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Abstract: Screening important features based on ultrahigh-dimensional data has be-

come an important task in statistical analysis. As such, several screening procedures

have been proposed for various types of studies or data, including complete data and

right-censored failure time data. In this study, we consider ultrahigh-dimensional

interval-censored failure time data. Such data occur frequently in medical follow-

up studies, among others, and include right-censored data as a special case, but for

which few works exist. For the problem, a distance correlation-based sure indepen-

dent screening procedure is proposed. The new approach is model-free and does not

require estimating survival functions, unlike most existing nonparametric screening

procedures for failure time data. We establish the sure screening property and the

ranking consistency of the proposed method, and conduct an extensive simulation

study, which suggests that the proposed procedure works well for practical situa-

tions. Finally, we apply the proposed method to a set of real data on Alzheimer’s

disease, which motivated this study.

Key words and phrases: Distance correlation, interval-censored data, model-free

screening, sure screening property, ultrahigh-dimensional data.

1. Introduction

Screening important features based on ultrahigh-dimensional data has be-

come an important task in statistical analysis, and various screening procedures

have been proposed. For example, an early work was that of Fan and Lv (2008),

who proposed a sure independence screening (SIS) procedure under the frame-

work of a linear regression model. Many authors have since extended the SIS

procedure to different models, including the generalized linear model (Fan and

Song (2010)), additive model (Fan, Feng and Song (2011)), and multi-index model

(Zhu et al. (2011)), and Li, Zhong and Zhu (2012) provided a distance correlation-

based SIS procedure. We discuss the same problem, but unlike these prior works,
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we consider a type of incomplete data, namely, interval-censored (IC) failure time

data (Sun (2006)). By IC data, we mean that the failure time of interest is known,

or is observed to belong to an interval, instead of being observed exactly. Such

data commonly occur in fields with periodic-ups, especially medical studies, such

as clinical studies. Furthermore, IC data include right-censored data as a special

case, and their analysis is much more difficult than that of the latter, owing to

their more complicated structures.

An example of IC data that motivated this study is that arising from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI), a longitudinal follow-up

study designed to develop clinical, imaging, genetic, and biochemical biomarkers

for the early detection and tracking of Alzheimer’s disease (AD). In the study,

one variable of interest is the AD conversion time, defined as the time from the

baseline visit date to the AD conversion. Because the participants are examined

intermittently or periodically, the exact time of the AD conversion is not avail-

able, and instead only IC data are available on the variable. In other words,

if it happens, the occurrence of the AD conversion is only known to be within

an interval. For the covariates or factors of interest, the study consists of infor-

mation on a large number of single nucleotide polymorphisms (SNPs) for each

participant, with the aim of detecting SNPs that have significant effects on the

risk of developing AD. For example, questions of interest include which of the

SNPs are individually most associated with the AD conversion, and how one can

predict the AD conversion by using the SNPs and other information.

Many authors have considered generalizations of the SIS procedure to the

screening of important features based on right-censored failure time data. In

general, these procedures can be classified into two types, namely, model-based

methods (Tibshirani (2009); Fan, Feng and Wu (2010); Zhao and Li (2012); Gorst-

Rasmussen and Scheike (2013)) and model-free methods (Song et al. (2014); Wu

and Yin (2015); Zhang, Liu and Wu (2017); Zhou and Zhu (2017); Liu, Zhang

and Zhao (2018); Zhang et al. (2018); Lin, Liu and Hao (2018); Zhang, Liu and

Cui (2021)). However, few SIS methods have been developed for IC failure time

data. Note that one simple generalization is to consider the procedures developed

for right-censored data that involve the nonparametric estimation of survival

functions, and then to simply replace the estimators with Turnbull’s estimator

for the IC data (Turnbull (1976)). One such method, the only existing screening

method for IC failure time data, is that of Hu et al. (2020), who generalized

the screening method for right-censored data proposed by Zhang et al. (2018) to

case-II IC data. A drawback of such an approach is the significant computational

burden, because there is no closed form for Turnbull’s estimator.
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Several regularized methods have been proposed in the literature for variable

or covariate selection based on high-dimensional IC data. For example, Wu and

Cook (2015) proposed such a procedure for the proportional hazards model, with

the baseline hazard function being a piecewise constant function, and gave an

EM algorithm for maximizing the penalized log-likelihood function. Scolas et al.

