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Abstract: Mediation analysis using structural equation models has become a widely

used tool to study whether the effect of an exposure on an outcome is mediated

by some intermediate factors. When multiple mediators are present, a statisti-

cal inference on the joint mediation effect is challenging because of the composite

null hypotheses with a large number of parameter configurations. We propose a

simultaneous likelihood ratio test that uses a block coordinate descent algorithm

to solve the constrained likelihood under the irregular null parameter space using

the Lagrange multiplier approach. We establish the asymptotic null distribution

and examine the performance of the proposed joint test statistic using extensive

simulations and a comparison with existing tests. The simulation results show that

our method controls the type I error properly and, in general, provides better power

than that of existing test methods. We apply our method to examine whether a

group of glucose metabolites and acetylamino acids mediate the effect of nutrient

intakes on insulin resistance.

Key words and phrases: Constrained maximum likelihood, directed acyclic graph,

Lagrange multiplier, multi-dimensional mediators, structural equation model.

1. Introduction

Mediation analyses provide a popular way of understanding whether or not

the effect of an exposure on an outcome is mediated by some intermediate vari-

ables, called mediators. The mediation analysis approach, first proposed by Baron

and Kenny (1986), has been applied extensively in many disciplines to perform

pathway analyses. Using the counterfactual outcome framework in the causal

inference literature (Rubin (1974); Robins and Greenland (1992); Pearl (2001)),

the mediation approach has been extended to study causal mediation pathways

using directed acyclic graphs (DAG) formed under a certain scientific hypothesis,

as shown in Figure 1. With a few extra assumptions of causation, such an exten-

sion allows us to decompose the total causal effect into the sum of a direct effect

and an indirect effect in the presence of interactions and nonlinearities (Pearl
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Figure 1. A DAG involving exposure, mediators, and an outcome.

(2001); VanderWeele and Vansteelandt (2009)). This new causal framework has

received much attention in the literature.

Many methods have been developed to test the existence of a mediation

effect (or the indirect effect) in the case of a single potential mediator, including

Sobel’s test (Sobel (1982)), the bootstrap method (Bollen and Stine (1990)),

and the joint significant test (MacKinnon et al. (2002)). Recently, with the

growing availability of omics data, testing for mediation effects has received much

attention, especially for handling a group of multiple or even high-dimensional

mediators. These methods include the multiple testing approaches for genome-

wide association analyses proposed for simultaneous single mediator tests with

a multiple comparison correction (Huang (2019b,a); Dai, Stanford and LeBlanc

(2020); Liu et al. (2022)).

In such methods, the test for a causal mediation effect focuses on a single me-

diator, performing a univariate screening analysis of the mediators, while ignoring

the dependence among multiple mediators. Although multiple testing corrections

have been applied to identify potential mediators, the interpretation of the causal

effect is still limited to each of the selected mediators, rather than being a simul-

taneous inference for the group-level mediation effect. However, when multiple

correlated mediators exist, particularly a cohesive cluster of biologically relevant

mediators, the group-level mediation effect is not simply a summation of the in-

dividual mediation effects, as pointed out by VanderWeele (2015). Therefore, a

conclusion drawn from a univariate screening test with multiple comparison cor-

rections does not necessarily produce a valid statistical inference for the group-

level mediation effect. Although these univariate screening procedures are useful

for discovering individual potential mediators, it is important to analyze a cluster

of correlated multiple mediators jointly, which requires a test for their group-level

mediation effect.

The mediation relationships specified by a DAG, shown in Figure 1, have been

analyzed extensively using the linear normal structural equation model (SEM).

When exposure-mediator interaction terms are absent from the SEM, the group-
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level mediation effect is expressed as the product α>β, where α is the vector of

coefficients for the exposure-mediator association, and β is the vector of coeffi-

cients for the mediator-outcome association. We develop a simultaneous test for

the joint group-level mediation effect under the null hypothesis of no mediation

effect H0 : α>β = 0. A key technical challenge when performing this hypothesis

test pertains to the involvement of composite hypotheses; that is, α>β = 0 may

arise from a large number of combinations in αq and βq, for q = 1, . . . , Q, where

Q is a fixed number of mediators. One possible combination is α = β = 0, which

is of great interest in practice, and is well known for its overly conservative type

I error control. More subtle cases may arise from cancellations among individual

products of αqβq, for q = 1, . . . , Q, to satisfy α>β = 0. Two existing approaches

to testing this group-level mediation effect include the product test based on the

normal product distribution (PT-NP) (Huang and Pan (2016); Huang (2018))

and the product test based on normality (PT-N) (Huang and Pan (2016); Huang

(2018)). Although these two methods have shown satisfactory numerical perfor-

mance in simulation studies, few works provide rigorous theoretical justifications,

such as the results of asymptotic distributions of such test statistics under the

null, especially for the case α = β = 0. With the fundamental Neyman–Pearson

lemma, the likelihood ratio (LR) test is known as the uniformly most power-

ful test for a simple hypothesis testing problem under mild regularity conditions

(Neyman and Pearson (1933)), and Wilks’ generalized LR test is one of the top

finite-sample performers in the literature. To bridge this gap, we investigate a

simultaneous LR test for the joint group-level mediation effect under the null hy-

pothesis α>β = 0. We also establish the asymptotic distributions of the proposed

test statistic and confirm the theoretical results using numerical analyses.

This study makes two methodological contributions. First, we develop a

constrained optimization to compute the LR test statistic under an irregular null

parameter space using the Lagrange multiplier. This computation is implemented

by an efficient block coordinate decent algorithm. Second, we derive the asymp-

totic distributions of the proposed LR test statistic under the composite null

hypothesis H0 : α>β = 0, and show theoretically that our LR test can properly

control the type I error. Using numerical experiments, including simulation stud-

ies and a data application, we demonstrate that our LR test not only properly

controls the type I error, but also improves the power over that of two existing

tests, PT-NP and PT-N.

The remainder of the paper is organized as follows: Section 2 introduces

the linear SEM. In Section 3, we develop the LR test, including the Lagrange

multiplier and the asymptotic null distributions for the LR test statistic. Section
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4 presents an implementation of the LR test. Section 5 shows the numerical

performance of the LR test in terms of the type I error rate and power, and

compares it with that of existing methods. In Section 6, we test for a group-

level mediation effect of a metabolite cluster on the association between dietary

intake and insulin resistance. Section 7 concludes the paper. Detailed technical

derivations and proofs are included in the Appendix.

