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Abstract: We propose a test for the hypothesis that the standardized functional prin-
cipal components (FPCs) of functional data are equal to a given set of orthonormal
bases (e.g., the Fourier basis). Using estimates of individual trajectories that satisfy
certain approximation conditions, we construct a chi-square-type statistic, and show
that it is oracally efficient under the null hypothesis, in the sense that its limiting
distribution is the same as that of an infeasible statistic using all trajectories, known
as the oracle. The null limiting distribution is an infinite Gaussian quadratic form,
and we obtain a consistent estimator of its quantile. A test statistic based on the chi-
squared-type statistic and the approximate quantile of the Gaussian quadratic form
is shown to be both of the nominal asymptotic significance level and asymptotically
correct. It is further shown that B-spline trajectory estimates meet the required
approximation conditions. Simulation studies demonstrate the superior finite-
sample performance of the proposed testing procedure. Using electroencephalogram
(EEG) data, the proposed procedure confirms an interesting discovery that the
centered EEG data are generated from a small number of elements of the standard
Fourier basis.

Key words and phrases: B-spline, ElectroEncephalogram, functional principal
components, Gaussian quadratic form, oracle efficiency.

1. Introduction

A functional data analysis (FDA) analyzes data in the form of functions;
see Ramsay and Sliverman (2002, 2005|) for exploratory tools, |[Ferraty and Vieu
(2006)) for the Banach/Hilbert space approach to FDA, and Hsing and Eubank
(2015) for data-driven FDA theory and methods.

A raw functional data set consists of observations {Y;;,1 <i <n,1 <j < N},
where Y; is the observation at the jth measurement point j/N of a random
curve 7; (+), with N — oco. For the ith subject, for i = 1,2,...,n, its sample path
(Yi;,j/N), for j =1,..., N, is a noisy realization of the latent continuous time

stochastic process 7; (+), in the sense that

Yij=m<]]\,)+ai<]‘if>€u, 1<i<n, 1<j<N.
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The stochastic processes 7; (-) are called trajectories of the ith subject, for 1 <i <
n, and are independent and identically distributed (i.i.d.) copies of a canonical
stochastic process 7 (z), for x € [0, 1], which is square-integrable continuous, that
is, 1 (-) € C[0, 1], almost surely, and E [, ,, n*(z)dz < +oo. The terms o; (j/N) e
?:’]szl denote i.i.d. noise with mean zero,
variance one, and o; () are standard deviation functions of the ith subject.

According to Bosq| (2000), the C [0, 1]-valued random variable 7 () has mean
m (-) € C[0,1] and covariance G (-,-) € C[0,1]*, where m (z) = En (z),z € [0, 1],
and G (z,2") = Cov {n (x),n(z')}, x,2’ € [0,1]. According to the Mercer lemma,
there exist eigenvalues A\y > Ay > -+ > 0, Ziozl AL < 00, with corresponding
eigenfunctions {¢;},-, of G(-,-), the latter being an orthonormal basis of
£2[0,1], such that G (z,2") = ;0 Mt () (@) and [ G (z,2") ¢y, (2) da’ =
Mr(z). For each k € Ny, let I, = {F € N, |\, = A\r}. Then, minl, < k <
max [;,. If A\, > 0, the cardinality # (I}) = maxI; — min [, + 1 of I, is finite,
because the integral operator defined by G (z, ') is compact. The linear space of
functions spanned by {¢y},,.; is the eigen subspace ¥}, with dimension # (),
corresponding to the eigenvalue \;, of multiplicity # (I;). The Mercer expansion
of G (+,-) in terms of A, ¥y, k € N, is unique up to an orthogonal transformation
of {tp, k' € I;,} within each eigenspace ¥,.

