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Abstract: We introduce nonparametric tests of independence for bivariate circular

data based on trigonometric moments. Our contributions lie in (i) proposing non-

parametric tests that are locally and asymptotically optimal against bivariate cosine

von Mises alternatives and (ii) extending these tests, via the empirical characteristic

function, to obtain consistent tests against broader sets of alternatives, eventually

being omnibus. In particular, one such omnibus test is a circular version of the

celebrated distance-covariance test. Thus, we provide a collection of trigonometric-

based tests of varying generality and known optimalities. We obtain the large-

sample behavior of the tests under the null and alternative hypotheses, and use

simulations to show that the new tests are competitive against previous proposals.

Lastly, we demonstrate the proposed tests with two data applications in astronomy

and forest science.
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trigonometric moments.

1. Introduction

The goal of this paper is to propose new tests of independence between

two circular random variables ϑ(1) and ϑ(2) that are supported on T := [−π, π).

Given an independent and identically distributed (i.i.d.) sample
(
ϑ
(1)
1 , ϑ

(2)
1

)
, . . . ,(

ϑ(1)
n , ϑ(2)

n

)
, we wish to test the null hypothesis H0 of independence between ϑ(1)

and ϑ(2) against the general alternative H1 consisting of the negation of H0. This

fundamental testing problem has relevant applications in fields in which circular

data is common, such as in astronomy, biology, geology, and forest science, to

name just a few.

Several statistical methods for the analysis of data comprised by directions,

such as circular data, have been developed in the last decades; see the general

treatments of Mardia and Jupp (1999), Jammalamadaka and SenGupta (2001),
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and Ley and Verdebout (2017), as well as the recent review of Pewsey and Garćıa-

Portugués (2021). In particular, the analysis of data on T2 that is generated by a

pair of angular variables, referred to as “circular-circular” or “toroidal” data, has

attracted a sizable number of modeling proposals in the recent years (Pewsey and

Garćıa-Portugués (2021, Sec. 3.2)). This interest has been notably boosted by

applications in bioinformatics, where a sequence of dihedral angles characterizes a

protein’s three-dimensional backbone (e.g., Boomsma et al. (2008)). In addition,

toroidal distributions are closely related to the design of models for circular time

series (Wehrly and Johnson (1980)) that naturally appear in a variety of other

fields, such as astronomy and forest science; see Section 5.

Much of the modeling effort for toroidal data has been dominated by the

search for bivariate extensions of the von Mises distribution, often regarded as the

“circular Gaussian” distribution. The first of such proposals was the bivariate von

Mises density of Mardia (1975), considered as an overparametrized model due to

its eight parameters. This motivated the six-parameter submodel of Rivest (1988)

and the five-parameter “sine” (Singh, Hnizdo and Demchuk (2002)), “cosine”

(Mardia, Taylor and Subramaniam (2007)), and “hybrid” (Kent, Mardia and

Taylor (2008)) submodels. The properties of the last three models were compared

in Kent, Mardia and Taylor (2008) and Mardia and Frellsen (2012). A different

modeling pathway was initiated with the family of copula-structured toroidal

densities by Wehrly and Johnson (1980), whose most successful representative is

the bivariate wrapped Cauchy distribution (Kato and Pewsey (2015)).

Investigating relationships between variables is central to many scientific

studies, and tests of independence typically precede any attempt at modeling

association. Consequently, many contributions in directional statistics have been

dealing with correlation, dependence, and tests of independence. Measures of

circular correlation have been put forward by Watson and Beran (1967), Jupp

and Mardia (1980), Shieh, Johnson and Frees (1994), and more recently by Zhan

et al. (2019). In a different direction, Rothman (1971) introduced a version

of the Cramér–von Mises test of independence. In parametric contexts related

with the models of the previous paragraph, one may resort to the likelihood-

based tests suggested by Mardia and Puri (1978), Puri and Rao (1977), and

Shieh and Johnson (2005). Finally, for testing independence in data with mixed

directional/linear components, smoothing-based tests have been proposed by

Garćıa-Portugués, Crujeiras and González-Manteiga (2015). Unlike standard

independence tests, the aforementioned tests honor the circular/directional

nature of the random variables involved by being rotation invariant on them.

A non-rotation-invariant test provides spurious decisions for assessing the

independence of (ϑ(1), ϑ(2)), as its p-value is dependent of the sample coordinates

(e.g., representations on [−π, π)2 or [0, 2π)2 might yield different test decisions);

see Section D in the Supplementary Material (SM) for specific examples.
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When testing for independence, nonparametric methods based on the

characteristic function have also been employed as alternatives to non-omnibus

tests based on association coefficients, and to smoothing-based tests that

exhibit the familiar drawbacks of bandwidth selection and slow convergence.

These tests exploit the factorization characterization of the joint characteristic

function of independent random variables. This property propagated “Fourier”-

type tests in the past, going back as far as Csörgő and Hall (1982) and

Csörgő (1985). Since then, Fourier methods have enjoyed increasing popu-

larity, finally reaching some sort of climax with the introduction of the novel

notions of “distance covariance” and “distance correlation” (Székely, Rizzo

and Bakirov (2007)), and beyond. Indicatively, we refer to the contributions

by Gretton et al. (2005), Székely, Rizzo and Bakirov (2007), Meintanis and

Iliopoulos (2008), Hlávka, Hušková and Meintanis (2011), Fan et al. (2017),

Chen, Meintanis and Zhu (2019), and Chakraborty and Zhang (2019), all of

which propose tests of independence in varying settings and different levels

of generality, but always with the characteristic function being the underlying

notion. This popularity notwithstanding, and despite the fact that testing based

on characteristic functions is not unfamiliar to circular data (Meintanis and

Verdebout (2019)), the use of characteristic functions for testing independence of

nonlinear data remains substantially unexplored.