2. Framework

2.1. SEM

Consider a data set of n observations, (Xi,Mi, Yi), for i = 1, . . . , n, randomly

sampled from n subjects. For the ith subject, Yi represents an outcome variable

of interest, Xi represents an exposure variable, and Mi = {Mi,j}Qj=1 represents a

Q-dimensional vector of mediators. In addition, Zi = {Zi,l}Ll=1 represents an L-

dimensional vector of confounding variables, with the first element Zi,1 ≡ 1 for the

intercept. We consider the case when both Q and L are fixed and Q+L+ 1 < n.

A linear SEM takes the following form:

Yi = Xiγ + M>
i β + Z>i η + εY,i, M>

i = Xiα
> + ζ>Zi + ε>M,i, (2.1)

where Mi = (Mi,1, . . . ,Mi,Q)>, Zi = (Zi,1, . . . , Zi,L)>, γ is a scalar, β = (β1, . . . ,

βQ)>, η = (η1, . . . , ηL)>, α = (α1, . . . , αQ)>, ζ = (ζl,j)L×Q, εY,i
i.i.d.∼ N(0, σ2Y ),

εM,i
i.i.d.∼ MVN(0,ΣM ), and ΣM is a Q×Q positive-definite covariance matrix,

for i = 1, . . . , n.

Denote the collection of distinct model parameters by θ = {α,β, γ,η, ζ,
ΣM , σ

2
Y }, and let Θ be the generic notation for a parameter space. In the

counterfactual outcome paradigm (Robins and Greenland (1992); Pearl (2001)),

under the fundamental assumptions of consistency and the absence of unmea-

sured confounders, VanderWeele and the colleague (VanderWeele and Vanstee-

landt (2014)) show that when the exposure variable X changes from a value x0
to another value x1, the natural direct effect (NDE) and natural indirect effect

(NIE) in model (2.1) take the following forms: NDE(x0, x1) = γ(x1 − x0), and

NIE(x0, x1) = α>β(x1 − x0).

2.2. Unconstrained parameter estimation

To establish the LR test for the null hypothesis of no group-level mediation

effect, H0 : α>β = 0, we perform both unconstrained and constrained maximum

likelihood estimations (MLEs) under the null and alternative hypotheses. SEM
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(2.1) may be rewritten in matrix form, as follows:

Y = Wβ̄ + ε, M = Bᾱ + E, (2.2)

where β̄ = (β1, . . . , βQ, η1, . . . , ηL, γ)>, Y is an n × 1 vector of outcomes, W is

an n × (Q + L + 1) matrix of mediators, confounders, and the exposure vari-

able, with Wi = (Mi,1, . . . ,Mi,Q, Zi,1, . . . , Zi,L, Xi)
>, for i = 1, . . . , n, and ε ∼

MVN(0, σ2Y In). Similarly, M is an n×Q matrix of mediators, B is an n×(L+1)

matrix of exposure and confounding variables with Bi = (Xi, Zi,1, . . . , Zi,L), and

E = (E>1 , . . . ,E
>
n )>, with Ei ∼MVN(0,ΣM ). Here, ᾱ is an (L+1)×Q matrix

of parameters, with the first row vector being α> in model (2.1), and its remain-

ing L×Q submatrix is the parameter matrix of ζ. It follows that the two times

negative log-likelihood function is given by

−2`(θ) = n log(σ2Y ) + n log(|ΣM |) + σ−2Y (Y −Wβ̄)>(Y −Wβ̄)

+tr{(M−Bᾱ)Σ−1M (M−Bᾱ)>}. (2.3)

Standard MLE theory leads to the following unconstrained maximum likelihood

estimators of θ, denoted as θ̂ = { ˆ̄α, ˆ̄β, σ̂2y , Σ̂M}, where

ˆ̄α = (B>B)−1B>M, ˆ̄β = (W>W)−1W>Y,

σ̂2Y =
(Y −W ˆ̄β)>(Y −W ˆ̄β)

n
, and Σ̂M =

(M−B ˆ̄α)>(M−B ˆ̄α)

n
.

2.3. Constrained parameter estimation

Let θ̃ denote the constrained MLE under the null H0 : α>β = 0, which we

obtain using the Lagrange multiplier. Consider a Lagrange objective function of

the following form, with tuning parameter λ ≥ 0 ::

g(ᾱ, β̄, σ2Y ,ΣM , λ) =− 2`(θ)− 2λα>β. (2.4)

Differentiating the function g(·) with respect to the model parameters yields the

regression coefficients

ᾱ = (B>B)−1B>M + λ(B>B)−1β∗ΣM = ˆ̄α + λ(B>B)−1β∗ΣM , (2.5)

β̄ = (W>W)−1W>Y + λσ2Y (W>W)−1α∗ = ˆ̄β + λσ2Y (W>W)−1α∗, (2.6)
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and the equations of the variance parameters

σ2Y =
(Y −Wβ̄)>(Y −Wβ̄)

n
, and ΣM =

(M−Bᾱ)>(M−Bᾱ)

n
, (2.7)

where β∗ is an (L+ 1)×Q matrix with the first row being β> and the rest of the

elements zeros, and α∗ is a (Q+L+1)×1 vector with the first Q elements being α

and the rest equal to zero. Given that α> appears in the first row of ᾱ, we denote

the first row of ˆ̄α by a>1 , and the first row of (B>B)−1β∗ΣM by b>1 . It follows

that α> = a>1 + λb>1 . Similarly, given that β is in the first Q rows of vector β̄,

denote the first Q rows of vector ˆ̄β by a2, and the first Q rows of (W>W)−1α∗

by b2. Under the constraint α>β = 0, we obtain (a>1 + λb>1 )(a2 + λb2) = 0.

This leads to two possible solutions of λ given in (2.8), and we choose the one

that yields the higher log-likelihood,

λ̃ =
−(a>1 b2 + b>1 a2)±

√
(a>1 b2 + b>1 a2)2 − 4b>1 b2a>1 a2

2b>1 b2
. (2.8)

Remark 1. After we obtain the constrained MLE solutions (θ̃, λ̃) using the

Lagrange multiplier, we evaluate the Hessian matrix of the function g(·) in (2.4).

It is easy to show that in a linear SEM, the Hessian matrix is positive definite,

guaranteeing the convexity of the penalized objective function g(·), and thus the

unique minimum given by the solutions (θ̃, λ̃).

