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Abstract: We propose a test for the hypothesis that the standardized functional prin-

cipal components (FPCs) of functional data are equal to a given set of orthonormal

bases (e.g., the Fourier basis). Using estimates of individual trajectories that satisfy

certain approximation conditions, we construct a chi-square-type statistic, and show

that it is oracally efficient under the null hypothesis, in the sense that its limiting

distribution is the same as that of an infeasible statistic using all trajectories, known

as the oracle. The null limiting distribution is an infinite Gaussian quadratic form,

and we obtain a consistent estimator of its quantile. A test statistic based on the chi-

squared-type statistic and the approximate quantile of the Gaussian quadratic form

is shown to be both of the nominal asymptotic significance level and asymptotically

correct. It is further shown that B-spline trajectory estimates meet the required

approximation conditions. Simulation studies demonstrate the superior finite-

sample performance of the proposed testing procedure. Using electroencephalogram

(EEG) data, the proposed procedure confirms an interesting discovery that the

centered EEG data are generated from a small number of elements of the standard

Fourier basis.

Key words and phrases: B-spline, ElectroEncephalogram, functional principal

components, Gaussian quadratic form, oracle efficiency.

1. Introduction

A functional data analysis (FDA) analyzes data in the form of functions;

see Ramsay and Sliverman (2002, 2005) for exploratory tools, Ferraty and Vieu

(2006) for the Banach/Hilbert space approach to FDA, and Hsing and Eubank

(2015) for data-driven FDA theory and methods.

A raw functional data set consists of observations {Yij, 1 ≤ i ≤ n, 1 ≤ j ≤ N},
where Yij is the observation at the jth measurement point j/N of a random

curve ηi (·), with N → ∞. For the ith subject, for i = 1, 2, . . . , n, its sample path

(Yij, j/N), for j = 1, . . . , N , is a noisy realization of the latent continuous time

stochastic process ηi (·), in the sense that

Yij = ηi

(
j

N

)
+ σi

(
j

N

)
εij, 1 ≤ i ≤ n, 1 ≤ j ≤ N.
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The stochastic processes ηi (·) are called trajectories of the ith subject, for 1 ≤ i ≤
n, and are independent and identically distributed (i.i.d.) copies of a canonical

stochastic process η (x), for x ∈ [0, 1], which is square-integrable continuous, that

is, η (·) ∈ C [0, 1], almost surely, and E
∫
[0,1]

η2(x)dx < +∞. The terms σi (j/N) εij

are measurement errors, in which {εij}n,Ni=1,j=1
denote i.i.d. noise with mean zero,

variance one, and σi (·) are standard deviation functions of the ith subject.

According to Bosq (2000), the C [0, 1]-valued random variable η (·) has mean

m (·) ∈ C [0, 1] and covariance G (·, ·) ∈ C [0, 1]
2
, where m (x) ≡ Eη (x) , x ∈ [0, 1],

and G (x, x′) ≡ Cov {η (x) , η (x′)}, x, x′ ∈ [0, 1]. According to the Mercer lemma,

there exist eigenvalues λ1 ≥ λ2 ≥ · · · ≥ 0,
∑∞

k=1 λk < ∞, with corresponding

eigenfunctions {ψk}∞k=1 of G (·, ·), the latter being an orthonormal basis of

L2[0, 1], such that G (x, x′) ≡
∑∞

k=1 λkψk(x)ψk (x
′) and

∫
G (x, x′)ψk (x

′) dx′ =

λkψk(x). For each k ∈ N+, let Ik = {k′ ∈ N+ |λk′ = λk }. Then, min Ik ≤ k ≤
max Ik. If λk > 0, the cardinality # (Ik) = max Ik − min Ik + 1 of Ik is finite,

because the integral operator defined by G (x, x′) is compact. The linear space of

functions spanned by {ψk′}k′∈Ik
is the eigen subspace Ψk with dimension # (Ik),

corresponding to the eigenvalue λk of multiplicity # (Ik). The Mercer expansion

of G (·, ·) in terms of λk, ψk, k ∈ N+ is unique up to an orthogonal transformation

of {ψk′ , k′ ∈ Ik} within each eigenspace Ψk.

The standard process η (·) then allows the Karhunen–Loève (KL) expansion

η (·) = m (·) +
∑∞

k=1 ξkϕk (·), according to Theorem 1.5 of Bosq (2000), in which

the rescaled eigenfunctions, {ϕk}∞k=1, called functional principal components

(FPCs) satisfy

ϕk (·) =
√
λkψk (·) , k ≥ 1, (1.1)

and the random coefficients {ξk}∞k=1 are uncorrelated, with mean zero and

variance one. The ith trajectory ηi (·) is decomposed as

ηi (·) = m (·) + ξi (·) , ξi (·) =
∑∞

k=1
ξikϕk (·) , (1.2)

in which the C [0, 1]-valued random variable ξi (·) is a small-scale variation of x,

with Eξi (·) ≡ 0 and covariance G (x, x′) ≡ E {ξi (x) ξi (x′)} , x, x′ ∈ [0, 1]. The

random coefficients {ξik}∞k=1 , for i = 1, . . . , n, are i.i.d. copies of {ξk}∞k=1, and are

called FPC scores. The raw functional data can then be written as

Yij = m

(
j

N

)
+
∑∞

k=1
ξikϕk

(
j

N

)
+σi

(
j

N

)
εij, 1 ≤ i ≤ n, 1 ≤ j ≤ N, (1.3)

where the infinite series converges absolutely, almost surely. Denote the rescaled

