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Abstract: In this article, we discuss response variable selection and the subsequent

estimation of the regression coefficients in multivariate linear regression. Because

of the asymmetric roles of the predictors and responses in a regression, response

variable selection differs markedly from the usual predictor variable selection. When

a response is inferred to have a coefficient of zero, it should not simply be removed

from subsequent estimation. Instead, we should analyze its relationship with the

responses that have nonzero coefficients, which we call dynamic responses. If it

is correlated with the dynamic responses, given all other responses, it should be

retained to improve the estimation efficiency of the nonzero coefficients, as an

ancillary statistic. Otherwise, it can be removed from further inference (leading

to significant resource savings in high-dimensional settings), and we call it a static

response. Therefore, we can classify responses into three categories: dynamic

responses, ancillary responses, and static responses. We derive an algorithm

to identify these response variables, and provide an estimator of the regression

coefficients based on the selection result. Applications using synthetic and real

data illustrate the efficacy of the proposed response variable selection procedure in

both low- and high-dimensional settings. Lastly, we establish the consistency of the

variable selection procedures and the asymptotic properties of the estimators for

both the large-sample setting and the high-dimensional small-sample setting.

Key words and phrases: Group sparsity, high-dimensional data, oracle property,

response variable selection.

1. Introduction

Consider the standard multivariate linear regression

Y = α+ βX+ ε, (1.1)

whereY ∈ Rr is the multivariate response vector, X ∈ Rp contains the predictors,

with mean µX and positive-definite covariance matrix ΣX, and the error vector

ε has mean 0 and positive-definite covariance matrix Σ. The errors and the

predictors are independent of each other. We use n to denote the sample size.

Furthermore, we assume that n > p, because our primary focus is response

variable selection. If n < p, we can use any predictor variable selection method
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to reduce the dimensionality of the predictors and make p < n. However, we do

allow the number of responses r to be greater than the sample size n.

Motivation. Response variable selection is motivated by applications in which

we measure multiple outputs/responses and predictors, and wish to classify the

response variables based on their relationship with the predictors. For example,

when developing a new medicine, many clinical or hematological characteristics

of a patient are measured. Here, it is of scientific interest to identify which

characteristics change after taking the medicine. In economics, it might be

of strategic importance to determine which industrial sectors are affected by

a government policy, such as imposing a tariff on an imported good, such as

bauxite. In particular, we categorize response variables as dynamic, ancillary,

or static variables. Rigorous definitions are provided in Section 2, but we briefly

discuss the intuitive underpinnings and motivation here. For dynamic response

variables, the corresponding regression coefficient vector (row of β) has at least

one nonzero component. Identifying these variables is of scientific interest in

various applications. Let D denote the set of indices of all dynamic responses,

and let βD denote the regression coefficients of the dynamic responses. Once the

dynamic responses have been identified, one might be tempted to exclude/discard

the nondynamic response variables from the estimation process. However, these

variables might still carry information about βD through their correlations with

the dynamic variables. Nondynamic response variables that are correlated with

the dynamic response variables (given all other response variables) are defined

as ancillary responses. Identifying ancillary responses is important, because this

reduces the asymptotic variance of the MLE for βD (see Proposition 1). All other

nondynamic responses are defined as static responses. Static responses carry no

information about βD, and can be eliminated from further analysis. Categorizing

the nondynamic responses as ancillary or static responses helps researchers avoid

collecting the static responses in future experiments, thus saving time and other

resources.

One might argue that simply including all nondynamic responses in the

estimation of βD avoids the extra selection effort for ancillary responses, while

yielding the same estimation efficiency. This is fine when the number of responses

r is smaller than the sample size n. However, in high-dimensional settings,

where the number of response variables (and likely the number of nondynamic

response variables) is comparable to or larger than the sample size, including

all nondynamic responses creates several methodological and computational

complications, and thus is not advisable.

Connections with existing literature. Compared with that on predictor

variable selection, the literature on response variable selection is surprisingly

limited. The standard method is to test whether the regression coefficients for

each response are equal to zero, adjusting for multiple testing; see, for example,
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Benjamini and Yekutieli (2001). The response variables with zero regression

coefficients are usually discarded after selection. An and Zhang (2017) use

a double group-lasso penalty to simultaneously select the predictors and the

responses. However, they treat the responses as uncorrelated, and so do not

use the covariance structure among the elements in Y.

Numerous works use generalized estimating equations (GEEs) to improve the

estimation of the regression coefficients by accounting for correlated responses

in longitudinal data and repeated measurement data settings; see Lipsitz et al.

(1994), Ballinger (2004), Leung, Wang and Zhu (2009), and the references therein.

A high-dimensional adaptation of these methods in Wang, Zhou and Qu (2012)

imposes generic sparsity in the regression coefficients through penalization. There

is also a growing body of literature on the joint sparse estimation of β and Σ−1;

see Peng et al. (2009), Rothman, Levina and Zhu (2010), Yin and Li (2011),

Deshpande, Ročková and George (2019), Ha, Stingo and Baladandayuthapani

(2020), Li et al. (2021), and the references therein. To the best of our knowledge,

these methods either reduce the number of parameters by imposing general

sparsity patterns in β and/or Ω, or select “master” predictor variables using

the column sparsity in β.

However, these methods do not provide a way to identify dynamic, ancillary,

and static responses using the specific and structured sparsity in β and Ω = Σ−1

(see equation (2.5) below). Although we share the goal of improving the efficiency

of regression coefficient estimates, the proposed approach may offer scientific

insights as a result of identifying dynamic responses, and save computational and

other resources by identifying ancillary/static responses (as discussed above).