We introduce in this paper nonparametric tests of independence for toroidal

data based on trigonometric moments. We first propose nonparametric tests

using joint cosine moments that are locally and asymptotically optimal against

sequences of bivariate cosine von Mises alternatives, and for which the powers of

the tests are explicitly obtained. We then extend these tests, via the empirical

characteristic function, to more general multiple-orders tests that merge cosine

and sine moments, and that are consistent against broader sets of alternatives. We

obtain usable asymptotic null distributions for all the test statistics, thus avoiding

calibration using resampling methods. We then propose two characteristic

function-based omnibus tests with tractable computational forms that can be

calibrated efficiently using permutations. The second one is a kind of circular

distance-covariance test. Simulations corroborate the adequate finite-sample null

and non-null behavior of the tests, as well as their competitiveness against other

testing approaches based on association coefficients and smoothing. Two data

applications are provided, one on the study on the serial dependence of long-

period comet records and another on the evaluation of the dependence between

the orientations of wildfires in Portugal.
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2. A Cosine Test of Independence

2.1. Genesis and null asymptotic distribution

Our objective is to test the null hypothesis H0 of independence between ϑ(1)

and ϑ(2). Without loss of generality (see Proposition 3), we assume that ϑ(j) is

circularly centered, i.e., such that its circular mean µ(j) := atan2
(
E
[
sin

(
ϑ(j)

)]
,

E
[
cos

(
ϑ(j)

)])
is zero, j = 1, 2, where atan2(y, x) ∈ T is the argument of the

complex number x + iy. Given an iid sample
(
ϑ
(1)
1 , ϑ

(2)
1

)
, . . . ,

(
ϑ(1)
n , ϑ(2)

n

)
from

(ϑ(1), ϑ(2)), we consider the empirical versions

Ĵjc(r) := n−1
n∑

i=1

cos
(
rϑ

(j)
i

)
, Ĵjs(r) := n−1

n∑
i=1

sin
(
rϑ

(j)
i

)
, j = 1, 2,

Ĵc(r1, r2) := n−1
n∑

i=1

cos
(
r1ϑ

(1)
i + r2ϑ

(2)
i

)
,

Ĵs(r1, r2) := n−1
n∑

i=1

sin
(
r1ϑ

(1)
i + r2ϑ

(2)
i

)
,

of the respective marginal “cosine” and “sine” population moments (as well as

their “addition” forms) given by

Jjc(r) := E
[
cos

(
rϑ(j)

)]
, Jjs(r) := E

[
sin

(
rϑ(j)

)]
, j = 1, 2,

Jc(r1, r2) := E
[
cos

(
r1ϑ

(1) + r2ϑ
(2)

)]
, Js(r1, r2) := E

[
sin

(
r1ϑ

(1) + r2ϑ
(2)

)]
.

Here, r, r1, and r2 are reals, although we later restrict them to be integer numbers;

see (3.1).

Based on the form of the “cosine addition moment”, we have that, under the

null hypothesis of independence,

Jc(r1, r2) = J1c(r1)J2c(r2)− J1s(r1)J2s(r2). (2.1)

Based on (2.1), it is natural to consider tests that reject H0 for large absolute

values of the statistic

D(n)
c (r1, r2) := Ĵc(r1, r2)− Ĵ1c(r1)Ĵ2c(r2) + Ĵ1s(r1)Ĵ2s(r2), (2.2)

because, for any (r1, r2) ∈ R2, D(n)
c (r1, r2) is close to zero under H0. The following

proposition provides the asymptotic distribution of D(n)
c (r1, r2) under H0. Its

proof is relegated to Section A in the SM, where all the results of the paper are

proved.

Proposition 1. Fix (r1, r2) ∈ R2. Under H0,
√
nD(n)

c (r1, r2) converges weakly as

n → ∞ to a Gaussian random variable with mean zero and variance V (r1, r2) :=

E
[{

cos
(
r1ϑ

(1) + r2ϑ
(2)

)
− J2c(r2) cos

(
r1ϑ

(1)
)
− J1c(r1) cos

(
r2ϑ

(2)
)
+ J2s(r2)

sin
(
r1ϑ

(1)
)
+ J1s(r1) sin

(
r2ϑ

(2)
)}2]

.
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The asymptotic normality of
√
nD(n)

c (r1, r2) does not require any assumption

on the distribution of the pair of random angles (ϑ(1), ϑ(2)). A purely non-

parametric test of independence can therefore be obtained on the basis of the

Proposition 1. Indeed, we can consider tests ϕ(n)
c (r1, r2) rejecting the null

hypothesis of independence at the asymptotic level α when

Tn(r1, r2) :=
n
(
D(n)

c (r1, r2)
)2

V̂n(r1, r2)
> χ2

1;1−α, (2.3)

where χ2
1;ν denotes the νth (lower) quantile of the chi-square distribution with

one degree of freedom and V̂n(r1, r2) is a consistent estimator of the variance term

V (r1, r2) defined in Proposition 1, such as its direct empirical version. Although

being purely nonparametric, as no assumption on the data-generating process is

imposed, the tests ϕ(n)
c (r1, r2) with r1 = 1 and r2 = ±1 enjoy certain local and

asymptotic optimality properties.

2.2. Optimality and power against bivariate von Mises alternatives

Consider the bivariate cosine von Mises model of Mardia, Taylor and

Subramaniam (2007), characterized by densities of the form

(
ϑ(1), ϑ(2)

)
→

C(κ1, κ2, κ3) exp
{
κ1 cos

(
ϑ(1)

)
+ κ2 cos

(
ϑ(2)

)
+ κ3 cos

(
ϑ(1) − ϑ(2)

)}
, (2.4)

where κ1, κ2 ≥ 0 are concentration parameters, κ3 ∈ R is a parameter controlling

the dependence, and C(κ1, κ2, κ3) is a normalizing constant. Note that, for

the ease of our derivations, we flip the sign of κ3 ∈ R in (2.4) with respect

to the original model parametrization. Following the terminology in Mardia and

Frellsen (2012), the density (2.4) is called the bivariate cosine model with positive

interaction. The same model with negative interaction is obtained by replacing

cos
(
ϑ(1) − ϑ(2)

)
with cos

(
ϑ(1) + ϑ(2)

)
in (2.4). As stated in Mardia, Taylor

and Subramaniam (2007), both models capture the correlations between the

cosines and sines of the circular variables, although neither is strictly associated

with positive or negative correlations between angles. Indeed, the signs of

“angular correlations” depend on κ3, which affects asymmetrically the kind of

dependence induced by (2.4). Positive values of κ3 guarantee unimodality, with

a positive/negative angular correlation that depends on the positive/negative

interaction (Theorem 6.2 in Mardia and Frellsen (2012); third column of Figure

1). A negative κ3 may generate bimodality distributed in an opposite correlation

pattern to that of κ3 > 0. Shifting of (2.4) can be achieved by replacing ϑ(j)

with ϑ(j) − µ(j), for µ(j) ∈ T, j = 1, 2. The location parameters do not affect the

dependence form of (2.4), but they do make it more cumbersome.
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When κ3 = 0, the marginals of (2.4) are independent and centered von Mises

distributions with concentrations κ1 and κ2. Thus, testing for independence

in this model reduces to testing H0 : κ3 = 0 against H1 : κ3 ̸= 0. We

show in Proposition 2 that the tests ϕ(n)
c (1, 1) and ϕ(n)

c (1,−1) are locally and

asymptotically maximin (see (Ley and Verdebout, 2017, Sec. 5, for a definition))

for testing H0 : κ3 = 0 against H1 : κ3 ̸= 0 within sequences of bivariate cosine

models with negative and positive interactions, respectively. Recall that a test

ϕ∗ is called maximin in the class Cα of level-α tests for some null hypothesis H0

against the alternative H1 if (i) ϕ∗ has level α and (ii) the power of ϕ∗ is such

that

inf
P∈H1

EP[ϕ
∗] ≥ sup

ϕ∈Cα

inf
P∈H1

EP[ϕ].

