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Abstract: Missing data are a major hindrance to statistical analysis because stan-

dard methods require the missing values to be imputed first. AMELIA and MICE

are two popular imputation methods, but their effectiveness has not been scruti-

nized in complex data. Loh et al. (2019) showed that these imputation methods

are impractical in an application where the number of variables and the quantity

of missing values are large. They proposed a GUIDE piecewise-constant regression

tree as an alternative as it does not require imputation and can handle large num-

bers of variables. Little (2020) questioned the generality of their conclusions as

well as the assumptions behind machine learning methods. This article responds

to the criticisms and uses a large simulation experiment to compare the parame-

ter estimation bias of GUIDE and MICE and the prediction accuracy of several

model-based and machine learning regression algorithms after GUIDE and MICE

imputation.

Key words and phrases: Machine learning, missing at random, prediction accuracy,

regression forest.

1. Introduction

Parametric likelihood-based imputation has been the dominant approach to

dealing with missing data for many years. The last decade, however, saw ex-

citing developments from machine learning, such as matrix completion methods

(Candès and Recht (2009)), that are motivated by problems in image analysis

(Tomasi and Kanade (1993)), recommender systems (Koren, Bell and Volinsky

(2009)), genomics (Chi et al. (2013); Cai, Cai and Zhang (2016)), and remote

sensing (Jiang, Zhang and Qiao (2018)). Loh et al. (2019) (hitherto abbreviated

as LECL) introduced another approach based on the GUIDE (Loh (2002, 2009))

regression tree algorithm and showed how it can be used to estimate a population

mean for data from the Bureau of Labor Statistics Consumer Expenditure (CE)

Survey. They demonstrated that GUIDE can fit regression models to a dependent

(Y ) variable without imputation of missing values in the predictor (X) variables.
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They also showed that a GUIDE classification tree can estimate propensity scores

for use in an inverse probability weighted (IPW) estimate, again without impu-

tation of missing values in the X variables. Unlike likelihood-based imputation

methods, such as AMELIA (Honaker, King and Blackwell (2011)) and MICE

(van Buuren and Groothuis-Oudshoorn (2011)), GUIDE has no computational

difficulties with large sample size, large number of variables, large amounts of

missing data, and different types of missing value patterns.

Little (2020) doubted the extent to which general conclusions can be drawn

from the study in LECL. He also questioned the assumptions behind machine

learning models and their missing data mechanisms. The goals of this article are

(i) to correct some misconceptions about tree methods, (ii) to clarify why and

when imputation is needed and why it is unnecessary in GUIDE, (iii) to compare

the estimation bias of linear models when MICE and GUIDE are used for impu-

tation, and (iv) to evaluate the prediction accuracy of parametric and machine

learning methods applied to missing data imputed by different techniques under

different missingness mechanisms.

The remainder of this article is organized as follows. Section 2 corrects some

common misconceptions of classification and regression tree methods. Section 3

recalls the original reasons for missing-value imputation and explains why it is not

needed in GUIDE. Section 4 uses five simple examples to highlight the problem

of estimation bias in linear models due to model misspecification and violation

of the assumptions required for imputation by MICE. Section 5 uses 24 real

data sets to study the effect of different imputation methods on the prediction

accuracy of 9 parametric and machine learning methods under different missing-

value mechanisms. Section 6 concludes the article with some remarks.

2. Misconceptions

A tree model has the same objective as a linear model, which is to estimate

a regression function. Little (2020) claimed that tree models assume the true

regression function to be a step function, stating, “categorization of continuous

predictors assumes that the relationship with the outcome is a step function.” A

tree model is a piecewise linear approximation to the true function, no less than

a linear model is a linear approximation. There is no reason why a linear model

cannot be used if the true model is not linear. Unlike a linear model, however,

a piecewise-constant or piecewise-linear tree model is adaptive in that it typically
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converges pointwise to the true function as the sample size increases (Chaudhuri

et al. (1994)). Little (2020) claimed that spline models are preferable for their

continuity. Although continuity may be desirable in certain situations, spline

models face great challenges when the number of predictor variables is large.

Besides, continuity is relevant only for continuous variables. Section 5 below

shows that the prediction accuracy of spline models, as represented by MARS

(Friedman (1991)), may be poor.

Little (2020) stated that, “since LECL do not advance theoretical arguments

in favor of their tree methods, the main basis for comparison of methods is

their simulation study.” Conditions for the asymptotic behavior of tree methods

have been known for some time. Breiman et al. (1984) established Bayes risk

consistency and Chaudhuri et al. (1994), Chaudhuri et al. (1995) and Chaudhuri

and Loh (2002) gave conditions for uniform consistency over compact sets of

the conditional mean and quantile function estimates. As for MICE, its author

(van Buuren (2012, p. 249)) noted: “There is no clear theoretical rationale for

convergence of the multivariate algorithm. The main justification of the MICE

algorithm rests on simulation studies.”