FPC scores as

ζik =

∫
ξi (x)ψk (x) dx, (1.4)

which by (1.1) and (1.2), satisfy
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ζik =

∫ (∑∞

k′=1
ξik′ϕk′ (x)

)
ψk (x) dx =

√
λkξik,

ζikψk (·) = ξikϕk (·) , 1 ≤ i ≤ n, k ∈ N+. (1.5)

For convenience, the orthonormal eigenfunctions {ψk (·)}∞k=1 are called canonical

FPCs.

Estimating the mean function m (·) and the covariance function G (·, ·) is es-
sential in an FDA. In particular, simultaneous confidence regions are constructed

for m (·) in Degras (2011), Cao, Yang and Todem (2012), Ma, Yang and Carroll

(2012), Zheng, Yang and Härdle (2014), Gu et al. (2014), Cai et al. (2020), Li

and Yang (2023), and Huang, Zheng and Yang (2022), and for G (·, ·) in Cao et

al. (2016), Wang et al. (2020) and Zhong and Yang (2023).

The covariance function G (x, x′) is intricately composed of eigenvalues

{λk}∞k=1 and FPCs {ϕk (·)}∞k=1, all of which are unknown parameters that are not

directly estimable. Similarly, the FPC scores {ξik, 1 ≤ i ≤ n, k ∈ N+} are well-

defined mathematical objects, but unobservable to the data-handling statistician.

Data analytical tools for computing FPCs and FPC scores are collectively

referred to as a functional principal components analysis (FPCA), a simpli-

fying preliminary step for many interesting applications involving trajectories

{ηi (·)}ni=1 as independent variables; see Hall and Hosseini-Nasab (2006), Aue,

Nourinho and Hörmann. (2015), and Shang (2017). Typically, an FPCA first es-

timates the FPCs and eigenvalues as eigenfunctions and eigenvalues,respectively,

of some estimated G (·, ·), and subsequently, the FPC scores; see Ramsay and

Sliverman (2005), Horváth and Kokoszka (2012), Shang (2014), Zhang et al.

(2020), and Huang et al. (2021). Rigorous inference for functional regression

models remains difficult if FPC scores estimated from eigen equations are used

as predictor variables in place of the true ones, because the differences between

the true and estimated FPC scores are of order n−1/2 only implicitly. Under the

special circumstance that the FPCs are known a priori, we establish in (S.20) the

explicit form of the differences between the true and estimated FPC scores, which

could be useful in developing inferential tools for functional regression models.

If the canonical FPCs {ψk (·)}∞k=1 are known a priori as {ψ0,k (·)}∞k=1
, then

rescaled FPC scores {ζik, 1 ≤ i ≤ n, k ∈ N+} in (1.4) can be estimated using the

method of moments’ as

ζ̂ik =

∫
ξ̂i (x)ψ0,k (x) dx, 1 ≤ i ≤ n, 1 ≤ k <∞, (1.6)

where {ξ̂i (·)}ni=1 are good estimators of the centered trajectories {ξi (·)}ni=1. The

estimators of the eigenvalues and covariance function are also explicit:

λ̂k =n−1
n∑

i=1

ζ̂2ik, (1.7)
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Ĝ (x, x′) =n−1
n∑

i=1

ξ̂i (x) ξ̂i (x
′) . (1.8)

Because {ψ0,k (x)ψ0,k′ (x′)}∞
k,k′=1

is an orthonormal basis of L2 [0, 1]
2
, G (x, x′)

has the following expansion, with coordinates Ckk′ , k, k′ ∈ N+:

G (x, x′) ≡
∞∑

k,k′=1

Ckk′ψ0,k (x)ψ0,k′ (x′) ,

Ckk′ ≡
∫
G (x, x′)ψ0,k (x)ψ0,k′ (x′) dxdx′, k, k′ ∈ N+. (1.9)

If {ψk (·)}∞k=1 and {ψ0,k (·)}∞k=1
are the sameset, subject to a permutation of the

eigenspaces {Ψk}k∈N+
and an orthogonal transformation within each eigenspace

Ψk, then there exist λ0,k ≥ 0, k ∈ N+,
∑∞

k=1 λ0,k < ∞ such that G (x, x′) ≡∑∞
k=1 λ0,kψ0,k(x)ψ0,k (x

′). In other words, all off-diagonal coordinates Ckk′ (k ̸=
k′) are zero. Because Ckk′ ≡ Ck′k, k, k

′ ∈ N+, one can test the hypotheses

H0 : Ckk′ ≡ 0, ∀k < k′ ∈ N+,

H1 : ∃k < k′ ∈ N+, Ckk′ ̸= 0. (1.10)

Formula (1.10) is motivated by the studies of electroencephalogram (EEG)

data of Li and Yang (2023) and Zhong and Yang (2023). Both studies observed

trigonometric shape trajectories, with explicit and sparse Fourier expansions of

the mean m (·) and covariance G (·, ·) accepted by using simultaneous confidence

regions. A similar phenomenon has been noticed in studies of event-related-

potentials (ERP) data. The present work goes deeper to directly test canonical

FPCs at the more fundamental level.