The standard process 7 () then allows the Karhunen-Loeve (KL) expansion
n()=m()+ Y-, &or (+), according to Theorem 1.5 of |Bosq (2000), in which
the rescaled eigenfunctions, {¢;},.,, called functional principal components
(FPCs) satisty

are measurement errors, in which {e;;}

O () = m&% (), k>1, (1~1)

and the random coefficients {&},_, are uncorrelated, with mean zero and
variance one. The ith trajectory n; (-) is decomposed as

m()=m()+&E(), &0 =D &b (), (12)

in which the C [0, 1]-valued random variable &; (-) is a small-scale variation of z,
with EE; () = 0 and covariance G (z,2') = E{& ()& (¢')},x,2" € [0,1]. The
random coefficients {&;;},, , for i = 1,...,n, are i.i.d. copies of {&},-,, and are
called FPC scores. The raw functional data can then be written as

J o0 J J . .
Yij:m<N>+Zk_1€ik¢k <N>+0'i <N>5ij7 1<i<n, 1<j<N, (1.3)

where the infinite series converges absolutely, almost surely. Denote the rescaled
FPC scores as

Cir = /fi () Yy (x) dx, (1.4)
which by (1.1) and (1.2)), satisfy
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G [ (S o @) v () do = N

k=1

Grthr (1) = &indbr (), 1<i<n, keN,. (1.5)

For convenience, the orthonormal eigenfunctions {t (-)},-, are called canonical
FPCs.

Estimating the mean function m (-) and the covariance function G (-, -) is es-
sential in an FDA. In particular, simultaneous confidence regions are constructed
for m (-) in Degras (2011)), Cao, Yang and Todem| (2012), Ma, Yang and Carroll
(2012)), Zheng, Yang and Hardle (2014)), \Gu et al.| (2014), Cai et al| (2020,
and Yang| (2023)), and [Huang, Zheng and Yang| (2022), and for G (-,-) in
(2016), Wang et al.| (2020) and |Zhong and Yang (2023).

The covariance function G (x,z’) is intricately composed of eigenvalues
{A}e, and FPCs {4 (*)},—,, all of which are unknown parameters that are not
directly estimable. Similarly, the FPC scores {{,1 <i <n,k € N, } are well-
defined mathematical objects, but unobservable to the data-handling statistician.

Data analytical tools for computing FPCs and FPC scores are collectively
referred to as a functional principal components analysis (FPCA), a simpli-
fying preliminary step for many interesting applications involving trajectories
{n: (-)}_, as independent variables; see Hall and Hosseini-Nasab (2006), Aue,|
Nourinho and Hérmann.| (2015), and [Shang| (2017)). Typically, an FPCA first es-
timates the FPCs and eigenvalues as eigenfunctions and eigenvalues,respectively,
of some estimated G (-,-), and subsequently, the FPC scores; see
Sliverman| (2005), Horvath and Kokoszka, (2012), Shang (2014), Zhang et al.|
(2020), and [Huang et al. (2021)). Rigorous inference for functional regression
models remains difficult if FPC scores estimated from eigen equations are used

as predictor variables in place of the true ones, because the differences between
1/2

the true and estimated FPC scores are of order n~'/# only implicitly. Under the
special circumstance that the FPCs are known a priori, we establish in (S.20) the
explicit form of the differences between the true and estimated FPC scores, which
could be useful in developing inferential tools for functional regression models.
If the canonical FPCs {4y (-)},_, are known a priori as {1 (-)},_,, then
rescaled FPC scores {(i,1 <i<mn,k€N,} in can be estimated using the

method of moments’ as
Ciw = /fl () Yok (x)der, 1<i<n, 1<k<oo, (1.6)

where {&; (-)}™_, are good estimators of the centered trajectories {& (-)}"_,. The

=1
estimators of the eigenvalues and covariance function are also explicit:

P Z 2, (1.7)
i=1
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G (a,a) =n " Y& (@) () (1)
i=1

Because {1 & () o » (2)}; ., is an orthonormal basis of £* [0, 1%, G (z,2)

has the following expansion, with coordinates Cyyr, k, k' € N,:

G(z,2') = Z Crwhok () o p (')

kk'=1

Cow = / G (2,7) bop (2) bop () doda’, kK €N, (19)

If {¢p (-)}o; and {You (1)}, are the sameset, subject to a permutation of the
eigenspaces {VU}.} keN, and an orthogonal transformation within each eigenspace
Uy, then there exist Agx > 0,k € N, > 7 Ao < oo such that G (z,2') =
> nei Aokt () ok (7). In other words, all off-diagonal coordinates Ciyr (k #
k') are zero. Because Cyir = Cii,, k, k' € N, one can test the hypotheses

HO . Ckk’ = 0, Vk < k?/ € N+,
H1 cdk < k/ € N+, Ckk’ ;é 0. (110)

Formula is motivated by the studies of electroencephalogram (EEG)
data of |Li and Yang (2023)) and Zhong and Yang| (2023). Both studies observed
trigonometric shape trajectories, with explicit and sparse Fourier expansions of
the mean m (-) and covariance G (+,-) accepted by using simultaneous confidence
regions. A similar phenomenon has been noticed in studies of event-related-
potentials (ERP) data. The present work goes deeper to directly test canonical
FPCs at the more fundamental level.