(2016) extended the adaptive Lasso procedure under a flexible parametric mixture

cure model structure, and Zhao et al. (2020) proposed a broken adaptive ridge

regression procedure that combines the strengths of quadratic regularization and

the adaptive weighted bridge shrinkage. However, these methods either do not

apply or face the simultaneous challenges of computational expediency, statistical

accuracy, and algorithmic stability if the dimension or the number of covariates

p is ultrahigh, in the sense that p = exp(nα), with n denoting the sample size

and α > 0 (Fan, Samworth and Wu (2009)).

In the following, we propose a SIS procedure for ultrahigh-dimensional IC

failure time data by employing the distance correlation (DC) between a redefined

response and each predictor as the dependence measure. As pointed out by

Székely, Rizzo and Bakirov (2007), the DC of two random vectors is equal to

zero if and only if they are independent, and therefore can be used as a sensitive

dependence measure. One major advantage of the proposed approach is that

it does not involve a nonparametric estimation of the survival function or any

complicated numerical optimization, and thus is easy to implement and converges

quickly. Furthermore, it is model free, and thus robust to model misspecification.

In addition, it applies to general and complex IC data and, thus, also to the

mixture of left-, interval-, and right-censored data. We also establish the large-

sample properties of the proposed method, including the sure screening property

and the rank consistency.

The remainder of the article is organized as follows. First we introduce some

notation and assumptions in Section 2, and also provide some background on

the DC. The proposed model-free screening procedure is presented in Section 3,

and in Section 4 we establish the theoretical properties of the proposed approach.

Section 5 presents results obtained from simulation studies conducted to evaluate

the finite-sample performance of the method, which indicate that it works well for

practical situations. To determine the selection threshold value for the proposed

screening procedure, we propose and investigate the performance of a data-driven

log-ratio criterion in Section 6, and Section 7 applies the method to the AD

example discussed above. Section 8 concludes the paper.
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2. Notation, Assumptions, and DC

Consider a failure time study that consists of n independent subjects, and

let T denote the failure time of interest. For each T or subject, suppose there

exist two monitoring or observation times, denoted by U and V with U < V ,

and T is observed only to be in one of three situations: T is between U and V

or interval-censored, T is larger than V or right-censored, or T is less than U

or left-censored. That is, only IC data are available on T , often referred to as

case-II IC data (Sun (2006)). Define the indicator variables ∆1 = I(T < U),

∆2 = I(U ≤ T < V ), and ∆3 = 1−∆1−∆2, and let Ti, Ui, Vi, ∆1i, ∆2i, and ∆3i

denote T , U , V , ∆1, ∆2, and ∆3 respectively, defined above and associated with

subject i (i = 1, . . . , n). Then, the observed data on the Ti can be summarized

as {Ui, Vi,∆1i,∆2i,∆3i : i = 1, 2, . . . , n }.
For each study subject, suppose there exists a p-dimensional vector of co-

variates denoted by Z = (Z1, . . . , Zp)
T, and p can be ultrahigh. Let S(t|Z) =

P (T > t|Z) denote the survival function for a subject with the covariate Z, and

by following Song et al. (2014) and others, define

A = {k : S(t|Z) functionally depends on Zk for t ≥ 0, k = 1, . . . , p} ,

the index set of the active covariates or the covariates that have some effects on T .

To understand the definition above, let ZA denote the sub-vector of Z containing

all of the active covariates or the components in A. Then, A means that S(t|Z)

depends on Z only through ZA or S(t|Z) = S(t|ZA), for any t. Suppose that

the goal is to determine or estimate A using a screening procedure. Because our

proposed screening utility is based on the DC, we first introduce this concept.