Outline of the paper. We propose a two-step procedure for selecting the

response variables, while considering the covariance among the responses. The

first step identifies the dynamic variables, and the second step identifies the

ancillary variables. We then estimate the regression coefficients based on the

selection results. The remainder of the paper is organized as follows. In Section

2, we formally define the three categories of response variables, and derive various

technical results that support the motivations for the response variable selection

discussed above. In Sections 3.1–3.3, we discuss the proposed selection procedure

for the low-dimensional setting (n ≥ r), and derive its asymptotic properties. In

Sections 3.4–3.5, we consider a methodology for the challenging high-dimensional

setting (n < r), and derive the corresponding asymptotic properties. A

detailed experimental validation is provided in Section 4.1 (simulated data) and

Section 4.2 (real data). The proofs of the technical results, implementation

details, additional simulations, and future research directions are provided in

the Supplementary Material.
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2. Categories of response variables

In this section, we introduce three categories of responses, and discuss

estimating the coefficients β after the selection. The three categories are defined

based on the roles they play in the estimation.

A natural purpose of response variable selection is to identify the responses

with nonzero coefficients, and those with zero coefficients.

Definition 1. Under the multivariate linear regression model (1.1), if a response

has a regression coefficient vector with at least one nonzero component, we call

it a dynamic response.

Let D be a subset of {1, . . . , r} that contains the indices of all dynamic

responses, and let rD be its cardinality. We use YD ∈ RrD to denote the

vector of dynamic responses, and Y−D ∈ Rr−rD to denote those responses

with coefficient vectors that have identically zero components. Without loss of

generality, Y can be written as Y = (YT
D,Y

T
−D)

T , and the regression coefficients

have corresponding partition β = (βT
D,0)

T . Each row in βD is nonzero. Then,

the linear regression model (1.1) has the structure(
YD

Y−D

)
=

(
αD

α−D

)
+

(
βD
0

)
X+

(
εD

ε−D

)
, var

(
εD

ε−D

)
=

(
ΣD ΣD,−D

Σ−D,D Σ−D

)
.

(2.1)

Suppose that the data consist of n independent and identically distributed (i.i.d.)

observations (Yi,Xi), where Yi is sampled from the conditional distribution

of Y | Xi, for i = 1, . . . , n. The following proposition (Proposition 2 in Su

et al. (2016)) indicates that after selection, although Y−D has zero coefficients, it

improves the efficiency of the estimation of βD via its correlation with YD. Let

β̃D and β̃−D be the ordinary least squares (OLS) estimators of the coefficients

from the regressions of YD on X and Y−D on X, respectively. Note that the

OLS estimators do not account for the error correlations. Furthermore, the

multivariate regression model in (1.1) can be thought of as a special case of

the seemingly unrelated regression (SUR) model (Zellner (1962)) with common

predictors across all responses. In such a setting, the generalized least squares

(GLS) estimate of the regression coefficients is the same as the OLS estimate

Amemiya (1985, p.197). Let RD be the residuals from the regression of YD on

X, and R−D be the residuals from the regression of Y−D on X. The operator

vec(·) stacks a matrix into a vector columnwise, and ⊗ stands for the Kronecker

product.

Proposition 1. Assume that the errors are normally distributed in model (2.1)

and D is given. The maximum likelihood estimator of βD under model (2.1) is

β̂D = β̃D− β̃D|−Dβ̃−D, where β̃D|−D is the OLS estimator of the coefficients from

the regression of RD on R−D. The asymptotic distribution of β̂D is given by
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√
n{vec(β̂D)− vec(βD)}

d→ N(0,V1), V1 = Σ−1
X ⊗ (ΣD −ΣD,−DΣ

−1
−DΣ−D,D).

Recall that β̃D is the maximum likelihood estimator of βD under the model

YD = αD + βDX+ εD, var(εD) = ΣD.

The asymptotic distribution of β̃D is given by

√
n{vec(β̃D)− vec(βD)}

d→ N(0,V2), V2 = Σ−1
X ⊗ΣD.

Moreover,

V2 −V1 = Σ−1
X ⊗Σ

1/2
D ρΣ

1/2
D ,

where ρ = Σ
−1/2
D ΣD,−DΣ

−1
−DΣ−D,DΣ

−1/2
D , and the eigenvalues of ρ are squared

canonical correlations between YD and Y−D given X.

The normality assumption in Proposition 1 ensures explicit forms of the

asymptotic variance, which facilitates the comparison. Similar results can be

derived under nonnormal errors, but the expressions for V1 and V2 can be much

more complicated. Proposition 1 suggests that β̂D is a more efficient estimator

for βD than is β̃D, which uses only YD. The efficiency gain increases with the

canonical correlation between YD and Y−D. This is an important difference

between response variable selection and predictor variable selection. In predictor

variable selection, if a predictor has regression coefficients that are zero, it is

excluded from the model, because this is more efficient than retaining it in the

model. However, in response variable selection, because Y−D carries information

on βD through its correlation with YD, we use Y−D to construct the estimator

of βD to improve efficiency. A generalization of Proposition 1 to a setting where

rD̄ remains fixed, but the total number of responses r is allowed to grow with n

is provided in the Supplementary Material, Section S2.

When Y is high-dimensional, Y−D may also be high-dimensional, and only

part of Y−D may carry information on βD. The other part of Y−D has regression

coefficients that are zero and does not provide information on βD, and thus can

safely be eliminated from model (2.1), removing the need to measure Y−D in

future experiments. To distinguish between these two types of responses, we

define ancillary and static responses.

Definition 2. If a response variable has regression coefficients that are zero,

and is independent of the dynamic responses YD, given all the other response

variables, we call it a static response. If a response variable has regression

coefficients that are zero, but is not independent of YD, given all the other

response variables, we call it an ancillary response.

Let A and S be subsets of {1, . . . , r} that contain the indices of all ancillary

and static responses, respectively. Let rA and rS denote the cardinalities of A
and S, respectively. Then, we have rD + rA + rS = r. Based on Definition 2, we



1330 KHARE AND SU

have YD YS | (YA,X). Proposition 2 indicates that static responses do not

improve the estimation efficiency of βD.

