial and immaterial information in a quantile regression model, and then use only

the material information for estimation. By excluding the immaterial information,

the EQR method has the potential to substantially reduce estimation variability.

Unlike existing envelope model approaches, which rely mainly on the likelihood

framework, our proposed estimator is defined through a set of nonsmooth estimat-

ing equations. We facilitate the estimation via the generalized method of moments,

and derive the asymptotic normality of the proposed estimator by applying em-

pirical process techniques. Furthermore, we establish that the EQR is asymptot-

ically more efficient than (or at least as asymptotically efficient as) the standard

quantile regression estimators, without imposing stringent conditions. Hence, our

work advances the envelope model theory to general distribution-free settings. We

demonstrate the effectiveness of the proposed method via Monte Carlo simulations

and real data examples.

Key words and phrases: Asymptotic efficiency, envelope model, generalized method

of moments, reducing subspace, sufficient dimension reduction.

1. Introduction

Envelopes were first proposed by Cook, Li and Chiaromonte (2010) for re-

sponse reduction and parsimonious estimation in multivariate linear regressions

with normal errors. In this setting, the envelope approach has been proved

to achieve asymptotic efficiency and reduce the estimation variability over that

of the standard methods. Since then, a variety of envelope models have been

developed and demonstrated promising performances in multivariate statistical

problems. For example, Su and Cook (2011, 2012) and Cook and Su (2013)
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subsequently studied envelope methods for various data structures in linear re-

gression models. Cook, Helland and Su (2013) used envelopes to study predictor

reduction and established a connection between envelope models and partial least

squares. Based on this connection, Zhu and Su (2019) derived the envelope-based

sparse partial least squares method. Cook, Forzani and Zhang (2015) applied the

envelope method to reduced rank regression. Cook and Zhang (2015) extended

the applicability of the envelope model beyond linear regressions to include, for

example, generalized linear regressions and the cox proportional hazards model.

Su et al. (2016) proposed sparse envelope models for variable selection in a mul-

tivariate linear regression setting. Khare, Pal and Su (2017) developed Bayesian

envelope approaches. Li and Zhang (2017) and Ding and Cook (2018) proposed

envelopes for tensor and matrix regression problems. Envelopes for spatial and

time series data have been studied by Rekabdarkolaee et al. (2017) and Wang

and Ding (2018), respectively.

The existing works, however, have mainly tended to focus on mean regres-

sions and likelihood-based models. As a result, the estimations and inferences

often rely on the maximum likelihood principle. In particular, the asymptotic ef-

ficiency of the envelope estimators often requires a normality assumption. Thus,

a primary objective of this study is to develop a new nonlikelihood-based frame-

work for enveloping, and to extend the envelope theory to general distribution-

free settings to potentially improve efficiency. Although developed in the context

of quantile regressions (QRs), our framework can also be extended to other sta-

tistical methods and procedures.

The QR (Koenker and Bassett (1978); Koenker (2005)) is a popular regres-

sion technique, widely used in economics, health sciences, and many other fields.

It does not require distributional assumptions on the error terms, and thus is

a flexible distribution-free regression technique. By accommodating varying co-

variate effects at different quantile levels, a QR provides a more complete picture

of the relationship between the response variable and the covariates. In addition,

It incorporates heterogeneous covariate effects and is robust to outliers. Because

of its good statistical properties and flexibility in practice, the QR has become a

popular alternative to the least squares regression, and has gained considerable

interest in recent years. For example, Knight (1998), He and Shao (2000), Cher-

nozhukov (2005), He and Zhu (2011), Feng, He and Hu (2011), Yang and He

(2012), and many others have studied the theoretical properties and inference

tools of QRs under different settings, and Portnoy and Koenker (1997), Chen

and Wei (2005), Koenker (2011), and others have investigated the computational
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perspectives of such regressions. Furthermore, the QR has been extended to lon-

gitudinal and survival data analyses (He, Zhu and Fung (2002); Portnoy (2003);

Wei et al. (2006); Peng and Huang (2008); Wang and Wang (2009); Xu et al.

(2017), among many others). We refer to Koenker (2005, 2017) and Koenker

et al. (2017) for a comprehensive review of the QR.

In this article, we propose a new approach called the envelope quantile regres-

sion (EQR) that adapts a nascent technique called enveloping (Cook (2018)) by

introducing dimension reduction into quantile modeling. In a variety of settings,

it is reasonable to assume there exist linear combinations of predictors that are

irrelevant to the conditional quantiles of the response and these combinations do

not affect the conditional quantiles through their association with the remaining

combinations. Thus, we can focus on a subspace of the full predictor space that

is directly relevant to the model fitting. We refer to the relevant part of the pre-

dictors as material information, and to the remaining predictors as immaterial

information. Using immaterial information in model fitting is likely to increase

estimation variation. The proposed EQR approach does not change the tradi-

tional objectives of the QR. However, by fully utilizing information on both the

predictors and the response, it can distinguish between material and immaterial

information when modeling the conditional quantiles, and synchronously exclude

immaterial information from the model estimation. This simultaneous dimension

reduction and regression fitting yields an improvement in estimation efficiency

that can be substantial when the immaterial variation is large.

This study makes three main contributions to the literature. First, we de-

velop a new EQR approach that adapts the ideas of enveloping to QRs and

achieves efficiency gains. We prove that the EQR estimator is
√
n-consistent

and asymptotically normal. More importantly, it is asymptotically more efficient

than (or at least as asymptotically efficient as) the standard QR estimators,

without imposing stringent conditions. In addition, whilst we mainly focus on

linear QRs here, our approach can be extended naturally to include partially

linear QRs, censored QRs and other settings. Second, our formulation offers the

first nonlikelihood-based envelope method with a theoretical justification on the

asymptotical efficiency. Furthermore, it establishes a new framework for envelop-

ing and advances the recent development of envelopes to general distribution-free

procedures with possibly nonsmooth objective functions. Third, the theoretical

development of the EQR estimator is based on rather different techniques than

those used in existing envelope models and QRs. The proposed estimator is

defined through a set of nonsmooth estimating equations. We facilitate the es-
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timation via the generalized method of moments (GMM) that not only ensures

desirable theoretical properties but further improves the asymptotic efficiency

of the estimators. Empirical process techniques are employed to establish the

asymptotics, which can be used to handle both nonsmooth and over-parametrized

models and, potentially, can be applied to more complex enveloping problems.

Most existing envelope approaches focus on continuous variables, so does

the EQR method. When categorical predictors are present, we develop a par-

tial envelope quantile model that applies the enveloping idea to the continuous

predictors only. We show that the partial envelope quantile model improves the

estimation efficiency of the regression coefficients, especially those of the contin-

uous predictors.

The rest of the article is organized as follows. In Section 2, we briefly review

the linear QR and propose the EQR method. In Section 3, we establish the

theoretical properties of the EQR estimators and demonstrate their efficiency.

Section 4 presents the new GMM estimation procedure and discusses dimension

selection procedures for the proposed EQR. Section 5 demonstrates the empirical

performance of the EQR method via simulations and real examples. Section 6 is

devoted to the development of partial EQR for data with categorical predictors.

