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Abstract: We propose a robust and scalable procedure for general optimization and

inference problems on manifolds, leveraging the classic idea of “median-of-means

estimation”. This is motivated by ubiquitous examples and applications in modern

data science in which a statistical learning problem can be cast as an optimization

problem over manifolds. Being able to incorporate the underlying geometry

for inference, while addressing the need for robustness and scalability, presents

great challenges. We address these challenges by first proving a key lemma that

characterizes some crucial properties of geometric medians on manifolds. In turn,

this allows us to prove the robustness and tighter concentration of our proposed

final estimator in a subsequent theorem. This estimator aggregates a collection of

subset estimators by taking their geometric median over the manifold. We illustrate

bounds on this estimator using examples. The robustness and scalability of the

procedure is shown in numerical examples on simulated and real data sets.

Key words and phrases: Geometric median on manifolds, median-of-means,

optimization on manifolds, robust inference, robust principal geodesic analysis
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1. Introduction

There is a rapidly growing collection of learning problems and applications

in data science that can be formalized as optimization problems over non-

Euclidean spaces, such as nonlinear Riemannian manifolds. Advancements in

technology and computing have led to an increasing prevalence of complex data

in non-Euclidean forms, such as positive-definite matrices (diffusion matrices) in

diffusion tensor imaging (Alexander et al. (2007)), shape objects in medical vision

(Kendall (1984)), network data objects (Kolaczyk et al. (2020)) and subspaces

or orthonormal frames (Lin, Rao and Dunson (2017)). A proper statistical

inference from such data involves optimizing over the underlying manifold to

which the data are constrained. For example, there is a vibrant line of research

on estimating Fréchet means (Fréchet (1948)), which are minimizers of Fréchet

functions on manifolds (Bhattacharya and Bhattacharya (2012); Bhattacharya

and Lin (2017)). In this case, both the data and the parameters of interest
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are on manifolds. In addition, it is common to represent a lower-dimensional

structure in high-dimensional data as a manifold. Learning such a manifold is

a nontrivial optimization problem. In each of the above problems, we require

algorithms that are robust to data contamination and heavy tails and that scale

efficiently to large data sets.

With this motivation, our main aim is to propose a robust and scalable

procedure for general optimization on manifolds. We generalize the powerful

“median-of-means” estimator (Nemirovskij and Yudin (1983)) to manifolds by

establishing some key properties of the geometric median on manifolds, with

which we can prove the tighter concentration bounds of our proposed estimator.

The key idea is to obtain optimizers from a subset of the data, aggregating them

to form a final estimator. Our estimator is robust to outliers and contaminations

of an arbitrary nature, and has provable robustness. The scalability of the

algorithm is guaranteed by the divide-and-conquer nature of combining subset-

based estimators.

There is a related body of literature outside the non-Euclidean manifold

setting. For example, Minsker (2015) applies the median-of-means procedure for

a robust estimation in Banach spaces. Minsker et al. (2017) and Minsker et al.

(2014) propose a robust Bayesian estimator as the geometric median of measures

of the subset posteriors. Characterizing the properties of the geometric median on

manifolds requires a substantially different approach to deal with the underlying

geometry. We prove a key lemma characterizing the robustness property of

geometric medians on manifolds, which allows us to show that our estimator

has tighter concentration bounds than those of subset estimators. This is done

for both the extrinsic geometric median and the intrinsic geometric median, with

the former employing an embedding of manifolds into some higher-dimensional

Euclidean space, and the latter adopting a Riemannian structure. We illustrate

the bounds with explicit calculations in both the extrinsic and the intrinsic cases.

Our procedure is demonstrated in a class of manifolds using simulated and real-

data examples. The manifolds we consider include the sphere, positive-definite

matrices, and planar shape spaces, all of which are commonly applicable in real-

data analysis.

The remainder of the paper is organized as follows. In Section 2, we

introduce the general procedure and prove a key property of the geometric

median on manifolds. Section 3 is devoted to robust estimation and optimization

on manifolds. In particular, we prove the concentration property of our final

estimator when estimating the population parameter of interest, and provide

examples of calculations of the bounds. In Section 4, a simulation study and

data analysis are used to show the robustness and scalability of our procedure.

The final section concludes the paper.
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2. Geometric Median and Robust Estimation on Manifolds

Let Q be a probability distribution on some space X and M be a manifold.

We consider the problem of estimating the population parameter

µ = argmin
p∈M

L∗(p), (2.1)

where L∗(p) is defined as

L∗(p) =

∫
X
L(p, x)Q(dx),

for some loss function L. Let x = {x1, . . . , xn}, where x1, . . . , xn are sampled

from Q. The parameter µ is often estimated using the empirical risk estimator

µ̂n = argmin
p∈M

Ln(p,x) = argmin
p∈M

1

n

n∑
i=1

L(p, xi). (2.2)

Remark 1. An important example is the Fréchet mean, in which the risk function

is

L∗(p) =

∫
ρ2(p, x)Q(dx),

with Q supported on a manifold X = M, and ρ a metric defined on M.

There is a significant amount of literature on nonparametric statistical inference

on manifolds, in which the estimation of the Fréchet mean is addressed (see

Bhattacharya and Bhattacharya (2012); Bhattacharya and Lin (2017)). Similarly,

in a regression problem with manifold-valued output, the underlying problem can

be cast as an optimization problem on manifolds (Lin et al. (2017)). In many

other applications, we do not have X = M, with X a higher-dimensional ambient

space, and the optimization is done over a lower-dimensional manifold, such as the

Grassmannian (Lohit and Turaga (2017); Saparbayeva, Zhang and Lin (2018)),

which has abundant applications in manifold learning and low-rank estimation

matrix problems (Dai, Kerman and Milenkovic (2012); Boumal and Absil (2015)).

Real data sets often contain outliers, which may be errors, extreme ob-

servations, or contamination when sampling from heavy-tailed or mixture

distributions. Thus, there is interest in a robust estimation of the population

parameters, using estimators that are stable and not unduly affected by the

presence of outliers.