Proposition 2. Assume that D, A, and S are known, and YD YS | (YA,X).

Suppose that the errors are normally distributed in the following two models (2.2)

and (2.3), where(
YD

YA

)
=

(
αD

αA

)
+

(
βD
0

)
X+

(
εD

εA

)
, var

(
εD

εA

)
=

(
ΣD ΣD,A

ΣA,D ΣA

)
, (2.2)

andYD

YA

YS

 =

αD

αA

αS

+

βD
0

0

X+

εD

εA

εS

, var

εD

εA

εS

 =

 ΣD ΣD,A ΣD,S

ΣA,D ΣA ΣA,S

ΣS,D ΣS,A ΣS

.

(2.3)

Let β̂D,1 and β̂D,2 be the maximum likelihood estimators of βD under models

(2.2) and (2.3), respectively. Then, β̂D,1 = β̃D − β̃D|Aβ̃A and β̂D,2 = β̃D −
β̃D|(A,S)β̃(A,S). The asymptotic distribution of β̂D,i, for i = 1, 2, is given by

√
n{vec(β̂D,i)−vec(βD)}

d→ N(0,V), V = Σ−1
X ⊗(ΣD−ΣD,AΣ

−1
A ΣA,D). (2.4)

The forms of β̂D,1 and β̂D,2 can be obtained from Proposition 1 by replacing

−D with A and (A,S), respectively. Proposition 2 suggests that after the

response variable selection, we need only use YD and YA for the estimation;

the static responses YS can be eliminated. Proposition 3 gives an equivalent

form of β̂D,1. Let RD|A be the residuals from the regression of YD on YA, and

RX|A be the residuals from the regression of X on YA.

Proposition 3. Assume that the error vector ε has finite second moments in

model (2.2), and that D and A are known. Let β̂D,3 be the regression coefficients

from the regression of RD|A on RX|A. Then we have β̂D,3 = β̂D,1.

Proposition 3 indicates that after selection, the estimator of βD can be

obtained by conditioning both YD and X on YA, and then estimating the

regression coefficients. The responses in YA serve as the ancillary statistic, hence

its name.

Proposition 4 provides an alternative way of obtaining the estimator of βD
by regressing YD on X and YA. This follows the spirit of the added variable plot

in Cook and Weisberg (1982).

Proposition 4. Under model (2.5), let (β̂1, β̂2) be the OLS estimator for (β1,β2)

in the following model:

YD = µ+ β1X+ β2YA + ε∗,
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where the error vector ε∗ has mean 0 and finite second moments. Then, β̂1 =

β̂D,3 = β̂D,1.

Let Ω = Σ−1 be the precision matrix of ε. Based on three categories of

responses, Ω can be partitioned according to D, A, and S. Because YD YS |
(YA,X) implies ΩD,S = 0, model (1.1) can then be written asYD

YA

YS

 = α+

βD
0

0

X+

εD

εA

εS

 , Ω =

ΩD ΩD,A 0

ΩA,D ΩA ΩA,S

0 ΩS,A ΩS

 . (2.5)

Note that no columns in ΩD,A are zero. From (2.5), the dynamic responses YD

have nonzero coefficients βD, the ancillary responses YA have zero coefficients,

but improve the efficiency in the estimation of βD, and the static responses YS

have zero coefficients and do not provide information for the estimation of βD.

The selection of D, A, and S is based on the structure of β and Ω in (2.5), and is

discussed further in Section 3. Before we proceed, we first introduce a property

of model (2.5) that we use to select A and S.

Proposition 5. Assume that the error vector ε = (εT
D, ε

T
A, ε

T
S )

T has finite second

moments and has a covariance structure as in (2.5). Then, the regression

coefficients BD|(A,S) = (BD|A,BD|S) of the regression model

εD = BD|(A,S)

(
εA

εS

)
+ e (2.6)

satisfy that BD|S = 0 and each column in BD|A is nonzero.

Proposition 5 implies that identifying the zero block in Ω can be converted to

a response variable selection problem in which we need only identify the dynamic

and nondynamic responses.

3. Response Variable Selection

3.1. Construction of objective functions

We first discuss variable selection with fixed r and a large sample. Recall

that the data consist of n i.i.d. observations (Yi,Xi), where Yi is sampled from

the conditional distribution of Y | Xi, for i = 1, . . . , n. Let Y denote an n × r

matrix in which the ith row is YT
i , X denote an n × p matrix in which the ith

row is XT
i , 1n be an n-dimension column vector of ones, and tr denote the trace

of a matrix. The log likelihood of Yi | Xi, for i = 1, . . . , n, is given by

l(α,β,Ω) = −nr

2
log(2π) +

n

2
log |Ω|

−1

2
tr
{
(Y− 1nα

T − XβT )Ω(Y− 1nα
T − XβT )T

}
.
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After some straightforward calculations, α is estimated as α̂ = Ȳ − βX̄, where

Ȳ =
∑n

i=1 Yi/n and X̄ =
∑n

i=1 Xi/n are the sample means of Y and X,

respectively. Substituting α̂ into the log likelihood l(α,β,Ω), we obtain the

objective function for β and Ω,

f(β,Ω) = − log |Ω|+ 1

n
tr
{
(Yc − Xcβ

T )Ω(Yc − Xcβ
T )T

}
, (3.1)

where Yc ∈ Rn×r and Xc ∈ Rn×p are centered data matrices; that is, the ith row

of Yc is (Yi − Ȳ)T , and ith row of Xc is (Xi − X̄)T . Based on the objective

function (3.1), the sets D, A, and S can be estimated in two steps.