3. LR Test for the Joint Mediation Effect

3.1. Test statistic

To simultaneously assess the joint mediation effect of multi-dimensional me-

diators, the first analytic task is to test the null hypothesis H0 : α>β = 0 versus

H1 : α>β 6= 0, where the null hypothesis corresponds to the case of zero NIE

under SEM (2.1). Because the null hypothesis allows internal cancellation, it

does not preclude the possibility of component-wise nonzero mediation effects in

the sense that αqβq 6= 0, for q = 1, . . . , Q, but α>β = 0. Following Wilks’ theory

of the LR test, we construct an LR test statistic of the form

Tn = −2

{
sup

θ∈Θ:α>β=0
`(θ)− sup

θ∈Θ
`(θ)

}
= −2{`(θ̃)− `(θ̂)}, (3.1)

where θ̂ and θ̃ denote, respectively, the unconstrained MLE under H1 and the

constrained MLE under H0 obtained in Sections 2.2 and 2.3.
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3.2. Properties of the LR test

This section examines the asymptotic distributions of the LR statistic Tn in

(3.1) under the null hypothesis H0 : α>β = 0. Using the large-sample properties,

we propose a new test that properly controls the type I error with theoretical guar-

antees. Technical proofs for all lemmas and theorems presented in this section are

given in the Appendix. We begin with some notation. For ease of exposition, we

redefine θ = (α>, ζ,β>,η>, γ)>, where ζ denotes the row vector of LQ elements

vectorized from the matrix ζL×Q. Define the constraint function by h(θ) = α>β.

It is easy to see that its gradient ḣ(θ) = ∇θh(θ) = (β>,0>LQ,α
>,0>L+1)

>. Let

H(θ) = ∇θḣ(θ) =

(
0(L+1)Q×(L+1)Q H̃(L+1)Q×(Q+L+1)

H̃>(L+1)Q×(Q+L+1) 0(Q+L+1)×(Q+L+1)

)
,

where

H̃(L+1)Q×(Q+L+1) =

(
IQ 0Q×(L+1)

0LQ×Q 0LQ×(L+1)

)
.

The information matrix I(θ) = −E[(1/n){∂2`(θ)/∂θθ>}] has a closed-form ex-

pression, presented in Appendix A.1. Let A(θ) = I(θ)−1/2H(θ)I(θ)−1/2. To

derive the asymptotic properties, we first introduce a lemma that establishes the

eigenvalue bounds of the matrices H(θ) and A(θ).

Lemma 1. For any θ ∈ R2Q+LQ+L+1, we have the following results:

(i) The matrix H(θ) = ∇θḣ(θ) has 2Q nonzero eigenvalues equal to 1 or −1.

If the nonzero eigenvalues are arranged in descending order h1 ≥ h2 ≥ · · · ≥
h2Q, then h1 = · · · = hQ = 1, hQ+1 = · · · = h2Q = −1.

(ii) The matrix A(θ) has 2Q nonzero eigenvalues. If the nonzero eigenvalues are

arranged in descending order υ1 ≥ υ2 ≥ · · · ≥ υQ > 0 > υQ+1 ≥ · · · ≥ υ2Q,

then they satisfy both
∑2Q

i=1 vi = 0 and υ1 = −υ2Q, υ2 = −υ2Q−1, . . . , υQ =

−υQ+1.

The above properties for the eigenvalues of A(θ) are used to establish the

asymptotic null distributions of the LR test statistic. The proof of Lemma 1 is

presented in Appendix A.2.

Lemma 2. In the case of α = β = 0, let θ0 be the true parameters that generate

the data. The asymptotic distributions of the constrained MLE θ̃ and λ̃ are given

by, as n→∞,
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λ̃
d→ Λ0, where Λ0

d≡ −
∑Q

q=1 υq(ξq − ξq+Q)

2
∑Q

q=1 υ
2
q (ξq + ξq+Q)

,

with ξq
i.i.d.∼ χ2

1, q = 1, . . . , 2Q where υ1, . . . , υQ are Q positive eigenvalues of

A(θ0). For any λ∗ ∈ R, conditional on a value λ̃ = λ∗,

√
n(θ̃−θ0) | λ̃ = λ∗

d→MVN
(
0, {I(θ0)− λ∗H(θ0)}−1I(θ0){I(θ0)− λ∗H(θ0)}−1

)
.

Lemma 2 leads to an asymptotic joint distribution of θ̃ and λ̃ because [θ̃, λ̃] =

[θ̃|λ̃][λ̃]. Thus, we obtain the asymptotic distribution of the LR test statistic for

α = β = 0. The proof of Lemma 2 is presented in Appendix A.3.

Theorem 1. Under H0 : α>β = 0, the asymptotic distributions of the LR test

statistic Tn are given as follows:

(i) when (α>,β>)> 6= 0, as n→∞, Tn
d→ χ2

1;

(ii) when α = β = 0, as n → ∞, Tn
d→ Λ1 with Λ1

d≡ {
∑Q

q=1 υq(ξq − ξq+Q)}2

/{(4
∑Q

q=1 υ
2
q (ξq + ξq+Q)}, where ξq

i.i.d.∼ χ2
1, q = 1, . . . , 2Q.

In this paper, we write Λ1 ∼ κQ distribution. The proof of Theorem 1

involves deriving the asymptotic distribution of the constrained MLE. The clas-

sical large-sample work for the LR test, for example, Aitchison and Silvey (1958);

Wolak (1989), may be applied directly to prove part (i) of Theorem 1. However,

the proof of part (ii) is nontrivial and needs specific technical arguments and

treatments to manipulate the asymptotic distribution of λ̃, similar to those given

in the proof of Lemma 2. The proof of Theorem 1 is presented in Appendix

A.4. To implement the κQ distribution after estimating both the matrix A(θ)

and its Q eigenvalues, we invoke a Monte Carlo simulation with a large num-

ber of draws (say 10,000) independently from 2Q χ2
1 distributed variables ξq, for

q = 1, . . . , 2Q. We conduct a simulation study to confirm the validity of our the-

oretical derivations for Theorem 1 (ii). Our numerical assessment focuses on the

tail probability of the distribution of the test statistic of Tn, when α = β = 0;

see the Supplementary Material S1.

Based on Theorem 1, we propose a test for H0 : α>β = 0, termed the LR

test, given by the decision function

φn = I{Tn > (χ2
1,(1−α) ∨ κQ,(1−α))}, (3.2)

where a ∨ b = max(a, b), κQ,(1−α) is the (1 − α) quantile of the null distribution

given in part (ii) of Theorem 1, and χ2
1,(1−α) is the (1−α) quantile of the χ2

1 dis-
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tribution. When φn = 1, we reject the null H0; otherwise, we accept the null H0.

Section S2 in the Supplementary Material uses a simulation study to demonstrate

that χ2
1,(1−α) overwhelmingly dominates κQ,(1−α), and that such dominance can

reach 100% with large sample sizes.

Theorem 2. The LR test in (3.2) controls the type I error; that is,

sup
θ∈Θ:α>β=0

Pθ(φn = 1) ≤ α,

where 0 < α < 1 is a prefixed type I error rate.