Little (2020) also claimed that “tree methods assume a missing not at random

(MNAR) mechanism, because they include indicators of missingness of predic-

tors as covariates.” Indicators of missingness can be used as covariates by any

method—they are not exclusive to tree models. Traditional imputation models

tend not to use the indicators because they create bias in regression coefficients

(Vach and Blettner (1991); Knol et al. (2010)). The reason GUIDE piecewise-

constant tree and forest models do not require missingness assumptions on the

covariates is simply that they do not require the missing values to be imputed.

3. Imputation

Parametric regression techniques require missing values in ordinal predictor

variables to be imputed because the methods are inapplicable otherwise. Tra-

ditional imputation methods, however, themselves rely on parametric models to

do their work. This is a chicken-and-egg situation, where a parametric model

cannot be fitted without missing value imputation and an imputation method

cannot produce imputations without fitting parametric models. Methods such as

MICE get around the problem by initially imputing missing values with means

and modes and then iteratively fitting parametric models to the data to update

the imputed values one variable at a time.
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GUIDE piecewise-constant regression tree and forest models do not require

imputation of missing values in the predictor variables because their values are

only used to define the splits in a tree. Let NA denote the missing value code.

A split is defined by a condition “X ∈ S,” where X is a predictor variable and

S is a subset of values (possibly including NA) of X. Observations go to the left

child node if and only if the condition is satisfied. If X is categorical, NA is given

its own categorical level called “missing”. Consequently, there are never missing

values in categorical variables in GUIDE. If X is ordinal, the condition takes the

form “X ≤ c” or “{X ≤ c} ∪ {X = NA}”, with c chosen to minimize the total

sums of squared residuals in the left and right child nodes. The split “{X ≤ c}”
sends missing X values to the right whereas “{X ≤ c}∪{X = NA}” sends missing

values to the left. The split “{X ≤ −∞} ∪ {X = NA}” is interpreted as “X =

NA”. Thus missing X values are not imputed.

The CE data analyzed in LECL consisted of observations on about 600 vari-

ables from 4,609 individual respondents, called “consumer units” (CU). Treating

INTRDVX, the amount of interest and dividend income, as the Y variable, LECL

compared different estimation methods for the population mean of INTRDVX.

About a third of the INTRDVX values in the data values were recorded as missing.

In addition, 20 percent of the other variables had missing values, including 67

variables with more than 95 percent values missing.

Models that employ ordinal X variables are usually fitted in one of two ways.

Either omit the ordinal variables with missing values or impute them first. In

the CE data, omitting ordinal variables with missing values discards 20 percent

of the variables. Although 80 percent of 600 is still a large number, some of the

omitted variables are important for prediction. LECL found that imputing the

missing values in 600 predictor variables cannot be performed with the MICE and

AMELIA software, due to multicollinearity and other computational difficulties.

Little (2020) claimed that “they couldn’t get it to work” and mentioned stepwise,

ridge, or LASSO regression as ways to deal with multicollinearity. It would be

good if these strategies can be implemented into the algorithms. Even then, it is

hard to justify that the hundreds of covariates are missing at random (MAR) and

are related simply by sequences of linear and logistic regression models (MICE)

or a single high-dimensional multivariate normal distribution (AMELIA). With

GUIDE, there is no worry about collinearity nor with selecting the variables and

interactions to include in the model.

Little (2020) noted that a missing value may refer to “not applicable” rather

than a nonresponse. In the CE data, many variables with missing values have
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accompanying missing-value flag variables that give the reason for the missing-

ness. Flag variables in the CE data typically have underscores in their names

(e.g., the flag variable associated with INTRDVX is INTRDVX ). Each flag variable

can take four possible values: A for “valid nonresponse or where a response in

not anticipated”, C for “don’t know or refuse to answer”, D for “valid data type”,

and T for “top-coded”, where a response exceeding the 97th percentile is replaced

by a constant that preserves the overall sample mean. Variable values associated

with A and C flags are unobserved and are recorded as NA.

In the CE data, variable AGE2 refers to the age of the respondent’s spouse.

About 40 percent of the values of AGE2 = NA. That is due to many respondents

being unmarried, widowed or divorced respondents, for whom AGE2 = A. The

standard “separate models” approach calls for partitioning the data into two sets,

fitting one model to the set where AGE2 = A with AGE2 excluded, and another

model to the other set with missing values in AGE2 imputed. This approach is

applicable only if missing-value flag variables are available. Even though they are

in the CE data, the approach is impractical because there are 120 variables with

missing-value flag variables, which could generate up to 2120 separate models.

For GUIDE, a split on AGE2 takes the form “AGE2 ≤ c” or “{AGE2 ≤ c} ∪
{AGE2 = NA}”. (The second split is shown in tree diagrams as “AGE2 ≤∗ c”,

where the notation “X ≤∗ c” is an abbreviation for “X ≤ c or X = NA”.) In

LECL, a node can be split on AGE2 only or on AGE2 only, but not on both.

This restriction is removed in the current version of GUIDE, where a split can

employ a variable and its flag simultaneously. This is shown in Figure 1, which

is a GUIDE classification tree for predicting whether INTRDVX = C (INTRDVX is

missing) or D (INTRDVX is nonmissing). Table 1 gives the names, definitions and

numbers of missing values of the variables in the figure. Splits at nodes 2, 16,

17, 18, 35, and 36 have the form “{X ≤ c} or X = A”, where X denotes the

flag variable for X. Node 9 is split on “FEDRFNDX ≤∗ 260”, where all missing

values, irrespective of type, go to the left branch. Node 141 is split solely on a

missing-value flag variable, “LIQU YRX = A.”