Step 1. The goal of this step is to estimate D. For this purpose, we need to

induce row-wise sparsity in the matrix β, and the group lasso penalty (Yuan

and Lin (2006)) is a natural choice. According to Wang and Leng (2008) and

Nardi and Rinaldo (2008), if we have an identical penalty parameter λ for each

group, the estimator may lack selection consistency and estimation efficiency.

Therefore, we add a weight wi to make the penalty in each group proportional

to 1/∥β̂i·∥γ , for γ > 0, where β̂ is a
√
n-consistent estimator of β, and ∥ · ∥ is

the Euclidean norm. This adaptive approach is also used in adaptive lasso (Zou

(2006)), sparse reduced-rank regression (Chen and Huang (2012)), and sparse

sufficient dimension reduction (Chen, Zou and Cook (2010)). Specifically, we

solve the following optimization problem:

f1(β) = log |SY|X|+
1

n
tr
{
(Yc − Xcβ

T )S−1
Y|X(Yc − Xcβ

T )T
}

+ λ1

r∑
i=1

wi∥βi·∥,
(3.2)

where SY|X is the sample covariance matrix of the residuals from the OLS fit

of Y on X, βi· denotes the ith row of β, wi = 1/∥β̃i·∥γ1 , where β̃ is the OLS

estimator of β, and γ1 and λ1 are tuning parameters. Note that the group lasso

penalty λ1

∑r
i=1 wi∥βi·∥ induces row-wise sparsity in β, as desired. Suppose we

obtain β̂step1 as a minimizer of f1(β). Then, we set D̂ = {j : (β̂step1)j· ̸= 0}. The
responses that have at least one nonzero regression coefficient are in YD̂, and

rD̂ is the cardinality of D̂. The response variables that have all zero regression

coefficients are either YÂ or YŜ , which is determined in Step 2.

Step 2. The goal of this step is to estimate A and S. Proposition 5 indicates that

a difference between ancillary and static responses is whether the corresponding

column in BD|(A,S) is zero. Let R = Yc −Xcβ̂
T

step1 denote the residuals from Step

1. According to the estimated D̂ from Step 1, R is partitioned asR = (RD̂,R−D̂).

We regress RD̂ on R−D̂, and use the group lasso penalty to induce column-wise
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sparsity in BD̂|(A,S), leading to the following objective function:

f2(BD̂|(A,S))= log |SD̂|−D̂|

+
1

n
tr
{(

RD̂ −R−D̂B
T
D̂|(A,S)

)
S−1

D̂|−D̂

(
RD̂ −R−D̂B

T
D̂|(A,S)

)T}
+λ2

r−rD̂∑
i=1

w̃i∥BD̂|(A,S),·I∥, (3.3)

where SD̂|−D̂ is the sample covariance matrix of the residuals from the regression

of RD̂ on R−D̂, the weights are w̃i = 1/∥B̃D̂|(A,S),·i∥γ2 , B̃D̂|(A,S) is the OLS

estimator from the regression of RD̂ on R−D̂, B̃D̂|(A,S),·i denotes the ith column of

B̃D̂|(A,S), and γ2 and λ2 are tuning parameters. Suppose B̂D̂|(A,S),step2 is obtained

as a minimizer of f2(BD̂|(A,S)). Then, YÂ contains the responses in which the

corresponding columns in B̂D|(A,S),step2 are nonzero, and rÂ is the cardinality

of Â. The static responses in YŜ are estimated as the responses in which the

corresponding columns in B̂D|(A,S),step2 are zero, and rŜ is the cardinality of Ŝ.

After Step 1 and Step 2, β is estimated as β̂ = (β̂
T

D̂,0)
T , where β̂D̂ =

β̃D̂ − β̃D̂|Âβ̃Â, as discussed in Proposition 2, where β̃D̂, β̃D̂|Â, and β̃Â are OLS

estimators. In other words, β̂D̂ is an OLS estimator that uses information from

both the dynamic responses and the ancillary responses.

3.2. Computational algorithm

Algorithm for Step 1: We estimate β one row at a time. For a fixed j,

j = 1, . . . , r, it can be shown that minimizing f1 with respect to βj· is equivalent

to minimizing the function

1

n

{
(S−1

Y|X)jj
(
Yc,·j − Xcβ

T
j·
)T

(Yc,·j − Xcβ
T
j·)

+
∑
k ̸=j

2(S−1
Y|X)jk(Yc,·k − Xcβ

T
k·)

T (Yc,·j − Xcβ
T
j·)

}
+ λ1wj∥βj·∥ (3.4)

with respect to βj·, where Yc,·k denotes the kth column of Yc. Note that the

function in (3.4) is a nondifferentiable convex function of βj·. Minimizing such

functions (quadratic form in vector plus its ℓ2-norm) is considered in Foygel

and Drton (2010), Puig, Wiesel and Hero (2009), and Simon et al. (2013) in

the context of a group lasso. In particular, Simon et al. (2013) provide a

reasonably fast majorize-minimize algorithm to solve this minimization problem.

This approach is implemented in the R package SGL, and we use it to solve for

βj· in (3.4).
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Algorithm for Step 2: The optimization problem in Step 2 is the same as

that in Simon, Friedman and Hastie (2013), with S
−1/2

D̂|−D̂
RD̂ being their Y and

S
−1/2

D̂|−D̂
BD|(Â,Ŝ) being the coefficients. Note that a column in S

−1/2

D̂|−D̂
BD|(Â,Ŝ) is zero

if and only if the corresponding column in BD|(Â,Ŝ) is zero.