Proof. Divide the parameter space under H0, Θ = {(α,β) : α>β = 0}, into

two disjoint sub-spaces, Θ1 = {(0,0)} and Θ2 = Θ \Θ1. Then,

sup
θ∈Θ:α>β=0

Pθ(φn = 1)

= sup
θ∈Θ1∪Θ2

Pθ(Tn > χ2
1,(1−α) ∨ κQ,(1−α))

= max

{
sup
θ∈Θ1

Pθ(Tn > χ2
1,(1−α) ∨ κQ,(1−α)), sup

θ∈Θ2

Pθ(Tn > χ2
1,(1−α) ∨ κQ,(1−α))

}
≤ max

{
sup
θ∈Θ1

Pθ(Tn > κQ,(1−α)), sup
θ∈Θ2

Pθ(Tn > χ2
1,(1−α))

}
≤ α.

4. Implementation

In practice, to perform the LR test φn, we first compute the two p-values p1 =

1− Fχ2
1
(Tn) and p2 = 1− FκQ

(Tn), where Fχ2
1

is the CDF of the χ2
1 distribution,

and FκQ
is the CDF of the κQ distribution. Then, we reject the null hypothesis

if max(p1, p2) is smaller than the significance level α.

To obtain the constrained MLE, we develop a block coordinate descent algo-

rithm. We partition θ into two sets, θ1 = { ˜̄α, ˜̄β} and θ2 = {σ̃2Y , Σ̃M}, as well as

λ. The unconstrained MLE θ̂ = { ˆ̄α, ˆ̄β, σ̂2Y , Σ̂M} provides the initial values used

to start the algorithm. This updating scheme consists of three steps: given θ1
and θ2, maximize the likelihood with respect to λ; given θ2 and λ, update θ1
until convergence; and given θ1, update θ2. See Algorithm 1, where the default

number of Monte Carlo simulations is set at 10,000.
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Algorithm 1 Search for constrained MLE

1: Compute the unconstrained MLE θ̂ = { ˆ̄α, ˆ̄β, σ̂2
Y , Σ̂M} and evaluate the log-likelihood

`(θ̂). At the jth iteration, let θ
(j)
1 = { ˜̄α(j), ˜̄β(j)} and θ

(j)
2 = {σ̃2(j)

Y , Σ̃
(j)
M }. Set

θ
(0)
1 = { ˆ̄α, ˆ̄β} and θ

(0)
2 = {σ̂2

Y , Σ̂M} as the initial values.
2: for j = 0, 1, . . . , J do

3: calculate λ(j) = argmaxλ{`(θ
(j)
1 ,θ

(j)
2 , λ)} from (2.8);

4: calculate θ
(j+1)
1 = argmaxθ1

{`(θ1,θ(j)
2 , λ(j))} from (2.5) and (2.6);

5: calculate θ
(j+1)
2 from θ

(j+1)
1 based on (2.7);

6: calculate δ =‖ θ(j+1)
1 − θ

(j)
1 ‖;

7: if |δ| < tol then break
8: end if
9: end for

10: Output θ̃ = { ˜̄α(j+1), ˜̄β(j+1), σ̃
2(j+1)
Y , Σ̃

(j+1)
M }, and calculate the log-likelihood.

11: Calculate the test statistic T = −2{`(θ̃)− `(θ̂)}, and compute the p-value p1 under
the null distribution of χ2

1.
12: Estimate A(θ0) based on σ̂2

Y and Σ̂M , and calculate its Q positive eigenvalues, which
are then used to simulate the κQ distribution, and compute its p-value p2.

13: Report max(p1, p2) as the final p-value.

5. Simulation Studies

5.1. Setup

We conduct extensive simulation studies to evaluate the performance of the

proposed LR test. In particular, we compare the type I error control and power

of our method with those of two existing methods, namely, the PT-N and PT-

NP tests proposed by (Huang and Pan (2016); Huang (2018, 2019a)), as well as

with the high-dimensional multiple-testing (HDMT) method proposed by Dai,

Stanford and LeBlanc (2020). The HDMT method was developed for the uni-

variate screening of mediators with a controlled false discovery rate in genome

studies, representing a typical kind of testing approach widely adopted in prac-

tice to avoid simultaneous inference. We present comparison results involving the

HDMT method in the Supplementary Material S4 (Tables S3–S6).

The SEM is set up as follows. The exposure variable X is simulated from

N(0, 1), and the two confounding variables Z1 and Z2 are generated from

BV N(0, I2). Conditional on X and (Z1, Z2), in all simulation experiments in

this section, the Q mediators M and outcome Y are generated according to the

SEM (2.1), with Q = 30 or Q=60, γ = −2, η = (2,−3, 2)>, and σ2Y = 1. Here,

vec(ζ) consists of 18 repeated sequences of (−2, 3,−3, 1, 1) for Q = 30, and 36

repeated sequences for Q = 60. A compound symmetry correlation with ρ = 0.5
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is set for the matrix ΣM of Q mediators. The sample size n varies over 200,

500, and 1000. For each sample size, we run 10,000 replicates. To evaluate the

influence of Q and/or ρ on the performance of the LR test, we conduct additional

simulations with Q = 90 and ρ = 0, 0.25, 0.75; the results are summarized in the

Supplementary Material S3 and S4.

5.2. Type I error

We consider the following four scenarios for the null hypotheses: (i) sparse

pathways with no cancellation; (ii) sparse pathways with cancellation; (iii) non-

sparse pathways with cancellation; and (iv) fully sparse pathways α = β = 0.

Here, sparsity refers to the number of zero parameters in α and/or β. For Q = 30,

detailed specifications of α and β can be found in Table 1; for Q = 60, the same

patterns are repeated. We report in Table 2 the estimated empirical type I error

rate as the proportion of rejections from the 10,000 replicates. For Q = 30 and

the four null cases (i)–(iv), our LR test and the PT-N and PT-NP tests show

proper control of the type I error. In cases (i)–(iii), the three methods show em-

pirical type I error rates close to the nominal level 0.05, as desired. In case (iv),

they are all conservative, but our LR test appears to be the least conservative of

the three. For small n (200) and Q = 60, the type I error of the LR test becomes

slightly inflated. This is not surprising because a larger number of mediators

implies a more complex model with more parameters, and thus a larger sample

size is needed.