A piecewise-constant estimate of the propensity that INTRDVX is nonmissing

can be obtained from the proportions of observations with INTRDVX = D in the

terminal nodes of the classification tree. The propensity scores can then be used

in an IPW estimate of the population mean of INTRDVX. Logistic regression is

traditionally used to estimate propensity scores, but this requires imputation

of the missing covariate values which is impossible to do here with MICE or

AMELIA, due to the large numbers of covariates and large amount of missing
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Table 1. Names, definitions and numbers of missing values of variables in Figure 1.

Name Definition #Missing
BATHRMQ Number of complete bathrooms 21
BATHRMQ Flag variable for BATHRMQ
EDUC REF Education of reference person
FEDRFNDX Federal income tax refund to all CU members 2,530
FEDR NDX Flag variable for FEDRFNDX
FEDTAXX Federal income tax paid by all CU members 3,752
FEDTAXX Flag variable for FEDTAXX
FSALARYX Wage and salary income of all CU members in past 12

months
INTRDVX Interest or dividend received in past 12 months 1,771
INTRDVX Flag variable for INTRDVX
LIQUIDX Value of checking, savings, CD, etc., accounts 3,827
LIQUIDX Flag variable for LIQUIDX
LIQUDYRX Total value of bank accounts one year ago 3,876
LIQU YRX Flag variable for LIQUDYRX
OCCUCOD2 Highest paid job of spouse in last 12 months 2,832
OCCU OD2 Flag variable for OCCUCOD2
PSU Primary sampling unit
RESPSTAT Completeness of income response (1=complete; 2=incom-

plete)
RETSURVX Retirement, survivor, disability pensions in past 12 months 3,520
RETS RVX Flag variable for RETSURVX
SLRFUNDX State and local income tax refund received by all CU mem-

bers
3,167

SLRF NDX Flag variable for SLRFUNDX
STATE State identifier

values. This is where GUIDE has a major advantage. Further, GUIDE performs

variable selection automatically, reducing the number of variables from more than

600 to a handful in the figure. Finally, it is clear from the tree structure that

there are interactions among the covariates. Logistic regression would be hard

pressed to identify the interactions, even without missing values.

4. Bias

Multiple imputation was conceived years ago to reconstruct missing values

in public-use data settings where the imputer and the analyst (the one analyzing

the imputed data) were distinct entities and the objective was to make valid

statistical statements about the analyst’s linear model parameters. It has since

been established that if the imputer’s model is incompatible with the analyst’s
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Figure 1: GUIDE classification tree for predicting INTRDVX_. At each split, an observation
goes to the left branch if and only if the condition is satisfied. The symbol ‘≤∗’ stands for ‘≤
or missing’. Set S1 = {8, 9, 10, 12, 15, 17, 25, 26, 34, 36, 39, 42, 45, 47, 53, 55}; set S2 =
{1102, 1109, 1111, 1423}; and set S3 = {2, 3, 5, 6, 10}. Predicted classes and sample
sizes are printed below terminal nodes (yellow color for C and green for D). Estimated class
posterior probabilities for INTRDVX_ = C and D are given beside the nodes.

9

Figure 1. GUIDE classification tree for predicting INTRDVX_. At each split, an obser-
vation goes to the left branch if and only if the condition is satisfied. The symbol ‘≤∗’
stands for ‘≤ or missing’. Set S1 = {8, 9, 10, 12, 15, 17, 25, 26, 34, 36, 39, 42, 45,
47, 53, 55}; set S2 = {1,102, 1,109, 1,111, 1,423}; and set S3 = {2, 3, 5, 6, 10}.
Predicted classes and sample sizes are printed below terminal nodes (yellow color for
C and green for D). Estimated class posterior probabilities for INTRDVX_ = C and D are
given beside the nodes.

model, the inferences may be invalid (Fay (1992); Rubin (1996)).

Although it does not require imputation for tree construction, GUIDE can

be used to impute missing values as an alternative to AMELIA and MICE for

other applications. Simply fit a GUIDE model to each variable as dependent
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variable in turn (without imputation of missing covariate values) and use the

fitted values as imputed values. This one-variable-at-a-time approach is similar

to MICE, except that MICE needs iteration because it first imputes all missing

values with initial values and then fits a model to each variable in turn to the

imputed data. Iteration is needed to reduce the effects of initial values and

the imputation order of the variables, but iteration also propagates imputation

errors. As an imputation method, GUIDE requires neither initialization nor

iteration and is invariant of the order that variables are imputed.

We use five examples to compare estimation bias in linear models fitted to

data imputed by GUIDE, MICE and its alternative IVEware (Raghunathan et al.