Remark 1. Simon, Friedman and Hastie (2013) studies the “multi-response

group-lasso” problem, and provides an iterative algorithm for minimizing the

objective function

1

n
tr
{(

Yc − Xcβ
T
)T (Yc − Xcβ

T
)}

+ λ1

r∑
k=1

∥∥(βT )k·
∥∥ , (3.5)

where (βT )k· is the kth row of βT ; see also Argyriou, Evgeniou and Pontil (2007)

and Obozinski, Taskar and Jordan (2007). However, the iterative algorithm

presented in Simon, Friedman and Hastie (2013) is not applicable in the context

of (3.2). There are two notable differences between the minimization problems in

(3.2) and (3.5). First, in (3.2), we use the group-lasso penalty on the rows of β

for the response variable selection, whereas in (3.5), we use a group-lasso penalty

for the columns of β for the predictor variable selection. Second, unlike (3.5), the

trace term in (3.2) contains the term Ω, because we consider a multi-response

regression model with a general covariance structure.

3.3. Theoretical properties

In this section, we establish the variable selection consistency and oracle

property of the estimator β̂D̂ in the fixed r setting. Let D̄, Ā, and S̄ denote

the true sets of dynamic, ancillary, and static responses, respectively, let β̄D̄ be

the true regression coefficients of dynamic responses, and let Σ̄ be the true error

covariance matrix. Let P̄ denote the probability measure corresponding to the

true data-generating model ((2.5), with the true parameters introduced above).

For consistency in the fixed r setting, we do not require the normality of the true

error distribution, and thus assume only that the errors are i.i.d. and have finite

fourth moments under P̄ .

Theorem 1. Suppose n1/2λi → 0, and n(1+γi)/2λi → ∞, for i = 1, 2. Then,

1. Dynamic response selection consistency: P̄ (D̂ = D̄) → 1 as n → ∞.

2. Ancillary response selection consistency: P̄ (Â = Ā) → 1 as n → ∞.

3. Estimation consistency: ∥vec(β̂D̂)− vec(β̄D̄)∥ = OP̄ (n
−1/2).

Theorem 1 indicates that the estimator β̂D̂ is
√
n-consistent, and thus our

variable selection procedure discussed in Section 3.1 is consistent.

To discuss the optimal estimation rate, we first introduce the oracle model

for response variable selection. If we know the oracle information on which the
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responses are dynamic, ancillary, or static, the oracle model is model (2.2). Note

that the oracle model includes the dynamic and ancillary responses, but not the

static responses. The oracle estimator of βD̄ is β̂D̄,oracle = β̃D̄ − β̃D̄|Āβ̃Ā. The

asymptotic distribution of β̂D̄,oracle is the same as that of β̂D̄,1 in Proposition 2;

see (2.4). Note that while P̄ (D̂ = D̄) → 1, D̂ and D̄ may differ at some sample

points. Hence, we define ∥u− v∥ :=
√∑a

i=1(ui − vi)2 +
∑b

i=a+1 v
2
i if u ∈ Ra and

v ∈ Rb, with a < b, for the following result.

Theorem 2. Assume that the conditions in Theorem 1 hold. Then, ∥vec(β̂D̂)−
vec(β̂D̄,oracle)∥ = oP̄ (n

−1/2).

Theorem 2 suggests that the estimator β̂D̂ has the same convergence rate and

asymptotic variance as the oracle estimator. Thus, it has the oracle property.

3.4. Response variable selection in a high-dimensional setting

In a high-dimensional setting, we allow r to grow with n, and denote r as

rn. In this section, we discuss adjustments to the selection algorithm under this

setting.

Note that SY|X in Step 1 is singular when n < rn. Hence, we need

an estimator of Σ−1
Y|X for the objective function in (3.2). Several precision

matrix estimators can be adapted to a high-dimensional setting, including the

constrained l1-minimization estimator (Cai, Liu and Luo (2011, CLIME)), lasso

penalized D-trace estimator (Zhang and Zou (2014)), scaled lasso estimator

(Sun and Zhang (2013)), and convex correlation selection estimator (Khare, Oh

and Rajaratnam (2015, CONCORD)). Here, we use the CONCORD estimator,

because it computes quickly and recovers the sparsity pattern with high accuracy.

Let ωij denote the (i, j)th element of Ω, and let Ri· denote the ith column of

the residual matrix R ∈ Rn×r from the OLS regression of Y on X. Then, the

CONCORD estimator of Ω, denoted by Ω̂, is the minimizer of the objective

function

Qcon(Ω) = −
r∑

i=1

n logωii +
1

2

r∑
i=1

∥ωiiRi· +
∑
j ̸=i

ωijRj·∥2 + λ
∑

1≤i ̸=j≤r

|Ωij| (3.6)

over the space of positive-definite matrices, for an appropriately chosen penalty

parameter λ. The CONCORD estimator is implemented in the R package

gconcord. Then, we replace S−1
Y|X with Ω̂ in (3.2), and obtain the objective

function

f̃1(β) = − log |Ω̂|+ 1

n
tr{(Yc − Xcβ

T )Ω̂(Yc − Xcβ
T )T}+ λ1

rn∑
i=1

wi∥βi·∥. (3.7)

Then, we follow the same algorithm for Step 1 in Section 3.2 to estimate D.
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In Step 2, the matrix SD̂|−D̂ in (3.3) is singular if n < rn − rD̂. Moreover,

because S−1

D̂|−D̂
does not exist, the OLS estimator B̃D̂|(A,S) in the weights w̃i

does not exist either. To resolve these problems, we again use the CONCORD

estimator Ω̂. Because SD̂|−D̂ estimates Ω−1
D , we use the corresponding block in Ω̂,

that is, Ω̂D, to replace S−1

D̂|−D̂
in (3.3). Note that BD|(A,S) = −Ω−1

D (ΩD,A,ΩD,S)

(see the proof of Proposition 5), and we initialize BD|(A,S) by −Ω̂
−1

D Ω̂D,−D. The

objective function is obtained as

f̃2(BD̂|(A,S)) = − log |Ω̂D̂|

+
1

n
tr

{(
RD̂ −R−D̂B

T
D̂|(A,S)

)
Ω̂D̂

(
RD̂ −R−D̂B

T
D̂|(A,S)

)T}

+λ2

rn−rD̂∑
i=1

w̃i∥BD̂|(A,S),·I∥. (3.8)

Then, A and S are estimated following Step 2 in Section 3.2.