We conclude with a brief discussion in Section 7. Technical details, proofs, and

additional simulation results are given in the online Supplementary Material.

To facilitate our discussion, we introduce the following notations that will

be used throughout the article. Let Rr×u be the set of all r × u matrices, and

let Sm×m be the set of all m × m real and symmetric matrices. For any A ∈
Rr×u(u ≤ r), Span(A) is the subspace of Rr spanned by the columns of A. Let

PA = A(ATA)†AT be the projection onto Span(A), and let QA = Ir −PA be

the projection onto Span(A)⊥, the orthogonal complement of Span(A), where †
denotes the Moore-Penrose inverse and Ir is the identity matrix of dimension r.

Note that PA and QA can be equivalently denoted by PA and QA, respectively,

where A = Span(A). Let “vec” denote the vectorization operator that stacks

the columns of an argument matrix. Let “vech” represent the half-vectorization

operator that vectorizes only the lower triangular of a symmetric matrix. We use

|| · || to represent the Frobenius norm.

2. EQR

2.1. A brief review of the QR

Consider a univariate response variable Y and a p-dimensional predictor ve-
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ctor X ∈ Rp. Let FY (y|X = x) = P (Y ≤ y|X = x) be the cumulative distribu-

tion function (CDF) of Y given X = x. The τ -th conditional quantile of Y is

defined as

QY (τ |X = x) = inf{y : FY (y|X = x) ≥ τ}, 0 < τ < 1.

A linear QR model assumes a linear relationship between the τ -th conditional

quantile of Y and the predictors; that is,

QY (τ |X) = µτ + βTτ X, (2.1)

where µτ is the intercept, and βτ ∈ Rp is the slope vector of the τ -th conditional

quantile of Y |X. The primary objective of a QR is to estimate βτ , for any

0 < τ < 1, and then to make a statistical inference about βτ . The standard

method used to obtain β̃τ , the estimator of βτ , is to solve

(µ̃τ , β̃τ ) = argmin
µτ∈R,βτ∈Rp

n∑
i=1

ρτ (Yi − µτ − βTτ Xi), (2.2)

where (Yi,Xi), for i = 1, . . . , n, is a random sample of (Y,X), and ρτ (z) = z[τ −
I(z < 0)] is a piecewise linear loss function. This objective function can be solved

efficiently using linear programming algorithms. Furthermore, the estimator β̃τ
is
√
n-consistent and asymptotically normal.

Note that the minimizer in (2.2) is also a root of the estimating equations

1

n

n∑
i=1

Wi[I(Yi < µτ + βTτ Xi)− τ ] = op(n
−1/2), (2.3)

where Wi = (1,XT
i )T . For a detailed background of QRs, we refer to Koenker

(2005).

2.2. EQR

We now introduce the EQR approach, which we use to distinguish between

material and immaterial information in terms of modeling the conditional quan-

tiles of the response. The EQR approach builds on the observations that in a

variety of applications some portion of the predictors are irrelevant to modeling

the conditional quantile of the response and do not affect the response through

the rest. For example, a disease may be related to a few genetic pathways, while

these pathways are uncorrelated with others that are not responsible for the
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disease.

To formulate this statement mathematically, suppose that for the given quan-

tile level of interest τ , there exists a subspace Sτ = Span(Γτ ) of Rp, where

Γτ ∈ Rp×dτ (dτ ≤ p) is a semi-orthogonal basis of Sτ , such that

i) QY (τ |X) = QY (τ |PSτX) and ii) Cov(PSτX,QSτX) = 0, (2.4)

where PSτ and QSτ are projection matrices, defined at the end of Section 1.

The first part of (2.4) means that QY (τ |X) depends on X only through

PSτX. Hence PSτX contains full information for modeling the τ -th conditional

quantile of Y . The second part indicates that PSτX is uncorrelated with QSτX,

which ensures that QSτX does not provide information about the τ -th conditional

quantile of Y through its association with PSτX. Thus, X affects the τ -th

conditional quantile of Y only through PSτX. We call PSτX the material part

of X, and QSτX the immaterial part of X. Let ΣX denote the covariance matrix

of X. By Cook, Li and Chiaromonte (2010), if a subspace Sτ is spanned by the

eigenvectors of ΣX and it contains βτ , then Sτ satisfies the conditions in (2.4).

Many applications naturally satisfy (2.4). For example, suppose all coordi-

nates of X are equally correlated such that ΣX = σ2
XIp+r1p1

T
p , where r is a con-

stant and 1p is a p-dimensional vector of ones, and βτ has a sparse structure such

as βτ = (1, 2, 0, . . . , 0)T . Note that the eigenvectors of ΣX include 1p and any vec-

tor in Span(1p)
⊥. Let v1 = (r−1,−1, . . . ,−1)T and v2 = (−1, r−1,−1, . . . ,−1)T .

Since vT1 1p = 0 and vT2 1p = 0, v1 and v2 are eigenvectors of ΣX. We can take

Sτ = Span(v1, v2, 1p). Because βτ ∈ Sτ , Sτ satisfies i) and ii) in (2.4). This ex-

ample demonstrates that if X is equally correlated and βτ is sparse, we can find a

subspace that satisfies the conditions in (2.4). A second example is that when ΣX

has a low rank decomposition. Suppose ΣX has the structure ΣX = AAT + cIp,

where c is a constant, A ∈ Rp×k, and k < p. Then Span(A) is spanned by the

eigenvectors of ΣX. Such low rank covariance structures occur in many applica-

tions such as factor analysis, where most of the variation of the predictor vector

can be explained by a small number of common factors or principal components.

If βτ is contained in Span(A), we can take Sτ = Span(A). Thus, Sτ satisfies the

conditions in (2.4). If βτ is not contained in Span(A), let A = Span(A). Then

any vector in the orthogonal complement of A is an eigenvector of ΣX. We can

write βτ = PAβτ + QAβτ , and let v = QAβτ . Note that v is an eigenvector

of ΣX. Let Sτ = Span({A, v}), then βτ ∈ Sτ and Sτ satisfies the conditions in

(2.4). Therefore, for any vector βτ , and regardless of whether it has a sparsity
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structure like βτ = (∗, . . . , ∗, 0, . . . , 0), we can find a subspace Sτ with dimension

at most k + 1 that satisfies the conditions in (2.4). Note that we use a sparse

βτ in some examples only for illustrative purposes and (2.4) does not require

sparsity in βτ .

In fact, the subspace Sτ in (2.4) always exists, because it can be trivially

chosen as the full space Rp. However, the subspace might not be unique, and

what we wish to determine is the smallest subspace such that the conditions holds.

To address the uniqueness of the material part, we consider the intersection of

all such subspaces that satisfy (2.4), which is minimal and well defined. To see

this, we first define a reducing subspace, as given in Cook, Li and Chiaromonte

(2010).

Definition 1. A subspaceR ⊆ Rp is said to be a reducing subspace of M ∈ Rp×p

if R decomposes M as M = PRMPR + QRMQR.