(2016)) that Little (2020) favored. The examples span the range from correct

model and missingness assumptions for MICE and IVEware to situations where

they are violated. Two GUIDE methods are employed. The first is gforest, a

GUIDE forest of 500 GUIDE piecewise-constant regression trees. It is similar to

Breiman’s random forest (Breiman (2001)), except that the latter uses CART

trees, which have variable selection bias (Loh and Shih (1997); Loh (2002)). The

second is gstep, a GUIDE regression tree with a stepwise linear regression model

fitted in each node. Owing to its greater flexibility, gstep often has better pre-

diction accuracy than a piecewise-constant tree, but it employs local imputation

of missing values in each node with node means to fit the stepwise linear mod-

els. See LECL and Loh (2012, 2014) for comparisons between piecewise-constant

trees, gstep, gforest, and random forest. Let N(0, σ2) denote the normal dis-

tribution with mean 0 and variance σ2 and MVN(µ, ρ) the multivariate normal

distribution with mean vector µ and covariance matrix with 1 along the diago-

nal and ρ in the off-diagonal elements. The following results are based on 1,000

simulation trials.

Example 1. Let (X1, X2, . . . , X9) be MVN(0, 0.5) and Y = X1 +X2 + ε, where

ε is N(0, 0.12). Observations are MAR depending on X9 such that given X9 = x,

the other variables (including Y ) are independently missing with probability

p(x) =
exp(x− 1.8)

1 + exp(x− 1.8)
. (4.1)

This results in about 20 percent missing values overall. Suppose that the analyst

fits the model EY = b0 +
∑9

i=1 biXi to a training sample of size n after impu-

tation by MICE, gforest, or gstep. Figure 2 shows the estimated bias of the

estimates of b0, b1 and b2 for n = 100, 400 and 1,600. MICE and IVEware clearly

deliver unbiased estimates throughout, as expected. The GUIDE methods are



MISSING DATA, IMPUTATION AND REGRESSION TREES 1705

−

−

−

−

Figure 2. Estimated bias (with 2-SE bars) of regression coefficients using three impu-
tation methods for Example 1. True model is Y = X1 + X2 + ε with ε ∼ N(0, 0.12)
and (X1, X2, . . . , X9) is multivariate normal with unit variance and common correla-
tion 0.50. Values in (Y,X1, X2, . . . , X8) are MAR depending on X9. Fitted model is

EY = b0 +
∑9

i=1 biXi.

not unbiased, but their biases tend to decrease (with gforest decreasing faster)

as n increases.

Example 2. Variables X1, X2, . . . , X9, and ε are the same as in Example 1, but

the true model is Y = X2
1 + ε and the analyst’s model is EY = b0 + b1X1 + b2X

2
1 .

The data are MAR depending on X9 as before. Figure 3 shows that all three

methods give biased estimates but the biases of the GUIDE methods are least.

Example 3. Let (V1, V2, . . . , V9) be MVN(0, 0.5) and Xi = Φ(Vi), where Φ(.)

is the standard normal distribution function. The true model is Y = X2
1 + ε,

where ε is independent N(0, 0.12) and the analyst’s model is EY = b0 + b1X1.

The data are MAR depending on X9 with the missingness probability given

X9 = x being p(x) = 0.4x. This mimics a case of model misspecification or one

where the analyst wants to estimate a linear trend despite the true model being

quadratic. The estimands are the means of the least squares estimates of the

analyst’s model for data without missing values (b0, b1) = (−1/6, 1). The results

in Figure 4 show that the bias of gstep is smallest and that of gforest and

MICE are about equally large.

Example 4. Let q1 < q2 < q3 denote the quartiles of the standard normal

distribution. Variables (X1, X6, X7, X8, X9) are MVN(0, 0.5) andX2 = X2
1 , X3 =
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Figure 3. Estimated bias (with 2-SE bars) of regression coefficients using three im-
putation methods for Example 2. True model is Y = X2

1 + ε with ε ∼ N(0, 0.12)
and (X1, X2, . . . , X9) is multivariate normal with unit variance and common correla-
tion 0.50. Values in (Y,X1, X2, . . . , X8) are MAR depending on X9. Fitted model is
EY = b0 + b1X1 + b2X

2
1 .

−

−

Figure 4. Estimated bias (with 2-SE bars) of regression coefficients using three impu-
tation methods for Example 3. True model is Y = X2

1 + ε with ε ∼ N(0, 0.12) and
(X1, X2, . . . , X9) is multivariate correlated uniform on nine-dimensional unit cube. Val-
ues in (Y,X1, X2, . . . , X8) are MAR depending on X9. Fitted model is EY = b0 + b1X1.

1 +
∑3

j=1 I(X1 ≥ qj), X4 = sin(2πX1), and X5 = exp(X1). The true model is

Y = X1 + X2 + X3 + ε with ε independent N(0, 0.12). The analyst’s model

is EY = b0 +
∑9

i=1 biXi. Variable X1 is MNAR such that, given X1 = x, it

is missing with probability p1(x) = 0.8I(x < q3) + 0.05I(x ≥ q3). Similarly,

X2 is MNAR such that given X2 = x, it is missing with probability p2(x) =

0.8I(x < r1) + 0.05I(x ≥ r1), where r1 is the first quartile of the chi-squared
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Figure 5. Estimated bias (with 2-SE bars) of regression coefficients using three imputa-
tion methods for Example 4. True model is Y = X1 +X2 +X3 + ε and the fitted model
is EY = b0 +

∑9
i=1 biXi, with X1 and X2 MNAR.

distribution with 1 degree of freedom. The results in Figure 5 show that MICE

has the smallest bias for n = 100, but gstep is best for n = 1,600. IVEware is

consistently worst for all three sample sizes.