In this paper, we consider the classic and intuitive estimator formed by taking

the geometric median of a collection of subset estimators or optimizers. Before

formally introducing our procedure in the next section, we introduce the notion

of the geometric median on a manifold and prove an important lemma about its

properties.
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For a metric space (M, ρ), the geometric median, p∗, of points p1, . . . , pm ∈
M minimizes the sum of the distances to the points, that is,

p∗ = med(p1, . . . , pm) = argmin
p∈M

1

m

m∑
k=1

ρ(p, pk), (2.3)

assuming that p∗ exists and is unique. When M is a manifold, there are different

ways to metrize the space. Let J : M → RD be an embedding of a manifold M
into some higher-dimensional Euclidean space RD. We denote the image of M
after the embedding J as M̃. That is, M̃ = J(M). Note that M̃ is a submanifold

in RD. One can define an extrinsic distance on M induced from the embedding

J using the Euclidean distance on M̃. That is,

ρ(p, q) = ∥J(p)− J(q)∥,

where ∥ · ∥ is the Euclidean norm on RD.

Alternatively, one can take ρ to be the intrinsic distance, as the geodesic

distance arising from a Riemannian structure on M. With the choice of ρ as

the extrinsic or intrinsic distance in (2.3), we have corresponding definitions of

the extrinsic geometric median and the intrinsic geometric median, respectively.

Some properties of the intrinsic geometric median are studied in Fletcher,

Venkatasubramanian and Joshi (2008) by, for example, characterizing the

uniqueness conditions of the intrinsic sample median, along with a Weiszfeld

algorithm for finding the median. Our theoretical results on robustness are of a

fundamentally different nature, allowing us to construct an estimator that is not

only robust, but also has tighter bounds around the true parameter of interest.

We prove the following lemma, which states that if ω ∈ M is at least a

constant, Cα times ϵ, distance away from the geometric median, p∗, then ω is at

least ϵ distance away from at least an α fraction of the points p1, . . . , pm. This

result is illustrated in Figure 1. A similar result is proved in Minsker (2015)

for Banach spaces. The proof of the following, a general lemma for manifolds,

requires additional notation.

Lemma 1. Let p1, . . . , pm ∈ M and p∗ = med(p1, . . . , pm), as in (2.3). Then,

(a) and (b) hold:

(a) Let ρ be the extrinsic distance for some embedding J : M → M̃ ⊂ RD. Let

ω ∈ M, ψ be the angle between J(ω)−J(p∗) and the tangent space TJ(p∗)M̃,

and

Cα =
1− α√

1− 2α cosψ − α sinψ
,

where α ∈ (0, cotψ tan(ψ/2)). If ρ(ω, p∗) ≥ Cαϵ, then there exists an α

portion of elements of p1, . . . , pm that are at least ϵ distance away from ω.

That is, there exists an index set T ⊂ {1, . . . ,m}, with |T | ≥ αm, and
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p∗ω

pj

ρ(ω, p∗) ≥ Cαϵ

ρ(w, pj) ≥ ϵ

M

Figure 1. Geometric Illustration of Lemma 1 on Manifold M.

ρ(pj, ω) ≥ ϵ, for any j ∈ T .

(b) Let ρ be an intrinsic distance on M with respect to some Riemannian

structure. Let ω ∈ M, and let the log map, logp∗, that is, the inverse

exponential map logp∗ = exp−1
p∗ , be K-Lipschitz continuous from B(ω, ϵ) to

Tp∗M, where the distance on Tp∗M is the Euclidean distance, and let

Cα = K(1− α)

√
1

1− 2α
,

where α ∈ (0, 1/2). If ρ(ω, p∗) ≥ Cαϵ, then there exists an α portion of

elements of p1, . . . , pm that are at least ϵ distance away from ω.

A detailed proof of Lemma 1 can be found in the Appendix. The key ideas to

consider are the directional derivative of the objective function at the geometric

median, and the “angle” between the curve connecting p∗ and w and those

connecting p∗ and pj. Assuming that the lemma does not hold leads to the

directional derivative at the median being negative, contradicting the shown fact

that we know that it is positive. At the same time, the directional derivatives,

curves, and angles depend on whether we are using the extrinsic or intrinsic

distance. For example, for the extrinsic case, the directional derivative of the

objective function is defined along the curve that connects J(p∗) and J(w) on

the image of the manifold M̃.

There are many known Riemannian manifolds with K-Lipschitz continuous

log maps, as required in part (b) of the above lemma. Below, we provide several

examples, including the sphere, planar shape space, and space of positive-definite

matrices, which are commonly encountered manifolds in the statistics and medical

imaging literature.

Proposition 1. Let Sd = {p ∈ Rd+1 : ∥p∥ = 1} which is the d-dimensional

sphere. The inverse exponential map, logp, on S
d, given by
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logp(q) =
arccos(pT q)√
1− (pT q)2

(
q − (pT q)p

)
,

is 2-Lipschitz continuous from B(p, π/2) to TpS
d for all p ∈ Sd.

The following proposition shows that the log map in similarity shape spaces

Kendall (1984) also satisfies the K-Lipschitz condition.

Proposition 2. The similarity or planar shape space is given as

Σk
2 =

S2k−3

S1
. (2.4)

The inverse exponential map, logp, given by

logp(q) =
arccos(pT q)√
1− (pT q)2

(
q − (pT q)p

)
,

on Σk
2 is 2-Lipschitz continuous from B(p, π/4) to TpΣ

k
2, for all p ∈ Σk

2.

Proposition 3. The manifold of positive-definite n-by-n matrices, PD(n), has

a 1-Lipchitz continuous inverse exponential map at any p ∈ PD(n). For a given

metric, we have the following exponential and logarithm mappings:

exppA = p1/2 exp
(
p−1/2Ap−1/2

)
p1/2,

logp q = p1/2 log
(
p−1/2qp−1/2

)
p1/2,

where

expX = I +
Y

1!
+
Y 2

2!
+ · · ·+ Y n

n!
+ · · · ,

log x = (x− I)− (x− I)2

2
+ · · ·+ (−1)n−1 (x− I)n

n
+ · · · ,

for any A,X ∈ Sym(n) and any p, q, x ∈ PD(n).