This definition is commonly used in the literature on invariance subspaces

and functional analysis (Conway (1990)). Lemma 1 connects our formulation to

reducing subspaces.

Lemma 1. Under model (2.1), (i) QY (τ |X) = QY (τ |PSτX) if and only if βτ ∈
Sτ , and (ii) Cov(PSτX,QSτX) = 0 if and only if Sτ is a reducing subspace of

ΣX.

For part (i), since QY (τ |X) = µτ +βTτ PSτX +βTτ QSτX = QY (τ |PSτX), we

have QSτβτ = 0, and therefore, βτ ∈ Sτ . For the other direction, if βτ ∈ Sτ ,

QY (τ |X) = µτ + βTτ PSτX, then QY (τ |X) = QY (τ |PSτX). Part (ii) holds as it

can be shown that ΣX = PSτΣXPSτ +QSτΣXQSτ when Cov(PSτX,QSτX) = 0.

Therefore, based on Lemma 1, (2.4) holds if and only if Sτ is a reducing

subspace of ΣX that contains βτ . Such a reducing subspace might not be unique.

However, by the properties of reducing subspaces, the intersection of all reducing

subspaces that contain βτ is also a reducing subspace containing βτ , and it is

unique and minimal. Thus, to maximize the reduction and efficiency gains, this

smallest reducing subspace that contains βτ is of interest. We call it the ΣX-

envelope of βτ , and denote it as EΣX
(βτ ), or Eτ .

To establish the EQR model, let Φτ ∈ Rp×uτ (uτ ≤ p) be a semi-orthogonal

basis of Eτ and Φ0τ ∈ Rp×(p−uτ ) be a semi-orthogonal basis of E⊥τ , the orthogonal

subspace of Eτ . We first assume that the envelope dimension uτ is known. The

determination of the envelope dimension is discussed in Section 4. Since βτ ∈ Eτ ,

we can write βτ in a coordinate form as βτ = Φτητ , where ητ is the coordinate



86 DING ET AL.

of βτ relative to the basis Φτ . In addition, because Eτ is a reducing subspace

of ΣX, ΣX can be decomposed into two orthogonal parts: ΣX = PEτΣXPEτ +

QEτΣXQEτ . Therefore, model (2.1) can be reparameterized as the following

envelope structure:

QY (τ |X) = µτ + ηTτ ΦT
τ X

ΣX = ΦτΩτΦ
T
τ + Φ0τΩ0τΦ

T
0τ ,

(2.5)

where Ωτ ∈ Ruτ×uτ and Ω0τ ∈ R(p−uτ )×(p−uτ ) are positive definite matrices that

serve as coordinates of PEτΣXPEτ and QEτΣXQEτ relative to the bases Φτ and

Φ0τ , respectively. We call this model the EQR model.

By incorporating enveloping into the formulation of the QR, the EQR model

utilizes underlying information in both the predictors and the response to iden-

tify the material and immaterial information. Then it connects the parameter

of interest, βτ , to the material part only, leading to efficiency gains in the pa-

rameter estimation. As a simple illustration, suppose that the envelope basis Φτ

is known and E(X) = 0. Let β̃τ be the standard estimator of βτ from (2.1).

Then the asymptotic variance of β̃τ , denoted as avar(
√
nβ̃τ ), is ω2Σ−1

X under an

independent and identically distributed (i.i.d.) error model (Koenker (2005)),

where ω is a constant. Because Φτ is known, the envelope estimator of βτ is

then β̂τ = Φτ η̂τ , and

avar(
√
nβ̂τ ) = Φτavar(

√
nη̂τ )Φτ = ω2Φτ

[
Var(ΦT

τ X)
]−1

Φτ = ω2ΦτΩ
−1
τ ΦT

τ .

Thus, avar(
√
nβ̃τ )−avar(

√
nβ̂τ ) = ω2Σ−1

X −ω2ΦτΩ
−1
τ ΦT

τ = ω2Φ0τΩ
−1
0τ ΦT

0τ ≥ 0,

where the last equation holds because Σ−1
X = ΦτΩ

−1
τ ΦT

τ + Φ0τΩ
−1
0τ ΦT

0τ . There-

fore, the envelope estimator is asymptotically more efficient than (or at least

as efficient as) the standard quantile estimator, and the efficiency gains can be

quite substantial when the immaterial variation Φ0τΩ
−1
0τ ΦT

0τ of Σ−1
X is relatively

large. In Section 3, we provide a rigorous justification of the asymptotic effi-

ciency of EQR estimators under general settings, while the estimation algorithm

is presented in Section 4.

In addition, the total number of free parameters in βτ and ΣX under the EQR

model is uτ + p(p+ 1)/2, where uτ for ητ , uτ (p−uτ ) for Span(Φτ ), uτ (uτ + 1)/2

for Ωτ , and (p− uτ )(p− uτ + 1)/2 for Ω0τ . In contrast, without enveloping, the

number of free parameters in βτ and ΣX is p+p(p+1)/2. Thus, the EQR model

reduces the number of parameters by p− uτ .
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3. Theoretical Results

Consider the QR model in (2.1) with an arbitrary quantile level of interest

τ . Denote the conditional density function of Y |X as fY |X. Denote the asymp-

totic variance of a general statistic Mn as avar(
√
nMn). Let θ := (θT1 ,θ

T
2 )T ∈

R2p+1+s, where θ1 = (µτ ,β
T
τ )T represents the parameters in the conditional QR,

θ2 = (vech(ΣX)T ,µTX)T contains parameters in the marginal distribution of X,

and s = p(p + 1)/2 is the dimension of vech(ΣX). Let θ∗ = (θT1 , vech(ΣX)T )T

be a collection of parameters that are directly related to the envelope model in

(2.5). Here θ, θ1, and θ∗ are all relevant to τ but, for convenience, we omit the

subscript τ for these notations.

We first consider unitizing estimating equations to estimate the unknown

parameter vector θ. We employ (2.2) and the first- and second-order moment

conditions of X as our estimation equations:

hn(θ) =

h1,n(θ1)

h2,n(θ2)

h3,n(θ2)

 =

 1
n

∑n
i=1 Wi[I(Yi < µτ + βTτ Xi)− τ ]

vech(ΣX)− vech(SX)

µX − X̄


=

1

n

n∑
i=1

g(Zi;θ) = op(n
−1/2),

(3.1)

where SX = (1/n)
∑n

i=1(Xi−µX)(Xi−µX)T is the sample covariance matrix of

X given µX, Zi = (Yi,X
T
i )T , and g(Zi;θ) = (gT1 (Zi;θ1), gT2 (Zi;θ2), gT3 (Zi;θ2))T ,

with g1(Zi;θ1) = Wi[I(Yi < µτ+βTτ Xi)−τ ], g2(Zi;θ2) = vech(ΣX)−vech{(Xi−
µX)(Xi − µX)T }, and g3(Zi;θ2) = µX −Xi.