Example 5. The settings are the same as in Example 4, except that Y is MNAR,

with probability of missing, p(y) = 0.8I(Y < 1.75) + 0.05I(Y ≥ 1.75). The value

1.75 is approximately the first quartile of the distribution of Y . Figure 6 shows

that for n = 400 and 1,600, gforest has the smallest bias and IVEware the

largest; no clear patterns are discernible for n = 100.

These results show that the strengths of MICE and IVEware are also their

weaknesses. If the assumptions of the model and MAR are satisfied, they are

unbiased. Otherwise, gstep and gforest may have smaller bias.

5. Prediction

Little (2020) stated that “the impression given by LECL is that the tree

algorithm will automatically lead to good predictions of missing values. I think

this uncritical assessment is common for algorithmic methods, where the under-

lying model is treated as a ‘black box’ and not explicitly scrutinized.” In a large

study of real data without missing values, Lim, Loh and Shih (2000) showed that

there is much variation in the prediction accuracy of model-based and algorith-

mic classification methods. We complement those results here with a simulation

study of 2 model-based and 7 machine learning regression methods when they
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Figure 6. Estimated bias (with 2-SE bars) of regression coefficients using three imputa-
tion methods for Example 5. True model is Y = X1 +X2 +X3 + ε and the fitted model
is EY = b0 +

∑9
i=1 biXi, with X1, X2 and Y MNAR.

are applied to data after missing-value imputation. We employed 24 real data

sets originally without missing values (see the Supplementary Materials section

for details of the data sets). Each data set was randomly split into a training

set and a test set in a 10-fold cross-validation fashion explained in Section 5.4

below. Values in the predictor variables were made randomly missing according

to MCAR and MAR mechanisms. GUIDE forest, MICE, and mean/mode (MM)

imputation were used to impute the missing values. Then each regression method

was fitted to the imputed training data and the accuracy of its predicted values

assessed with the test set. Sections 5.1 and 5.2 present the regression methods

and imputation methods, respectively. Section 5.3 describes the missing-data

mechanisms and Section 5.4 gives the results.

5.1. Nine regression methods

SLR. Stepwise linear regression using the R functions lm and step (R Core

Team (2016)).

LASSO. Regularized linear regression in glmnet package with tuning parameter

λ selected by cross-validation and the 1-SE rule (Friedman, Hastie and

Tibshirani (2010)).

MARS. Multivariate adaptive regression splines in mars function of mda package

(Hastie et al. (2016)).

SVR. Support vector machine regression in e1071 R package (Meyer et al.
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(2015)).

RPART. Regression tree in rpart package (Therneau, Atkinson and Ripley

(2018)), an implementation of CART (Breiman et al. (1984)) that fits a

piecewise-constant regression tree model with the 0-SE tree pruning rule.

GLT. The gstep GUIDE method in the previous section.

M5. Piecewise-linear regression tree (Quinlan (1992)) from the RWeka package

(Hornik, Buchta and Zeileis (2009)). It constructs a piecewise-constant tree

first and then fits the data in each terminal node with a multiple linear

regression model.

RF. Random forest (Breiman (2001)) in the RandomForest package (Liaw and

Wiener (2002)).

GF. The gforest GUIDE method of the previous section.

5.2. Imputation methods

Mean/Mode imputation (MM). For training data imputation, all missing

values in each variable were replaced by their sample means (for ordinal variables)

or sample modes (for categorical variables). The same training-sample means and

modes were also used to impute missing values in the test data.

MICE (MI). This uses the mice package (van Buuren and Groothuis-Oudshoorn

(2011)), which creates 5 imputed data sets from the training sample. Each predic-

tion method was applied to the imputed data sets to produce 5 predicted values

for each test observation which were then averaged to yield a final predicted

value. Missing values in the test sample were imputed by the training-sample

means and modes.

GUIDE forest (GI). This fits a GUIDE forest to each variable as dependent

variable in the training set, using the other variables as predictor variables. The

fitted forest model is used to impute missing values in the respective variable in

the training and test data sets. Because the forest is an ensemble of piecewise-

constant GUIDE trees, it does not require missing values in predictor variables

to be imputed. Therefore, unlike MICE, GI does not require iteration and the

variables can be imputed in any order.

Algorithm-specific defaults (DF). As stand-alone methods, GF, GLT, M5

and RPART each has its own method of dealing with missing values. GF does not
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Table 2. Prediction-imputation methods grouped by imputation technique.