The remainder of the paper is organized as follows. Section 2 states our
main theoretical results on a hypothesis test for the canonical FPCs, including
the asymptotic significance level and asymptotic correctness of chi-squared-type
statistics, both infeasibleand two-step data-driven, and that all requirements for
these asymptotics to hold are met by B-spline trajectory estimates. Procedures
to implement the proposed test are given in Section 3. Section 4 contains some
simulation findings, and an empirical study of EEG data is presented in Section
5. All technical proofs are provided in the Supplementary Material.

2. Main Results
2.1. Asymptotic properties
To better formulate the hypotheses in ([1.10]), define the following Hilbert

space of infinite real matrices with the usual Frobenius norm:
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H= {(akk/)1§k7k'<oo ,apr € Rt
1/2

_ 2
H(akk')1gk,k/<ooHH = E Ajoper < o0

1<k, k! <oco

A natural orthonormal basis of H consists of coordinate vectors (€ur); < 1<oos
where ey is a vector with ay, = 1 and all other elements zero. Denote the
subspace of upper triangle matrices

Hyt = {(akk./)lgk’k,@o EH:ap =0,1< 4 <k< OO}
with the corresponding orthogonal projection operator Pyr:

Pur (akk’)1gk,k/<oc = (“kk’>1gk<k/<oo' (2.1)

Relative to the orthonormal basis {40 x () 1o (2')},,, _, of L0, 1)%, there is a
natural isometry IT between H and £2 [0, 1]*:

II {(akk')1gk,k'<oo} Z arrPor (%) Yo (), (@)1 <pprcos € H

1<k, k! <oo

' (0) — ( / O (2, 2) o () top (2') d:cda:’) @€ L20,12(2.2)

1<k,k’/< oo

Because entails that II™! (G) = (Chr)1<f g o0 50 Ho in is equiva-
lent to PurII™ (G) = (0), .-/ The hypotheses are therefore reformulated in
terms of the Hilbert space parameter PypII~! (G), with the projection operator
Pur and isometry 117! defined in and , respectively:

Hy : Pyrll™! (G) = (0)1<percoo> OF [PyrIl™ (G>Hj-z =0,
H, : Pypll™! (G) # (0)1§k<k,<m, or ||PuTH*1 (G)Hi > 0. (2.3)

Under H,, by permuting the eigen subspaces ¥, and applying orthogonal
transformations, one may assume that ¥ (-) = ¥o s (+), for k € N,.
An infeasible estimator of the covariance function G (x,z’) is

G(z,2')=n" Z& &i

From (1.2) and (1.5]), we can write
" = - -1 Y ; 1.1 ’ !
G(I‘,CC) _th,:ln ;Czkcm 1/% (x)¢k (ﬂj‘)
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The coordinates of G (x,2’) relative to {to (x) Yo ()} oy are
Zkk’ = Zk’k = /G (.Z', .’I,'I) 'lpmk (x) wo,k/ (.’I}/) dxd.r/

=n"! ; Zkhkz:l Gtk Giks Wk ey kb Koy K € N (2.4)
in which the inner products

Uk, kg k! = /T/Jkl (@) Yr, (27) Yok (2) Yo p (') dzda, (2.5)
satisfy, for ky, ka, k3, ke, k, K/ K" K" € N,

o0
E o el Uk ko k! Wk ko k! K" = (@Z}o,k?l}o,km7/’0,k/f¢o,k~/> = Okkr Opr oo
1,k2=

o0
Zk ooy Wkika kb Uk ik = (P00 V000> Yok V0.ka) = Ok Okoksr (2.6)

where the Kronecker indices 0 = 1 for k = k', and zero for k # k’. Thus, if we
define an operator U : H — H by

oo

U (akk’)lgk,k/Q}O = (Zlgk’k%w uklkz,kk’akk’) ) (2.7)