3. Robust Optimization on Manifolds: Concentration Properties

In this section, we introduce our proposed estimator, which aggregates a

collection of subset optimizers of the empirical risk function. We first divide

the data set x1, . . . , xn into m subsets U1, . . . , Um, each of roughly size ⌊n/m⌋.
Let µ1, . . . , µm be the optimizers of the empirical risk function from each subset,

U1, . . . , Um, respectively. That is,

µj = argmin
p∈M

L|Uj |(p, Uj) for j = 1, . . . ,m, (3.1)
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as in (2.2). Our estimator µ∗ is the geometric median of the subset optimizers,

that is,

µ∗ = argmin
p∈M

m∑
j=1

ρ(p, µj). (3.2)

We show that µ∗ exhibits robustness properties when estimating the population

parameter µ.

Minsker (2015) proves that the geometric median of a collection of weakly

concentrated estimators admits a tighter deviation bound in a Hilbert space.

With the help of Lemma 1, we generalise this result to manifolds in the following

theorem.

Theorem 1. Let µ1, . . . , µm be a collection of independent estimators of the

parameter µ, and let the geometric median µ∗ = med(µ1, . . . , µm).

(a) Let ρ be the extrinsic distance on M for some embedding J : M → M̃ ⊂ RD.

Assume that for any ω ∈ M, the angle between J(ω)−J(µ∗) and the tangent

space TJ(µ∗)M̃ is no bigger than ψ̄. For any α ∈ (0, cot ψ̄ tan(ψ̄/2)), set

Cα =
1− α√

1− 2α cos ψ̄ − α sin ψ̄
.

(b) Let ρ be an intrinsic distance on M with respect to some Riemannian

structure. Assume logµ∗ is K-Lipschitz continuous from B(µ∗, ϵ) to Tµ∗M.

For any α ∈ (0, 1/2), set

Cα = K(1− α)

√
1

1− 2α
.

Under (a) or (b), if

P (ρ(µj, µ) > ϵ) ≤ η for i = 1, . . . , n, (3.3)

where η < α, then

P (ρ(µ∗, µ) > Cαϵ) ≤ exp(−mϕ(α, η)), (3.4)

where

ϕ(α, η) = (1− α) log
1− α

1− η
+ α log

α

η
.

Remark 2. An important aspect of constructing the estimator µ∗ is the choice

of the number of subsets m. By (3.4), a larger number of subset estimators

yields greater robustness and a tighter concentration around the true parameter.

However, there must be enough data in each subset to ensure that each subset

estimator behaves well and η in (3.3) is sufficiently small. For a given confidence
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level, ϵ, one can determine the number of subsets to achieve η in (3.3) and the

desired bound on the concentration or confidence level in (3.4).

In the following, we provide examples, in both the intrinsic and the extrinsic

cases, of determining η in (3.3) that allows the computation of the bound in (3.4).

Example 1. Consider the embedding J : M → RD. We have the induced

measure Q̃ on the image, where Q̃ = Q ◦ J−1. Let x1, . . . , xn be an independent

and identically distributed (i.i.d.) sample from a distribution Q, such that we

have the extrinsic mean µ for the random variable x1;

µ = J−1

(
P
(∫

RD

uQ̃(du)

))
.

Divide the sample x1, . . . , xn intom disjoint groups U1, . . . , Um, each of size [n/m],

and define

µ̃j =
1

|Uj|
∑
i∈Uj

J(xi) j = 1, . . . ,m,

µj ∈ J−1
(
P(µ̃j)

)
.

Thus, we have that

ρ(µ, µj) = ∥J(µ)− J(µj)∥
= ∥J(µ)− µ̃j + µ̃j − J(µj)∥
≤ ∥J(µ)− µ̃j∥+ ∥µ̃j − J(µj)∥
≤ 2∥J(µ)− µ̃j∥.

Therefore,

Eρ2(µ, µj) ≤ 4E∥J(µ)− µ̃j∥2

=
4

|Uj|2
∑
i∈Uj

E∥J(µ)− J(xi)∥2

≤ 4

|Uj|2
∑
i∈Uj

Eρ2(µ, xi)

=
4

|Uj|
Eρ2(µ, x1) ≤ 4

[m
n

]
Eρ2(µ, x1).

By Chebyshev’s inequality,

P
(
ρ(µj, µ) ≥ ϵ

)
= P

(
ρ2(µj, µ) ≥ ϵ2

)
≤ 1

ϵ2
Eρ2(µj, µ) ≤

4

ϵ2

[m
n

]
Eρ2(µ, x1). (3.5)
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Finally, we have the collection of independent estimators µ1, . . . , µm, such that

P (ρ(µj, µ) > ϵ) ≤ η,

where η = (4/ϵ2) [m/n]Eρ2(µ, x1). Thus, by Theorem 1, for any α ∈ (0, cot ψ̄

tan(ψ̄/2)),

P (ρ(µ∗, µ) > Cαϵ) ≤ exp(−mϕ(α, η)),

where

µ∗ = med(µ1, . . . , µm),

Cα =
1− α√

1− 2α cos ψ̄ − α sin ψ̄
,

ϕ(α, η) = (1− α) log
1− α

1− η
+ α log

α

η
.

Example 2. Let x1, . . . , xn be an i.i.d. sample from a distributionQ, such that we

have the Fréchet mean µ for the random variable x1. Divide the sample x1, . . . , xn

into m disjoint groups U1, . . . , Um, each of size [n/m], and define

µj = argmin
y∈M

1

|Uj|
∑
i∈Uj

d2g(y, xi), j = 1, . . . ,m.

Considering the jth subsample corresponding to Uj on the tangent space at µj,

logµj
µj =

1

|Uj|
∑

xi∈Uj

logµj
xi = 0.

Thus, on the tangent space Tµj
M, we obtain the equality

d2g(µ, µj) = ∥ logµj
µ∥2 = 1

|Uj|2

∥∥∥∥ ∑
xi∈Uj

(logµj
xi − logµj

µ)

∥∥∥∥2.
Thus,

Ed2g(µ, µj) =
1

|Uj|2
∑

xi∈Uj

E∥ logµj
xi − logµj

µ∥2

≤ K2

|Uj|2
∑
i∈Uj

Ed2g(µ, xi) =
K2

|Uj|
Ed2g(µ, x1) ≤ K2

[m
n

]
Ed2g(µ, x1).