Name Description
Algorithm-default techniques for missing values
GLT DF GUIDE stepwise regression tree without imputation
GF DF GUIDE regression forest without imputation
M5 DF M5 with case weights
RPART DF RPART with surrogate splits
Imputation by training sample means and modes (MM)
GLT MM GUIDE stepwise regression tree with mean/mode imputation
GF MM GUIDE regression forest with mean/mode imputation
LASSO MM LASSO with mean/mode imputation
M5 MM M5 with mean/mode imputation
MARS MM MARS with mean/mode imputation
RF MM Random forest with mean/mode imputation
RPART MM RPART with mean/mode imputation
SLR MM Stepwise linear regression with mean/mode imputation
SVR MM Support vector regression with mean/mode imputation
Imputation by GUIDE forest (GI)
GLT GI GUIDE stepwise regression tree with GUIDE forest imputation
GF GI GUIDE regression forest with GUIDE forest imputation
LASSO GI LASSO with GUIDE forest imputation
M5 GI M5 with GUIDE forest imputation
MARS GI MARS with GUIDE forest imputation
RF GI Random forest with GUIDE forest imputation
RPART GI RPART with GUIDE forest imputation
SLR GI Stepwise linear regression with GUIDE forest imputation
SVR GI Support vector regression with GUIDE forest imputation
Imputation of training samples by MICE, test samples by training-sample means and modes
GLT MI GUIDE stepwise regression tree with MICE imputation
GF MI GUIDE regression forest with MICE imputation
LASSO MI LASSO with MICE imputation
M5 MI M5 with MICE imputation
MARS MI MARS with MICE imputation
RF MI Random forest with MICE imputation
RPART MI RPART with MICE imputation
SLR MI Stepwise linear regression with MICE imputation
SVR MI Support vector regression with MICE imputation

impute because it is a forest of 500 piecewise-constant GUIDE trees. GLT uses

the node training-sample means to impute missing missing values prior to fitting

the linear regression model in the node. In M5, an observation with missing value

in the split variable is randomly sent to one of the child nodes with probability

proportional to its sample size. RPART uses surrogate splits (Breiman et al.

(1984)).

Table 2 lists the 31 procedures obtained by combining the 9 prediction al-
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gorithms with the 4 missing value techniques (some algorithms do not have DF

techniques). To aid recall, the name of each procedure consists of two parts

joined by an underscore. The first part is the name of the prediction method

and the second part is the imputation method. For example, GLT DF, GF DF,

M5 DF and RPART DF employ the algorithm-specific missing value techniques

of GLT, GF, M5 and RPART, respectively, and GLT MM applies GLT to data

imputed by the MM method.

5.3. Missing-data mechanisms

Let the vector of response and predictor variables be (Y,X1, X2, . . . , XK)

and let the ith observation vector be (Yi, Xi1, Xi2, . . . , XiK). Let p = 0.05 or

0.20 denote the proportion of missing values in a data set. Three ways to create

missing values among the X variables were studied. The first is MCAR, the

second makes each Xij value missing with probability depending on the value

of Yi, and the third makes Xij missing depending on the value of Xik for some

k 6= j.

Missing completely at random (MCAR). Each Xij is independently missing

with probability p.

Missing at random depending on Y (MAR y). Here the value of Xij is

more likely to be missing if the value of Yi is large. Let S denote the set of

indices i such that Yi is greater than its third quartile. For each (i, j), Xij is

independently missing with probability 8p/5 if i ∈ S and with probability 4p/5

if i 6∈ S.

Missing at random depending on X (MAR x). Following Twala (2009),

missing values in X variables are randomly generated based on the values of

other correlated variables. The procedure is as follows.

1. If a variable X is ordinal, turn it into a 4-level categorical variable by

discretization at the sample quartiles.

2. Perform a chi-squared test of independence for each pair of (categorical or

discretized ordinal) X variables.

3. Order the pairs from smallest to largest according to p-value, omitting pairs

where at least one variable in the pair is a member of another pair with a

smaller p-value.

4. For each pair that remains:
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(a) Randomly select one variable from the pair; call it U and the other V .

(b) Randomly select one value of U and call it c.

(c) Let (Ui, Vi) denote the values of (U, V ) for observation i. If Ui = c,

make Vi and its corresponding X value missing with probability 2q.

Otherwise if Ui 6= c, make Vi and its corresponding X value missing

with probability q. The value of q is chosen so that the overall propor-

tion of missing X values in the data set is p.

5.4. Results

The prediction accuracy of the methods was measured by relative mean

square error (rMSE). For each data set, missing values were created using one

of the above missing data generation mechanisms; then the following ten-fold

cross-validation procedure was used to estimate the rMSE of each method.

1. Randomly divide the data set L into ten disjoint subsets L1, . . . , L10, with

each containing approximately the same number of records.

2. For k = 1, . . . , 10, let Lk be the test set, and L− Lk be the training set. If

required, impute missing values in the training and test sets with the given

imputation method.

3. Fit a prediction model to each training set and use it to predict the yi values

in Lk. Let the predicted value be denoted by ŷ
(k)
i and let the mean of the

response values in L − Lk be denoted by ȳ(k). The relative mean square

error is

rMSE = 10−1
10∑
k=1

∑
i∈Lk

(
yi − ŷ(k)i

)2
∑

i∈Lk

(
yi − ȳ(k)

)2
where smaller values indicate higher accuracy.