1<ki,ky<oo

then U is unitary, and its corresponding infinite orthogonal matrix transforms
the orthonormal basis {1, () ¥r, (2')}1, 1,—1 t0 {¥ok () Yorr (2')} 4, Under
Hy, U =1, the identity operator.
The infeasible estimator can then be written as
~ AN o0 !
G(z,2') = Zk,k’:l Ziwor () Yo (2)
(Zkk’)lgk,k’<oo =1 (é) ’ (Zkk’)1§k<k’<oo = PUTH_l (G) )

Therefore, to determine whether ||PyrII~! (G)||; =0, as in Hy of (2.3)), we define
the following chi-squared-type statistic .S,,, a larger value of which favors H;:

2

~ - 2 n
So=n Y Zi =n HPUTH‘1 (G)H - ‘PUT <n—1/Zin> (2.8
1<k<k’'<oco H i=1 H
in which
(Zkk’)lgk,lg’<oo = n_l Z Xi7 (29)
=1
Xi = (Zkth:l Cik1<ik2uk1k2,kk/)1Sk7k/<oo =U (CiklcikZ)lgkl,k2<oo , 1 < 7 < n,
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where the infinite matrices X; are i.i.d. H-valued with mean ux € H, given in
(2.14]) of Theorem 1, and U is the unitary operator in (2.7]). Denote also the i.i.d.
variables

Yi = (<ik1<’ik2 - )‘k15k1k2)1§k1,k2<00 = U71 (X'L - MX) . (211)

Then, the covariance operators Cy of Y; and Cx of X, satisfy
Cy (x) = U 'CxU (x),Vx € H. (2.12)
Finally, define an infinite Gaussian quadratic form

S= > Mwxie (1), (2.13)

1<k<k’<oco

where X%, (1) are independent chi-squared variables with one degree of freedom.
The infinite series in (2.13) converges absolutely almost surely, because ES =
Zl§k<k’<oo )\k)\k' < (Zlgk<oo )\k)Q < Q. R

The following assumption is needed for the asymptotics of 5,,.

(A1) The FPC scores {{ix};5, 4>, are independent over k£ > 1 and are i.i.d. over
i > 1. The number of distinct distributions for all FPC scores {{ix},-, is
finite, and max; <)o, E&J, < 0.

The independence condition in (A1) is common in existing works on FDA,
see|Cao, Yang and Todem! (2012)), Ma, Yang and Carroll (2012), |Gu et al.| (2014),
Zheng, Yang and Hardle| (2014), and Wang et al.| (2020). Each of the FPC scores
{&k},>, may have its own probability distribution, but the number of distinct
distributions must be finite. For example, &;1,&3 ~ N (0,1), &5 ~ t(lo)/\/ﬁ,
and &4 ~ U(—+/3,4/3) for Case 2 in Section 4, and the distributions of &, for
k > 4 can all be set to N (0,1) as A\, =0, for k£ > 4.

Theorem 1. Under Assumption (A1), {X;}" | in (2.10) are i.i.d. H-valued
random variables, with

EXl = Ux = (2:21 )\kluklkl,kk/)1<k . ) (214)
[e%s) 0o 2
EIXils =" M@ -1+ (3" M) <o (2.15)

Asn — oo, there is an H-valued normal variable N such that

n

2 (Ziao ) cpprene — bixf =172 (Ko = pix) BN~ N(0,Cx), (216)

i=1

which, under Hy in (2.3), becomes the following special case:
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’I’Ll/2 (Zkk — Ak, Zkk/)lgk;ék’<oo = n_1/2 ZYZ 2> N ~ N (0, Cy) s (217)
i=1

Cy (er) = A} (E& — 1) egr, Cy (erw) = Medw (e +epr), 1<k # K < o0.

(2.18)

Consequently, under Hy, with S as in (2.13),

Pur <n1/2 i YZ>

i=1

2

B[ Por V)3, 2 8.

gn:‘
H

Lemma S.2 in the Supplementary Material stipulates that the distribution
function Fs (¢) = P[S < q] of the quadratic form S in is continuous and
strictly increasing, so the inverse function Fg' is well defined. For any o € (0, 1),
the (1 — a)th quantile Q;_, of S is the unique ¢ that solves Fs (¢) =1 — a:

Ql*a:FSil(l_O‘)'

Under Hy, Zi in (2.4)) and (2.9) has the following simpler expression:
Zkk’ = n_l Z CikCik/ = n_l Z V >\k V )\k/gikgik’- (219)
i=1 i=1