The remainder of the paper is organized as follows. Section 2 states our

main theoretical results on a hypothesis test for the canonical FPCs, including

the asymptotic significance level and asymptotic correctness of chi-squared-type

statistics, both infeasibleand two-step data-driven, and that all requirements for

these asymptotics to hold are met by B-spline trajectory estimates. Procedures

to implement the proposed test are given in Section 3. Section 4 contains some

simulation findings, and an empirical study of EEG data is presented in Section

5. All technical proofs are provided in the Supplementary Material.

2. Main Results

2.1. Asymptotic properties

To better formulate the hypotheses in (1.10), define the following Hilbert

space of infinite real matrices with the usual Frobenius norm:
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H =
{
(akk′)1≤k,k′<∞ , akk′ ∈ R :

∥∥∥(akk′)1≤k,k′<∞

∥∥∥
H
=

 ∑
1≤k,k′<∞

a2kk′

1/2

<∞

 .

A natural orthonormal basis of H consists of coordinate vectors (ekk′)1≤k,k′<∞,

where ekk′ is a vector with akk′ = 1 and all other elements zero. Denote the

subspace of upper triangle matrices

HUT =
{
(akk′)1≤k,k′<∞ ∈ H : akk′ ≡ 0, 1 ≤ k′ ≤ k <∞

}
with the corresponding orthogonal projection operator PUT:

PUT (akk′)1≤k,k′<∞ = (akk′)1≤k<k′<∞ . (2.1)

Relative to the orthonormal basis {ψ0,k (x)ψ0,k′ (x′)}∞
k,k′=1

of L2 [0, 1]
2
, there is a

natural isometry Π between H and L2 [0, 1]
2
:

Π
{
(akk′)1≤k,k′<∞

}
=

∑
1≤k,k′<∞

akk′ψ0,k (x)ψ0,k′ (x′) , (akk′)1≤k,k′<∞ ∈ H

Π−1 (Θ) =

(∫
Θ(x, x′)ψ0,k (x)ψ0,k′ (x′) dxdx′

)
1≤k,k′<∞

,Θ ∈ L2 [0, 1]
2
.(2.2)

Because (1.9) entails that Π−1 (G) = (Ckk′)1≤k,k′<∞, soH0 in (1.10) is equiva-

lent to PUTΠ
−1 (G) = (0)1≤k<k′<∞. The hypotheses are therefore reformulated in

terms of the Hilbert space parameter PUTΠ
−1 (G), with the projection operator

PUT and isometry Π−1 defined in (2.1) and (2.2), respectively:

H0 : PUTΠ
−1 (G) = (0)1≤k<k′<∞ , or

∥∥PUTΠ
−1 (G)

∥∥2
H = 0,

H1 : PUTΠ
−1 (G) ̸= (0)1≤k<k′<∞ , or

∥∥PUTΠ
−1 (G)

∥∥2
H > 0. (2.3)

Under H0, by permuting the eigen subspaces Ψk and applying orthogonal

transformations, one may assume that ψk (·) ≡ ψ0,k (·), for k ∈ N+.

An infeasible estimator of the covariance function G (x, x′) is

G̃ (x, x′) ≡ n−1
n∑

i=1

ξi (x) ξi (x
′) .

From (1.2) and (1.5), we can write

G̃ (x, x′) =
∑∞

k,k′=1
n−1

n∑
i=1

ζikζik′ψk (x)ψk′ (x′) .
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The coordinates of G̃ (x, x′) relative to {ψ0,k (x)ψ0,k′ (x′)}∞
k,k′=1

are

Zkk′ = Zk′k =

∫
G̃ (x, x′)ψ0,k (x)ψ0,k′ (x′) dxdx′

= n−1
n∑

i=1

∑∞

k1,k2=1
ζik1

ζik2
uk1k2,kk′ , k, k′ ∈ N+, (2.4)

in which the inner products

uk1k2,kk′ =

∫
ψk1

(x)ψk2
(x′)ψ0,k (x)ψ0,k′ (x′) dxdx′, (2.5)

satisfy, for k1, k2, k3, k4, k, k
′, k′′, k′′′ ∈ N+,∑∞

k1,k2=1
uk1k2,kk′uk1k2,k′′k′′′ = ⟨ψ0,kψ0,k′ , ψ0,k′′ψ0,k′′′⟩ = δkk′′δk′k′′′ ,∑∞

k,k′=1
uk1k2,kk′uk3k4,kk′ = ⟨ψ0,k1

ψ0,k2
, ψ0,k3

ψ0,k4
⟩ = δk1k3

δk2k4
, (2.6)

where the Kronecker indices δkk′ = 1 for k = k′, and zero for k ̸= k′. Thus, if we

define an operator U : H → H by

U (akk′)1≤k,k′<∞ =
(∑∞

1≤k,k′<∞
uk1k2,kk′akk′

)
1≤k1,k2<∞

, (2.7)

then U is unitary, and its corresponding infinite orthogonal matrix transforms

the orthonormal basis {ψk1
(x)ψk2

(x′)}∞k1,k2=1 to {ψ0,k (x)ψ0,k′ (x′)}∞
k,k′=1

. Under

H0, U = I, the identity operator.