5.3. Power comparison

We evaluate and compare the power under the same basic model specifica-

tions above, in which α and β are specified in four sets of alternative scenarios

different from the null hypothesis; see Table 1 for Q = 30. The designs for the

four alternative hypotheses correspond to the following pathway scenarios: (v)

both α and β are sparse; (vi) α is sparse and β is not sparse; (vii) α is not

sparse and β is sparse; and (viii) α and β are both not sparse. Regardless of

the specific settings, the overall absolute group-level effect is fixed at 0.16, that

is, |α>β| = 0.16. For Q = 60, we repeat the same patterns for α and β with

a fixed size 0.16, in that the parameters are scaled by
√

2. Table 2 reports the

estimated empirical power by the proportion of rejections to the null from 10,000

replicates.

We calculate the percentage power increase of the LR method over that of

a competing method as (power of LR/power of competitor) − 1. For all cases,

our LR method demonstrates clearly higher power than that of the PT-N and
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Table 1. Designed specifications for α and β for the null and alternative hypotheses.

Mediator

Null Hypothesis (α>β = 0) Alternative Hypothesis (|α>β| = 0.16)

i ii iii iv v vi vii viii

α β α β α β α β α β α β α β α β

1 0.2 0 0.2 0 0.2 −0.2 0 0 0.4 0.4 0 0.3 0.3 0 0.4 0.4

2 0.5 0 0.2 0.5 0.3 0.1 0 0 0 −0.8 0 0.3 0.3 0 0.2 −0.2

3 0 0.2 0.5 −0.2 0.1 0.1 0 0 0 0 0 0.3 0.3 0 0.3 0.1

4 0 0.5 0.2 0.5 0.2 −0.2 0 0 0 0 0 0.3 0.3 0 0.1 0.1

5 0 0 −0.2 0.5 0.3 0.1 0 0 0 0 0 0.3 0.3 0 0.2 −0.2

6 0 0 0 0 0.1 0.1 0 0 0 0 0.2 −0.8 −0.8 0.2 0.3 0.1

7 0 0 0 0 0.2 −0.2 0 0 0 0 0 0 0 0 0.1 0.1

8 0 0 0 0 0.3 0.1 0 0 0 0 0 0 0 0 0.2 −0.2

9 0 0 0 0 0.1 0.1 0 0 0 0 0 0 0 0 0.3 0.1

10 0 0 0 0 0.2 −0.2 0 0 0 0 0 0 0 0 0.1 0.1

11 0 0 0 0 0.3 0.1 0 0 0 0 0 0 0 0 0.2 −0.2

12 0 0 0 0 0.1 0.1 0 0 0 0 0 0 0 0 0.3 0.1

13 0 0 0 0 0.2 −0.2 0 0 0 0 0 0 0 0 0.1 0.1

14 0 0 0 0 0.3 0.1 0 0 0 0 0 0 0 0 0.2 −0.2

15 0 0 0 0 0.1 0.1 0 0 0 0 0 0 0 0 0.3 0.1

16 0 0 0 0 0.2 −0.2 0 0 0 0 0 0 0 0 0.1 0.1

17 0 0 0 0 0.3 0.1 0 0 0 0 0 0 0 0 0.2 −0.2

18 0 0 0 0 0.1 0.1 0 0 0 0 0 0 0 0 0.3 0.1

19 0 0 0 0 0.2 −0.2 0 0 0 0 0 0 0 0 0.1 0.1

20 0 0 0 0 0.3 0.1 0 0 0 0 0 0 0 0 0.2 −0.2

21 0 0 0 0 0.1 0.1 0 0 0 0 0 0 0 0 0.3 0.1

22 0 0 0 0 0.2 −0.2 0 0 0 0 0 0 0 0 0.1 0.1

23 0 0 0 0 0.3 0.1 0 0 0 0 0 0 0 0 0.2 −0.2

24 0 0 0 0 0.1 0.1 0 0 0 0 0 0 0 0 0.3 0.1

25 0 0 0 0 0.2 −0.2 0 0 0 0 0 0 0 0 0.1 0.1

26 0 0 0 0 0.3 0.1 0 0 0 0 0 0 0 0 0.2 −0.2

27 0 0 0 0 0.1 0.1 0 0 0 0 0 0 0 0 0.3 0.1

28 0 0 0 0 0.2 −0.2 0 0 0 0 0 0 0 0 0.1 0.1

29 0 0 0 0 0.3 0.1 0 0 0 0 0 0 0 0 0.2 −0.3

30 0 0 0 0 0.1 0.1 0 0 0 0 0 0 0 0 0.3 0.2

PT-NP tests, especially when the sample sizes are small or moderate, say 500

or less. Furthermore, even though the mediation effect size is fixed constantly

at 0.16 across the four cases, the power varies with the underlying parameter

configurations and sparsity. The power also decreases as Q increases in each

setting of the alternative hypothesis as the individual signal strengths decrease

by a factor of 1/
√

2. Case (vii) appears to be the most challenging scenario,

where β is most sparse with a small magnitude of nonzero elements. To further

examine the performance of these tests, in case (vii) with a sample size 200 and
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Table 2. Empirical type I error under four null hypotheses, and power under four alter-
native hypotheses with 10,000 replicates, for Q = 30 and Q = 60. The sample size n is
equal to 200, 500, or 1,000. The compound symmetry correlation of the mediators is set
at 0.5. Power increase (%) =(power of LR test/power of competing test)− 1.

Q n Method
Null Hypothesis Alternative Hypothesis Percent of power increase

i ii iii iv v vi vii viii v vi vii viii

LR 0.048 0.052 0.051 0.010 0.603 0.561 0.306 0.512 - - - -

200 PT-N 0.036 0.043 0.037 0.006 0.557 0.536 0.252 0.463 8.33% 4.67% 21.53% 10.56%

PT-NP 0.029 0.039 0.029 0.001 0.517 0.496 0.239 0.430 16.76% 13.08% 28.14% 19.13%

LR 0.045 0.046 0.045 0.007 0.970 0.959 0.654 0.931 - - - -

30 500 PT-N 0.038 0.043 0.040 0.005 0.967 0.957 0.631 0.925 0.31% 0.17% 3.73% 0.64%

PT-NP 0.036 0.043 0.036 0.001 0.963 0.951 0.627 0.918 0.74% 0.81% 4.32% 1.41%

LR 0.049 0.047 0.048 0.008 1.000 1.000 0.923 0.999 - - - -

1,000 PT-N 0.046 0.045 0.046 0.005 1.000 1.000 0.917 0.998 0.00% 0.00% 0.57% 0.04%

PT-NP 0.045 0.046 0.044 0.001 1.000 1.000 0.916 0.999 0.01% 0.01% 0.76% 0.03%

LR 0.062 0.056 0.066 0.022 0.469 0.408 0.303 0.433 - - - -

200 PT-N 0.039 0.041 0.041 0.010 0.389 0.360 0.203 0.344 20.52% 13.27% 49.48% 25.87%

PT-NP 0.035 0.038 0.033 0.004 0.327 0.305 0.187 0.293 43.29% 33.58% 61.95% 47.73%

LR 0.051 0.055 0.054 0.010 0.932 0.880 0.630 0.897 - - - -

60 500 PT-N 0.043 0.049 0.043 0.007 0.923 0.875 0.583 0.884 0.88% 0.62% 8.17% 1.51%

PT-NP 0.040 0.048 0.038 0.001 0.910 0.856 0.571 0.867 2.41% 2.78% 10.39% 3.44%

LR 0.053 0.052 0.050 0.008 0.999 0.995 0.912 0.998 - - - -

1,000 PT-N 0.050 0.050 0.045 0.006 0.999 0.995 0.902 0.998 0.02% 0.01% 1.09% 0.03%

PT-NP 0.050 0.051 0.044 0.001 0.999 0.995 0.897 0.997 0.03% -0.01% 1.60% 0.10%

Q = 30, we set the single nonzero β coefficient to 0.2 + δ, with δ varying from 0