Because {(ir,1 <i < n,k € N, } are unobservable, {Zkk/}k#, and S, are all

infeasible. Substituting (;, with @-k in li yields the following feasible replicas
Of Zkk’ n 219

Zyr =n7"! i CanCins (Zkk’) = Pyrll™! (G) . (2.20)
=1

1<k<k/ <0

Using Ziy in (2.20)), a feasible statistic S, is defined to mimic S, in (2.8), as
follows:
Se=n > Zi, (2.21)

1<k<k/<kn,

where the truncation indices x,, € N, satisfy

Ko — 00, K202 1og®? n — 0. (2.22)

In what follows, for a function ¢ (-) defined on [0,1], denote [l¢|_ =
sup |¢(x)|, and p@ (-) as its gth-order derivative, if it exists. For ¢ € N,y €
z€10,1]
(0, 1], denote the (g, ) Holder seminorm of the function ¢ as

(29) — @ (!
'V (z) — p'? (2')
||90||q,u = ) m’e?OulI})m¢I’ iz — x,’n

)
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and the space of functions with a finite (¢, ) Holder seminorm as C(¢"[0,1] =
{o|llpllge < +o0}. As a special case, C(*V[0,1] is the space of Lipschitz
continuous functions.

(B1) The FPCs ¢ () € COV[0,1] with 3577 6nllo + 3521 6xllo, < +oo-

(B2) The trajectory estimates {&;(-)}™_, used in (L.6) satisfy

= Ous (PunN), (2.23)

max
1<i<n

GO -&O+nT > & ()

/=1

oo

1/2

where {p, v} ., are such that p,x > 0, and k2Zn'/?p, y log'?n — 0 as

n — oo, for some {k,} - satisfying (2.22).

Collective boundedness and Lipschitz bounded smoothness of the principal
components in Assumption (B1) are necessary for C[0,1], the central limit
theorem of n™' >~7_, & (+); see Lemma S.6 in the Supplementary Material.

Propositions 1 and 2 in the Supplementary Material lead to the following
theorem.

Theorem 2. Under Assumptions (Al) and (B1)—(B2), and under Hy in ((2.3),
asn — oo, S, in (2.21)) is oracally efficient, that is, S, — S, —, 0. Hence,

sup
ae(0,1)

P [S’n > Ql,a] — oz) — 0, sup
a€(0,1)

p [Sn > Ql,a} - a’ 0.

Using the eigenvalue estimates e in (1.7), define an approximation of S, as
follows:

So= > Mg (1), (2.24)

1<k<k'<trn

with the (1 — a)th quantile denoted as Q1—o. The following theorem provides a
full justification for using Q)1 _,, in place of Q;_, to define the test statistic

T.=1Its,.0, .} (2.25)

where we reject Hy if and only if 7;, = 1.

Theorem 3. Under Assumptions (A1) and (B1)-(B2), and under Hy in (2.3),
as n — 00, the finite approzimation S, in converges to S in probability,
that is, S, — S = 0, (1). Consequently, for any o € (0,1), Q1_a — Q1_a = 0, (1)
and

P(T, =1)=P (Sn > Ql_a) —a,P (Sn > Ql_a) —a

Theorems 3 and 2 state that the asymptotic significance level is « for both
the data-driven test T, = I;5 .4, . and the infeasible Iig 5, 4, Iyg, 50, .1
al’ld I{S« >Q }.
n 11—«
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We establish next the asymptotic consistency of the test 7;, in (2.25).

Theorem 4. Under Assumptions (Al) and (B1)—(B2), and under Hy in (2.3),
there exist ki < ko € Ny, Cy, 1, # 0, where Cy, i, is given in (1.9). As n — oo,

min (S’n, S’n> > nZ,fle =nCy ., + O, <n1/2> ,
P(T,=1)=P (Sn > Ql_a) S,
min {2 (5, > Q1) P (80> Qo) P (5> @)} o1

Theorem 4 reveals that under the alternative H; in (2.3), the data-driven
test T, in (2.25) is consistent, along with the infeasible I\z .5, 115,50, .1-

and I{ST‘,>Q17Q}‘
2.2. B-spline estimation

Theorems 2, 3, and 4 depend on a high-level Assumption (B2) involving
trajectory estimates {&(-)}7_, in (L.6). In this section, we show that B-spline
trajectory estimates meet Assumption (B2).