3.5. Response selection consistency in a high-dimensional setting

In this section, we establish the consistency of the response variable selection

procedure in Section 3.4 and the asymptotic properties of the estimator of

βD when rn tends to infinity with n. Let D̄, Ā, and S̄ denote the true

sets of dynamic, ancillary, and static responses, respectively, β̄D̄ be the true

regression coefficients of the dynamic responses, Σ̄ denote the true covariance

matrix of the errors, and Ω̄ = Σ̄
−1
. Note that the dimensions of Σ̄ and

Ω̄ increase with n, but we suppress the dependence to simplify the notation.

Mild regularity assumptions needed to establish the following result are provided

and discussed in S8 of the Supplementary Material, owing to space constraints.

They include the sub-Gaussianity of the errors, uniform boundedness of the

eigenvalues of Σ̄ (Assumption 1), incoherence and minimum signal size conditions

for the consistency of Ω̂ (Assumptions 2 and 3), rates of growth of the true

numbers of dynamic and ancillary variables (Assumption 4), minimum signal size

assumptions corresponding to Step 1 and Step 2 of the procedure (Assumptions

5–6), and assumptions controlling the group-specific penalty parameters in Step

1 and Step 2 (Assumptions 7–8). In particular, these assumptions allow r to

increase at a faster rate (almost sub-exponentially) than that of n.

Theorem 3. Under Assumptions 1–8 (provided in the Supplementary Material),

the following hold for every η > 0:

1. (Dynamic response selection consistency) Let β̂step1 denote the solution to

(3.7), and D̂ = {j : β̂step1,j· ̸= 0}. Then, D̂ = D̄, with probability at least

1− 6r−η
n for large enough n (depending on η).
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2. (Ancillary and static response selection consistency) Let B̂ denote the

solution to (3.8), and Â = {j : B̂·j ̸= 0}. Then, for large enough n,

Â = Ā and Ŝ = S̄, with probability at least 1 − 22r−η
n , for large enough n

(depending on η).

Theorem 3 establishes the selection consistency of the three categories of the

response variables. As a direct consequence of the selection consistency, the

asymptotic distribution of β̂D is given in Theorem 4 (proof in the Supplementary

Material).

Theorem 4. Assume that the conditions in Theorem 3 hold, the errors are

normally distributed, and rD̄ is fixed as n grows. Then,

√
n{vec(β̂D̂)− vec(β̄D̂)}

d→ N(0,V), V = Σ̄
−1

X ⊗ (Σ̄D − Σ̄D,AΣ̄
−1

A Σ̄A,D).

Theorem 4 implies that β̂D̂ has the same asymptotic distribution as the oracle

estimator β̂D̂,oracle when rn grows with n.

4. Data Analysis

4.1. Simulation

This simulation focuses on the high-dimensional setting where n < r. We

fix n = 50, p = 8, rD = 6, and rA = 2. The response dimension r ranges

from 200 to 1,000. Elements in βD are independent N(0, 0.52) variates, and

the intercept is α = 0. The covariance matrix Σ is generated such that the

squared largest canonical correlation between YD and YA is about 0.9 for all

r. How to generate Σ is discussed in S13 of the Supplementary Material. We

generate X from Np(0, 0.5
2Ip) and Np(0, 0.25

2Ip) to represent different signal

strengths. We also generate X from Np(0, (Ip + 1p1
T
p )/8) to represent correlated

predictors, where 1p denotes a p-dimensional vector of ones. We discuss tuning

the parameters in Section S11 of the Supplementary Material. For each setting,

we simulate 200 replications, and evaluate the selection performance by using the

true positive rates TPRD, TPRA, and TPRS for the three categories of responses:

TPRD = |D̄ ∩D̂|c/|D̄|c, TPRA = |Ā∩Â|c/|Ā|c, and TPRS = |S̄ ∩ Ŝ|c/|S̄|c, where
for a set S, |S|c denotes its cardinality. We add precision measures PPVD, PPVA,

and PPVS for the sensitivity analysis, where PPVD = |D̄ ∩ D̂|c/|D̂|c, that is, the
ratio of true positives to the sum of the true and false positives. The measures

PPVA and PPVS are defined accordingly. We measure the efficiency gain of a

randomly selected element, say βij, using the efficiency ratio Rij, defined as

Rij =
var(β̃ij)

var(β̂ij)
, (4.1)
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Table 1. Summary of selection and estimation performance when r >> n.

r 200 300 500 1,000 200 300 500 1,000 200 300 500 1,000

X ∼ Np(0, 0.5
2Ip) X ∼ Np(0, 0.25

2Ip) X ∼ Np(0,
1
8 (1p1

T
p + Ip))

TPRD 0.998 1.000 1.000 1.000 0.949 0.994 0.998 1.000 0.992 0.996 1.000 1.000

TPRA 0.985 0.978 0.953 0.898 0.970 0.975 0.950 0.898 0.980 0.978 0.953 0.898

TPRS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

PPVD 0.997 0.997 0.999 0.999 0.997 0.999 0.999 0.999 0.997 1.000 0.997 0.996

PPVA 0.998 1.000 1.000 0.991 0.907 0.990 0.996 0.991 0.979 0.993 1.000 0.991

PPVS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Rmedian 4.054 3.945 3.350 2.687 2.587 3.347 3.171 2.687 3.308 3.115 3.380 2.651

Rall
MSE 99.12 140.20 206.09 370.40 87.63 138.18 205.06 370.40 98.80 140.73 201.52 363.26