The infeasible estimator can then be written as

G̃ (x, x′) =
∑∞

k,k′=1
Zkk′ψ0,k (x)ψ0,k′ (x′) ,

(Zkk′)1≤k,k′<∞ = Π−1
(
G̃
)
, (Zkk′)1≤k<k′<∞ = PUTΠ

−1
(
G̃
)
.

Therefore, to determine whether ∥PUTΠ
−1 (G)∥2H = 0, as in H0 of (2.3), we define

the following chi-squared-type statistic S̃n, a larger value of which favors H1:

S̃n = n
∑

1≤k<k′<∞

Z2
kk′ = n

∥∥∥PUTΠ
−1
(
G̃
)∥∥∥2

H
=

∥∥∥∥∥PUT

(
n−1/2

n∑
i=1

Xi

)∥∥∥∥∥
2

H

, (2.8)

in which

(Zkk′)1≤k,k′<∞ = n−1
n∑

i=1

Xi, (2.9)

Xi =
(∑∞

k1,k2=1
ζik1

ζik2
uk1k2,kk′

)
1≤k,k′<∞

= U (ζik1
ζik2

)1≤k1,k2<∞ , 1 ≤ i ≤ n,

(2.10)
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where the infinite matrices Xi are i.i.d. H-valued with mean µX ∈ H, given in

(2.14) of Theorem 1, and U is the unitary operator in (2.7). Denote also the i.i.d.

variables

Yi = (ζik1
ζik2

− λk1
δk1k2

)1≤k1,k2<∞ = U−1 (Xi − µX) . (2.11)

Then, the covariance operators CY of Yi and CX of Xi satisfy

CY (x) = U−1CXU (x) ,∀x ∈ H. (2.12)

Finally, define an infinite Gaussian quadratic form

S =
∑

1≤k<k′<∞

λkλk′χ2
kk′ (1) , (2.13)

where χ2
kk′ (1) are independent chi-squared variables with one degree of freedom.

The infinite series in (2.13) converges absolutely almost surely, because ES =∑
1≤k<k′<∞ λkλk′ < (

∑
1≤k<∞ λk)

2 <∞.

The following assumption is needed for the asymptotics of S̃n.

(A1) The FPC scores {ξik}i≥1,k≥1 are independent over k ≥ 1 and are i.i.d. over

i ≥ 1. The number of distinct distributions for all FPC scores {ξ1k}k≥1 is

finite, and max1≤k<∞ Eξ41k <∞.

The independence condition in (A1) is common in existing works on FDA,

see Cao, Yang and Todem (2012), Ma, Yang and Carroll (2012), Gu et al. (2014),

Zheng, Yang and Härdle (2014), and Wang et al. (2020). Each of the FPC scores

{ξ1k}k≥1 may have its own probability distribution, but the number of distinct

distributions must be finite. For example, ξ11, ξ13 ∼ N (0, 1), ξ12 ∼ t(10)/
√
1.25,

and ξ14 ∼ U(−
√
3,
√
3) for Case 2 in Section 4, and the distributions of ξ1k, for

k > 4 can all be set to N (0, 1) as λk ≡ 0, for k > 4.

Theorem 1. Under Assumption (A1), {Xi}ni=1 in (2.10) are i.i.d. H-valued

random variables, with

EXi = µX =
(∑∞

k1=1
λk1

uk1k1,kk′

)
1≤k,k′<∞

, (2.14)

E ∥Xi∥2H =
∑∞

k=1
λ2
k

(
Eξ4k − 1

)
+
(∑∞

k=1
λk

)2
<∞. (2.15)

As n→ ∞, there is an H-valued normal variable N such that

n1/2
{
(Zkk′)1≤k,k′<∞ − µX

}
= n−1/2

n∑
i=1

(Xi − µX)
D→ N ∼ N (0,CX) , (2.16)

which, under H0 in (2.3), becomes the following special case:
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n1/2 (Zkk − λk, Zkk′)1≤k ̸=k′<∞ = n−1/2
n∑

i=1

Yi
D→ N ∼ N (0,CY) , (2.17)

CY (ekk) = λ2
k

(
Eξ4k − 1

)
ekk, CY (ekk′) = λkλk′ (ekk′ + ek′k) , 1 ≤ k ̸= k′ <∞.

(2.18)

Consequently, under H0, with S as in (2.13),

S̃n =

∥∥∥∥∥PUT

(
n−1/2

n∑
i=1

Yi

)∥∥∥∥∥
2

H

D→ ∥PUT (N )∥2H
D
= S.

Lemma S.2 in the Supplementary Material stipulates that the distribution

function FS (q) = P [S ≤ q] of the quadratic form S in (2.13) is continuous and

strictly increasing, so the inverse function F−1
S is well defined. For any α ∈ (0, 1),

the (1− α)th quantile Q1−α of S is the unique q that solves FS (q) = 1− α:

Q1−α = F−1
S (1− α) .