To define the splines, the interval [0, 1] is divided into (Js + 1) equal subin-
tervals I, = [Jh,(J+1)h),0 < J < J, —1,I,, = [Jsh,1], with length
h = 1/(J, +1). For positive integer p, let HP~=2 = HP=2[0,1] be the space
of functions that are (p — 2) times continuously differentiable on [0, 1], and
polynomials of degree (p — 1) on subintervals I;,0 < J < J,. Denote by
{B;,(-),1 < J < J,+ p} the pth-order B-spline basis of H*~2 (de Boor} 2001,
/H(p_Q) = {Zjirlp )‘J,pBJm () ‘ >‘J,p € R}'

Latent trajectories n; (+) are estimated via B-spline for each subject ¢,

M (-) = argmin i {K-j -9 <]]v) }2 , 1<i<n. (2.26)

g()eHEP-D 5

B-spline estimates of the mean m () and centered trajectories ¢, () are

() =n"1Y (), (2.27)
()= ()—m(), 1<i<n, (2.28)

with #; () defined in (2.26). The B-spline estimates &; (-) in (2.28)) are then used
to estimate the rescaled FPC scores in (|1.6]), as wellas the covariance function in

).
The following constraints are listed as constants v, g, i1, and so on, and appear
sequentially in Assumptions (C1)—(C5):

ve (0,1, e Nt ue (0,1],p" =q+pu, (2.29)
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: 2p*
0 e (0, min <2p* e V)) ) (2.30)

52€<0,min{;,y—9 1_H(p*+1)})7 (2.31)

2’ 2p*
46 46
om0 i 0 (232
2 1\ 6 . 0
max<l—v,(—+ =] —p <y<min{1-06,1—05,——-]. (2.33)
r  2)p* 2

Elementary algebra shows that (2.30) is needed for (2.31)) to hold, and that both

(2.30) and (2.31]) are needed for (2.32)). We also verify that (2.30), (2.31), and
(2.32) together ensure the existence of v that satisfies (2.33)).
The above ([2.30)), (2.31)), (2.32)), and (2.33]) enable the following assumptions.

(C1) The standard deviation functions o; (-) € C©*[0,1], for v in (2.29),

maxj<;<n HO’ZHOO < CU, and maxj<i;<n HO’Z‘ < Caa for 0 < Co' < 0.

”0 v

(C2) The FPCs ¢ (-) € C@" [0,1] for an integer ¢ and a constant yu in (2.29)),
with 52, el < +oo.

(C3) Asn — oo, N =N (n) = oo, and n = O(N?) for 6 in (2.30).

(C4) The iid. noise {e;},5, -, satisfies Ee}; < co. There are i.i.d. N (0,1)
variables {U;; .} . such that

i=1,j=1
t t
> e =Y Uije
i=1

P { max max
j=1

1<i<n 1<t<N

> Nﬂ2} < C.N,

for constants C. € (0,400),72 € (1,400), and By in (2.31). For 7 in
(2-32), maxi<pcoo E 14| < 0.

(C5) The spline order p > p*, the number of interior knots J, = N7dy, with
in (2.33), and dy + dy' = O (log” N) as N — oo, for some 7 > 0.

The uniform boundedness and Hoélder continuity for the standard deviation
functions o; () in Assumption (C1) are both common for spline smoothing; see
Wang et al.| (2020), |Li and Yang| (2023)), and |Zhong and Yang (2023)). Allowing
o0; () for each subject i and not imposing any smoothness condition on the mean
function m (-) are new features that substantially enhance the applicability of
our proposed method. The collective (g, u)-Holder bounded smoothness of the
principal components in Assumption (C2) is for bias reduction. Assumption (C3)
requires that the number N of observations per curve grows with the sample size

n, and not slower than n'/?

. The probability inequalities in Assumption (C4)
provide a Gaussian partial sum strong approximation of the measurement errors

{€ij}i>1;1- The high-level Assumption (C4) can be ensured by the elementary
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Assumption (C4'), together with Assumption (C3), the proof of which is provided
in the Supplementary Material. The requirement for the number of knots of the
splines is stated in Assumption (C5), which aims to modulate the smoothness of
the B-spline estimator using that of the FPCs.