We denote by P
(n)
(κ1,κ2,κ3);− and P

(n)
(κ1,κ2,κ3);+

the joint distributions of an

iid sample
(
ϑ
(1)
1 , ϑ

(2)
1

)
, . . . ,

(
ϑ(1)
n , ϑ(2)

n

)
from distribution (2.4), respectively with

negative and positive interactions. Obviously, P
(n)
(κ1,κ2,0);− = P

(n)
(κ1,κ2,0);+

, which is

simply denoted as P
(n)
(κ1,κ2,0)

.

Proposition 2. Letting τn be a bounded real sequence, the test ϕ(n)
c (1, 1) is

locally and asymptotically maximin for testing H0 : ∪κ1≥0 ∪κ2≥0 P
(n)
(κ1,κ2,0)

against

H1 : ∪κ1≥0 ∪κ2≥0 P
(n)

(κ1,κ2,n−1/2τn);−, while the test ϕ(n)
c (1,−1) is locally and

asymptotically maximin for testing H0 : ∪κ1≥0 ∪κ2≥0 P
(n)
(κ1,κ2,0)

against H1 :

∪κ1≥0 ∪κ2≥0 P
(n)

(κ1,κ2,n−1/2τn);+
.

The nonparametric tests ϕ(n)
c (1, 1) and ϕ(n)

c (1,−1) therefore enjoy some

parametric optimality properties for testing H0 : κ3 = 0 against H1 : κ3 ̸= 0.

Although the tests ϕ(n)
c (r1, r2), (r1, r2) ∈ R2 do not have such local and asymptotic

optimality, it is easy to show that they exhibit non-trivial power against the

contiguous alternatives P
(n)

(κ1,κ2,n−1/2τn);+
and P

(n)

(κ1,κ2,n−1/2τn);−, and can therefore

be considered as reasonable tests for such alternatives.

Hitherto, we have assumed the sample comes from a circularly-centered

random vector. Otherwise, the test statistic Tn(r1, r2) in (2.3) has to be computed

from the centered data ϑ
(j)
i −µ(j), i = 1, . . . , n, j = 1, 2. Then, Proposition 1 holds

if we replace ϑ
(j)
i and ϑ(j) with ϑ

(j)
i −µ(j) and ϑ(j)−µ(j), respectively, i = 1, . . . , n,

j = 1, 2. Moreover, the local and asymptotic optimality obtained in Proposition

2 also holds in the unspecified location case. Of course, the location parameters

µ(1) and µ(2) are rarely known in practice, so they have to be estimated. This

can be done using the sample circular means

µ̂(j) := atan2

(
1

n

n∑
i=1

sin
(
ϑ
(j)
i

)
,
1

n

n∑
i=1

cos
(
ϑ
(j)
i

))
, j = 1, 2.
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This estimation produces the centered sample

(
ϑ
(1)
1 − µ̂(1), ϑ

(2)
1 − µ̂(2)

)
, . . . ,

(
ϑ(1)
n − µ̂(1), ϑ(2)

n − µ̂(2)
)
. (2.5)

When computed from this centered sample, the test statistic Tn(r1, r2) in (2.3)

is rotation invariant, which is a highly desirable property in the present toroidal

context. We moreover have the following result.

Proposition 3. Denote by D̂(n)
c (r1, r2) and D(n)

c (r1, r2) the quantities defined in

(2.2), but computed from the samples (2.5) and

(
ϑ
(1)
1 − µ(1), ϑ

(2)
1 − µ(2)

)
, . . . ,

(
ϑ(1)
n − µ(1), ϑ(2)

n − µ(2)
)
,

respectively. Then, provided that
√
n
(
µ̂(j) − µ(j)

)
= OP(1) as n → ∞, j = 1, 2,√

n
(
D̂(n)

c (r1, r2)−D(n)
c (r1, r2)

)
is oP(1) as n → ∞.

Classical arguments similarly show that, provided that the data-generating

process ensures that
√
n
(
µ̂(j) − µ(j)

)
= OP(1) as n → ∞, j = 1, 2, the centering

has no asymptotic effect on V̂n(r1, r2) in (2.3). Consequently, the centering step

does not affect the asymptotic null distribution of Tn(r1, r2) in (2.3). Note that

the same holds under contiguous alternatives. Since the centering of the sample

is innocuous in terms of the asymptotic behavior of (2.3) and it makes the test

rotation invariant, this centering is implicitly assumed henceforth when applying

the ϕ(n)
c (r1, r2) test.

We conclude the section by pointing out that, while being of a nonparametric

nature, the tests ϕ(n)
c (r1, r2) are clearly designed to detect certain types of

dependence (and not any kind of dependence): as seen in Proposition 2, the tests

ϕ(n)
c (1,±1) are particularly well-adapted to bivariate cosine von Mises alternatives

that feature reflective symmetric marginal distributions. Working along the same

lines, one could consider tests based on the sine empirical moments, and show

that some of their versions are locally and asymptotically optimal within specific

parametric models. Rather than moving in this direction, in the following section

we proceed towards tests of independence that are able to detect arbitrary types

of dependence.

3. Omnibus Tests

The well-known factorization property of characteristic functions entails that

the null hypothesis of independence may equivalently be stated as

φ(r1, r2) = φ1(r1)φ2(r2), for all (r1, r2) ∈ Z2, (3.1)

where φ(r1, r2) := E
[
ei(r1ϑ

(1)+r2ϑ
(2))

]
, i :=

√
−1, is the joint characteristic function

and φj(rj) := E
[
eirjϑ

(j)]
is the marginal characteristic function of ϑ(j), j = 1, 2.