Let θ̃ and θ̃∗ denote the standard estimators of θ and θ∗, respectively, from

solving the estimating equation in (3.1) without enveloping, and let θ0 and θ∗0
be the true values of θ and θ∗, respectively. The main parameters of interest

are βτ and ΣX in EQR model, and in addition the estimator of µX is X̄, which

remains unchanged under enveloping and has the same asymptotic distribution

in both envelope and non-envelope settings. Thus, we ignore µX in the following

theoretical development.

To investigate the asymptotic behavior of the estimator of θ∗, we require the

following regularity conditions.

(C1) For any x in the support of X, the conditional distribution of Y|X = x is

absolutely continuous, with the continuous density fY|X uniformly bounded

away from zero and ∞ at ξ0(τ |x), the τ -conditional quantile of Y |X = x
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under θ0.

(C2) The expectation Eθ0
[g(Z;θ)] is twice differentiable at θ0, with (∂Eθ0

[g(Z;θ)]/∂θT )
∣∣
θ=θ0

having full rank and a finite Frobenius norm. The

matrix Eθ0
[g(Z;θ0)gT (Z;θ0)] is positive definite and has a finite Frobenius

norm, and the array (∂Eθ0
[g(Z;θ)gT (Z;θ)]/∂θT )

∣∣
θ=θ0

has a finite Frobe-

nius norm.

(C3) E||X||3 is bounded. In addition, the support Θ of θ is compact, and θ0 is

an interior point of Θ.

Conditions (C1) and (C3) are standard in the literature on QRs. Condition

(C2) is a regular assumption for estimating equations. Theorem 1 establishes the

asymptotic distribution of the standard estimator θ̃ of θ∗.

Theorem 1. Under the regularity conditions (C1)–(C3),
√
n(θ̃∗−θ∗0) converges

in distribution to a multivariate normal distribution with mean zero and covari-

ance matrix avar(
√
nθ̃∗) = U−1VU−1, where

U =

(
Eθ0

[fY |X(ξ0(τ |X))WWT ] 0

0 Is

)

and

V =

(
τ(1− τ)Eθ0

[WWT ] 0

0 varθ0
{vech[(X− µX,0)(X− µX,0)T ]}

)
,

with µX,0 being the true value of µX.

The proof for Theorem 1 is given in Section A of the Supplementary Ma-

terial. Theorem 1 shows that the standard estimator θ̃1 = (µ̃τ , β̃
T
τ )T for the

conditional QR from solving hn(θ) = 0 is asymptotically independent of the

standard estimator vech(Σ̃X) for the marginal distribution of X. In addition, let

θ̃1,m denote the estimator of θ1 obtained directly by minimizing (2.1). It follows

from the results in Knight (1998) and Koenker (2005) that θ̃1 is asymptotically

equivalent to θ̃1,m.

Under the envelope setting, we denote the parameters in the coordinate

representation of the EQR model (2.5) as the following vector:

ζτ =
(
µτ ,η

T
τ , vec(Φτ )T , vech(Ωτ )T , vech(Ω0τ )T

)T
=
(
ζτ,1, ζ

T
τ,2, ζ

T
τ,3, ζ

T
τ,4, ζ

T
τ,5

)T
,
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and define the parameter of interest θ∗ as

θ∗ =

 µτ
βτ

vech(ΣX)

 =

 µτ
Φτητ

vech(ΦτΩτΦ
T
τ + Φ0τΩ0τΦ

T
0τ )

 :=

ψ1(ζτ )

ψ2(ζτ )

ψ3(ζτ )

 = ψ(ζτ ).

(3.2)

Note that under enveloping, the estimating equations in (3.1) are reparam-

eterized as

hn(θ) =

h1,n(θ1)

h2,n(θ2)

h3,n(θ2)

 =

 1
n

∑n
i=1 Wi[I(Yi < µτ + ηTτ ΦT

τ Xi)− τ ]

vech(ΦτΩτΦ
T
τ + Φ0τΩ0τΦ

T
0τ )− vech(SX)

µX − X̄

 . (3.3)

The number of equations in (3.3) is 1 + 2p+ p(p+ 1)/2. This is greater than the

number of free parameters in µτ , βτ , µX, and ΣX under the envelope parameteri-

zation, namely, 1+uτ +p+p(p+1)/2. Therefore, it cannot be guaranteed that all

equations can be solved for zero simultaneously. Hence a solution for (3.3) may

not exist. Instead, we propose estimating the parameters by utilizing the idea

of generalized method of moments (GMM; Hansen (1982)) for the parsimonious

envelope model. Let ζ
′

τ = (ζTτ ,µ
T
X)T and ψ0(ζ

′

τ ) := (ψT (ζτ ),µTX)T = θ. The

envelope GMM estimator θ̂g of θ is then defined as

θ̂g = argmin
θ:θ=ψ0(ζ′

τ )

hTn (θ)∆̂hn(θ), (3.4)

where ∆̂ is chosen to be any
√
n-consistent estimator of

{
Eθ0

[g(Z;θ0)gT (Z;

θ0)]
}−1

, for example, ∆̂ =
{
n−1

∑n
i=1 g(Zi; θ̃)gT (Zi; θ̃)

}−1
. In Section 4, we

propose an estimation procedure to attain the envelope GMM estimator θ̂g.

Let θ̂∗g denote the envelope GMM estimator of θ∗, the parameter of interest.

We next establish the asymptotic theory for θ̂∗g and compare it with the standard

estimator θ̃∗.

Theorem 2. (1) Under the regularity conditions (C1)–(C3), assume that the

support of the envelope parameter vector ζτ is compact, then
√
n(θ̂∗g − θ∗0) con-

verges in distribution to a multivariate normal distribution with mean zero and

covariance matrix

avar(
√
nθ̂∗g) = Ψ(ΨTUV−1UΨ)†ΨT ,

where Ψ = ∂ψ(ζτ )/∂ζTτ is the gradient matrix of ψ(ζτ ) relative to ζτ . Its explicit
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expression is given in the Supplementary Material (B.6).

(2) In addition, avar(
√
nθ̂∗g) ≤ avar(

√
nθ̃∗).

The proof of Theorem 2 is given in Section B of the Supplementary Material.

The main challenge of the proof lies in the fact that objective function in (3.4) is

not only nonsmooth, but is also over-parameterized. We employ empirical process

techniques (Van Der Vaart and Wellner (1996); Van der Vaart (1998)) and the

results in Newey and McFadden (1994) and Shapiro (1986) for the derivation.

The theorem shows the asymptotic normality for the envelope GMM estimator

θ̂∗g of the joint parameters in the QR and the covariance matrix of X. More

importantly, it establishes the asymptotic efficiency of θ̂∗g relative to the standard

estimator θ̃∗. Thus, by utilizing information on both the predictors and the

response, the proposed EQR approach can lead to gains in efficiency in QR

estimations.