Therefore, by Chebyshev’s inequality,

P
(
dg(µj, µ) ≥ ϵ

)
= P

(
d2g(µj, µ) ≥ ϵ2

)
≤ 1

ϵ2
Ed2g(µj, µ) ≤

K2

ϵ2

[m
n

]
Ed2g(µ, x1). (3.6)
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Finally, we have the collection of independent estimators µ1, . . . , µm, such that

P (dg(µj, µ) > ϵ) ≤ η,

where η = K2 [m/n]Ed2g(µ, x1). Thus, by Theorem 1, for any α ∈ (0, 1/2),

P (ρ(µ∗, µ) > Cαϵ) ≤ exp(−mϕ(α, η)),

where

µ∗ = med(µ1, . . . , µm),

Cα = K(1− α)

√
1

1− 2α
,

ϕ(α, η) = (1− α) log
1− α

1− η
+ α log

α

η
.

Remark 3. Our proposed median-of-means estimator, is both robust and

scalable over large data sets. For example, dividing the data into m = 2, ..., ⌊n/2⌋
subsets avoids expensive gradient descent steps computed over the entire data

set when finding an overall sample median (m = n) or an overall sample mean

(m = 1). Parallel processing can also be applied to compute the subset estimates

simultaneously.

4. Simulations and Applications

In this section, using extensive numerical examples, we show the robustness

and the improved concentration about the population parameter of the geometric

median of subset estimators, supporting Theorem 1. We first consider simulated

examples to estimate the population means in Sd and PD(3). We then formulate

a robust procedure for estimating explanatory directions for dimension reduction

in PD(3), and conduct a simulation study using this procedure. Finally, we apply

the median-of-means method in the shape space to a hand-shape data set, as in

Fletcher, Venkatasubramanian and Joshi (2008).

The numerical results from the analyses of the simulated and real data

presented in this section, agree with the robustness and concentration properties

of the estimator. The results indicate the following:

1. In simulations 1, 2, 3, and 4, and with various numbers of outliers, the

average distance of the median-of-means is always an improvement over the

average distances of the subset means.

2. The average distance of the median-of-means is almost always an improve-

ment over the overall mean in the presence of outliers.

3. In the case of PD(3), in Simulation 4, the average distance of the median-

of-means for m = 5, 10, 15 often improves on the overall median (m = 60)
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in the presence of outliers. The number of groups m = 15 seems to provide

the best concentration overall. That the effect is more pronounced seems to

agree with the log map in PD(3) being 1-Lipschitz, as in Proposition 3 and

with the bound given in Theorem 1 with K = 1.

In simulation 5 we apply the median-of-means estimator to estimate the center of

operations and explanatory directions for dimension reduction. The robustness

property follows, because explanatory submanifolds maintain their fit to data in

terms of the intrinsic sum-of-squared residuals in the presence of outliers better

than the ordinary PGA procedure does. All code and data used in this section

are available at https://github.com/DrewLazar/RobustManifold.

4.1. Simulation study on Sd

In this subsection, we provide examples with data simulated from the von

Mises–Fisher distribution on the sphere. We estimate both intrinsic and extrinsic

means in the presence of various numbers of outliers. As shown by the numerical

comparisons below, the estimator obtained from the robust estimation procedure

shows improved concentration over that of the subset-based estimators, and is

often closer to the true parameter of interest than are the overall sample mean

and the overall sample median. The algorithms used to compute the summary

statistics related to our estimators in Sd, including the intrinsic mean, extrinsic

mean, intrinsic median, and extrinsic median, are provided in the Supplementary

Material.

4.1.1. Simulations in Sd

Simulation 1. Estimating the Intrinsic Mean in S2: Following Jung (2010), we

sample n = 60 data points from the von Mises–Fisher distribution on S2. We

take the concentration parameter κ = 30, which guarantees with probability ≈ 1

that the sample is within a hemisphere, and thus the intrinsic mean and median

uniquely exist.

We include k = 0, 5, 10, and 15 outliers outside a symmetric 95% confidence

region about the mean with the confidence region. We then apply proposed

median-of-means technique for m = 1, 5, 15, 30 and 60 groups. Over 1,000 runs,

we compute the following:

1. the average intrinsic distance ρ(µ∗, µ) from the true mean µ to the geometric

median of the subset estimator µ∗.

2. the average intrinsic distance ρ(µi, µ) from µ to the average of the subset

means µi for i = 1, . . . ,m.

Note that when m = 1, µi and µ∗ are both the sample Fréchet mean of

the whole data set, which we denote as µ̂. Furthermore, when m = 60, µ∗ is

https://github.com/DrewLazar/RobustManifold
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Table 1. Results from Simulation 1 showing the performance for various estimators of
the mean under a von Mises–Fisher distribution in S2, with k the number of outliers,
and ρ the intrinsic distance.

k ρ(µ̂, µ) ρ(µ∗, µ) ρ(µi, µ) ρ(µ∗, µ) ρ(µi, µ)

0 0.0597 0.0583 0.0947 0.0514 0.1496

5 0.0647 0.0615 0.1159 0.0531 0.1652

10 0.1194 0.1116 0.1414 0.1018 0.2113

15 0.1819 0.1731 0.1973 0.1631 0.2419

sample mean (m=1) m=5 m=15

k ρ(µ∗, µ) ρ(µi, µ) ρ(m̂, µ) ρ(µi, µ)

0 0.0455 0.2118 0.0424 0.2829

5 0.0453 0.2350 0.0447 0.2959

10 0.0776 0.2501 0.0614 0.3259

15 0.1383 0.2954 0.0925 0.3738

m=30 sample median (m=60)

the sample median and µi = pi for i = 1, . . . , 60. The same situation holds in

Simulations 2, 3, and 4.

In Figure 2, we have a sample of n = 60 from the von Mises–Fisher

distribution, including five added outliers. We take m = 5 subsets. The results

show improved concentration about the population mean of the geometric median

of the five subset means.

Simulation 2. Approximation of the Intrinsic Mean in S7: We repeat the first

part of the experiment in Simulation 1 in S7, except with n = 200, κ = 20, k =

0, 10, 20, 40 outliers, and m = 1, 10, 50, 100, 200 groups.

Simulation 3. Approximation of the Extrinsic Mean in S2: We repeat the

experiment in Simulation 1, but with ρ as the extrinsic distance and with each

average taken over 1,200 runs.