RD
MSE 4.440 3.934 3.029 2.391 3.188 3.891 2.993 2.391 4.356 3.834 3.030 2.410

where var(β̃ij) and var(β̂ij) are the variances of the OLS estimator β̃ij and our

estimator β̂ij, respectively, calculated based on 200 replications. Then, Rmedian is

the median of all Rij for the nonzero elements in β. The results are provided in

Table 1. Both the TPR and the PPV measures show that the variable selection

procedure identifies the dynamic and ancillary responses quite well when r is much

larger than n. A weaker signal slightly reduces the efficiency gains, but does not

have a large effect on the results. The correlated predictors do not seem to have

any obvious negative effect on the variable selection or efficiency gains. We also

investigate the ratio of the MSEs. The measure Rall
MSE computes the median of

∥β̃ − β∥2F/∥β̂ − β∥2F (over 200 replications), where ∥ · ∥F denotes the Frobenius

norm of a matrix. Because β̃ is the OLS estimator using all the responses, it is

not sparse, and the errors on the sparse and non-sparse parts of β accumulate.

On the other hand, because of the consistency of the response selection procedure

stated in Theorem 3, when β̂ correctly identifies the zero elements in β, the sparse

part of β does not contribute to the MSE, except for a few false positive cases.

When r is large, the sparse part of β is also large, which has a significant effect

on β̃. Thus, the ratios Rall
MSE are very large. We also investigate RD

MSE, which

is similar to Rall
MSE, but focuses only on the nonzero part of β, and is defined as

the median of ∥β̃D − βD∥2F/∥β̂D − βD∥2F (over 200 replications). The ratios are

still significantly greater than one, indicating that the response variable selection

procedure indeed improves the estimation performance.

An additional simulation for a low-dimensional setting is given in Section S12

of the Supplementary Material. The simulation shows the consistency of the

variable selection for all three categories of the responses, as well as the estimator

of β. It also demonstrates that the estimator from the two-stage selection

procedure is more efficient than the estimator of βD, which uses the oracle

information of the true dynamic responses. In other words, the efficiency gains

from the ancillary responses can be sufficient to offset the cost of selecting all

three categories.
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4.2. Applications

Glioblastoma multiforme (GBM) is the most aggressive type of brain cancer,

with a median survival time of 15 months (Shea et al. (2016)). A data set from

the Cancer Genome Atlas (TCGA) Research network contains expression values

for various microRNA and genes on 192 patients with GBM. Following Wang

(2015) and Molstad (2019), we chose a subset of 20 microRNA with the largest

median absolute deviation, and a subset of 500 genes similarly. MicroRNAs are

known to contribute to the development of GBM by binding to target messenger

RNAs and regulating gene expressions (Xiong et al. (2019)). Although the post-

genomic era has provided an abundance of gene expression profiling (GEP) data,

microRNA expression data are not as prevalent. Hence, methods for imputing

microRNA values given gene expression values are useful for understanding the

role of microRNAs in disease pathogenesis when only gene expression data are

available (see Kuo et al. (2012)). Consequently, several papers in the statistical

literature (see Lee and Liu (2012); Wang (2015); Molstad (2019)) have considered

a multivariate regression model, with the microRNA expressions as response

variables and the gene expressions as predictors. Furthermore, identifying the

dynamic, ancillary, and static responses might help identify functionally relevant

microRNAs for GBM, and shed light on the internal dependence structure of

the microRNA expressions. Because the number of predictors is larger than

the sample size, before applying the response variable selection procedure, we

reduce the dimension of the predictors using two procedures: a multi-response

lasso (Simon, Friedman and Hastie (2013)), and a principal component analysis

(PCA).

The R package glmnet is used to perform the predictor variable selection using

a multi-response lasso, with 31 genes selected. Hence, we have r = 20, p = 31, and

n = 192. Then, we performed the response variable selection using the algorithm

in Section 3.2. Two microRNAs are identified as dynamic: miR-124a and miR-

219. The role of miR-124a in inhibiting the proliferation of GBM is discussed in

Silber et al. (2008), and the close association of miR-219 with GBM is discussed

in Xiong et al. (2019). Six microRNAs are identified as ancillary: miR-136,

miR-338, miR-34a, miR-377, miR-7, and miR801; the remainder are identified as

static.1 We also reduced the dimension of the predictors using a PCA, and kept

34 principal components, which explains 80% of the total variation in 500 genes.

After performing the response variable selection, the same two microRNAs (miR-

124a and miR-219) are identified as dynamic. Eight microRNAs are identified

as ancillary: the six aforementioned ancillary microRNAs, and two additional

microRNAs, namely, miR-204 and miR-370.

We also computed the OLS estimator β̃ of the regression coefficients. Note

1 For additional validation, we explored microRNA and target gene pairs identified using data for other
diseases, such as neural tube defects (Stingo et al. (2010)), but did not find an overlap with the current
GBM-based setting.



1340 KHARE AND SU

that the OLS estimator is computed using the entire response vector Y. To

compare the estimation efficiency, we bootstrapped the residuals 200 times to

compute the bootstrap standard deviations for each element in βD̂ for both β̃D,

the OLS estimator, and the proposed estimator β̂D̂ (with the predictors selected

using a multi-response lasso). Then, we computed the ratio Rij in (4.1). The

ratios range from 1.43 to 1.90, which implies that to achieve the same efficiency,

the OLS estimator needs to be at least 1.432 ≈ 2 times the original sample size.

To test the prediction performance, we split the data randomly into two parts of

equal size. Half of the data are used as the training set, and the other half are

used as the testing set. The prediction error is computed as

Prediction error =

√√√√ 1

n

2∑
j=1

∑
i∈test set j

(Yi − Ŷi,predict)T (Yi − Ŷi,predict).