To illustrate the efficiency gains, we consider a special case of i.i.d error

models, and assume that X is multivariate normal and E(X) = 0. After some

simplification of the form of the asymptotic variance given in Theorem 1 and

Theorem 2 (see Section B of the Supplementary Material), we have

avar(
√
nβ̃τ ) =

τ(1− τ)

f2(ξ(τ))
Σ−1
X ,

and

avar(
√
nβ̂g,τ ) =

τ(1− τ)

f2(ξ(τ))
ΦτΩ

−1
τ ΦT

τ + (ηTτ ⊗Φ0τ )T−1(ητ ⊗ΦT
0τ ),

where

T =
f2(ξ(τ))

τ(1− τ)
(ητη

T
τ )⊗Ω0τ + Ωτ ⊗Ω−1

0τ + Ω−1
τ ⊗Ω0τ − 2Iuτ ⊗ Ip−uτ .

Compared with the simple example given in Section 2.2, the asymptotic

variance of β̂g,τ has an additional term (ηTτ ⊗Φ0τ )T−1(ητ ⊗ΦT
0τ ), which can be

viewed as the cost of estimating the envelope, because it is unknown in general.

Theorem 2 shows that even with this estimation cost, the envelope GMM estima-

tor β̂g,τ is still asymptotically more efficient than (or at least as asymptotically

efficient as) the standard estimator β̃τ .

Statistical inferences for the envelope GMM estimator can be performed

based on the asymptotic distribution in Theorem 2. We can estimate the asymp-

totic variance using âvar(
√
nθ̂∗g) = Ψ̂(Ψ̂T ÛV̂

−1
ÛΨ̂)†Ψ̂T , where Ψ̂, Û, and
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V̂ are consistent estimators of Ψ, U, and V, respectively. Correspondingly,

âvar(
√
nθ̂∗g) → avar(

√
nθ̂∗g) in probability. Then statistical inferences can be

made based on asymptotic normality. A consistent estimator of Ψ can be

easily obtained using the estimated envelope parameters, and that of V can

be provided by moment estimation. The estimation of U is not straightfor-

ward as it involves an unknown density function. This problem occurs in a

standard QR inference as well. We can adopt the kernel-based estimation ap-

proach (Powell (1991); Koenker (2005)) to achieve consistent estimation of U(1) =

Eθ0
[fY |X(ξ0(τ |X))WWT ], with Û(1) = (nhn)−1

∑n
i=1K(ξ̂i(τ |X)/hn)WiW

T
i un-

der certain Lipschitz continuity conditions on f , where ξ̂i(τ |X) = Yi − µ̂g,τ −
β̂Tg,τXi, and K(·) and hn are the kernel function and bandwidth satisfying hn → 0

and
√
nhn → ∞. For example, Powell (1991) used the kernel K(ξ̂i(τ |X)) =

I(|ξ̂i(τ |X)| < hn)/2. One might refer to Powell (1991) and Koenker (2005) for

further discussion on the choices of K(·) and hn.

On the other hand, the bootstrap method is a useful alternative for infer-

ence of an EQR estimator, and is widely used in standard QR inferences (Knight

(1999); Koenker (2005); Wang and Wang (2009); Feng, He and Hu (2011), among

many others). For example, one can apply a paired bootstrap or a wild boot-

strap to conduct an inference for the EQR estimator under heteroscedastic er-

rors. These methods have been shown to achieve consistency in QR inferences

(Knight (1999); Feng, He and Hu (2011)). We applied the paired bootstrap in

our numerical studies (see Figures 1 and 2). It performs fairly well and shows

accurate estimations of the standard deviations compared with those obtained

from repeated samples.

For statistical inferences, the EQR estimator might lose some efficiency com-

pared with its theoretical asymptotic variance, owing to the estimation uncer-

tainty of the unknown parameters. In this circumstance, the performance of the

EQR estimator might fall into one of the following two scenarios. First, when the

immaterial variation of the data is substantial, even if the envelope dimension is

relatively large (e.g., close to the full dimension), the EQR could still outperform

the standard QR. In this case, the efficiency gains from identifying and remov-

ing immaterial information could overcome the estimation uncertainty, leading

to more efficient estimators and smaller mean squared errors (MSEs). On the

other hand, when the immaterial variation is relatively small, while the envelope

dimension is large, the efficiency gains from enveloping might be inadequate to

overcome the cost of the uncertainty when estimating the envelope subspace and

parameters. In this case, the estimation uncertainty (including the estimation of
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both the envelope dimension and the envelope parameters) could counteract and

dominate the efficiency gains, resulting in relatively close, or worse performance

of the EQR estimator compared with that of the QR estimator. Simulation stud-

ies illustrating these two cases are provided in Section D.1 of the Supplementary

Material.

If the parameters in (2.1) do not have the envelope structure, the EQR esti-

mator β̂g,τ may still have a smaller MSE than that of the standard QR estimator

β̃τ based on the bias-variance trade-off. Specifically, although the EQR estima-

tor might be biased, it could have a smaller estimation variance. Then if the

reduction of the estimation variance is substantial, the EQR estimator will have

a smaller MSE. A simulation is included in Section D.2 of the Supplementary

Material.

4. Estimation

In the literature on envelope models, estimations are routinely performed

by optimizing a standard objective function, such as the log likelihood function,

under the envelope parameterization. Existing envelope estimation techniques

usually require the first two derivatives of the objective function (Cook, Li and

Chiaromonte (2010); Cook and Zhang (2016); Cook, Forzani and Su (2016)).

However, the objective function for a QR (2.2) is nonsmooth.

We start with estimating equation (3.3). In (3.3), Φτ is not estimable as

it can be any orthogonal basis of EΣX
(βτ ), and only EΣX

(βτ ) = Span(Φτ ) is

estimable. To obtain an estimator of EΣX
(βτ ), we have to perform a Grass-

mann manifold optimization, which can be slow and difficult in sizable problems.

Cook, Forzani and Su (2016) proposed a reparameterization of Φτ such that the

Grassmann manifold optimization problem can be converted to an unconstrained

matrix optimization problem. It is shown that the computing speed is greatly

improved under the new parameterization. Therefore, we adopt this reparameter-

ization for our problem and this does not affect our theoretical results. Without

loss of generality, we assume that the upper uτ × uτ block is invertible. Write

Φτ =

(
Φτ1

Φτ2

)
=

(
Iuτ

Φτ2Φ
−1
τ1

)
Φτ1 ≡

(
Iuτ
A

)
Φτ1 ≡ Φ∗τΦτ1. (4.1)

Then EΣX
(βτ ) and A have a one-to-one correspondence. Specifically, for a

uτ -dimensional subspace of Rp, we have a unique representing basis Φ∗τ , the

first uτ rows of which form an identity matrix. Thus, if we obtain an esti-
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mator of A, say Â, we can easily obtain Φ̂∗τ following the structure in (4.1),

and ÊΣX
(βτ ) = Span(Φ̂∗τ ). Now let η∗τ = Φτ1ητ and Ω∗τ = Φτ1ΩτΦ

T
τ1 be

the coordinates of βτ and ΣX, respectively, with respect to Φ∗τ . Let ζ∗τ =

{µτ , vec(η∗τ )T , vec(A)T , vech(Ω∗τ )T , vech(Ω0τ )T , vec(µX)T }T . Under this param-

eterization, (3.3) becomes

h∗n(ζ∗τ )

=

 1
n

∑n
i=1 Wi{I[Yi < µτ + (Φ∗τη

∗
τ )TXi]− τ}

1
n

∑n
i=1{vech(Φ∗τΩ∗τΦ

∗
τ
T + Φ0τΩ0τΦ

T
0τ )− vech[(Xi − µX)(Xi − µX)T ]}

1
n

∑n
i=1(µX −Xi)


≡ 1

n

n∑
i=1

g∗(Zi; ζ
∗
τ ). (4.2)

To obtain the GMM estimator, we use the following two-step algorithm:

Step 1. Obtain the estimator of ζ∗τ by minimizing h∗n(ζ∗τ )Th∗n(ζ∗τ ); denote this

as ζ̃∗τ .