Under H0, Zkk′ in (2.4) and (2.9) has the following simpler expression:

Zkk′ = n−1
n∑

i=1

ζikζik′ = n−1
n∑

i=1

√
λk

√
λk′ξikξik′ . (2.19)

Because {ζik, 1 ≤ i ≤ n, k ∈ N+} are unobservable, {Zkk′}k ̸=k′ and S̃n are all

infeasible. Substituting ζik with ζ̂ik in (1.6) yields the following feasible replicas

of Zkk′ in (2.19):

Ẑkk′ = n−1
n∑

i=1

ζ̂ikζ̂ik′ ,
(
Ẑkk′

)
1≤k<k′<∞

= PUTΠ
−1
(
Ĝ
)
. (2.20)

Using Ẑkk′ in (2.20), a feasible statistic Ŝn is defined to mimic S̃n in (2.8), as

follows:

Ŝn = n
∑

1≤k<k′≤κn

Ẑ2
kk′ , (2.21)

where the truncation indices κn ∈ N+ satisfy

κn → ∞, κ2
nn

−1/2 log3/2 n→ 0. (2.22)

In what follows, for a function φ (·) defined on [0, 1], denote ∥φ∥∞ =

sup
x∈[0,1]

|φ (x)|, and φ(q) (·) as its qth-order derivative, if it exists. For q ∈ N, µ ∈

(0, 1], denote the (q, µ) Hölder seminorm of the function φ as

∥φ∥q,µ = sup
x,x′∈[0,1],x ̸=x′

∣∣∣∣φ(q) (x)− φ(q) (x′)

|x− x′|µ
∣∣∣∣ ,
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and the space of functions with a finite (q, µ) Hölder seminorm as C(q,µ)[0, 1] =

{φ|∥φ∥q,µ < +∞}. As a special case, C(0,1)[0, 1] is the space of Lipschitz

continuous functions.

(B1) The FPCs ϕk (·) ∈ C(0,1) [0, 1] with
∑∞

k=1 ∥ϕk∥∞ +
∑∞

k=1 ∥ϕk∥0,1 < +∞.

(B2) The trajectory estimates {ξ̂i(·)}ni=1 used in (1.6) satisfy

max
1≤i≤n

∥∥∥∥∥ξ̂i (·)− ξi (·) + n−1
n∑

i′=1

ξi′ (·)
∥∥∥∥∥
∞

= Oa.s. (ρn,N) , (2.23)

where {ρn,N}∞n=1
are such that ρn,N > 0, and κ2

nn
1/2ρn,N log1/2 n → 0 as

n→ ∞, for some {κn}∞n=1 satisfying (2.22).

Collective boundedness and Lipschitz bounded smoothness of the principal

components in Assumption (B1) are necessary for C [0, 1], the central limit

theorem of n−1
∑n

i′=1 ξi′ (·); see Lemma S.6 in the Supplementary Material.

Propositions 1 and 2 in the Supplementary Material lead to the following

theorem.

Theorem 2. Under Assumptions (A1) and (B1)–(B2), and under H0 in (2.3),

as n→ ∞, Ŝn in (2.21) is oracally efficient, that is, Ŝn − S̃n →p 0. Hence,

sup
α∈(0,1)

∣∣∣P [S̃n > Q1−α

]
− α

∣∣∣→ 0, sup
α∈(0,1)

∣∣∣P [Ŝn > Q1−α

]
− α

∣∣∣→ 0.

Using the eigenvalue estimates λ̂k in (1.7), define an approximation of S, as

follows:

S̄n =
∑

1≤k<k′≤κn

λ̂kλ̂k′χ2
kk′ (1) , (2.24)

with the (1− α)th quantile denoted as Q̂1−α. The following theorem provides a

full justification for using Q̂1−α in place of Q1−α to define the test statistic

Tn = I{Ŝn>Q̂1−α}, (2.25)

where we reject H0 if and only if Tn = 1.

Theorem 3. Under Assumptions (A1) and (B1)–(B2), and under H0 in (2.3),

as n → ∞, the finite approximation S̄n in (2.24) converges to S in probability,

that is, S̄n − S = op (1). Consequently, for any α ∈ (0, 1), Q̂1−α −Q1−α = op (1)

and

P (Tn = 1) = P
(
Ŝn > Q̂1−α

)
→ α,P

(
S̃n > Q̂1−α

)
→ α.

Theorems 3 and 2 state that the asymptotic significance level is α for both

the data-driven test Tn = I{Ŝn>Q̂1−α} and the infeasible I{S̃n>Q̂1−α}, I{S̃n>Q1−α},

and I{Ŝn>Q1−α}.
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We establish next the asymptotic consistency of the test Tn in (2.25).

Theorem 4. Under Assumptions (A1) and (B1)–(B2), and under H1 in (2.3),

there exist k1 < k2 ∈ N+, Ck1k2
̸= 0, where Ck1k2

is given in (1.9). As n→ ∞,

min
(
S̃n, Ŝn

)
≥ nẐ2

k1k2
= nC2

k1k2
+Op

(
n1/2

)
,

P (Tn = 1) = P
(
Ŝn > Q̂1−α

)
→ 1,

min
{
P
(
S̃n > Q1−α

)
,P
(
Ŝn > Q1−α

)
,P
(
S̃n > Q̂1−α

)}
→ 1.