Let u and v denote two random vectors, and φu,v(t, s), φu(t), and φv(s) be the

characteristic functions of (u,v), u, and v, respectively. The DC between u and

v is defined as the square root of

dcorr2(u,v) =
dcov2(u,v)√

dcov2(u,u) dcov2(v,v)
,

where dcov2(u,v) denotes the distance covariance between u and v, and is given

by

dcov2(u,v) =
1

cducdv

∫
Rdu+dv

‖φu,v(t, s)− φu(t)φv(s)‖2

‖t‖1+dudu
‖s‖1+dvdv

dt ds .
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In the above,

cdu = π(1+du)/2
/

Γ

(
1 + du

2

)
, cdv = π(1+dv)/2

/
Γ

(
1 + dv

2

)
,

where Γ(·) denotes the gamma function, and du and dv denote the dimensions of u

and v, respectively. Székely, Rizzo and Bakirov (2007) proved that dcorr2(u,v) =

0 if and only if u and v are independent. This suggests that the DC can be used

as a sensitive measure of dependence, and Li, Zhong and Zhu (2012) developed a

DC-based screening procedure for the complete data situation. In the following,

we focus on case-II interval-censored data.

3. DC Screening Procedure

As discussed above, a natural screening utility based on the DC is dcorr2(Zk,

T ), the square of the DC between Zk and T . However, dcorr2(Zk, T ) cannot be

estimated directly using the incomplete IC data. Consider more general data

that includes interval-censored, right-censored, and left-censored observations.

Note that both right-censored and left-censored observations can be viewed as

special cases of interval-censored observations. Define two new variables L and

H, representing the length and endpoint, respectively, of the time interval within

which the event time lies, as

L = ∆1U + ∆2(V − U) + ∆3(η − V ) ,

H = ∆1 · U + ∆2 · V + ∆3 · V ,

where η is a large constant. In practice, any large number can be used for η,

such as η = 106, which we use in our numerical studies. Note that H = V if T

is either between U and V (interval-censored) or larger than V (right-censored),

and H = U if T is less than U (left-censored). In other words, H represents either

the left or the right endpoint of the observed interval. According to Székely, Rizzo

and Bakirov (2007), the following four conditions are equivalent:

(1) dcorr2(Zk, (L,H)) = 0;

(2) (L,H) and Zk are independent;

(3) (a · L+ b, c ·H + d) and Zk are independent for any constants a, c 6= 0 and

constants b, d;

(4) dcorr2(Zk, (a ·L+ b, c ·H + d)) = 0 for any constants a, c 6= 0 and constants

b, d.
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Note that if dcorr2(Zk, (L,H)) > 0, the value of dcorr2(Zk, (a·L+b, c·H+d))

depends on a and c when a 6= c. To eliminate the influence of a and c, we first

standardize (L,H) marginally, as follows:

L∗ =
L− µ1
σ1

, H∗ =
H − µ2
σ2

,

where µ1 = E(L), µ2 = E(H), σ1 = sd(L), and σ2 = sd(H), and E(·) and sd(·)
represent the expectation and standard deviation, respectively, of the correspond-

ing variable. Define Y = (L∗, H∗) and

ωk = dcorr2(Zk,Y ) =
dcov2(Zk,Y )√

dcov2(Zk, Zk)dcov2(Y ,Y )
, (3.1)

which will serve as the population quantity of the proposed marginal utility mea-

sure for ranking the dependence between the covariate Zk and the failure time

T .

A key feature of ωk = dcorr2(Zk,Y ) is that, unlike dcorr2(Zk, (a · L + b, c ·
H + d)), dcorr2(Zk, (a · L∗ + b, c · H∗ + d)) does not depend on a and c. An

additional discussion on their comparison is given below. Based on remark 3 in

Székely, Rizzo and Bakirov (2007), dcov2(Zk,Y ) can be partitioned as

dcov2(Zk,Y ) = Sk1 + Sk2 − 2Sk3 .

In the above, Sk1 = E(‖Zk − Z̃k‖1‖Y − Ỹ ‖2), Sk2 = E(‖Zk − Z̃k‖1)E(‖Y −
Ỹ ‖2), and Sk3 = E{E(‖Zk − Z̃k‖1|Zk)E(‖Y − Ỹ ‖2|Y )}, with (Z̃k, Ỹ ) denoting

an independent copy of (Zk,Y ), and ‖·‖1 and ‖·‖2 denoting the Euclidean norm.

Let (Li, Hi), for i = 1, . . . , n, be a random sample from (L,H). Let (µ̂1, σ̂1)

and (µ̂2, σ̂2) denote the sample mean, and sample standard error of Li and Hi,

respectively. This yields the standardized data { Ŷi = (L̂∗i , Ĥ
∗
i ) : i = 1, . . . , n },

where

L̂∗i =
Li − µ̂1
σ̂1

, Ĥ∗i =
Hi − µ̂2
σ̂2

.