The results in Tables 1–3, showing the performance of the various estimators

in Simulations 1–3 respectively, demonstrate that the median-of-means estimator

almost always improves on the average of the subset means and on the overall

Fréchet sample mean estimators in the presence of outliers.

4.2. Simulation study on PD(3)

In this subsection, we consider simulated data from a generalized log-normal

distribution on the space of 3 × 3 positive-definite matrices, PD(3). As in

subsection 4.1, we estimate intrinsic means in the presence of various numbers of

outliers. Numerous applications seek to estimate the mean of a sample of positive-

definite matrices, including a principal geodesic analysis (PGA), as in Fletcher

and Joshi (2007), where the optimization to find explanatory directions occurs in
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Figure 2. Von Mises–Fisher, κ = 30, five added outliers.

Table 2. Results from Simulation 2 showing the performance for various estimators of
the mean under a von Mises–Fisher distribution in S7, with k the number of outliers and
ρ the intrinsic distance.

k ρ(µ̂, µ) ρ(µ∗, µ) ρ(µi, µ) ρ(µ∗, µ) ρ(µi, µ)

0 0.0396 0.0399 0.1186 0.0384 0.2570

10 0.0565 0.0541 0.1258 0.0514 0.2669

20 0.0897 0.0900 0.1462 0.0834 0.2827

40 0.1656 0.1678 0.2082 0.1596 0.3376

Sample mean (m=1) m=10 m=50

k ρ(µ∗, µ) ρ(µi, µ) ρ(m̂, µ) ρ(µi, µ)

0 0.0398 0.3590 0.0387 0.4896

10 0.0469 0.3676 0.0457 0.4978

20 0.0760 0.3896 0.0682 0.5301

40 0.1513 0.5176 0.1305 0.5987

m=100 sample median (m=200)

the tangent space at the sample mean. Using our median-of-means procedure, we

formulate a robust PCA procedure (RPGA). We first describe the algorithms used

to compute the various summary statistics related to our estimators in PD(3).
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Table 3. Results from Simulation 3 showing the performance for various estimators of
the mean under a von Mises–Fisher distribution in S7, with k the number of outliers and
ρ the intrinsic distance.

k ρ(µ̂, µ) ρ(µ∗, µ) ρ(µi, µ) ρ(µ∗, µ) ρ(µi, µ)

0 0.0272 0.0330 0.0676 0.0312 0.1179

5 0.0621 0.0634 0.0943 0.0541 0.1512

10 0.1231 0.1190 0.1456 0.1083 0.1952

15 0.1771 0.1688 0.1956 0.1632 0.2337

Sample mean (m=1) m=5 m=15

k ρ(µ∗, µ) ρ(µi, µ) ρ(m̂, µ) ρ(µi, µ)

0 0.0305 0.1681 0.0312 0.2312

5 0.0453 0.2034 0.0411 0.2745

10 0.0847 0.2479 0.0612 0.3241

15 0.1453 0.2971 0.0837 0.3728

m=30 sample median (m=60)

4.2.1. Computation of sample statistics on PD(3)

To compute the sample intrinsic mean in the following simulation, we use the

damped gradient descent algorithm, as in Fletcher and Joshi (2007). As shown

in Karcher (1977), because PD(3) exhibits nonpositive curvature, the intrinsic

mean is guaranteed to exist and be unique. To compute the sample intrinsic

median, we use the generalization of Weiszfeld’s algorithm given in Fletcher,

Venkatasubramanian and Joshi (2008), where the sample intrinsic median is

shown to exist and to be unique. The computations for the projection onto

subspaces and the principal geodesic directions are performed using MATLAB

minimization routines and user-supplied gradients, as in Sommer, Lauze and

Nielsen (2010), with the derivative of the matrix exponential map provided

by Najfeld and Havel (1995, Thm. 4.5).

4.2.2. Robust principal geodesic analysis

A principal geodesic analysis (PGA), as in Lazar and Lin (2017), is a two-step

procedure that involves 1) computing a center of the data, and 2) successively

finding orthogonal tangent vectors at that center so that their exponentiated span

best fits the data, according to the intrinsic sum-of-squared residuals.

We propose a robust PGA (RPGA) procedure that 1) uses the median-of-

means estimate as the center of the data, and 2) finds orthogonal directions

in the tangent space using the robust median-of-means principal component

analysis (PCA) procedure of Minsker (2015). Specifically, in the RPGA, we

do the following:
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1. Divide the data into m subsets U1, . . . , Um, and for each subset, compute an

intrinsic mean µj, as in (3.1), and then compute µ∗ = med(µ1, . . . , µm), as

in (3.2).

2. Compute Vi = vec(Logµ∗(Ui)), where Logµ∗(Ui) is the image of Ui under the

Riemmanian log map. As in Minsker (2015), compute sample covariance

matrices Σi for each Vi and then compute

Σ̂ = med(Σ1, . . . ,Σn),

where the median is taken with respect to Frobenius norm ||A||F =

trace(A⊺A). We take the eigenvectors of Σ̂, {w1, . . . , w6}, arranged in order

from the largest to the smallest eigenvalue. Then, our robust principal

geodesic directions in the tangent space at µ∗ are {v1, . . . , v6}, where vi is
the vector corresponding to wi, by the vec operator. To form explanatory

subspaces, we then exponentiate the span of {v1, . . . , vk} at µ∗, for k =

1, . . . , 6.

This procedure is robust, because it ensures that the located center of the data

and the located explanatory directions are not unduly affected by outliers.

4.2.3. Simulations in PD(3)

Simulation 4. Estimating the Intrinsic Mean in PD(3): We sample n = 60

data points from a log-normal distribution, where if the random variable X has

this distribution, then vec(LogI(X)) ∼ N (0, κI), with κ a scaling parameter. We

repeat the experiment of Simulation 1 of section 4.1.1, with each average taken

over 1,200 runs.

The results are shown in Table 4, showing again that the median-of-means

estimator always improves on the average of the means, and almost always on

the overall sample Fréchet mean. The average distance from the truth of the

median-of-means for m = 5, 10, 15 improves on the overall median (m = 60) in

the presence of outliers. The number of groups m = 15 seems to provide the best

concentration overall.