Step 2. Estimate the optimal weight matrix as

∆̂−1 =

[
1

n

n∑
i=1

g∗(Zi; ζ̃∗τ )g∗(Zi; ζ̃∗τ )T

]−1

.

Then obtain the GMM estimator ζ̂∗τ by minimizing the following quadratic

form:

Qn(ζ∗τ ) = h∗n(ζ∗τ )T ∆̂−1h∗n(ζ∗τ ).

Now µ̂τ , β̂τ = Φ̂∗τ η̂
∗
τ , and Σ̂X = Φ̂∗τ Ω̂∗τ (Φ̂∗τ )T + Φ̂0τ Ω̂0τ Φ̂

T
0τ are the envelope

GMM estimators of µτ , βτ , and ΣX, respectively.

To optimize the discontinuous GMM objective function, we use the function

fminsearch in the R package neldermead. This function does not require the

derivative of the objective function, and is also applicable to discontinuous ob-

jective functions. It uses the Nelder–Mead method, or downhill simplex method

(Nelder and Mead (1965)), to find the minima of the objective function. More

information on the method can be found in Section E of the Supplementary Ma-

terial. The Nelder–Mead method has also been used to fit other QR models (e.g.,

Koenker and Park (1996); Otsu (2003); Noufaily and Jones (2013)).

To select the dimension of the envelope EΣX
(βτ ), we apply the robust cross-

validation approach (RCV) (Oh et al. (2004)). More specifically, we randomly
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divide the data into K folds, use the kth fold for testing and the remaining K−1

folds for training. We repeat this for k = 1, . . . ,K, and aggregate the prediction

error based on the quantile loss function. For a fixed uτ , the RCV criterion is

RCV(uτ ) =
1

n

n∑
i=1

ρτ (Yi − µ̂τ,−k(i) − β̂Tτ,−k(i)Xi),

where µ̂τ,−k(i) and β̂τ,−k(i) are computed using the data excluding the kth fold,

in which the ith observation resides. Since cross-validation often overfits, we pick

uτ according to the “one-standard error” rule. That is, we choose the smallest

uτ whose error is no more than one standard error above the minimum value of

the RCV. In our numerical studies, we found that the performance of the RCV

is stable, even with a small sample size.

5. Simulation and Data Analysis

In this section, we demonstrate the efficiency gains of the EQR model using

a numerical experiment and a real data example. We consider the following

simulation setting:

Yi = µ+ αTXi + (5 + γTXi)εi, for i = 1, . . . , n,

where α = Φη1, γ = Φη2, and the error ε follows the standard normal distribu-

tion with distribution function denoted by Fε. Here Φ ∈ Rp×u(u < p) is a semi-

orthogonal matrix. Hence µτ = µ + 5F−1
ε (τ), βτ = Φ(η1 + η2F

−1
ε (τ)) = Φητ ,

Φτ = Φ, and uπ = u, for 0 < τ < 1. We set p = 10, u = 2 and varied the sample

size n from 50 to 1,000. We set X to follow a multivariate normal distribution

with mean zero and variance having the structure ΦΩΦT +Φ0Ω0Φ
T
0 , where Φ0 is

a completion of Φ, and Ω and Ω0 are coordinate matrices. We generated Φ with

the first p/2 rows to be (−1/
√
p/2, 0) and the other rows to be (0,−1/

√
p/2).

The matrix Ω is a diagonal matrix with diagonal elements 50 and 100, Ω0 is

an identity matrix, η1 is (−5
√
p/2,−5

√
p/2)T , η2 is (0,−

√
2p/20)T , and µ is 5.

Therefore, α is a vector of 5 and γ is a vector with the first p/2 elements to be

0 and the rest to be 0.1. For each sample size, 200 replications were generated.

For each replication, we fit the standard QR model (2.1) and the EQR model

with uπ = 2. For each element in βτ , we computed the estimation standard

deviation from the 200 estimators. We also generated 200 bootstrap repetitions

using the paired bootstrap, and computed the bootstrap standard deviation. We
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Figure 1. Comparison of the EQR estimator and the standard QR estimator with uτ fixed
at true value (τ = 0.5). Lines — mark the standard deviations of the EQR estimator
and lines – – mark the standard deviations of the standard QR estimator. The lines
with “+” mark the bootstrap standard deviations for the corresponding estimators.

considered τ = 0.5 and τ = 0.9. The results for a randomly chosen element in

βτ are summarized in Figures 1 and 2. The EQR model achieves obvious effi-

ciency gains in this example. We compared the estimation standard deviations of

the standard QR estimator and the EQR estimator for each element in βτ . We

found that, at sample size 50, the EQR estimator reduced the estimation stan-

dard deviation by 57.1% to 65.9% for τ = 0.5. Under the standard QR model, to

reduce the standard deviation by 65.9%, we need to increase the sample size by

approximately 8.6 times the original sample size. The efficiency gain is more pro-

nounced for τ = 0.9, where the EQR estimator reduced the estimation standard

deviation by 71.0% to 75.9%. To achieve a reduction of 75.9% in the estimation

standard deviation, we need to increase the sample size by 17 times the original

sample size under the standard QR model. Figures 1 and 2 also show that the

bootstrap standard deviation is a very good approximation to the estimation

standard deviation.

We also investigated the selection performance of five-fold RCV for each

sample size. For different sample sizes, the fraction of 200 replications in which

the RCV selects the true dimension is summarized in Table 1. It is quite stable

across all sample sizes in Table 1. With small sample sizes, when it fails to select

the true uτ , it tends to overestimate and pick a larger dimension than the truth.

In that case, we may achieve less efficiency gains, but we do not lose any material

information. Therefore, we consider the performance of RCV to be reasonable

with small sample sizes.
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Figure 2. Comparison of the EQR estimator and the standard QR estimator with uτ fixed
at true value (τ = 0.9). Lines — mark the standard deviations of the EQR estimator
and lines – – mark the standard deviations of the standard QR estimator. The lines
with “+” mark the bootstrap standard deviations for the corresponding estimators.