Recall that, for random variables on the real line, (3.1) needs to be considered
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for all (r1, r2) ∈ R2 while, due to periodicity, in the case of circular random

variables, it is sufficient to consider the characteristic functions only for integer

arguments. This is because the joint distribution of
(
ϑ(1), ϑ(2)

)
is identical to that

of
(
ϑ(1) + 2π, ϑ(2)

)
and thus we have φ(r1, r2) = ei2πr1φ(r1, r2), hence r1 must be

an integer, and likewise for r2 (Jammalamadaka and SenGupta (2001, Sec. 2.1)).

Based on
(
ϑ
(1)
1 , ϑ

(2)
1

)
, . . . ,

(
ϑ(1)
n , ϑ(2)

n

)
, the classical estimator of the joint

characteristic function is

φ̂(r1, r2) :=
1

n

n∑
i=1

ei(r1ϑ
(1)
i +r2ϑ

(2)
i ). (3.2)

The corresponding empirical marginals, say φ̂1 (respectively, φ̂2), can be obtained

by setting r2 = 0 (r1 = 0) in (3.2). Then, in view of (3.1), it is natural to consider

the test statistics

D(n)(r1, r2) := φ̂(r1, r2)− φ̂1(r1)φ̂2(r2), (r1, r2) ∈ Z2, (3.3)

as diagnostic components for independence. Note that the quantity D(n)
c (r1, r2)

defined in (2.2) is just the real part of D(n)(r1, r2), and consequently an extension

of the tests studied in Section 2 may be obtained by considering both the real

and imaginary parts of D(n)(r1, r2) for multiple arguments (r1, r2) ∈ Z2. To this

end, we define the vector

∆n

(
r(c), r(s)

)
:=

(
D(n)

c

(
r
(c)
11 , r

(c)
12

)
, . . . , D(n)

c

(
r
(c)
J1 , r

(c)
J2

)
,

D(n)
s

(
r
(s)
11 , r

(s)
12

)
, . . . , D(n)

s

(
r
(s)
K1, r

(s)
K2

))′
,

where D(n)
c (r1, r2) and D(n)

s (r1, r2) denote the real and imaginary parts, re-

spectively, of D(n)(r1, r2). Using similar arguments to those in Section 2, it

may be shown that
√
n∆n

(
r(c), r(s)

)
is asymptotically a zero-mean multivari-

ate Gaussian with some covariance matrix Σ that is easily computable; see

Section B in the SM. As a result, letting Σ̂ be an invertible and consistent

estimator of Σ, the natural test ϕ(n)
(
r(c), r(s)

)
rejects H0 for large values of

n
(
∆n

(
r(c), r(s)

))′
Σ̂−1∆n

(
r(c), r(s)

)
. Note that some choices of r(c) =

(
r
(c)
11 , r

(c)
12 ,

. . . , r
(c)
J1 , r

(c)
J2

)′ ∈ Z2J and r(s) =
(
r
(s)
11 , r

(s)
12 , . . . , r

(s)
K1, r

(s)
K2

)′ ∈ Z2K yield matrices

Σ that are invertible, while others do not. Also, note that the particular

case obtained by putting J = 2 with
(
r
(c)
11 , r

(c)
12 , r

(c)
21 , r

(c)
22

)
= (1,−1, 1, 1) and

K = 0 (so that there is no “sine part” in ∆n

(
r(c), r(s)

)
) yields a test that

combines the two test statistics that are locally and asymptotically optimal

against contiguous cosine von Mises alternatives with positive and negative

dependence. An implicit centering of the sample is also assumed when applying

ϕ(n)
(
r(c), r(s)

)
as, analogously to the ϕ(n)

c (r1, r2) test, this centering step has no

effect on the asymptotic behavior of the test and makes it rotation invariant.
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Although the tests ϕ(n)
(
r(c), r(s)

)
, with r(c) ∈ Z2J and r(s) ∈ Z2K ,

are expected to have good power properties beyond the class of von Mises

distributions for which ϕ(n)
c (1,±1) is locally and asymptotically maximin, these

tests are not “omnibus”; i.e., their power is potentially trivial against certain

alternatives. In order to have an omnibus test, the uniqueness property of

characteristic functions dictates that we must take into account all possible pairs

(r1, r2) ∈ Z2. Consequently, we define a test criterion that rejects H0 for large

values of

Tn,w := n
∞∑

r1=−∞

∞∑
r2=−∞

∣∣∣D(n)(r1, r2)
∣∣∣
2

w(r1, r2), (3.4)

where | · | denotes the modulus of a complex number and w : Z2 → [0,∞)

is a weight function specified below. The following proposition formalizes the

limit behavior of Tn,w against arbitrary deviations from the null hypothesis of

independence.

Proposition 4. Assume that w in (3.4) satisfies
∑∞

r1=−∞
∑∞

r2=−∞ w(r1, r2) < ∞.

Then,

Tn,w

n
→ Tw :=

∞∑
r1=−∞

∞∑
r2=−∞

|φ(r1, r2)− φ1(r1)φ2(r2)|2 w(r1, r2) (3.5)

almost surely as n → ∞. Moreover, Tw is strictly positive unless H0 holds, a

fact which entails strong consistency of the test that rejects H0 for large values of

Tn,w.

Although L2-type test statistics such as Tn,w are omnibus, they typically have

highly non-trivial asymptotic null distributions that essentially prevent their use

as test criteria. We refer to Puri and Rao (1977), Shieh, Johnson and Frees (1994),

and Watson and Beran (1967) for analogous results; see also Jammalamadaka and

SenGupta (2001, Section 8.9). Nevertheless, it is straightforward to implement a

permutation version of a test based on Tn,w.

The applicability of the test statistic would be further advanced if Tn,w could

be computed analytically. To this end, consider a weight function decomposed

as w(r1, r2) = v(r1)v(r2), with v being a symmetric function about zero. Then,

(3.4) may be rewritten as (see Section A in the SM)

Tn,w =
1

n

n∑
j,k=1

J (v)
c

(
ϑ
(1)
jk

)
J (v)

c

(
ϑ
(2)
jk

)
+

1

n3

[
n∑

j,k=1

J (v)
c

(
ϑ
(1)
jk

)][ n∑
j,k=1

J (v)
c

(
ϑ
(2)
jk

)]

− 2

n2

n∑
j,k,ℓ=1

J (v)
c

(
ϑ
(1)
jk

)
J (v)

c

(
ϑ
(2)
jℓ

)
, (3.6)
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where

J (v)
c (ϑ) :=

∞∑
r=−∞

cos(rϑ)v(r), (3.7)

with ϑ
(m)
jk := ϑ

(m)
j − ϑ

(m)
k , j, k = 1, . . . , n, m = 1, 2. Since Tn,w depends only on

the distances between observations, it is rotation invariant without requiring a

prior centering of the sample.