Simulation 5. Estimating Explanatory Directions in PD(3) with RPGA: We

sample from a log-normal distribution, where if the random variable X follows

this distribution, then vec(LogI(X)) ∼ N (0, κΣ), with κ a scaling parameter. Σ

is diagonal, with diagonal entries varying from 1 to 20 to ensure that population

PGA directions exist.

Over 200 runs, we add 0, 5, 10, and 15 outliers outside a 95% confidence

region in n = 60 data points, and compute the PGA and RPGA explanatory

directions. We then find the intrinsic mean sum of squared residuals (mSSRs)

of the data without outliers, relative to the estimated explanatory submanifolds.

Table 5 gives the average of the mSSRs over 200 runs for submanifolds of one,
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Table 4. Results for Simulation 4 with data simulated from a log-normal distribution in
PD(3), k the number of outliers, and ρ the intrinsic distance.

k ρ(µ̂, µ) ρ(µ∗, µ) ρ(µi, µ) ρ(µ∗, µ) ρ(µi, µ)

0 0.2630 0.2781 0.5909 0.2753 1.0408

5 0.2640 0.2512 0.5776 0.2683 1.0745

10 0.3568 0.3179 2.7485 0.2986 1.3158

15 0.5292 0.3001 1.0433 0.3437 1.4246

Sample mean (m=1) m=5 m=15

k ρ(µ∗, µ) ρ(µi, µ) ρ(m̂, µ) ρ(µi, µ)

0 0.2750 1.5230 0.2728 2.3449

5 0.2724 1.5930 0.2675 2.4139

10 0.3306 1.7607 0.3482 2.5002

15 0.4183 1.8107 0.5265 2.5617

m=30 Sample median (m=60)

two, and three dimensions for PGA and for RPGA, computed using 5, 10, and

15 groups.

We see that, without outliers, the PGA procedure, which sequentially

optimizes a fit to the data at the intrinsic mean, produces the lowest average

mSSR, regardless of the number of groups for RPGA. However, as outliers are

added, the mSSR for PGA increases to a greater extent than that of RPGA. Note

that RPGA with m = 1 groups is the linear approximation of the PGA procedure

given in Fletcher and Joshi (2007).

4.3. Hand-shape data in ΣK
2

We consider the hand-shape data set in Cootes et al. (1995) of 18 hands,

with each hand in a planar shape space Σ72
2 . A planar shape ΣK

2 consists of

objects with K landmarks in R2 modulo the Euclidean motions rotation, scaling,

and translation (Bhattacharya and Bhattacharya (2012); Kendall (1984)). As in

Fletcher, Venkatasubramanian and Joshi (2008), we use ellipses as outliers, with

each one given as {
a cos

(
kπ

36

)
, b sin

(
kπ

36

)
; k = 0, . . . , 71

}
,

where a, b are sampled from the uniform distribution on [0.5,1]. With k = 3

added outliers, we divide the data of size n = 21 into m = 7 random subsets,

each of size three. We then compute and observe the geometric median and the

sample mean.
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Table 5. Average mSSRs to explanatory submanifolds computed with k outliers to data
without outliers in PD(3).

k PGA RPGA RPGA RPGA

0 0.4206 0.4265 0.4259 0.4320

5 0.4529 0.4465 0.4314 0.4342

10 0.4541 0.4438 0.4508 0.4374

15 0.4540 0.4445 0.4492 0.4442

20 0.4527 0.4473 0.4507 0.4496

m groups m=5 m=10 m=15

k PGA RPGA RPGA RPGA

0 0.2629 0.2686 0.2691 0.2751

5 0.2924 0.2870 0.2803 0.2795

10 0.2963 0.2838 0.2925 0.2791

15 0.2994 0.2835 0.2758 0.2850

20 0.3041 0.2841 0.2889 0.2775

m groups m=5 m=10 m=15

k PGA RPGA RPGA RPGA

0 0.1472 0.1497 0.1533 0.1608

5 0.1919 0.1801 0.1600 0.1588

10 0.2242 0.2102 0.1940 0.1743

15 0.2208 0.2149 0.2134 0.2079

20 0.2305 0.2259 0.2169 0.2206

m groups m=5 m=10 m=15

4.3.1. Computation of sample statistics on ΣK
2

We identify Σ72
2 with S69/S1, as in (2.4), and compute the intrinsic sample

means and medians using direct modifications of the algorithms in Section S2.

In Figure 3 (a), we show n = 21 hands with three outliers. In (b), we show

seven randomly assigned subsets, indicated by different colors, and in (c), we

show the subset means of each group. In (d) we see less influence of the outliers

in the geometric median, because it retains the shape of a hand similar to the

original 18 hands.

5. Discussion

We propose a robust and scalable procedure for general optimization

problems on manifolds. Scalability is particularly important for handling

the difficult computational issues that arise when estimating sample statistics

for manifold data, or when extracting a low-dimensional manifold in high-

dimensional data. Note that parallel computation can be implemented trivially

from the subsampling procedure.
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(a) Hand-Shape Data with three outliers (b) m = 7 subsets

µ1 µ2 µ3 µ4

µ5 µ6 µ7

(c) Subset means, µi

µ∗µ̂

(d) Sample mean, µ̂, and geometric median, µ∗

Figure 3. Median-of-Means on Hand-Shape Data.

Lemma 1 provides an important property of geometric medians on manifolds.

Then, Theorem 1 shows that the resulting estimator yields provable robustness

and tighter concentration bounds about the true parameter of interest. Numerical

results from simulated and real data, discussed in Section 4, agree with the

robustness and concentration properties of the estimator.

Future research might consider the optimal numbers and sizes of subgroups

for estimation, as discussed in remark 2. In Theorem 1, for a given ϵ, additional

groups provide a larger m, but also a larger η in the bound provided by (3.4).