Table 1. The fraction that RCV selects the true dimension.

n 50 100 200 500 1,000
τ = 0.5 89% 96% 99% 99% 100%
τ = 0.9 93% 97% 96% 99% 100%
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Figure 3. Comparison of the EQR estimators and the standard QR estimator with
τ = 0.5. The line — marks the standard deviations of the EQR estimator with true uτ ,
the line — with ∗ marks the standard deviations of the EQR estimator with selected uτ ,
and the line – – marks the standard deviations of the standard QR estimator.

Now we compute the estimation standard deviation of the EQR estimator

again, but use the selected uτ instead of the true uτ . This estimation standard
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Figure 4. Comparison of the EQR estimators and the standard QR estimator with
τ = 0.9. The line — marks the standard deviations of the EQR estimator with true uτ ,
the line — with ∗ marks the standard deviations of the EQR estimator with selected uτ ,
and the line – – marks the standard deviations of the standard QR estimator.

deviation includes the variability in model selection and the variability of the

EQR estimator, given the selected uτ . The results are included in Figures 3

and 4. For ease of comparison, we also include lines for the EQR estimators

with uτ fixed at the true value. At sample size n = 50, the EQR estimator with

selected uτ reduces the estimation standard deviation of the QR estimator by

51.7% to 59.3% for τ = 0.5, and by 63.9% to 72.6% for τ = 0.9. Compared

with the results with true uτ , the EQR estimator loses some efficiency gains due

to the variability in the selection, but the EQR estimator is still more efficient

than the standard QR estimator. We also include the MSEs for the EQR and

standard QR estimators in Figures 5 and 6. With n = 50, the EQR estimator

with true uτ reduces the MSE by 81.2% to 88.0% for τ = 0.5, and by 91.7% to

94.0% for τ = 0.9. The EQR estimator with selected uτ reduces the MSE by

75.9% to 83.2% for τ = 0.5, and by 87.1% to 92.1% for τ = 0.9. The reduction

in the MSE is due mainly to the efficiency gains. In this simulation, RCV always

overestimates uτ , which loses some efficiency, but does not bring in bias. In fact,

the squared bias of the EQR estimator is about the same as that of the QR

estimator (see the results in Section D.3 of the Supplementary Material).

We further examine the EQR model using the baseball salary data (Watnik

(1998)). The data contain salaries for 337 non-pitchers for the 1992 Major League

Baseball season. The histogram of the salaries is right-skewed, which means that

some of the players have much higher salaries than the others do. The data

set also includes 12 measures of the players’ performance in the previous year,

including batting average, on-base percentage, number of runs, hits, doubles,

triples, home runs, batted in, walks, strike-outs, stolen bases, and errors. Each
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Figure 5. Comparison of the EQR estimators and the standard QR estimator with
τ = 0.5. The line — marks the MSE of the EQR estimator with true uτ , the line —
with ∗ marks the MSE of the EQR estimator with selected uτ , and the line – – marks
the MSE of the standard QR estimator.
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Figure 6. Comparison of the EQR estimators and the standard QR estimator with
τ = 0.9. The line — marks the MSE of the EQR estimator with true uτ , the line —
with ∗ marks the MSE of the EQR estimator with selected uτ , and the line – – marks
the MSE of the standard QR estimator.

predictor is scaled to have standard deviation one. We fit the EQR model to the

data. RCV suggested uτ = 4 for τ = 0.5. Across all elements in βτ , the ratios of

the bootstrap standard deviations of the standard QR estimator to those of the

EQR estimator range from 0.99 to 6.78, with an average of 2.90. For τ = 0.9,

uτ = 2 was selected using RCV. The ratios of the bootstrap standard deviations

range from 1.88 to 29.48, with an average of 8.30. To obtain an efficient estimator

whose estimation standard deviation is 1/8.3 of the original standard deviation

under the standard QR, we need to increase the sample to 8.302 ≈ 70 times the
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original sample size. The efficiency gain of the EQR model is massive in this

example.

6. Partial EQR Model

The partial EQR model is motived by applications in which some predic-

tors are categorical. For example, in medical studies, gender and race are often

measured as covariates, along with continuous variables, such as gene expres-

sion intensities, to study causes of a certain disease. If categorical predictors are

present, the EQR model cannot be applied directly. To resolve this issue, we

propose enveloping the continuous predictors, and leaving the categorical pre-

dictors intact. In this way, the coefficients of the continuous variables can be

estimated more efficiently, and the coefficients of the categorical variables are

estimated with about the same efficiency as that of the QR model. Specifically,

let X = (XT
1 ,X

T
2 )T , where X1 ∈ Rp1 contains the continuous predictors, and

X2 ∈ Rp2 contains the categorical predictors, p1 + p2 = p. Then the QR model

(2.1) can be written as

QY (τ | X) = µτ + βT1,τX1 + βT2,τX2, (6.1)

where β1,τ ∈ Rp1 is the coefficient vector of X1, and β2,τ ∈ Rp2 is the coefficient

vector of X2. Let µX1
and ΣX1

denote the mean and covariance matrix of X1.

Given the presence of X2, suppose Sτ is a subspace of Rp1 that satisfies the

following two conditions:

i) QY (τ | X) = QY (τ | PSτX1,X2) and ii) Cov(PSτX1,QSτX1) = 0. (6.2)

Then it can shown that Sτ is a reducing subspace of ΣX1
that contains β1,τ .

The intersection of all such Sτ is called the partial ΣX1
-envelope of β1,τ , denoted

by EΣX1
(β1,τ ), or E1,τ for short. We denote the dimension of EΣX1

(β1,τ ) as dτ
(dτ ≤ p1). Since we only consider the envelope on β1,τ , β2,τ remains intact. We

call (6.1) a partial envelope quantile regression (PEQR) model if the conditions in

(6.2) are incorporated. Let Ψτ ∈ Rp1×dτ be an orthonormal basis of EΣX1
(β1,τ ),

and Ψ0,τ ∈ Rp1×(p1−dτ ) be a completion of Ψτ . Then the coordinate form of the

PEQR model is

QY (τ |X) = µτ + ηTτ ΨT
τ X1 + βT2,τX2

ΣX1
= ΨτΩτΨ

T
τ + Ψ0τΩ0τΨ

T
0τ ,

(6.3)

where β1,τ = Ψτητ , ητ ∈ Rdτ carries the coordinates of β1,τ with respect to Ψτ ,
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and Ωτ ∈ Rdτ×dτ and Ω0,τ ∈ R(p1−dτ )×(p1−dτ ) carry the coordinates of ΣX1
with

respect to Ψτ and Ψ0τ , respectively. Let s1 = p1(p1 + 1)/2. Then the number

of parameters in this model is 1 + p2 + dτ + s1, reduced from 1 + p1 + p2 + s1

without enveloping, and the parameter vector is

ζ1,τ = (µτ , vec(ητ )T , vec(Ψτ )T ,βT2,τ , vech(Ωτ )T , vech(Ω0,τ )T )T .