Moreover, if we consider any probability mass function on the nonnegative

integers and set v equal to the symmetrized version of this function, then the series

in (3.7) equals the real part of the characteristic function of that probability mass

function, evaluated at ϑ. A standard option is to choose the Poisson distribution,

in which case

J (v)
c (ϑ) = cos(λ sinϑ)eλ(cosϑ−1), (3.8)

where λ is the Poisson parameter. Choosing λ ∈ (0, π/2] guarantees the

nonnegativity of the kernel (3.8) for any ϑ ∈ T (and also if 0 < |λ| ≤ π/2).

We denote by Tn,λ the statistic (3.6) based on (3.8). The test ϕ(n)(λ) that rejects

H0 for large values of Tn,λ is implemented with a permutation approach that is

described in Section C in the SM.

The weight specification wdc(r1, r2) = (r1r2)
−21{r1 ̸=0,r2 ̸=0} in (3.4) yields the

“distance-covariance” test statistic

Sn,dc := n
∞∑

r1=−∞

∞∑
r2=−∞

∣∣∣D(n)(r1, r2)
∣∣∣
2

wdc(r1, r2); (3.9)

its definition is driven by the connection between a distance covariance statistic

and the characteristic function. Note that in (3.9) we exclude the origin, which

is anyway uninformative regarding independence. Furthermore, Sn,dc clearly

satisfies the global consistency property of Proposition 4.

Carrying out analogous computations as in (3.6) and denoting

I(ϑ) :=
∞∑

r=−∞,
r ̸=0

cos(rϑ)

r2
, (3.10)

we obtain from (3.9) that

Sn,dc =
1

n

n∑
j,k=1

I
(
ϑ
(1)
jk

)
I
(
ϑ
(2)
jk

)
+

1

n3

[
n∑

j,k=1

I
(
ϑ
(1)
jk

)][ n∑
j,k=1

I
(
ϑ
(2)
jk

)]

− 2

n2

n∑
j,k,ℓ=1

I
(
ϑ
(1)
jk

)
I
(
ϑ
(2)
jℓ

)
.

However, unlike Tn,λ, the computation of Sn,dc is less straightforward, as it

requires evaluating (3.10), which can also be expressed as I(ϑ) = Li2(e
−iϑ) +



TESTS OF INDEPENDENCE FOR CIRCULAR DATA 577

Li2(e
iϑ), with Li2(x) :=

∑∞
m=1 m

−2xm being the dilogarithm function. Because

O(Bn2) evaluations of the kernel (3.10) are required to evaluate the test based

on Sn,dc (henceforth denoted as ϕ
(n)
dc ) with B permutations, the increased

computational burden with respect to the ϕ(n)(λ) test is significant.

As all the tests introduced in this paper, that based on Sn,dc honors the

circularity of the variables ϑ(1) and ϑ(2) for testing their independence. Section D

in the SM exemplifies the important practical issues of applying an independence

test that is unaware of the circular nature of ϑ(1) and ϑ(2), such as the standard

distance-covariance test.

Remark 1. The test statistic in (3.4) can be, heuristically, further scrutinized

with regards to correlations between ϑ(1) and ϑ(2). Consider, for simplicity, its

population counterpart from Proposition 4 and write it as

Tw =
∞∑

r1=−∞

∞∑
r2=−∞

∣∣Cov[eir1ϑ(1)

, eir2ϑ
(2)]∣∣2w(r1, r2),

where Cov [·, ·] denotes covariance. Now use the exponential function expansion

ez = 1 + (z/1!) + (z2/2!) + · · · , compute a few terms of the covariance thereof

and, after some simplification, write

Cov
[
eir1ϑ

(1)

, eir1ϑ
(2)]

=− r1r2Cov
[
ϑ(1), ϑ(2)

]

− i

2

(
r1r

2
2Cov

[
ϑ(1), ϑ(2)2

]
+ r21r2Cov

[
(ϑ(1)2 , ϑ(2)

])

+
r21r

2
2

4
Cov

[
ϑ(1)2 , ϑ(2)

]
+ · · · .

Expanding
∣∣Cov[eir1ϑ(1)

, eir2ϑ
(2)]∣∣2, using w(r1, r2) = v(r1)v(r2), and letting v(·)

be a probability function symmetric around zero, it follows that

Tw = µ2
2Cov

2
[
ϑ(1), ϑ(2)

]
+

µ2
4

16
Cov2

[
ϑ(1)2 , ϑ(2)2

]

+
µ2µ4

4

(
Cov2

[
ϑ(1), ϑ(2)2

]
+ Cov2

[
ϑ(1)2 , ϑ(2)

])
+ · · · ,

where µm denotes the mth moment of v(·), which is assumed to exist. Con-

sequently, Tw may be written as a weighted sum of the classical (squared)

covariances between the powers of ϑ(1) and ϑ(2). In this regard, the role of v(·) is
to assign weights to these covariances via its population moments.

4. Simulation Study

4.1. Toroidal distributions considered

To explore various shapes of dependence between ϑ(1) and ϑ(2), with the

strength of dependence controlled by the value of a single parameter, we consider
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the following four joint parametric distributions of
(
ϑ(1), ϑ(2)

)
, all supported on

T2:

(i) The ParaBolic distribution PB(p), defined by ϑ(1) ∼ Unif (T) and ϑ(2) =

2
[
p
(
ϑ(1)

)2
+ (1 − p)U 2

]
/π − π, where U ∼ Unif (T) is independent of ϑ(1)

and p ∈ [0, 1].

(ii) The (centered) Bivariate Wrapped Cauchy distribution as given in Pewsey

and Kato (2016), denoted as BWC(ρ1, ρ2, ρ), and with density

(
ϑ(1), ϑ(2)

)
→ c0

{
c1 − c2 cos

(
ϑ(1)

)
− c3 cos

(
ϑ(2)

)

− c4 cos
(
ϑ(1)

)
cos

(
ϑ(2)

)
− c5 sin

(
ϑ(1)

)
sin

(
ϑ(2)

)}−1
,

where cj, j = 0, . . . , 5, are closed-form constants depending on ρ1, ρ2, |ρ| ∈
[0, 1).