Then, the prediction error is averaged over 100 random splits. The estimator

of β after the response variable selection is β̂ = (β̂
T

D̂,0)
T . Compared with

the OLS estimator β̃, the estimator β̂ reduces the prediction error by 8.38%.

When the reduced set of predictors is chosen using a PCA, the efficiency ratio

Rij ranges from 1.47 to 2.86, and the estimator β computed after the response

variable selection reduced the prediction error by 12.72% compared with the OLS

estimator β̃.

We now demonstrate the response variable selection in a high-dimensional

setting on a breast cancer data set (Chin et al. (2006)), which is included in the

R package PMA. The data set contains gene expression profiles and comparative

genomic hybridization (CGH) measurements for all 23 chromosomes from 89

patients. Previous studies reveal that DNA copy number alteration (CNA) is

associated with the development or progression of human breast tumors (Pollack

et al. (2002)). CGH is a molecular cytogenetic method for detecting DNA and

CNA in tumor cells, and measures the DNA copy number in several spots along a

chromosome (Witten, Tibshirani and Hastie (2009)). There is a close association

between the gene expression profiling data and the CGH measurements. Models

that predict CNA values based on gene expression profiling data can be useful for

imputing CNA for analyses of data sets in which only gene expression profiling

data are available (Geng et al. (2011)). In particular, following Chen, Dong

and Chan (2013), Lian, Feng and Zhao (2015), and Molstad and Rothman

(2016), we use a multivariate linear regression, with CGH measurements as

the response variables, and gene expression profiles as the predictor variables.

Both the predictor and the response variables are standardized. Chen, Dong

and Chan (2013) focus on chromosome 21, and Lian, Feng and Zhao (2015)

focus on chromosome 18. We include the results for all 23 chromosomes. Each

chromosome has 66 to 1942 gene expression profiles. Thus, p is larger than

n = 89 for most chromosomes. Using a multi-response lasso to select a common
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Table 2. Selection of three categories of responses for breast cancer data.

Chromosome 1 2 3 4 5 6 7 8 9 10 11 12
Dynamic 136 0 126 0 0 76 19 137 36 0 96 42
Ancillary 0 0 2 0 0 3 45 1 7 0 83 12
Static 0 72 0 167 98 0 97 0 64 124 0 37

Chromosome 13 14 15 16 17 18 19 20 21 22 23
Dynamic 58 76 0 0 84 51 0 63 0 18 0
Ancillary 0 0 0 0 0 0 0 12 0 0 0
Static 0 0 67 61 3 0 41 36 44 0 55

small set of predictors for all of the response variables is not appropriate in this

setting, because, in general, gene expressions around a region are expected to

be more informative of the corresponding CNA values than are expressions at

more distant sites. This insight is supported by earlier analyses in Chen, Dong

and Chan (2013) and Molstad and Rothman (2016). Hence, we instead applied

a PCA to the predictors and, because of the small sample size, we retained the

smallest number of components that explain 70% of the variation. We then

applied the response variable selection procedure in Section 3.4 with the chosen

PCA components as the predictors.

To summarize, we performed 23 response variable selection procedures,

corresponding to data for each of the 23 chromosomes. The response variable

selection results are summarized in Table 2. For some chromosomes, all responses

are chosen as dynamic, and for others, all responses are chosen as static (entire

β estimated as zero). A third group comprises a non-trivial mix of the three

categories. For example, for Chromosome 9, the CGH measurements at 36

chromosomal spots, including 2644, 12628, and 35800, are chosen as dynamic,

the CGH measurements at seven chromosomal spots, including 13369, 33163, and

36175, are chosen as ancillary, and the other 64 responses are chosen as static.

As discussed in the introduction, removing a large number of static responses

can stabilize the subsequent βD estimation in high-dimensional settings, and also

lead to cost savings in future data collection.

We also compare the prediction errors of the OLS estimator β̃ and the

proposed estimator β̂ = (β̂
T

D̂,0)
T . The prediction error is computed using

cross-validation, averaged over 500 random splits of the data. The results are

included in Table 3. For example, Chromosome 9 has 107 DNA copy-number

variations and gene expression profiles for 706 genes. Seventeen gene expression

PCA components accounted for 70% of the variation; thus, we have r = 107 and

p = 17. The OLS estimator β̃ has a prediction error of 1.90. In this example,

36 responses are selected as dynamic, seven responses are selected as ancillary,

and 64 responses are selected as static. We set the coefficients of the dynamic

responses as β̂D̂ = β̃D̂ − β̃D̂|Âβ̃Â, and others as zero, and the prediction error

is 1.74 (an 8.42% reduction). For Chromosome 11, 96 responses are selected as
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Table 3. Improvement of prediction error for breast cancer data.

Chromosome 1 2 3 4 5 6 7 8 9 10 11 12

Prediction error 0.00% 24.46% 0.33% 20.22% 15.43% 0.68% 18.60% 0.04% 8.42% 17.72% 8.14% 6.73%

Chromosome 13 14 15 16 17 18 19 20 21 22 23

Prediction error 0.00% 0.00% 14.72% 3.91% 0.35% 0.00% 23.44% 4.80% 2.23% 0.00% 30.58%

dynamic, and 83 responses are selected as ancillary (no static responses). Because

we are fitting a regression with X and YÂ as predictors (see Proposition 4), the

sample size of 44 in the training data set is too small for the regression. Thus,

we set the dynamic response coefficients as their OLS estimators, and the rest of

the coefficients as zero. This still achieves an 8.14% gain in the prediction error

compared with the OLS estimator. Table 3 demonstrates that the proposed

response variable selection procedure can significantly improve the prediction

error compared with the OLS estimator in a practical setting with rn > n.

Supplementary Material

The online Supplementary Material includes proofs of all propositions and

theorems, implementation details, additional simulations and discussion of future

research directions.
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