The prediction method types are grouped by color in the graphs below, with

blue for regression trees (GLT, M5 and RPART), red for regression forests (GF

and RF), green for linear models (LASSO and SLR), and yellow for MARS and

SVR.

5.4.1. MCAR

Figure 7 shows the mean rMSE over the 24 data sets of each method under

MCAR. For 5% missing, the mean rMSEs range from 0.50 to less than 0.80. The

best methods are M5 MI and GLT MI, which are both tree methods applied to
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Figure 7. Mean rMSE over 24 data sets for 5% (top) and 20% (bottom) MCAR. Shorter
bars are better.
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training data imputed with MICE and test data imputed with training sample

means and modes. They are followed closely by GUIDE forest (GF MI and

GF GI) and the tree method GLT GI. Across all imputation techniques, the mean

rMSEs of the GF methods are almost indistinguishable from that of M5 MI and

GLT MI. RF has higher mean rMSE than GF, irrespective of imputation method.

MARS and SVR fall in the middle third among the nine regression methods.

LASSO and SLR are below average, for all imputation methods. M5 MM is

the worst by a wide margin. Given that M5 MI is best, this shows that (for

M5 at least) imputation method can have a large effect on the performance of a

regression method.

For 20% missing, the mean rMSEs of all but two methods are close to each

other, the exceptions being M5 MM and M5 DF, whose mean rMSEs are about

twice as large as the rest. M5 GI is third last. Regression forests (GF and

RF) dominate, with imputation method making little difference. The only non-

forest algorithm to break into the top is GLT GI which is second best. RF is

slightly inferior to GF, for every imputation method. Again, MARS and SVR

are middling and LASSO and SLR are worse, for all imputation methods.

The results suggest that the best methods for both 5% and 20% MCAR

missing are GF GI, GF MI and GLT GI. Methods M5 MM and M5 DF are con-

sistently among the worst; LASSO and SLR are below average; and MARS and

SVR are middling.

5.4.2. MAR y

Figure 8 shows the corresponding results for MAR y. They are similar to

the case for MCAR in that (i) forest methods (GF and RF) are among the best,

irrespective of imputation method, (ii) single-tree GLT is as good as the best for

5% missing, (iii) MARS and SVR are middling, (iv) LASSO and SLR are below

average, and (v) M5 is worst, by a large margin for 20% missing, irrespective of

imputation method.

5.4.3. MAR x

Figure 9 shows the results for MAR x missing. For 5% missing, the single tree

GLT GI is the best (same as for MAR y missing). GLT with other imputation

methods and forest methods (for all imputation methods) are close behind. Again

MARS and SVR are middling and LASSO and SLR are below average. M5 DF

is worst. For 20% missing, the results are roughly similar to those for MAR y:

many forest methods are best and M5 DF is worst.



MISSING DATA, IMPUTATION AND REGRESSION TREES 1715

RF_MI 
GF_MI 
M5_MI 
RF_GI 

GLT_MM 
GF_MM 

GF_DF 
GF_GI 

GLT_GI

GLT_MI 
RF_MM 
SVR_GI

SLR_GI 
M5_MM 
SVR_MI 

SVR_MM 
GLT_DF 

MARS_GI

LASSO_GI 
RPART_MI

SLR_MM 
MARS_MM

MARS_MI 
RPART_DF

SLR_MI 
RPART_GI

M5_DF 
M5_GI 

LASSO_MI 
LASSO_MM 
RPART_MM

0.2 0.4
mean of rMSE (MAR_y, 0.05)

0.6

LASSO & SLR 
MARS & SVR 
Forest 
Single tree

MARS_MI 
SVR_MI 
GLT_MI 

SVR_MM 
SLR_GI 

GLT_MM 
MARS_GI 

GLT_GI 
GF_MI 

RF_MM 
SVR_GI 

RF_MI 
GF_MM 

GF_DF 
RF_GI 
GF_GI

LASSO_GI 
MARS_MM

GLT_DF 
RPART_MI

SLR_MM

RPART_MM
SLR_MI 

LASSO_MM
RPART_DF 
RPART_GI

M5_MM 
M5_DF 
M5_GI 
M5_MI 

LASSO_MI

0.2 0.4 0.6 0.8 
mean of rMSE (MAR_y, 0.20)

1.0

LASSO & SLR 
MARS & SVR 
Forest 
Single tree

Figure 8. Mean rMSE over 24 data sets for 5% (top) and 20% (bottom) MAR y. Shorter
bars are better.
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Figure 9. Mean rMSE over 24 data sets for 5% (top) and 20% (bottom) MAR x. Shorter
bars are better.
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Table 3. Performance of methods. Columns (a), (b) and (c) refer to MCAR, MAR y
and MAR x. A check mark (X) indicates the mean rMSE of a method ranks in the top
half of methods; a dash (−) indicates no default (DF) imputation method.