(C4") There exist ro > (24 6) /5, for 6 in (2.30) and By in (2.31), such that
Elei|” < oo. For ry in (2.32), max <o E 11| < 00,

Remark 1. The above assumptions are mild and are satisfied in various practical
situations. One simple and reasonable setting for the parameters q, i, v, 0, p, vy is
the following: ¢+ pu =p* =4, v =1, 0 < 8/9 (e.g., 0.6), p = 4 (cubic spline),
v = 0.2. These constants are used as implementation defaults in Section 3,
together with dy < loglog N.

The next crucial theorem ensures the feasibility of Assumption (B2).

Theorem 5. Under Assumptions (Al), (Bl), and (C1)—(C5), the B-spline
trajectory estimates {&(-)}1, in (2.28)) satisfy Assumption (B2) with

pnn = J7 (nlog n)z/T1 + N7V2 21082 N 4+ J,NP2~1,

3. Implementation

This section describes how the test is performed. All trajectories are
estimated using cubic splines, that is, p = 4. The smoothness order (g, u) of
the eigenfunctions ¢y (-) is taken as (3,1) or (4,0) by default. The number of
knots for the B-spline smoothing J, = [¢N”loglog N]| is recommended, with a
constant ¢, where [a] denotes the integer part of a. The default values v = 0.2
and ¢ = 2 are adequate. These B-spline trajectory estimates satisfy Assumption
(B2) if we take the number of FPCs for the test statistic s, = [¢; logn]+cz. The
default values are ¢; = 3/2 and ¢; = 0. Then, 5’n is computed using and
T, (2.25).

To obtain Ql,a, we generate 7, = Zl<k<k’<nn 5\]@5\;@/)(]@]@/717 where Y, are
i.i.d. central chi-squared variables with one degree of freedom, for 1 < k < k/ < k,,
and b=1,...,by, and by, is a preset large integer with default value 1,000. Then,
Q1_. is taken as the (1 — o)th sample quantile of {ﬁ,}:ﬁl.

4. Simulation

Two candidate sets {¢g (-)},_, of canonical FPCs are used in this section:

(a) FPCs of the Ornstein—Uhlenbeck (OU) process: for k € N,

Youk (T) = {; +(1+ wi)‘l}_m sin {wk <a: — ;) + k;} : (4.1)
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Table 1. Rejection frequency under null hypothesis.

(a) for Case 1 (b) for Case 2
(n,N) a=001 aa=005 =010 =020 a=001 =005 a=010 a=0.20
(150, 200) 0.015 0.059 0.111 0.216 0.015 0.056 0.105 0.209
(250, 500) 0.009 0.056 0.105 0.207 0.008 0.046 0.104 0.197
(400,1000)  0.007 0.053 0.109 0.196 0.008 0.052 0.098 0.203
(600,2000)  0.011 0.050 0.099 0.197 0.012 0.051 0.102 0.201

where w;, denotes the positive roots of tanw = —2w (1 — w2)71, arranged in
ascending order;

(b) the Fourier basis: for [ € N,

Ypa () =1, ¢Yp0 (z) = V2 cos 2lrz), Yp ot (v) = V2sin (2lmx). (4.2)

Data are generated from the model
AN . J . ,
Yi; :m<N) +;£ik\/g¢k <N) +o0¢€,;,1 <j<N,1<i<n,

with o = 0.3, n = 150, 250, 400, 600, N = 200, 500, 1000, 2000, and « = 0.01, 0.05,
0.1,0.2. The noises €;; ~ N (0,1), for 4,j € N;. Each combination of (n, N, «) is
replicated 1,000 times.

Case 1. m(z) = 10 —sin (27z) ,k = 2, (A1, A2) = (2,1/2), ¢1 (z) = Youa (),
and ¥ () = Youz(z). The FPC scores &; ~ (0,1), and &o ~
t(l())/\/ 125, for ¢ S N+.

Case 2. m(z) = 10 +sin (37x), k = 4, (A1, A2, A3, A1) = (4,2,1,1/2), 9y (x) =
Yp3 (), (z) = Y2 (x),v3 (z) = Yps (x), and Yy () = Ypg (z). Fur-
thermore, &;1,&3 ~ N (0,1), &2 ~ t(10)/v 1.25, and &y ~ U(—\/§, \/3)7 for
1€ N,.