Then, the empirical estimator of dcov2(Zk,Y ) is given by

d̂cov
2
(Zk,Y ) = Ŝk1 + Ŝk2 − 2Ŝk3,

where

Ŝk1 =
1

n2

n∑
i=1

n∑
j=1

|Zki − Zkj |‖Ŷi − Ŷj‖2,
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Ŝk2 =
1

n2

n∑
i=1

n∑
j=1

|Zki − Zkj | ·
1

n2

n∑
i=1

n∑
j=1

‖Ŷi − Ŷj‖2,

Ŝk3 =
1

n3

n∑
i=1

n∑
j=1

n∑
l=1

|Zki − Zkl| · ‖Ŷj − Ŷl‖2.

Similarly, we can obtain the empirical estimators of d̂cov
2
(Zk, Zk) and d̂cov

2
(Y ,Y )

and, accordingly, an empirical estimator of ωk,

ω̂k =
d̂cov

2
(Zk,Y )√

d̂cov
2
(Zk, Zk)d̂cov

2
(Y ,Y )

. (3.2)

Based on the discussion above and the property of DC (Székely, Rizzo and

Bakirov (2007)), the estimator ω̂k is expected to fluctuate around zero if Zk is an

inactive covariate, and to be away from zero otherwise. In other words, we can

select those candidate covariates with top values of ω̂k as active covariates. This

motivates the estimate of A or the screening procedure given by

Â = {k : ω̂k ≥ cn−κ, k = 1, . . . , p},

for some prespecified threshold constants c and κ, as discussed below.

In practice, it is difficult to obtain the constants c and κ or the cutoff

threshold cn−κ, which is used to separate the active and inactive sets. Fol-

lowing the thresholding rule of Fan and Lv (2008), we instead propose ranking

{ ω̂k, k = 1, . . . , p } from the largest to the smallest, and selecting the covariates

based on the top ones or estimating A by

Ã = {j : ω̂j is amongst the first d0 largest of all ω̂k, k = 1, . . . , p} .

In the above, d0 is a predetermined positive integer and suggested to be d0 =

dn/ log ne by Fan and Lv (2008). This choice of d0 has been widely adopted

in the literature on screening procedures (Zhu et al. (2011); Li, Zhong and Zhu

(2012); Song et al. (2014)). More discussion on this is given below, along with a

new maximum log-ratio criterion.

4. Asymptotic Properties

In this section, we establish the sure screening and ranking consistency prop-

erties of the model-free screening procedure proposed in the previous sections.

For this, we need the following conditions.
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C1. There exists a positive constant s0 such that for all 0 < s ≤ 2s0, we have

that

sup
p

max
1≤k≤p

E{exp(s‖G‖21)} <∞,

for G = Zk, and Ṽ with Ṽ = max{U, V }, V , or U for interval-censored,

right-censored, or left-censored observations, respectively.

C2. The minimum distance correlation of active predictors satisfies mink∈A ωk ≥
2cn−κ, for some constants c > 0 and κ ∈ [0, 1/2).

Condition C1 is a common assumption required by most existing screening pro-

cedures. Condition C2 requires that the values of the marginal utilities between

each active variable and the response are not too small. This is a typical assump-

tion in the literature on feature screening, and similar to condition 3 of Fan and

Lv (2008), condition 2 of Li, Zhong and Zhu (2012), and conditions 2 and 5 of

Wu and Cook (2015), among others. We first present the sure screening property

of the proposed screening method, and then the ranking consistency property.

Theorem 1. Under condition C1, for any 0 < γ < 1/2− κ, there exist positive

constants c1 > 0 and c2 > 0 such that

P

(
max
1≤k≤p

∣∣ω̂k − ωk∣∣ ≥ cn−κ) ≤ O (p [exp
{
−c1n1−2(κ+γ)

}
+ n exp(−c2nγ)

])
.

In addition, under conditions C1 and C2, we have that

P
(
A ⊆ Â

)
≥ 1−O

(
a
[
exp

{
−c1n1−2(κ+γ)

}
+ n exp(−c2nγ)

])
,

where a = |A| is the cardinality of A.