to 0.5 by an increment of 0.02, to illustrate the power increase pattern. Figure 2

shows that all three power curves increase to one when the size δ in the alternative

hypothesis becomes further distant from the null hypothesis. Our LR test is more

powerful than the competing tests. Empirically, the three tests are all consistent,

because their power rises to one when the deviation from the null tends to infinity.

In summary, these simulation results indicate that our LR test exhibits higher

power than that of the PT-N and PT-NP tests, especially for small and moderate

sample sizes.

6. Data Application

We apply the proposed LR test to analyze a real-world data example from

a pediatric cohort study consisting of 203 children, with 96 boys and 107 girls,

age 8.1 to 14.4 years old. We consider two exposure variables X of macronu-

trient intakes, calculated as the energy-adjusted carbohydrate and fat, called

the carbohydrate intake and fat intake, respectively, obtained from the food fre-

quency questionnaires (Willett, Howe and Kushi (1997)). The outcome variable

Y is a HOMA-CP score, defined by LaBarre et al. (2020), that measures insulin
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Figure 2. Power curves of three tests under the simulation case (vii).

resistance using the C-peptide biomarker produced by the pancreas. A higher

HOMA-CP score means greater insulin resistance, leading to a potentially higher

risk of developing diabetes in adulthood.

In this analysis, we study a cluster of seven metabolites of glucose metabo-

lites and acetylamino acids that all passed data QC screening and were anno-

tated by our collaborator Dr. Labarre (LaBarre et al. (2020)) at the University

of Michigan Research Core of Metabolomics. One metabolite in this cluster is

N-acetylglycine, which has been found to be positively associated with di-

etary fiber intake (Lustgarten et al. (2014)) and negatively associated with the

metabolic risk score (Perng et al. (2017)). The goal of interest is to test whether

a cohesive cluster containing N-acetylglycine is involved as a group in a media-

tion pathway from dietary intake to the HOMA-CP score. This scientific question

pertains to a hypothesis that food intake may change the metabolites and alter

the function of the pancreas, thus elevating the risk of developing diabetes later

in life.

In consultation with our collaborator, we chose a set of confounding variables,

including age, gender, and puberty onset, and calculated the p-values for the null

hypothesis H0 : αTβ = 0 with Q = 7 using the three methods LR, PT-N,

and PT-NP. First, we test for the group-level mediation effect with exposure of

fat intake, and obtain p-values equal to 0.01 (LR), 0.02 (PT-N), and 0.02 (PT-

NP). With exposure of carbohydrate intake, we obtain the p-values 0.03 (LR),

0.04 (PT-N), and 0.04 (PT-N). For all three methods, with 95% confidence, this

cluster of seven metabolites exhibits a significant group-level mediation effect on



MULTI-DIMENSIONAL TESTING FOR MEDIATION EFFECT 2319

Table 3. Estimated coefficients for a cluster of seven metabolites.

Metabolite
Fat Carbohydrate

α β α ◦ β α β α ◦ β
L-histidine -0.0019 0.334 -0.0006 0.0008 0.334 0.0003

N-acetyl-D-glucosamine -0.0046 0.197 -0.0009 0.0009 0.200 0.0002

N-acetyl-DL-serine 0.0055 0.206 0.0011 -0.0017 0.204 -0.0004

3,4-hydroxyphenyl-lactate 0.0014 0.114 0.0002 -0.0006 0.114 -0.0001

2-deoxy-D-glucose 0.0041 -0.356 -0.0015 -0.0013 -0.356 0.0005

N-acetylglycine 0.0101 -0.840 -0.0085 -0.0030 -0.842 0.0025

D-lyxose -0.0050 0.291 -0.0015 0.0016 0.294 0.0005

the association between dietary intake and the HOMA-CP score. As expected,

the LR test appears to have smaller p-values in both cases, consistent with the

findings of the simulation studies.

Taking a closer look at each of the seven metabolites in the cluster, we report

in Table 3 estimates of the individual model parameters in α, β, and α◦β, where

◦ is the element-wise product. The group-level mediation effects of fat and carbo-

hydrate intake through the seven metabolites are -0.012 and 0.003, respectively.

For fat intake, the negative mediation effect indicates that a greater fat intake

helps to reduce insulin resistance through metabolites, where N-acetyglicine

contributes most to the reduction of the insulin resistance score. In contrast, car-

bohydrate intake increases insulin resistance through metabolites, where again

N-acetyglicine contributes most. In closing, we examine data quality issues,

such as the truncation pattern due to the limit of detection and normality assump-

tion, using QQ plots of the residuals from the respective regressions of mediator

on exposure (i.e., fat and carbohydrate). There are no truncation patterns on the

lower parts of the distributions, and all distributions look approximately normal.

Refer to the Supplementary Materials S5.

7. Conclusion

We have provided an LR approach for testing a group-level mediation effect

with multiple mediators. We were able to overcome a key technical challenge aris-

ing from the constrained MLE under irregular parameter spaces. In particular,

we used the Lagrange multiplier method to carry out the constrained optimiza-

tion using an efficient block coordinate decent algorithm required to implement

our LR test statistic. The associated computational cost is negligible, on average

0.15 seconds for a data set of size 1,000. The R package “MedLRT” implement-

ing the LR test method is available at https://github.com/haowei72/MedLRT.

https://github.com/haowei72/MedLRT
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We established the asymptotic distributions of the proposed LR test statistic, in

which a theoretical guarantee was given for proper control of the type I error. In

both simulation studies and a data application, our LR method was less conser-

vative and exhibited higher power than that of two existing methods, the PT-N

test and the PT-NP test, especially when the sample size was moderate or small.