Under the null hypothesis, that is, (a) for Case 1 and (b) for Case 2, Table
1 shows that the rejection frequency approaches the nominal significance level «
as n increases. Under the alternative hypothesis, that is, (a) for Case 2 and (b)
for Case 1, the rejection frequency is equal to one for all combinations. Thus, the
test is clearly consistent.

5. Real-Data Analysis

In this section, we apply the proposed procedure to electroencephalogram
(EEG) data. EEG is known for containing a great deal of information about
the function of the brain. The data used are from 142 people, with EEG signals
recorded from 32 scalp locations at a sample rate of 1000Hz. The mid-200 signals
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Figure 1. (a) The covariance function Go (x,2") under the null hypothesis in Section 5;
(b) the estimated covariance function G (z, z’) defined in (1.8]).

of each person at the 10th scalp location are used, so the data are functional in
form , with n = 142, and N = 200. The null hypothesis is that the canonical
FPCs of this EEG data are a finite subset of the standard Fourier basis in ,
subject to permutation.

The default ,, = [¢; logn| + ¢z, with ¢; = 3/2, and ¢, = 0 yields k,, = 7. For
G (z,z'), defined in , the largest x,, estimated eigenvalues are

(Xk) — (40.658,9.049, 7.023, 4.482, 2.468, 1.331, 0.990) ,
1<k<T

with corresponding canonical FPCs {0 (%)}, ., -

1, V2sin (47x), V2cos (dmx), V2sin (2mz),
V2cos (2rx), V2sin (67z), V2sin (87z) .

We then obtain S, = 754.778 from , and the lowest confidence level
empirical quantile Ql—a greater than S’n is Q0A2552 = 754.930. Thus, the null
hypothesis is retained with a p-value = 0.7448.

The estimated covariance function G (x,z") defined by is well approxi-
mated by G (z,z') = 21 _, Mtbox () tho s (2'), with a coefficient of determination
R? = 0.892. Figure 1 (a) depicts Go (x,2"), which appears to be a faithful
representation of the estimated covariance function G (z,2') in Figure 1 (b).

For four randomly selected participants, Figure 2 shows the raw EEG data
Yi;, for 1 < j < 200 (crosses), spline estimated trajectories 7; (j/200), for
1 < j < 200 (solid), and null trajectories i (5/200) + S1_, Cixtbox (4/200), for
1 <7 <200 (dashed). The coefficients of determination of the spline trajectories
and the null hypothesis trajectories against the four raw data segments are
(0.992,0.911), (0.983,0.919), (0.982,0.927), and (0.994, 0.931), respectively. This
further validates that for this EEG data, the Fourier canonical FPCs are
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Figure 2. Randomly selected segments of raw EEG data (crosses), spline estimated
trajectories (solid), and null hypothesis trajectories (dashed).

appropriate.

We also tested the EEG data against the OU FPCs in as canonical
FPCs. After obtaining S, = 2687.381 and Q.5 = 2588.731, the null hypothesis
is rejected with a p-value< 0.05.

6. Conclusion

We have proposed a chi-squared-type statistic, constructed using estimates of
individual trajectories, to test the specifications of the FPCs in functional data.
The limiting distribution of the statistic under the null hypothesis is an infinite
Gaussian quadratic form, the quantiles of which are estimated consistently. The
data-driven test has the correct significance level under the null hypothesis,
and is consistent under the alternative if the trajectory estimates satisfy some
constraints, which are met by B-spline estimates. The results of numerical
experiments demonstrate the excellent performance of the test, corroborating
the asymptotic theory. For a EEG data, there is strong evidence of canonical
FPCs as a small set of a standard Fourier basis. The proposed test is expected
to be widely applicable in various scientific fields by simplifying functional data
models using validated simple sets of FPCs.

Further research may reveal that other trajectory estimates based on a
wavelet or local polynomial also satisfy Assumption (B2), and can be used to
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formulate tests with desirable properties in Theorems 3 and 4. It is also feasible
to extend our results to functional data recorded over an irregular grid, albeit with
messier algebra. Similar tests may also be constructed for temporally dependent
functional data, such as the functional moving average of [Li and Yang (2023) and
Zhong and Yang (2023).

Supplementary Material

The online Supplementary Material contains detailed proofs of our technical
results.
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