Theorem 2. Assume ωk = 0 holds for k /∈ A. Then, under conditions C1 and

C2, there exist positive constants c1 > 0 and c2 > 0 such that

P

(
max
k/∈A

ω̂k < min
k∈A

ω̂k

)
≥ 1−O

(
p
[
exp

{
−c1n1−2(κ+γ)

}
+ n exp(−c2nγ)

])
.

The proofs of the above results are provided in the Supplementary Material.

Note that although the idea used here is similar to that discussed in Li, Zhong

and Zhu (2012), the proof here is much more complicated. One main reason is

that, unlike Li, Zhong and Zhu (2012), we have to estimate the redefined response

Y = (L∗, H∗) in addition to estimating the distance correlation dcorr2(Zk,Y ).

More specifically, we have to obtain the exponential tail probability bound for

P (|dcov2(Zk,Y )− d̂cov
2
(Zk,Y )| ≥ ε) in order to prove Theorem 1. For this, one
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needs to compute P (|dcov2(Zk,Y )− d̃cov
2
(Zk,Y )| ≥ ε) and P (|d̂cov

2
(Zk,Y )−

d̃cov
2
(Zk,Y )| ≥ ε). The calculation of the former can be obtained in the same

way as in Li, Zhong and Zhu (2012), but determining the latter is new. More

details can be found in the Supplementary Material.

Theorem 1 guarantees that the proposed DC-based SIS will retain the ac-

tive set A, and Theorem 2 shows the reasonability or validity of the proposed

dependence measure. Together, these results state that if p = exp{nα} with

0 ≤ α < (1− 2κ)/3, we have that

lim
n→∞

P
(
A ⊆ Â

)
= 1, lim

n→∞
P

(
max
k/∈A

ω̂k < min
k∈A

ω̂k

)
= 1.

This proves that the DC values of all active predictors can be expected to be

larger than those of all inactive variables asymptotically, and all active covariates

can be selected with probability approaching one as n → ∞. In other words, it

is reasonable to choose covariates or predictors for which the ωk are among the

d0 largest ones.

5. Simulation Studies

To assess the finite-sample performance of the DC-based SIS procedure pro-

posed in the previous sections, we conducted a sequence of simulation studies

under different model settings and distributional assumptions of the predictor

variables. Note that instead of the proposed approach, a naive alternative method

is to directly set Y = (U, V,∆1,∆2,∆3), and then to build the marginal utility ωk
as above. For comparison, we also considered this alternative procedure, referred

to as DC-SIS1; the proposed method is referred to as DC-SIS. To measure the

performance, following Li, Zhong and Zhu (2012), we considered the following

quantities:

(i) S: the minimum model size required to include all active variables. In the

tables below, we report the average value of S and a robust estimate of its

standard deviation, denoted as MMS and RSD, respectively, where RSD is

defined as IQR/1.34, with IQR denoting the interquartile range of S over

all replications (Huang and Zhu (2016)).

(ii) Pe: the selection proportion that each active variable is selected into the

model, with the model size d0 = dn/ log ne, where dxe denotes the integer

part of x.

(iii) Pa: the selection proportion that all active variables are selected into the
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model, with the model size d0, as above.

It is apparent that an effective screening procedure is expected to yield S close

to the true minimum model size and both Pe and Pa close to one.

To generate the observed data, for subject i, we first randomly generated

a sequence of observation times from the uniform distribution U(0, τ), denoted

by t1i < t2i < · · · < tmi. If Ti < t1i, we set the censoring type for subject i as

left-censored, and if Ti > tmi, we set the censoring type for subject i as right-

censored. Otherwise, we set the censoring type as interval-censored, and Ui and

Vi as the largest observation time smaller than Ti and the smallest observation

time greater than Ti, respectively. The constant τ , which controls the percentages

of left-censored, interval-censored, and right-censored observations, was chosen to

yield 20%, 60%, and 20%, respectively. The failure time of interest is assumed to

follow the Cox proportional hazards model, the nonlinear model, or the general

transformation model, as described below. The results given below are based on

p = 2000 or 4000, n = 100 or 200, and η = 106, with 500 replications.