We have not attempted to develop a solution to differentiating different null

parameter configurations arising from the composite null hypothesis. The LR

test approach attempts to solve this conservatism problem using the kappa dis-

tribution, which was found to be the limiting distribution of Wilks’ generalized

LR statistic for the null case of α = β = 0, being different from the chi-square

distribution under the other null cases. This technical contribution serves as

an important technical preparation, because once a new method enables us to

differentiate null parameter configurations, we can apply the respective limit-

ing distributions of the LR test statistic to achieve the optimal solution (i.e., a

desirable size alpha LR test).

To apply our LR approach to test for a cluster of high-dimensional poten-

tial mediators, one needs to first divide them into subgroups based on existing

scientific knowledge or clustering techniques, and then test for a group-level me-

diation effect, each for one subgroup of mediators. In future work, we would like

to extend the current framework to the case of high-dimensional mediators with

no need to divide them into subgroups. In addition, to deal with the dimension-

ality and complex patterns arising from the simultaneous testing setup (e.g., 243

possible null parameter configurations for Q = 5), alternative solutions are worth

exploring, such as an extension of the approach of Dai, Stanford and LeBlanc

(2020).

All test methods, including our LR test, appear to be conservative for the null

case of α = β = 0. This is an open problem in the theory of statistical inference

for the mediation effect, even in the setting of one mediator. The technical

difficulty pertains to the presence of multiple null parameter configurations, each

giving rise to a specific distribution for the test statistic. However, the lack of

knowledge about which null configuration is the truth hinders us from obtaining

a desirable size α in the type I error control. The κQ distribution is proposed to

improve the overly conservative type I error control, in that the κQ distribution

has some chance of being selected. However, as shown in the simulation study,

when α = β = 0, this improvement is moderate, and the type I error rate is still

below 0.05. Deriving better solutions that overcome this conservatism is left to

future work.
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Supplementary Material

The Supplementary Material includes additional simulation results in Sec-

tions S1-S4, and additional figures for data analysis in Section S5.
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A. Appendix

A.1. Information matrix

I(θ) = −E

(
1

n

∂2`(θ)

∂θθ>

)
=

(
1
nΣ−1M ⊗B>B(L+1)Q×(L+1)Q 0(L+1)Q×(Q+L+1)

0(Q+L+1)×(L+1)Q
1
nσ2

y
E(W>W)(Q+L+1)×(Q+L+1)

)
,

where

E(W>W) =

(
ᾱ>B>Bᾱ + nΣM ᾱ>B>V

V>Bᾱ V>V

)
,

and Vn×(L+1) = (Z1, . . . ,ZL,X).

A.2. Proof of Lemma 1

First, we prove the part (i) of Lemma 1. Recall that

H(θ) = ∇θḣ(θ) =

(
0(L+1)Q×(L+1)Q H̃(L+1)Q×(Q+L+1)

H̃>(Q+L+1)×(L+1)Q 0(Q+L+1)×(Q+L+1)

)
,

where

H̃(L+1)Q×(Q+L+1) =

(
IQ 0Q×(L+1)

0LQ×Q 0LQ×(L+1)

)
.

Then, we have H2(θ) = Block-diag
(
H̃H̃>, H̃>H̃

)
.

Since H2(θ) is a diagonal matrix, and it has 2Q 1’s and (LQ + L + 1) 0’s
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on diagonal, implying that H2(θ) has 2Q nonzero eigenvalues equal to 1, and

(LQ+L+ 1) zero eigenvalues. This shows that H(θ) has 2Q nonzero eigenvalues

with their absolute values being 1. Note that tr(H(θ)) = 0, implying h1 = · · · =
hQ = 1, hQ+1 = · · · = h2Q = −1.

Now we prove part (ii) of Lemma 1. From Theorem 1.4 in (Lu and Pearce

(2000)), matrix A(θ) = I(θ)−1/2H(θ)I(θ)−1/2 has Q positive eigenvalues, Q

negative eigenvalues and the rest eigenvalues are zero since the eigenvalues of

I(θ)−1/2 are all positive. Thus, the 2Q nonzero eigenvalues of A(θ), υ1 ≥ υ2 ≥
· · · ≥ υQ > 0 > υQ+1 ≥ · · · ≥ υ2Q. Let I11 = (1/n)Σ−1M ⊗ B>B and I22 =

(1/nσ2Y )E(W>W). Writing I(θ) = Block-diag (I11, I22) , we have

A(θ) = I(θ)−1/2H(θ)I(θ)−1/2 =

(
0 I

−1/2
11 H̃I

−1/2
22

I
−1/2
22 H̃>I

−1/2
11 0

)
.

Consequently, tr(A(θ))=0, and (I
−1/2
11 H̃I

−1/2
22 )>=I

−1/2
22 H̃>I

−1/2
11 . Let I

−1/2
11 H̃I

−1/2
22

= C. We have A2(θ) = Block-diag
(
CC>,C>C

)
. The eigenvalues of A2(θ) are

λ(A2(θ)) = (λ(CC>), λ(C>C)), where the non-zero eigenvalues of CC> and

C>C are the same. This indicates υ21 = υ22Q, υ
2
2 = υ22Q−1, . . . , υ

2
Q = υ2Q+1. In

summary, A(θ) has 2Q nonzero eigenvalues in a descending order υ1 ≥ υ2 ≥
· · · ≥ υQ > 0 > υQ+1 ≥ · · · ≥ υ2Q, satisfying

∑2Q
i=1 vi = tr(A(θ)) = 0. This

implies that υ1 = −υ2Q, υ2 = −υ2Q−1, . . . , υQ = −υQ+1.

A.3. Proof of Lemma 2

Let D = {Y,W,M,B} = {di}ni=1 denote all observations where di rep-

resents the data from subject i. Let u(θ) =
∑n

i=1∇θ`(θ; di) denote the score

function of length 2Q + p, where p = LQ + L + 1. Let U(θ) = ∇θu(θ) be

the Hessian matrix. Under the regularity conditions, by the Central Limit The-

orem, (1/
√
n)u(θ0)

d→ N{0, I(θ0)}. Moreover, by the Law of Large Number,

(−1/n)U(θ0)
p→ I(θ0). Let {θ̃, λ̃} be the solution of the Lagrange multiplier

equation (2.4). Then, they satisfy the following two equations:

u(θ) + nλḣ(θ) = 02Q+p, and h(θ) = 0. (A.1)

It is easy to show that the k-th order (k ≥ 3) partial derivatives of h(θ) are all

zero for any θ. Taking the Taylor expansion on h(θ̃) in the 2nd equation of (A.1)

around θ0, h(θ̃) = h(θ0) + ḣ(θ0)
>(θ̃− θ0) + (1/2)(θ̃− θ0)

>H(θ0)(θ̃− θ0). Since

α = β = 0, h(θ0) = h(θ̃) = 0 and ḣ(θ0) = 02Q+p, then

(θ̃ − θ0)
>H(θ0)(θ̃ − θ0) = 0. (A.2)
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Similarly, taking the Taylor expansion of the first equation of (A.1) around θ0
gives, subject to a high order error term,

u(θ0) + U(θ0)(θ̃ − θ0) + nλ̃
{
ḣ(θ0) + H(θ0)(θ̃ − θ0)

}
≈ 02Q+p,

u(θ0) + U(θ0)(θ̃ − θ0) + nH(θ0)
[
λ̃(θ̃ − θ0)

]
≈ 02Q+p,

{U(θ0) + nλ̃H(θ0)}(θ̃ − θ0) ≈ −u(θ0).