This is reflected in Examples 1 and 2 in (3.5) and (3.6). Thus, determining the

optimal m requires that we also consider the number of outliers and the amount

of contamination in the data. In addition, we need to consider the challenging

computations for large data sets on manifolds and the advantages of partitioning

the data. Furthermore, the second step of the RPGA procedure in 4.2.2 could
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partition the data in the manifold, rather than their Riemannian logs, in the

tangent space at µ∗. Computing the RPGA, as formulated in 4.2.2, requires only

that we compute the median-of-means µ∗, and then use the linear operation of

computing the sample covariance matrices of the Riemannian logs of the data

in the tangent space at µ∗. Robust estimation on manifolds in other contexts,

such as manifold regression (Aswani, Bickel and Tomlin (2011)) might also be

considered. As when estimating the mean, additional complications arise in the

more general context of a manifold.

Supplementary Material

This Supplementary Material contains the proofs for Theorem 1 and

propositions 1, 2 and 3. Also, the algorithms used for computing the various

sample statistics in Section 4 are given.
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Appendix: Proof of Lemma 1

Proof. (a) Let L(J(p)) =
∑m

j=1 ρ(p, pj) =
∑m

j=1 ∥J(p) − J(pj)∥ for J(p) ∈ M̃.

Let γ(t) be a curve from J(p∗) to J(ω) on M̃, where γ(0) = J(p∗), γ(1) = J(ω),

and γ′(0) = v. The directional derivative of L at J(p∗) evaluated at v is given by

dLJ(p∗)(v) = lim
t→0+

L (γ(t))− L (γ(0))

t
= lim

t→0+

L (γ(t))− L(J(p∗))

t
≥ 0 (A.1)

with the above inequality holding as J(p∗) minimizes L for p ∈ M. Let

γ(t) = PM̃

(
J(p∗) + t

(
J(ω)− J(p∗)

))
,

where P is the projection of RD onto M̃, that is, P(x) = argminy∈M̃ρ(y, x). We

assume the projection map P is differentiable at t = 0. Denote J as the Jacobian

matrix of the projection map P at J(p∗). Then one has

v = γ′(0) = J
(
J(ω)− J(p∗)

)
,

which will be needed in determining the constant Cα. One can see that

L (γ(t))− L(J(p∗)) =
m∑
j=1

(∥γ(t)− J(pj)∥ − ∥γ(0)− J(pj)∥) .
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Let

Aj =
∥γ(t)− J(pj)∥ − ∥γ(0)− J(pj)∥

t
for j = 1, . . . ,m.

Then

Aj =
∥γ(t)− J(pj)∥2 − ∥γ(0)− J(pj)∥2

t (∥γ(t)− J(pj)∥+ ∥γ(0)− J(pj)∥)
for j = 1, . . . ,m.

One has

lim
t→0+

(∥γ(t)− J(pj)∥+ ∥γ(0)− J(pj)∥) = 2∥γ(0)− J(pj)∥. (A.2)

Also,

∥γ(t)− J(pj)∥2 = ⟨γ(t)− J(pj), γ(t)− J(pj)⟩
= ⟨γ(t), γ(t)⟩ − 2⟨γ(t), J(pj)⟩+ ⟨J(pj), J(pj)⟩,

and

∥γ(0)− J(pj)∥2 = ⟨γ(0), γ(0)⟩ − 2⟨γ(0), J(pj)⟩+ ⟨J(pj), J(pj)⟩.

Then

∥γ(t)− J(pj)∥2 − ∥γ(0)− J(pj)∥2

= ⟨γ(t), γ(t)⟩ − ⟨γ(0), γ(0)⟩ − 2⟨γ(t)− γ(0), J(pj)⟩
= (⟨γ(t), γ(t)⟩ − ⟨γ(0), γ(t)⟩) + (⟨γ(0), γ(t)⟩ − ⟨γ(0), γ(0)⟩)
− 2⟨γ(t)− γ(0), J(pj)⟩

= ⟨γ(t)− γ(0), γ(t)⟩+ ⟨γ(0), γ(t)− γ(0)⟩ − 2⟨γ(t)− γ(0), J(pj)⟩
= ⟨γ(t)− γ(0), γ(t) + γ(0)− 2J(pj)⟩.

Therefore,

lim
t→0+

∥γ(t)− J(pj)∥2 − ∥γ(0)− J(pj)∥2

t

= lim
t→0+

〈
γ(t)− γ(0)

t
, γ(t) + γ(0)− 2J(pj)

〉
= ⟨γ′(0), γ(0) + γ(0)− 2J(pj)⟩
= 2⟨γ′(0), γ(0)− J(pj)⟩ = 2⟨γ′(0), J(p∗)− J(pj)⟩.

Thus, by (A.2) and the above equation, if J(pj) ̸= J(p∗), one has

lim
t→0+

Aj =
⟨γ′(0), J(p∗)− J(pj)⟩

∥J(p∗)− J(pj)∥
.
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Otherwise, if J(pj) = J(p∗), then

lim
t→0+

Aj = lim
t→0+

∥γ(t)− J(pj)∥
t

= ∥γ′(0)∥.

Therefore,

dLJ(p∗)(v) =
m∑
j=1

lim
t→0+

Aj =
∑

j:pj ̸=p∗

⟨γ′(0), J(p∗)− J(pj)⟩
∥J(p∗)− J(pj)∥

+ ∥γ′(0)∥
m∑
j=1

I(pj = p∗),

where I(·) is the indicator function. The above implies

dLp∗(v)

∥γ′(0)∥
=

m∑
j=1

lim
t→0+

Aj

∥γ′(0)∥
=

∑
j:pj ̸=p∗

⟨γ′(0), J(p∗)− J(pj)⟩
∥γ′(0)∥∥J(p∗)− J(pj)∥

+
m∑
j=1

I(pj = p∗).

(A.3)

The Jacobian matrix of the projection map P at J(p∗), J , is the orthogonal

projection of TJ(p∗)RD ≡ RD to TJ(p∗)M̃. That is, for a ∈ TJ(p∗)RD, J (a) = a1,

where a = a1+a2 is the unique orthogonal decomposition of a with a1 ∈ TJ(p∗)M̃.

Now assume that there does not exist an α portion of elements of p1, . . . , pm which

are at least ϵ distance away from ω, that is, without loss of generality,

∥J(pj)− J(ω)∥ ≤ ϵ for j = 1, . . . , ⌊(1− α)m⌋+ 1.