Setup 1. In this case, the failure time of interest Ti was generated from the Cox

proportional hazards model given by

λ(t|Zi) = λ0(t) exp(ZT
i β0) ,

where λ0(t) = (t − 0.5)2 and Z ∼ Np(0,Σ), with Σ = (0.8|i−j|), for i, j =

1, . . . , p. Here, we set β0 = (1, 0.8, 0.6, 0.4, 0.2, 0, . . . , 0)T, that is, there are five

active covariates, and the index set of active covariates is A = {1, 2, 3, 4, 5}.
Table 1 presents the simulation results of MMS, RSD, Pe, and Pa for these two

procedures. The results show that the proposed procedure DC-SIS performs well

for all cases, and is clearly better than DC-SIS1, especially for small sample sizes.

Setup 2. Here, we generated the failure time of interest from the nonlinear

survival model with interactions given by

T = (2 + sinZ1)
2 + 0.5(1 + Z5)

−3 + 3(Z2
10 + Z10) + 0.5Z1Z10 + ε ,

where ε ∼ N(0, 1). Note that we have three active covariates in Z1, Z5, and Z10,

giving the index set of the active covariates A = {1, 5, 10}. For the covariates,

we considered three situations:

a) Z ∼ Np(0,Σ), with Σ = (0.8|i−j|), for i, j = 1, . . . , p;

b) The first component Z1 was generated from a Bernoulli distribution with

success probability 0.5, and the remaining (p− 1) components (Z2, . . . , Zp)
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Table 1. The simulation results on S (the minimum model size needed to include all
active covariates), Pe (the selection proportions for each active covariate), and Pa (the
selection proportion for all active covariates) for setup 1

Pe
p n Method MMS RSD Z1 Z2 Z3 Z4 Z5 Pa

2,000 100 DC-SIS1 8.69 0.75 1.000 1.000 1.000 0.998 0.960 0.960
DC-SIS 5.13 0.00 1.000 1.000 1.000 1.000 0.998 0.998

200 DC-SIS1 5.07 0.00 1.000 1.000 1.000 1.000 1.000 1.000
DC-SIS 5.00 0.00 1.000 1.000 1.000 1.000 1.000 1.000

4,000 100 DC-SIS1 16.99 0.75 1.000 1.000 0.998 0.992 0.914 0.914
DC-SIS 5.18 0.00 1.000 1.000 1.000 1.000 0.998 0.998

200 DC-SIS1 5.04 0.00 1.000 1.000 1.000 1.000 1.000 1.000
DC-SIS 5.00 0.00 1.000 1.000 1.000 1.000 1.000 1.000

MMS: the average value of S among 500 replications; RSD: defined as IQR/1.34, where
IQR denotes the interquartile range of S over 500 replications; DC-SIS1: another DC-
based SIS procedure, where we directly set Y = (U, V,∆1,∆2,∆3); DC-SIS: the proposed
method.

were assumed to follow a multivariate normal distribution Np−1(0,Σ), with

Σ = (0.8|i−j|), for i, j = 1, . . . , (p− 1).

c) All covariates Zk(k=1, . . . , p) were generated independently from a Bernoulli

distribution with success probability 0.5.

Table 2 gives the simulation results, containing the same quantities as in

Table 1. The results again indicate that the proposed screening procedure gives

reasonable performance for the complicated nonlinear model with interactions. In

particular, the procedure appears to perform better for the continuous covariate

than it does for the categorical covariate, but the difference between the types of

covariates decreases when the sample size increases. In other words, the proposed

method seems to give good performance for both continuous and categorical

covariates when the sample size is large. Furthermore, as seen in Table 2, the

proposed procedure DC-SIS significantly outperforms the naive DC-based SIS

procedure DC-SIS1 for the complicated nonlinear model, especially for the cases

with categorical covariates.

To evaluate the performance of the proposed procedure under different ob-

servation schedules, we considered another setup. Specifically, we first randomly

generated a sequence of observation times from the uniform distribution U(0, τ),

denoted by t1 < t2 < · · · < tm. For each subject i and at each observation time

tj , a random variable was then independently generated from a Bernoulli distri-

bution with success probability 0.6. If the value is one, we assume that subject
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Table 2. The simulation results on S (the minimum model size needed to include all
active covariates), Pe (the selection proportions for each active covariate), and Pa (the
selection proportion for all active covariates) for setup 2