Given that the matrix U(θ) + nλH(θ) is invertible for {θ, λ} in the small neigh-

borhood of {θ0, 0}, we have

(θ̃ − θ0) ≈ −{U(θ0) + nλ̃H(θ0)}−1u(θ0), (A.3)

√
n(θ̃ − θ0) ≈

1√
n

{
− U(θ0)

n
− λ̃H(θ0)

}−1
u(θ0)

≈ {I(θ0)− λ̃H(θ0)}−1
u(θ0)√

n
.

This implies that for any λ∗ ∈ R, the conditional distribution of θ̃ given λ̃ = λ∗

is

√
n(θ̃ − θ0) | λ̃ = λ∗ → N

(
0, {I(θ0)− λ∗H(θ0)}−1I(θ0){I(θ0)− λ∗H(θ0)}−1

)
.

By plugging (A.3) into (A.2), we define

f(λ̃) = u(θ0)
>{U(θ0) + nλ̃H(θ0)}−1H(θ0){U(θ0) + nλ̃H(θ0)}−1u(θ0).

Taking derivative of f(λ̃) in λ̃ yields,

∂f(λ̃)

∂λ̃
= ḟ(λ̃) = −2nu(θ0)

>{U(θ0) + nλ̃H(θ0)}−1H(θ0){U(θ0) + nλ̃H(θ0)}−1

H(θ0){U(θ0) + nλ̃H(θ0)}−1u(θ0).

Note the fact that f(λ̃) ≈ f(0) + ḟ(0)λ̃ = 0. Then, we have

nf(0) =
u(θ0)

>
√
n

{
−U(θ0)

n

}−1
H(θ0)

{
−U(θ0)

n

}−1 u(θ0)√
n

=

[
u(θ0)

>
√
n

{
−U(θ0)

n

}−1/2][{
−U(θ0)

n

}−1/2
H(θ0)

{
−U(θ0)

n

}−1/2]
[{
−U(θ0)

n

}−1/2 u(θ0)√
n

]
.
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Since {−U(θ0)/n}−1/2
p→ I(θ0)

−1/2 and u(θ0)/
√
n

d→ N{0, I(θ0)}, by Slutsky’s

Theorem, {−U(θ0)/n}−1/2 (u(θ0)/
√
n)

d→ N{0, I}. Also {−U(θ0)/n}−1/2 H(θ0)

{−U(θ0)/n}−1/2
p→ A(θ). It follows that, as n→∞,

nf(0)
d→ F0, where F0

d≡
2Q∑
q=1

υqξq =

Q∑
q=1

υq(ξq − ξq+Q),

with ξq
i.i.d.∼ χ2

1, q = 1, . . . , 2Q.

nḟ(0) = 2
u(θ0)

>
√
n

{
−U(θ0)

n

}−1
H(θ0)

{
−U(θ0)

n

}−1
H(θ0)

{
−U(θ0)

n

}−1 u(θ0)√
n
,

similarly, we have as n→∞,

nḟ(0)
d→ G0, where G0

d≡ 2

2Q∑
q=1

υ2qξq = 2

Q∑
q=1

υ2q (ξq + ξq+Q),

with ξq
i.i.d.∼ χ2

1, q = 1, . . . , 2Q. In summary the asymptotic distribution of λ̃ is

given as follows,

λ̃ = −nf(0)

nḟ(0)

d→ Λ0, where Λ0
d≡ −

∑Q
q=1 υq(ξq − ξq+Q)

2
∑Q

q=1 υ
2
q (ξq + ξq+Q)

,

with ξq
i.i.d.∼ χ2

1, q = 1, · · · , 2Q. The proof is completed.

A.4. Proof of Theorem 1

When α = β = 0, taking the Taylor expansion on {I(θ0) − λ̃H(θ0)}−1

around a small neighborhood of λ̃ = 0, we have, subject to a high order error

term, {I(θ0)− λ̃H(θ0)}−1 ≈ {I(θ0)}−1 + λ̃I(θ0)
−1H(θ0)I(θ0)

−1. It follows that

√
n(θ̃ − θ0) ≈

[
{I(θ0)}−1 + λ̃I(θ0)

−1H(θ0)I(θ0)
−1
] u(θ0)√

n

= {I(θ0)}−1
1√
n

u(θ0) + λ̃I(θ0)
−1H(θ0)I(θ0)

−1u(θ0)√
n

≈
√
n(θ̂ − θ0) + λ̃I(θ0)

−1H(θ0)I(θ0)
−1u(θ0)√

n
.

Noting that
√
n(θ̃ − θ̂) = λ̃I(θ0)

−1H(θ0)I(θ0)
−1(u(θ0)/

√
n), we have

Tn = −2{`(θ̃)− `(θ̂)} (A.4)
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≈
√
n(θ̃ − θ̂)>

{
−U(θ0)

n

}−1√
n(θ̃ − θ̂)

≈ λ̃2u(θ0)√
n

>
I(θ0)

−1H(θ0)I(θ0)
−1H(θ0)I(θ0)

−1u(θ0)√
n

= λ̃2
u(θ0)√

n

>
I(θ0)

−1/2A(θ0)
2I(θ0)

−1/2u(θ0)√
n
.

Note λ̃
d→ Λ0, where Λ0

d≡ −
∑Q

q=1 υq(ξq − ξq+Q)/(2
∑Q

q=1 υ
2
q (ξq + ξq+Q)), and

u(θ0)
>/
√
nI(θ0)

−1/2 d→ N(0, I2Q+p). Hence,

Tn
d→ Λ1, where Λ1

d≡

[∑Q
q=1 υq(ξq − ξq+Q)

]2
4
∑Q

q=1 υ
2
q (ξq + ξq+Q)

,

with ξq
i.i.d.∼ χ2

1 for q = 1, . . . , 2Q. The proof is completed.
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