Let us denote by ∠
(
J(ω) − J(p∗), J(pj) − J(p∗)

)
the angle between the vectors

J(ω)− J(p∗) and J(pj)− J(p∗). Then for j = 1, . . . , ⌊(1− α)m⌋+ 1,

sin
(
∠
(
J(ω)− J(p∗), J(pj)− J(p∗)

))
<

1

Cα

and so

cos
(
∠
(
J(ω)− J(p∗), J(pj)− J(p∗)

))
>

√
1− 1

C2
α

.

Notice that

∠
(
J
(
J(ω)

)
− J(p∗), J(ω)− J(p∗)

)
+ ∠

(
J(ω)− J(p∗), J(pj)− J(p∗)

)
= ψ + ∠

(
J(ω)− J(p∗), J(pj)− J(p∗)

)
≥ ∠

(
J
(
J(ω)

)
− J(p∗), J(pj)− J(p∗)

)
.

Therefore,

cos

(
∠
(
J
(
J(ω)

)
− J(p∗), J(pj)− J(p∗)

))
≥ cos

(
ψ + ∠

(
J(ω)− J(p∗), J(pj)− J(p∗)

))
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>

√
1− 1

C2
α

cosψ − 1

Cα

sinψ.

We have

⟨γ′(0), pj − J(p∗)⟩
∥γ′(0)∥∥pj − J(p∗)∥

= cos

(
∠
(
J
(
J(ω)

)
− J(p∗), J(pj)− J(p∗)

))
>

√
1− 1

C2
α

cosψ − 1

Cα

sinψ.

Then for any α ∈ (0, cotψ tan(ψ/2)) from (A.3)

dLJ(p∗)(v)

∥γ′(0)∥
< −(1− α)m

(√
1− 1

C2
α

cosψ − 1

Cα

sinψ

)
+ αm ≤ 0,

when

Cα ≥ 1− α√
1− 2α cosψ − α sinψ

which is a contradiction with (A.1).

(b) The intrinsic median requires a different proof. Let L(p) =
∑m

j=1 ρ(p, pj)

where ρ is the intrinsic distance; we use the Riemannian exponential map expp∗ :

Tp∗M → M. Let v = logp∗ ω ∈ Tp∗M and consider the geodesic curve γ(t) =

expp∗(tv). Then

dLp∗(v) = lim
t→0

L(γ(t))− L(γ(0))

t
= lim

t→0

L(γ(t))− L(p∗)

t
≥ 0. (A.4)

Denote

A = lim
t→0+

m∑
j=1


√〈

γjs(s, t), γjs(s, t)
〉
−
√〈

γjs(s, 0), γjs(s, 0)
〉

t

 ,

where γj(s, t) = expγ(t)(s logγ(t) pj) = expγ(t)(svj(t)) is the geodesic curve

connecting γ(t) with pj, then γjs(s, t) =
∂γj(s,t)

∂s
. Set

Aj =

√〈
γjs(s, t), γjs(s, t)

〉
−
√〈

γjs(s, 0), γjs(s, 0)
〉

t
, for j = 1, . . . ,m.

Then

Aj =
1

t

⟨γjs(s, t), γjs(s, t)⟩ − ⟨γjs(s, 0), γjs(s, 0)⟩√
⟨γjs(s, t), γjs(s, t)⟩+

√
⟨γjs(s, 0), γjs(s, 0)⟩

, for j = 1, . . . ,m.
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We see that

lim
t→0+

(√
⟨γjs(s, t), γjs(s, t)⟩+

√
⟨γjs(s, 0), γjs(s, 0)⟩

)
= 2

√
⟨γjs(s, 0), γjs(s, 0)⟩.

On the other hand,

lim
t→0+

⟨γjs(s, t), γjs(s, t)⟩ − ⟨γjs(s, 0), γjs(s, 0)⟩
t

= 2
〈D
dt
γjs(s, 0), γjs(s, 0)

〉
= 2

〈D
ds
γjt(s, 0), γjs(s, 0)

〉
= 2

d

ds

〈
γjt(s, 0), γjs(s, 0)

〉
.

Thus if pj ̸= p∗, one has

lim
t→0+

Aj =
d⟨γjt(s, 0), γjs(s, 0)⟩/ds√

⟨γjs(s, 0), γjs(s, 0)⟩
.

Otherwise, if pj = p∗, then

lim
t→0+

Aj = lim
t→0+

√
⟨−tγ′((1− s)t),−tγ′((1− s)t)

t
= lim

t→0+

t∥v∥
t

= ∥v∥.

Therefore,

dLp∗(v) =
m∑
j=1

∫ 1

0

lim
t→0+

Ajds

=
∑

j:pj ̸=p∗

∫ 1

0

d⟨γjt(s, 0), γjs(s, 0)⟩/ds√
⟨γjs(s, 0), γjs(s, 0)⟩

ds+ ∥v∥
m∑
j=1

I(pj = p∗)

=
∑

j:pj ̸=p∗

⟨γjt(1, 0), γjs(1, 0)⟩
∥vj∥

+ ∥v∥
m∑
j=1

I(pj = p∗)

=
∑

j:pj ̸=p∗

⟨(d expp∗)vj
(
1 · v′j(0)

)
, (d expp∗)vjvj⟩

∥vj∥
+ ∥v∥

m∑
j=1

I(pj = p∗)

=
∑

j:pj ̸=p∗

⟨v′j(0), vj⟩
∥vj∥

+ ∥v∥
m∑
j=1

I(pj = p∗)

= −
∑

j:pj ̸=p∗

⟨v, vj⟩
∥vj∥

+ ∥v∥
m∑
j=1

I(pj = p∗),

where I(·) is the indicator function. Then one has,

dLp∗(v)

∥v∥
= −

∑
j:pj ̸=p∗

⟨v, vj⟩
∥v∥∥vj∥

+
m∑
j=1

I(pj = p∗) = −
∑

j:pj ̸=p∗

cos(v̂, vj) +
m∑
j=1

I(pj = p∗).
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From the condition that logp∗ is K-Lipschitz continuous from B(ω, r) to Tp∗M,

∥vj − v∥ ≤ Kdg(expp∗ vj, expp∗ v).

Then this yields

dLp∗(v)

∥v∥
< −(1− α)m

√
1− K2

C2
α

+ αm ≤ 0,

whenever Cα ≥ K(1−α)
√
1/(1− 2α), which leads to a contradiction with (A.4).
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