The estimation of the parameters in PEQR is similar to that in EQR. We

adopt the reparametrization in (4.1). Let Ψτ,1 be the matrix that contains the

first dτ rows in Ψτ , and let Ψτ,2 be the matrix that contains the remaining rows

in Ψτ . Without loss of generality, we assume that Ψτ,1 is nonsingular. Let

Ψ∗τ = ΨτΨ
−1
τ,1, η∗τ = Ψτ,1ητ , and Ω∗τ = Ψτ,1ΩτΨ

T
τ,1. Then Ψ∗τ = (Idτ ,A

T
1 )T ,

where A1 = Ψτ,2Ψ
−1
τ,1. We write Xi = (XT

1,i,X
T
2,i)

T and Wi = (1,XT
i )T , for

i = 1, . . . , n. Under the PEQR model, define

h∗n(ζ∗1,τ )

=

 1
n

∑n
i=1 Wi{I[Yi < µτ + (Ψ∗τη

∗
τ )TX1,i + βT2,τX2,i]− τ}

1
n

∑n
i=1{vech(Ψ∗τΩ∗τΨ

∗
τ
T +Ψ0τΩ0τΨ

T
0τ )−vech[(X1,i−µX1

)(X1,i−µX1
)T ]}

1
n

∑n
i=1(µX1

−X1,i)


≡ 1

n

n∑
i=1

g∗n(ζ∗1,τ ), (6.4)

where ζ∗1,τ = (µτ , vec(η∗τ )T , vec(A1)T ,βT2,τ , vech(Ω∗τ )T , vech(Ω0,τ )T ,µTX1
)T . We

follow the procedures in Section 4, and use a two-step algorithm to obtain the

GMM estimator of ζ∗1,τ :

Step 1. Find the estimator ζ∗1,τ by minimizing h∗n(ζ∗1,τ )Th∗n(ζ∗1,τ ); denote this as

ζ̃∗1,τ .

Step 2. Estimate the optimal weight matrix as

∆̂−1 =

[
1

n

n∑
i=1

g∗n(ζ̃∗1,τ )g∗n(ζ̃∗1,τ )T

]−1

,

and obtain the GMM estimator ζ̂∗1,τ as the minimizer of the following

quadratic form:

Qn(ζ∗1,τ ) = h∗n(ζ∗1,τ )T ∆̂−1h∗n(ζ∗1,τ ).

Then the envelope GMM estimators of β1,τ and ΣX1
are β̂1,τ = Ψ̂∗τ η̂

∗
τ and
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Σ̂X1
= Ψ̂∗τ Ω̂∗τΨ̂

∗T
τ + Ψ̂0τ Ω̂0τΨ̂

T
0τ , respectively.

The selection of the dimension for EΣX1
(β1,τ ) can be performed by RCV.

The asymptotic variance of the envelope GMM estimator can be derived

similarly as in Theorem 2. As βτ = (βT1,τ ,β
T
2,τ )T , θ∗ in the PEQR setting is

θ∗ = (µτ ,β
T
1,τ ,β

T
2,τ , vech(ΣX1

)T )T . Let θ̂∗pe denote the PEQR estimator of θ∗,

and let θ̃∗ denote the standard estimator of θ∗ by directly solving the estimating

equations without enveloping. Let θ∗0 be the true value of θ∗. As discussed in

the EQR model, we ignore µX1
, with no loss of generality.

Theorem 3. Under the same conditions as in Theorem 2, (1)
√
n(θ̂∗pe − θ∗0)

converges in distribution to a normal distribution with mean zero and covariance

matrix avar(
√
nθ̂∗pe) = G(GTUpeV

−1
pe UpeG)†GT , where G = ∂θ∗/∂ζT1,τ is the

gradient matrix of θ∗ relative to ζ1,τ ,

Upe =

(
Eθ0

[fY |X(ξ0(τ |X))WWT ] 0

0 Is1

)

and

Vpe =

(
τ(1− τ)Eθ0

[WWT ] 0

0 varθ0
{vech[(X1 − µX1,0)(X1 − µX1,0)T ]}

)
,

with µX1,0 being the true value of µX1
.

(2) In addition, avar(
√
nθ̂∗pe) ≤ avar(

√
nθ̃∗).

Theorem 3 suggests that the PEQR improves the estimation efficiency of

β1,τ , but without sacrificing the estimation efficiency of β2,τ . The proof of The-

orem 3 is briefly described in Section C of the Supplementary Material.

Next we demonstrate the performance of the PEQR using a simulation and

an example. To save space, we present the simulation setting and results in

Section D.4 of the Supplementary Material, where the PEQR demonstrates ef-

ficiency gains in estimating the parameters compared with that of the standard

QR. We present the real data analysis below.

We applied the PEQR model to Boston housing data (Harrison and Rubin-

feld (1978)). The data contain housing values and 13 attributes for 506 owner-

occupied homes in suburbs of Boston. The 13 attributes include one categorical

variable: the Charles River dummy variable, which takes the value one if a tract

bounds the river, and zero otherwise. The 12 continuous variables include crime

rate, nitric oxides concentration, pupil-teacher ratio by town, and others. Each
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continuous variable was scaled to have a sample standard deviation of one. We

adopted the value of the homes as the response and the 13 attributes as predic-

tors. As the distribution of the response is right-skewed, we fit the standard QR

model and the PEQR model to the data. RCV suggested dτ = 3 for τ = 0.5,

and dτ = 2 for τ = 0.9. We computed the bootstrap standard deviation from the

standard QR model and the PEQR model for each element in βτ , and took the

ratio. The ratios ranged from 0.88 to 3.44 with an average of 2.12 for τ = 0.5,

and ranged from 0.83 to 5.50 with an average of 3.57 for τ = 0.9. The PEQR

model demonstrates efficiency gains in this example.

7. Discussion

In this study, the EQR approach, along with its variant the PEQR, is de-

veloped to reduce estimation variation and improve the efficiency of QRs. The

new EQR method utilizes information on both the predictors and the response

by connecting the covariance matrix ΣX of X to the parameter of interest βτ
for identifying material and immaterial information in estimating βτ , while syn-

chronously excluding immaterial information from the estimation. As a result

of this simultaneous dimension reduction and regression fitting, the proposed

method can lead to gains in efficiency. It also advances the recent development

of envelopes to general distribution-free procedures with possibly nonsmooth ob-

jective functions, and offers new technical tools for the justification of asymptotic

efficiency. The idea of the EQR can be naturally extended to other quantile re-

gression settings, such as censored quantile regression and partially linear quan-

tile regression, for survival and other complex data analyses. On the other hand,

since ΣX is incorporated in the estimation procedure, the number of parameters

in EQR can be large when the number of predictors increases. Hence a direct

application of EQR to high dimensional settings is difficult. To overcome this

problem, a penalized EQR model can be considered by imposing sparsity on the

parameters βτ , ΣX, and the weighted matrix ∆ in the GMM estimation, inspired

by Su et al. (2016) and Qian, Ding and Cook (2018). The theoretical properties

of the associated estimators require further investigation. We leave the penalized

EQR model as a potentially interesting future research project.

Supplementary Material

The online Supplementary Material contains proofs, technical details, and

additional simulations.
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