Miss. DF GI MI MM
rate (a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c)
5% GLT X X X X X X X X X X X

M5 X X X X X
RPART
GF X X X X X X X X X X X X
RF − − − X X X X X X X X
MARS − − − X X
SVR − − − X X X X X X X
LASSO − − −
SLR − − −

20% GLT X X X X X X X X X
M5 X
RPART
GF X X X X X X X X X X X X
RF − − − X X X X X X X X
MARS − − − X X X X
SVR − − − X X X X X X X X
LASSO − − −
SLR − − − X X

5.4.4. Summary

Overall across all three missing-value mechanisms, GF GI is best when the

missing rate is 20 percent. The closeness of the mean rMSEs of other methods

indicate, however, that there are other good methods too. To highlight this, we

classify each method as “good” or “bad” according to whether its mean rMSE

is below or above the median of all methods, for each missing rate and each

missing-value mechanism. Table 3 gives the results of the classification. A “good”

prediction-imputation method is shown with a checkmark (X). Methods that do

not have their own default missing value handling techniques are marked with

a dash (−). Columns labeled (a), (b), and (c) refer to the MCAR, MAR y

and MAR x mechanisms. Rows with the most checkmarks identify the best

regression methods. Similarly, columns with the most checkmarks identify the

best imputation method. By these criteria, GF is the best regression method,

followed by RF and GLT. The worst methods are LASSO and RPART, which

never place in the top half of all methods. SLR is slightly better, but only if it

uses GI imputation. Among imputation methods, GI is the best, with MI second

and MM last.
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6. Conclusion

There are many misconceptions about machine learning methods in gen-

eral and regression tree methods in particular. Some people think that because

the methods are not model-based, they are “black boxes” and hence cannot be

trusted. The reason the methods are not model-based is because they are de-

signed to be free of model assumptions. The GUIDE piecewise-constant tree and

GUIDE forest are two prime examples. Because neither one makes any assump-

tions on the form of the true regression function, their predicted values tend

to be more accurate over a larger class of functions (including non-smooth and

discontinuous functions) than model-based methods. The keys to their predic-

tion accuracy, besides effective recursive partitioning, are tree pruning by cross-

validation for GUIDE tree and model averaging for GUIDE forest. As explained

in Section 3, GUIDE has an additional advantage if there are missing data, be-

cause it uses missing covariate values “as is” without imputation at each split.

Although this design decision was made years ago as an alternative to surrogate

splits, it has advantages to imputation techniques such as MICE that require

MAR assumptions for all predictor variables.

To show that there are statistical benefits as well when there are missing

values, we compared GUIDE with MICE and other methods on two performance

criteria. The first criterion is estimation bias in regression coefficients and the

second is prediction accuracy after missing value imputation. Traditional model-

based imputation methods were invented to enable statistical inference on pa-

rameters in hypothesized data models; prediction was not the main focus. Not

surprisingly, we found that if the model and MAR assumptions are satisfied,

MICE yields unbiased estimates. Machine learning methods such as GUIDE,

however, are designed for prediction. Because they do not make explicit assump-

tions about the true regression function or the missingness mechanisms, there

is no reason to expect that they will produce unbiased regression coefficient es-

timates in linear models. Nevertheless, Section 4 shows that although GUIDE

imputation methods do not yield unbiased estimates under conditions ideal for

MICE, their biases seem to diminish with increasing sample size. But if the

assumptions for MICE are violated, GUIDE can have less bias.

The second criterion of prediction accuracy after missing data imputation is

harder to evaluate, because three factors are involved: the imputation method,

the prediction model, and the type of missingness mechanism. We chose three im-

putation methods (MICE, GUIDE and mean/mode) and nine prediction models
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(including stepwise linear regression, LASSO, MARS, support vector regression,

and trees and forests) and evaluated their combined performance on 24 real data

sets with missing values simulated under three schemes (MCAR and MAR de-

pending on X or Y ). Section 5 shows that, averaged over imputation methods,

the prediction accuracy of tree-based methods ranges from the best (GUIDE) to

the worst (M5 and RPART) of the lot. MARS and SVR tend to be average and

stepwise linear regression and LASSO are below average. Averaged over predic-

tion methods and missingness schemes, GUIDE imputation was best, followed

by MICE and mean/mode imputation.

The boundary between model-based and machine learning methods is blurred

nowadays as statisticians and machine learners adopt each other’s techniques.

LASSO, for example, is based on the linear model, but it employs machine learn-

ing ideas such as cross-validation for tuning parameter selection. Conversely, the

“model-based” MOB regression tree method (Zeileis, Hothorn and Hornik (2008))

is so named because it fits a parametric model in each node of the tree. It is ideal

if every method can be analyzed theoretically, but such methods must necessarily

be relatively simple because there are limits to mathematical analysis. This rules

out most algorithmic methods, but it does not mean that they are not worthy

of consideration. The good news is that many methods now come with software

that allows their performance to be evaluated by simulation. Simulations are

never definitive, but they can be as varied and realistic as desired. Furthermore,

the simulations may be performed by anyone besides the developers. For exam-

ple, Lee and Jeong (2017) reported that GUIDE imputation compared favorably

against AutoImpute, a proprietary algorithm developed by Westat, and Liu et al.

(2019), Loh, Cao and Zhou (2019) and Loh and Zhou (2020) demonstrated that

GUIDE performs well against other methods for subgroup identification methods

in precision medicine.

Supplementary Materials

Details about the data sets used in Section 5 are available online at the

journal website.
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