Theorem 4 reveals that under the alternative H1 in (2.3), the data-driven

test Tn in (2.25) is consistent, along with the infeasible I{S̃n>Q̂1−α}, I{S̃n>Q1−α},

and I{Ŝn>Q1−α}.

2.2. B-spline estimation

Theorems 2, 3, and 4 depend on a high-level Assumption (B2) involving

trajectory estimates {ξ̂i(·)}ni=1 in (1.6). In this section, we show that B-spline

trajectory estimates meet Assumption (B2).

To define the splines, the interval [0, 1] is divided into (Js + 1) equal subin-

tervals IJ = [Jh, (J + 1)h) , 0 ≤ J ≤ Js − 1, IJs
= [Jsh, 1], with length

h = 1/ (Js + 1). For positive integer p, let H(p−2) = H(p−2) [0, 1] be the space

of functions that are (p − 2) times continuously differentiable on [0, 1], and

polynomials of degree (p − 1) on subintervals IJ , 0 ≤ J ≤ Js. Denote by

{BJ,p (·) , 1 ≤ J ≤ Js + p} the pth-order B-spline basis of H(p−2) (de Boor, 2001),

H(p−2) = {
∑Js+p

J=1 λJ,pBJ,p (·) | λJ,p ∈ R}.
Latent trajectories ηi (·) are estimated via B-spline for each subject i,

η̂i (·) = argmin
g(·)∈H(p−2)

N∑
j=1

{
Yij − g

(
j

N

)}2

, 1 ≤ i ≤ n. (2.26)

B-spline estimates of the mean m (·) and centered trajectories ξi (·) are

m̂ (·) = n−1
n∑

i=1

η̂i (·) , (2.27)

ξ̂i (·) = η̂i (·)− m̂ (·) , 1 ≤ i ≤ n, (2.28)

with η̂i (·) defined in (2.26). The B-spline estimates ξ̂i (·) in (2.28) are then used

to estimate the rescaled FPC scores in (1.6), as wellas the covariance function in

(1.8).

The following constraints are listed as constants ν, q, µ, and so on, and appear

sequentially in Assumptions (C1)–(C5):

ν ∈ (0, 1] , q ∈ N+, µ ∈ (0, 1] , p∗ = q + µ, (2.29)
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θ ∈
(
0,min

(
2p∗

2p∗ + 1
, ν

))
, (2.30)

β2 ∈
(
0,min

{
1

2
, ν − θ

2
, 1− θ (p∗ + 1)

2p∗

})
, (2.31)

r1 > max

{
6,

4θ

2p∗ (1− θ)− θ
,

4θ

2p∗ (1− β2 − θ/2)− θ

}
, (2.32)

max

{
1− ν,

(
2

r1
+

1

2

)
θ

p∗

}
< γ < min

(
1− θ, 1− β2 −

θ

2

)
. (2.33)

Elementary algebra shows that (2.30) is needed for (2.31) to hold, and that both

(2.30) and (2.31) are needed for (2.32). We also verify that (2.30), (2.31), and

(2.32) together ensure the existence of γ that satisfies (2.33).

The above (2.30), (2.31), (2.32), and (2.33) enable the following assumptions.

(C1) The standard deviation functions σi (·) ∈ C(0,ν) [0, 1], for ν in (2.29),

max1≤i≤n ∥σi∥∞ ≤ Cσ, and max1≤i≤n ∥σi∥0,ν ≤ Cσ, for 0 < Cσ <∞.

(C2) The FPCs ϕk (·) ∈ C(q,µ) [0, 1] for an integer q and a constant µ in (2.29),

with
∑∞

k=1 ∥ϕk∥q,µ < +∞.

(C3) As n→ ∞, N = N (n) → ∞ , and n = O(N θ) for θ in (2.30).

(C4) The i.i.d. noise {εij}i≥1,j≥1
satisfies Eε211 < ∞. There are i.i.d. N (0, 1)

variables {Uij,ε}n,Ni=1,j=1
such that

P

{
max
1≤i≤n

max
1≤t≤N

∣∣∣∣∣
t∑

j=1

εij −
t∑

j=1

Uij,ε

∣∣∣∣∣ > Nβ2

}
< CεN

−γ2 ,

for constants Cε ∈ (0,+∞) , γ2 ∈ (1,+∞), and β2 in (2.31). For r1 in

(2.32), max1≤k<∞ E |ξ1k|r1 <∞.

(C5) The spline order p ≥ p∗, the number of interior knots Js = NγdN , with γ

in (2.33), and dN + d−1
N = O (logτ N) as N → ∞, for some τ > 0.