(iii) The (centered) Bivariate Cosine von Mises model with positive interaction,

denoted as BCvM(κ1, κ2, κ3), and with density described in Equation (2.4).

(iv) The (centered) Bivariate von Mises distribution by Shieh and Johnson

(2005), denoted as BvM(κ1, κ2, µg, κg), and with density

(
ϑ(1), ϑ(2)

)
→ f1

(
ϑ(1)

)
f2
(
ϑ(2)

)
fg
(
2π

{
F1

(
ϑ(1)

)
− F2

(
ϑ(2)

)})
,

where fj and Fj are respectively the marginal density and distribution

functions of a zero-mean von Mises with concentration κj ≥ 0, j = 1, 2,

and the link density fg is that of a von Mises with circular mean µg ∈ T
and concentration κg ≥ 0.

The last parameter in each distribution controls the degree of dependence, with

p = ρ = κ3 = κg = 0 producing independence between ϑ(1) and ϑ(2).

Sampling from (i) is straightforward. For (iii), we used the function rvmcos

from the BAMBI (v. 2.3.0) package (Chakraborty and Wong (2019)). One can

simulate from (iv) using Algorithm A for von Mises marginals in Shieh and

Johnson (2005). The R code for sampling (ii) and (iv) uses the package

circular (v. 0.4-93) (Agostinelli and Lund (2017)), and was kindly provided

by Arthur Pewsey. Replicating code is available from the authors. Figure 1

shows scatterplots obtained from the considered distributions.

4.2. Empirical powers

Here, we investigate the empirical sizes and powers of our three families of

tests. More specifically, we consider tests based on the statistics Tn(r1) and Tn(r2)

with r1 = (1, 1) and r2 = (1,−1), ∆n ≡ ∆n(r
(c), r(s)) with r(c) = (1,−1, 1, 1)

and K = 0, and Tn,λ for λ ∈ {0.1, 0.5, 1.0, 2.0}, as well as Sn,dc. We also
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Figure 1. Scatterplots generated from the simulation scenarios considered in the
simulation study. From left to right, columnwise: (i) PB(p) for p = 0, 0.4, 0.8 (top to
bottom); (ii) BWC(0.1, 0.1,−ρ) for ρ = 0, 0.4, 0.8; (iii) BCvM(1, 1, κ3) for κ3 = 0, 1, 2;
and (iv) BvM(1, 1, 0, κg) for κg = 0, 1, 2. The sample size is n = 200.

consider the smoothing-based test of Garćıa-Portugués, Crujeiras and González-

Manteiga (2015, Sec. C.2), denoted by Gn, the test based on the weighted

U -statistic of Shieh, Johnson and Frees (1994, p.737), denoted by Un, the

correlation test of Zhan et al. (2019, p.1835) based on the statistic ρ̂0, and the

omnibus test of Rothman (1971) based on the integrated empirical independence

process denoted by Cn. For Gn, we set the bandwidths (h1, h2) respectively

to (1.00, 0.70), (1.00, 1.00), (0.50, 0.50), and (0.55, 0.55) for the four scenarios of

dependence considered. These bandwidths are sensible, as they are the empirical

medians of 103 marginal “rule-of-thumb” bandwidths (Garćıa-Portugués (2013))

for n = 20, 50 and for each of the considered scenarios.

The empirical power of these tests is compared by generating M = 105

independent samples of sizes n = 20 and n = 50 from the distributions (i)–

(iv), for varying dependence strengths. The results for a significance level

α = 5% are summarized in Table 1 for n = 50 and in Table E.2 in the SM

for n = 20. In these tables, the first row in each panel corresponds to the

independence case, while subsequent rows represent an increasing strength of

dependence. The extreme cases p = 1 and ρ = 1 give functional dependence.

We compute the critical values under H0 as follows. For a given sample size n
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Table 1. Empirical level and power (in %) for the distributions PB(p), BWC(0.1, 0.1,−ρ),
BCvM(1, 1, κ3), and BvM(1, 1, 0, κg) (top to bottom), for α = 5% and n = 50. In each
row, the largest power value is indicated in bold, as are any other power values falling in
Wilson (1927)’s 95% binomial confidence interval for the theoretical power of this best
test.

Tn(r1) Tn(r2) ∆n Tn,0.1 Tn,0.5 Tn,1.0 Tn,2.0 Sn,dc Gn Un ρ̂0 Cn

p

0.0 5.00 5.05 4.95 4.95 4.97 4.99 5.00 4.97 4.98 4.74 4.86 4.79

0.2 8.87 8.88 10.47 12.54 16.37 22.81 30.48 19.31 15.04 11.17 12.91 12.17

0.4 39.03 38.88 47.93 75.72 82.01 85.90 79.04 83.18 79.30 18.07 25.01 21.26

0.6 69.00 68.85 87.13 99.98 99.98 99.98 99.66 99.99 99.98 33.51 46.85 52.92

0.8 73.27 72.84 95.66 100.00 100.00 100.00 100.00 100.00 100.00 56.63 62.09 99.89

1.0 66.87 66.93 83.73 100.00 100.00 100.00 100.00 100.00 100.00 71.16 70.48 100.00

ρ

0.0 5.04 4.85 4.94 4.96 5.01 5.03 5.06 5.03 4.97 5.03 5.01 4.93

0.2 30.15 4.74 23.26 30.82 30.03 26.60 14.84 26.78 30.82 18.63 20.68 3.53

0.4 74.85 4.96 69.17 91.26 90.70 87.91 66.01 90.55 91.23 77.59 80.21 28.50

0.6 91.11 5.21 89.59 99.98 99.98 99.97 99.40 99.98 99.98 99.71 99.77 95.59

0.8 97.55 5.14 97.17 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

κ3

0.0 4.86 4.93 4.91 4.98 4.99 5.11 5.04 5.04 5.09 5.09 4.88 4.98

0.5 10.07 39.46 27.43 32.74 30.37 24.92 13.22 30.06 26.57 13.20 30.75 20.10

1.0 21.70 88.71 77.86 81.41 78.24 69.57 40.01 78.70 72.55 41.25 78.11 57.48

1.5 35.22 99.11 96.89 97.35 96.42 93.08 71.47 97.02 94.39 72.01 96.65 84.89

2.0 45.13 99.94 99.62 99.61 99.45 98.77 90.13 99.70 99.06 88.74 99.63 95.55

3.0 56.22 100.00 100.00 99.99 99.98 99.96 99.23 100.00 99.97 98.47 99.99 99.66

κg

0.0 4.79 4.87 4.79 4.94 4.82 4.84 4.93 4.77 4.81 4.94 4.95 5.05

0.5 6.49 43.85 31.75 34.98 40.05 42.11 32.66 40.87 41.60 27.76 43.16 41.95

1.0 8.84 93.57 88.53 89.49 94.65 96.08 90.66 95.41 95.72 88.02 94.06 95.20

1.5 10.85 99.74 99.41 99.68 99.96 99.98 99.86 99.98 99.97 99.71 99.90 99.96

2.0 12.77 99.97 99.96 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

3.0 15.27 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

and a given bivariate parametric alternative distribution D(θ), we generate two

independent samples,
(
ϑ
(1)
1 , ϑ

(2)
1

)
, . . . ,

(
ϑ(1)
n , ϑ(2)