The uniform boundedness and Hölder continuity for the standard deviation

functions σi (·) in Assumption (C1) are both common for spline smoothing; see

Wang et al. (2020), Li and Yang (2023), and Zhong and Yang (2023). Allowing

σi (·) for each subject i and not imposing any smoothness condition on the mean

function m (·) are new features that substantially enhance the applicability of

our proposed method. The collective (q, µ)-Hölder bounded smoothness of the

principal components in Assumption (C2) is for bias reduction. Assumption (C3)

requires that the number N of observations per curve grows with the sample size

n, and not slower than n1/θ. The probability inequalities in Assumption (C4)

provide a Gaussian partial sum strong approximation of the measurement errors

{εij}i≥1,j≥1
. The high-level Assumption (C4) can be ensured by the elementary
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Assumption (C4′), together with Assumption (C3), the proof of which is provided

in the Supplementary Material. The requirement for the number of knots of the

splines is stated in Assumption (C5), which aims to modulate the smoothness of

the B-spline estimator using that of the FPCs.

(C4′) There exist r2 > (2 + θ) /β2 for θ in (2.30) and β2 in (2.31), such that

E |ε11|r2 <∞. For r1 in (2.32), max1≤k<∞ E |ξ1k|r1 <∞.

Remark 1. The above assumptions are mild and are satisfied in various practical

situations. One simple and reasonable setting for the parameters q, µ, ν, θ, p, γ is

the following: q + µ = p∗ = 4, ν = 1, θ < 8/9 (e.g., 0.6), p = 4 (cubic spline),

γ = 0.2. These constants are used as implementation defaults in Section 3,

together with dN ≍ log logN .

The next crucial theorem ensures the feasibility of Assumption (B2).

Theorem 5. Under Assumptions (A1), (B1), and (C1)–(C5), the B-spline

trajectory estimates {ξ̂i(·)}ni=1 in (2.28) satisfy Assumption (B2) with

ρn,N = J−p∗

s (n log n)
2/r1 +N−1/2J1/2

s log1/2N + JsN
β2−1.

3. Implementation

This section describes how the test is performed. All trajectories are

estimated using cubic splines, that is, p = 4. The smoothness order (q, µ) of

the eigenfunctions ϕk (·) is taken as (3, 1) or (4, 0) by default. The number of

knots for the B-spline smoothing Js = [cNγ log logN ] is recommended, with a

constant c, where [a] denotes the integer part of a. The default values γ = 0.2

and c = 2 are adequate. These B-spline trajectory estimates satisfy Assumption

(B2) if we take the number of FPCs for the test statistic κn = [c1 log n]+ c2. The

default values are c1 = 3/2 and c2 = 0. Then, Ŝn is computed using (2.21) and

Tn (2.25).

To obtain Q̂1−α, we generate τ̂b =
∑

1≤k<k′≤κn
λ̂kλ̂k′χkk′,b where χkk′,b are

i.i.d. central chi-squared variables with one degree of freedom, for 1 ≤ k < k′ < κn

and b = 1, . . . , bM , and bM is a preset large integer with default value 1,000. Then,

Q̂1−α is taken as the (1− α)th sample quantile of {τ̂b}bMb=1.

4. Simulation

Two candidate sets {ψ0,k (·)}∞k=1
of canonical FPCs are used in this section:

(a) FPCs of the Ornstein–Uhlenbeck (OU) process: for k ∈ N+,

ψOU,k (x) =

{
1

2
+
(
1 + ω2

k

)−1
}−1/2

sin

{
ωk

(
x− 1

2

)
+
kπ

2

}
, (4.1)
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Table 1. Rejection frequency under null hypothesis.

(a) for Case 1 (b) for Case 2

(n,N) α = 0.01 α = 0.05 α = 0.10 α = 0.20 α = 0.01 α = 0.05 α = 0.10 α = 0.20

(150, 200) 0.015 0.059 0.111 0.216 0.015 0.056 0.105 0.209

(250, 500) 0.009 0.056 0.105 0.207 0.008 0.046 0.104 0.197

(400, 1000) 0.007 0.053 0.109 0.196 0.008 0.052 0.098 0.203

(600, 2000) 0.011 0.050 0.099 0.197 0.012 0.051 0.102 0.201

where ωk denotes the positive roots of tanω = −2ω (1− ω2)
−1
, arranged in

ascending order;

(b) the Fourier basis: for l ∈ N+,

ψF,1 (x) ≡ 1, ψF,2l (x) ≡
√
2 cos (2lπx) , ψF,2l+1 (x) ≡

√
2 sin (2lπx) . (4.2)

Data are generated from the model

Yij = m

(
j

N

)
+

κ∑
k=1

ξik
√
λkψk

(
j

N

)
+ σϵij, 1 ≤ j ≤ N, 1 ≤ i ≤ n,

with σ = 0.3, n = 150, 250, 400, 600, N = 200, 500, 1000, 2000, and α = 0.01, 0.05,

0.1, 0.2. The noises ϵij ∼ N (0, 1), for i, j ∈ N+. Each combination of (n,N, α) is

replicated 1,000 times.

Case 1. m (x) = 10 − sin (2πx) , κ = 2, (λ1, λ2) = (2, 1/2), ψ1 (x) = ψOU,1 (x),

and ψ2 (x) = ψOU,2 (x). The FPC scores ξi1 ∼ N (0, 1), and ξi2 ∼
t(10)/

√
1.25, for i ∈ N+.