n

)
and

(
ϑ̃
(1)
1 , ϑ̃

(2)
1

)
, . . . ,

(
ϑ̃(1)
n , ϑ̃(2)

n

)
,

from D(θ). Critical values are then obtained by computing empirical quantiles

from the sample
(
ϑ
(1)
1 , ϑ̃

(2)
1

)
, . . . ,

(
ϑ(1)
n , ϑ̃(2)

n

)
. While this necessitates generating

two samples, it is much faster than relying on a permutation approach. Moreover,

this ensures that our empirical power values measure the ability to detect

dependence by completely disregarding any potential marginal effect, since the

marginal distributions of
(
ϑ(1), ϑ̃(2)

)
are the same as those of

(
ϑ(1), ϑ(2)

)
under the

null and the alternative. Section E of the SM provides an extensive simulation

study showing that this much faster approach is equivalent, in terms of comparing

the power values of the 12 tests under scrutiny, to obtaining by permutations the

critical values. Both approaches lead to very close power values for all four

scenarios considered.

An empirical level outside the interval [4.86, 5.14] indicates that the nominal

level (5%) does not fall within the corresponding realized 95% confidence interval.

Given that 96 empirical levels were computed, a Bonferroni correction permits to

extend the acceptable range to [4.76, 5.24]. The only marked discrepancy between
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the nominal and the empirical levels (i.e., 4.74%) occurs for the Un-based test,

the reason being that its statistic is a discrete random variable.

The following conclusions can be drawn from Table 1 and Table E.2 in the

SM:

1. The optimality of ϕ(n)
c (1,−1) is corroborated for alternative (iii). In

general, ϕ(n)
c (1,−1) has reasonable power against positive-correlation

alternatives (iii) and (iv), but has very low power against the negative-

correlation alternative (ii). An opposite behavior for ϕ(n)
c (1, 1) is evidenced.

2. The ϕ(n)((1,−1, 1, 1)) test behaves as expected in terms of merging the ben-

efits of ϕ(n)
c (1,−1) and ϕ(n)

c (1, 1), providing competitive power (particularly,

against the tests based on Un, ρ̂0, and Cn) in all scenarios and against

positive/negative correlations. The test suffers a moderate loss of power

with respect to the best-performing test for ϕ(n)
c (1,−1) and ϕ(n)

c (1, 1).

3. ϕ(n)(λ) is a competitive test overall. For at least one choice of λ ∈ {0.1, 0.5,
1.0} per simulation scenario, it dominates the other tests for alternatives (i),

(ii), and (iv), or offers competitive power for alternative (iii). In particular,

ϕ(n)(λ) dominates the three competing tests based on Un, ρ̂0, and Cn for at

least one choice of λ ∈ {0.1, 0.5, 1.0} and for all scenarios. This dominance

is more marked when compared with the omnibus test based on Cn.

4. The choice of λ affects the power of ϕ(n)(λ). The choice λ = 2 appears

to be systematically worse, which might be explained by the fact that, in

this case, the kernel (3.8) can be negative. Therefore, the power of ϕ(n)(λ)

might be drained by reducing the value of Tn,λ for certain pairwise angles

ϑ
(ℓ)
jk , j, k = 1, . . . , n, ℓ = 1, 2.

5. ϕ
(n)
dc performs similarly to ϕ(n)(λ) and, depending on the value of λ, its power

is above or below that of ϕ(n)(λ).

6. The three competing tests based on Un, ρ̂0, and Cn perform comparatively

poorly in scenario (i), which does not have a positive/negative-dependence

pattern. In this case, our four tests clearly outperform the other tests by a

large margin.

7. The test based on Gn offers comparable power to that of characteristic-

function tests when the dependence is moderate to strong.

Overall, we recommend using the test ϕ(n)(λ) for λ ∈ {0.1, 1.0} given

its similar performance to ϕ
(n)
dc and its faster application. In particular, we

corroborated that applying ϕ(n)(λ) is five times faster than ϕ
(n)
dc when n = 50

and B = 104 permutations are used.
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5. Data Applications

5.1. Wildfires

Barros, Pereira and Lund (2012) identified the existence of preferential

orientations of wildfires on 102 characteristic watersheds of Portugal (see Figure

2) that were determined in a data-driven fashion. Their analysis quantified annual

wildfire orientations through the axial direction (e.g., North–South) of the first

principal component of a wildfire perimeter. These perimeters were obtained

from Landsat imagery of Portugal after the end of the wildfire season and were

then assigned to watersheds according to the position of their centroids. Wildfire

orientation is likely explained by dominant weather during the Portuguese wildfire

season (Barros, Pereira and Lund (2012)) and is significantly associated with the

size of the burnt area (Garćıa-Portugués et al. (2014)).

We aim to formally address the existence of significant long-term and

short-term temporal patterns in wildfire orientations in Portugal. As in Garćıa-

Portugués et al. (2014), we focus on the 26,870 wildfires mapped during the

period 1985–2005, owing to the higher resolution of the satellite imagery for

this period (minimum mapping unit of 5 hectares). We then perform two data

preprocessing steps. First, because a wildfire (axial) orientation is a π-periodic

angular variable ϑ supported in [0, π), we consider 2ϑ, a standard circular variable

supported in [0, 2π). With this simple transformation, the angles {0, π/2, π, 3π/2}
represent the {E–W,NE–SW,N–S,NW–SE} orientations, respectively. Second,

we summarize the preferred orientation of the wildfires in each watershed by

their weighted circular sample mean, with weights being the product of the

proportion of the explained variance and the burnt area of the wildfire perimeter.

The resulting dataset contains 102 representative wildfire orientations, shown in

Figure 2 for the periods 1986–1995 and 1996–2005.