Case 2. m (x) = 10 + sin (3πx), κ = 4, (λ1, λ2, λ3, λ4) = (4, 2, 1, 1/2), ψ1 (x) =

ψF,3 (x) , ψ2 (x) = ψF,2 (x) , ψ3 (x) = ψF,5 (x), and ψ4 (x) = ψF,8 (x). Fur-

thermore, ξi1, ξi3 ∼ N (0, 1), ξi2 ∼ t(10)/
√
1.25, and ξi4 ∼ U(−

√
3,
√
3), for

i ∈ N+.

Under the null hypothesis, that is, (a) for Case 1 and (b) for Case 2, Table

1 shows that the rejection frequency approaches the nominal significance level α

as n increases. Under the alternative hypothesis, that is, (a) for Case 2 and (b)

for Case 1, the rejection frequency is equal to one for all combinations. Thus, the

test is clearly consistent.

5. Real-Data Analysis

In this section, we apply the proposed procedure to electroencephalogram

(EEG) data. EEG is known for containing a great deal of information about

the function of the brain. The data used are from 142 people, with EEG signals

recorded from 32 scalp locations at a sample rate of 1000Hz. The mid-200 signals
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(a) (b)

Figure 1. (a) The covariance function Ĝ0 (x, x
′) under the null hypothesis in Section 5;

(b) the estimated covariance function Ĝ (x, x′) defined in (1.8).

of each person at the 10th scalp location are used, so the data are functional in

form (1.3), with n = 142, and N = 200. The null hypothesis is that the canonical

FPCs of this EEG data are a finite subset of the standard Fourier basis in (4.2),

subject to permutation.

The default κn = [c1 log n] + c2, with c1 = 3/2, and c2 = 0 yields κn = 7. For

Ĝ (x, x′), defined in (1.8), the largest κn estimated eigenvalues are(
λ̂k

)
1≤k≤7

= (40.658, 9.049, 7.023, 4.482, 2.468, 1.331, 0.990) ,

with corresponding canonical FPCs {ψ0,k (x)}1≤k≤7

1,
√
2 sin (4πx) ,

√
2 cos (4πx) ,

√
2 sin (2πx) ,

√
2 cos (2πx) ,

√
2 sin (6πx) ,

√
2 sin (8πx) .

We then obtain Ŝn = 754.778 from (2.21), and the lowest confidence level

empirical quantile Q̂1−α greater than Ŝn is Q̂0.2552 = 754.930. Thus, the null

hypothesis is retained with a p-value = 0.7448.

The estimated covariance function Ĝ (x, x′) defined by (1.8) is well approxi-

mated by Ĝ0 (x, x
′) ≡

∑7
k=1 λ̂kψ0,k (x)ψ0,k (x

′), with a coefficient of determination

R2 = 0.892. Figure 1 (a) depicts Ĝ0 (x, x
′), which appears to be a faithful

representation of the estimated covariance function Ĝ (x, x′) in Figure 1 (b).

For four randomly selected participants, Figure 2 shows the raw EEG data

Yij, for 1 ≤ j ≤ 200 (crosses), spline estimated trajectories η̂i (j/200), for

1 ≤ j ≤ 200 (solid), and null trajectories m̂ (j/200) +
∑7

k=1 ζ̂ikψ0,k (j/200), for

1 ≤ j ≤ 200 (dashed). The coefficients of determination of the spline trajectories

and the null hypothesis trajectories against the four raw data segments are

(0.992, 0.911), (0.983, 0.919), (0.982, 0.927), and (0.994, 0.931), respectively. This

further validates that for this EEG data, the Fourier canonical FPCs are
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Figure 2. Randomly selected segments of raw EEG data (crosses), spline estimated
trajectories (solid), and null hypothesis trajectories (dashed).

appropriate.

We also tested the EEG data against the OU FPCs in (4.1) as canonical

FPCs. After obtaining Ŝn = 2687.381 and Q̂0.95 = 2588.731, the null hypothesis

is rejected with a p-value< 0.05.

6. Conclusion

We have proposed a chi-squared-type statistic, constructed using estimates of

individual trajectories, to test the specifications of the FPCs in functional data.

The limiting distribution of the statistic under the null hypothesis is an infinite

Gaussian quadratic form, the quantiles of which are estimated consistently. The

data-driven test has the correct significance level under the null hypothesis,

and is consistent under the alternative if the trajectory estimates satisfy some

constraints, which are met by B-spline estimates. The results of numerical

experiments demonstrate the excellent performance of the test, corroborating

the asymptotic theory. For a EEG data, there is strong evidence of canonical

FPCs as a small set of a standard Fourier basis. The proposed test is expected

to be widely applicable in various scientific fields by simplifying functional data

models using validated simple sets of FPCs.

Further research may reveal that other trajectory estimates based on a

wavelet or local polynomial also satisfy Assumption (B2), and can be used to
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formulate tests with desirable properties in Theorems 3 and 4. It is also feasible

to extend our results to functional data recorded over an irregular grid, albeit with

messier algebra. Similar tests may also be constructed for temporally dependent

functional data, such as the functional moving average of Li and Yang (2023) and

Zhong and Yang (2023).

Supplementary Material

The online Supplementary Material contains detailed proofs of our technical

results.
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