When applied to the datasets displayed in Figure 2, the tests ϕ(n)
c (1, 1),

ϕ(n)
c (1,−1), ϕ(n)((1,−1, 1, 1)), ϕ(n)(0.1), and ϕ(n)(1) yielded p-values 0.0593,

0.0798, 0.0730, 0, and 0.0003 (using 104 permutations for ϕ(n)(λ)), respectively.

Therefore, significant long-term dependence is present in the orientation of

wildfires. Short-term temporal dependence was also investigated by testing

the null hypotheses of independence associated with 20 consecutive pairs of

years in 1985–2005 and applying the correction procedure of Benjamini and

Yekutieli (2001). None of the (corrected) p-values of the five tests were below

the 5% significance level. For the 10% significance level, only three ϕ(n)
c (1,−1)

tests and one ϕ(n)(0.1) test were significant. To investigate mid-term temporal

dependence, we repeated the analysis for pairs of consecutive periods of five

years (12 pairs) and three years (16 pairs). The proportion of (corrected)

5%-significant ϕ(n)
c (1,−1) tests increased to 0.5 and 0.1875, respectively, while

again no ϕ(n)
c (1, 1) tests were significant at any usual significance level. The

corresponding proportions for the tests ϕ(n)(0.1) and ϕ(n)(1) were 0.75 and 0.8333
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E−W 
ENE−WSW 
NE−SW 
NNE−SSW 
N−S 
NNW−SSE 
NW−SE
WNW−ESE
W−E

Figure 2. Weighted average orientations of wildfires from 1986–1995 (left) and 1996–2005
(right) for each of the 102 watersheds determined in Barros, Pereira and Lund (2012).

(five years), and 0 and 0.125 (three years). In conclusion, significant positive

dependence of the orientations of wildfires is present among spans of ten and

five years, while no significant dependence is found on consecutive years. Both

conclusions support the existence of long-term drivers of the orientations of

wildfires, such as the dominant weather during the wildfire season (Barros, Pereira

and Lund, 2012).

5.2. Long-period comets

Long-period comets are thought to originate in the Oort cloud, a widely-

accepted model posing the existence of a roughly spherical reservoir of icy

planetesimals in the limits of the Solar System. It is believed that these icy

planetesimals become long-period comets when randomly captured in heliocentric

orbits due to the effect of several gravitational forces (see, e.g., Sec. 5 and 7.2 in

Dones et al. (2015)). This conjectured origin explains the highly-characteristic

nearly-isotropic distribution of the orbits of such comets (e.g., Wiegert and

Tremaine (1999)). This distribution is markedly different from that of short-

period comets, which originate in the flattened Kuiper belt and have orbits that

cluster about the ecliptic plane.

An orbit with inclination i ∈ [0, π] and longitude of the ascending node

Ω ∈ [0, 2π) has the directed normal vector (sin(i) sin(Ω),− sin(i) cos(Ω), cos(i))′

to the orbit’s plane (e.g., Jupp et al. (2003)). Using this parametrization,

the projected Cramér–von Mises, projected Rothman, and projected Anderson–

Darling tests (Garćıa-Portugués, Navarro-Esteban and Cuesta-Albertos (2023))

reject the uniformity of the orbits of long-period comets (p-values smaller than
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Ω

Ω Ω

Ω

Ω

Ω

Figure 3. Scatterplots of (Ωi,Ωi+1) for long-period comets (left) and short-period comets
(center and right). The clusters appearing on the diagonal of the central plot disappear
once the fragments of disintegrating comets are removed from the dataset (right plot).

0.0197) using the records of the JPL Small-Body Database Search Engine

(https://ssd.jpl.nasa.gov/tools/sbdb_query.html) as of May 2022. The

rejection may be driven by a truly non-uniform population or, according to the

analysis in Jupp et al. (2003), by the existence of significant observational bias in

the available records. As Jupp et al. (2003) explain, bias is induced by how comet

search programs maximize success detection chances by preferentially exploring

regions about the ecliptic plane, because these are where most asteroids and

short-period comets cluster.

A possible manifestation of observational bias, both in long- and short-period

comets, is in the appearance of serial dependence in the orbits of the observed

comets. To assess the existence of such serial dependence in a nonparametric

way, we investigated the lag-1 dependence of the time series of Ω. We used the

lagged samples (Ωi,Ωi+1), i = 1, . . . , n− 1, with n = 623 for long-period comets

and n = 905 for short-period comets (see Figure 3), and applied to them several

of the new tests of independence. The dataset is available in the comets object

of the sphunif R package (v. 1.0.2) (Garćıa-Portugués and Verdebout (2022)),

and is sorted using JPL’s database ID, which is assigned chronologically based

on the discovery of new comets.

The tests ϕ(n)
c (1, 1), ϕ(n)

c (1,−1), ϕ(n)((1,−1, 1, 1)), ϕ(n)(0.1), and ϕ(n)(1)

yielded p-values 0.6063, 0.3710, 0.8941, 0.1745, and 0.3767, respectively, for

the lagged sample of long-period comets. Therefore, no evidence against lag-

1 independence on the series {Ωi}ni=1 for long-period comets is found. Thus,

if significant observational bias is present, it does not significantly induce the

most obvious form of serial dependence on Ω. For short-period comets, the p-

values were 0.0085, 4.8 × 10−8, 2.9 × 10−7, 0, and 0, signaling significant lag-

1 dependence on the series of longitudes. A data inspection reveals that this

rejection is a consequence of the clusters formed by fragments of disintegrating

comets (see the central plot of Figure 3). For example, there is a sequence of

68 records corresponding to fragments of the “73P/Schwassmann–Wachmann 3”
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comet. After removing 121 fragment records, the tests gave p-values 0.6702,

0.5066, 0.9609, 0.5608, and 0.6207, hence not rejecting lag-1 independence on the

longitudes of non-disintegrating short-period comets. The same test decisions at

the 5% significance level were obtained when using lags of order two and three in

the whole analysis, and when first sorting the database records according to the

dates of the first observations used in the fit of the orbits (this yields a different

chronological ordering) and then repeating the whole analysis while applying the

correction procedure of Benjamini and Yekutieli (2001).

Supplementary Material

The Supplementary Material (SM) contains the proofs of the stated results.

In addition, it provides the derivation of the covariance matrix Σ, details the

permutation algorithm applied to ϕ(n)(λ), and gives further simulation results.
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Garćıa-Portugués, E., Barros, A. M. G., Crujeiras, R. M., González-Manteiga, W. and Pereira, J.
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