Pe
p n Case Method MMS RSD Z1 Z5 Z10 Pa

2,000 100 a) DC-SIS1 35.33 11.19 0.734 0.986 0.998 0.726
DC-SIS 6.19 2.99 1.000 1.000 1.000 1.000

b) DC-SIS1 853.55 1,242.35 0.084 0.954 0.996 0.076
DC-SIS 30.90 8.21 0.788 0.998 1.000 0.786

c) DC-SIS1 1,491.33 434.70 0.010 0.004 0.012 0.000
DC-SIS 41.35 8.21 1.000 0.812 1.000 0.812

200 a) DC-SIS1 10.09 2.24 0.996 1.000 1.000 0.996
DC-SIS 5.32 2.24 1.000 1.000 1.000 1.000

b) DC-SIS1 488.65 483.77 0.240 1.000 1.000 0.240
DC-SIS 10.07 2.24 0.996 1.000 1.000 0.996

c) DC-SIS1 1,520.49 429.29 0.022 0.010 0.022 0.000
DC-SIS 3.34 0.00 1.000 1.000 1.000 1.000

4,000 100 a) DC-SIS1 47.58 14.18 0.716 0.980 0.988 0.698
DC-SIS 6.36 2.99 0.998 1.000 1.000 0.998

b) DC-SIS1 1,757.48 2,524.81 0.052 0.922 0.998 0.052
DC-SIS 9.77 22.39 0.660 0.996 1.000 0.658

c) DC-SIS1 3,103.47 786.94 0.006 0.006 0.004 0.000
DC-SIS 83.49 27.05 0.988 0.690 1.000 0.682

200 a) DC-SIS1 10.51 2.24 0.988 1.000 1.000 0.988
DC-SIS 5.43 2.24 1.000 1.000 1.000 1.000

b) DC-SIS1 979.00 1,020.15 0.186 1.000 1.000 0.186
DC-SIS 10.05 1.68 0.998 1.000 1.000 0.998

c) DC-SIS1 3,049.69 728.54 0.008 0.004 0.006 0.000
DC-SIS 7.21 0.00 1.000 0.982 1.000 0.982

Case a): Z ∼ Np(0,Σ); Case b): Z1 is generated from a Bernoulli distribution with
success probability 0.5; Case c): all covariates Zk (k = 1, . . . , p) are generated from a
Bernoulli distribution with success probability 0.5; MMS: the average value of S among
500 replications; RSD: defined as IQR/1.34, where IQR denotes the interquartile range
of S over 500 replications; DC-SIS1: the naive DC-based SIS procedure that set Y =
(U, V,∆1,∆2,∆3); DC-SIS: the proposed method.

i is observed at tj ; otherwise, the subject is not observed. In addition to the

percentages of left-, right-, and interval-censored observations being 20%, 20%,

and 60%, respectively, we also considered cases with percentages 20%, 60%, and

20%, and 60%, 20%, and 20%, denoted as cases I, II, and III, respectively. Table

3 gives the results obtained with m = 20 and under case a). These results suggest

that the proposed method again performs well for this situation. Furthermore,

as expected, the results indicate that the proposed method is robust with respect

to the percentages of left-, right-, and interval-censored observations.



FEATURE SCREENING FOR ULTRAHIGH-DIMENSIONAL IC DATA 1821

Table 3. The simulation results on S (the minimum model size needed to include all
active covariates), Pe (the selection proportions for each active covariate), and Pa (the
selection proportion for all active covariates) for setup 2

Pe
p n Ratio Method MMS RSD Z1 Z5 Z10 Pa

2000 100 I DC-SIS1 1,490.87 425.75 0.008 0.012 0.016 0.000
DC-SIS 6.53 2.24 1.000 1.000 0.998 0.998

II DC-SIS1 1,529.61 359.33 0.008 0.006 0.006 0.000
DC-SIS 8.67 2.24 1.000 1.000 0.978 0.978

III DC-SIS1 1,508.07 424.07 0.008 0.010 0.012 0.000
DC-SIS 11.29 3.73 0.964 0.998 0.996 0.958

200 I DC-SIS1 1,509.70 435.07 0.018 0.010 0.012 0.000
DC-SIS 5.22 1.49 1.000 1.000 1.000 1.000

II DC-SIS1 1,516.77 413.43 0.014 0.028 0.022 0.000
DC-SIS 6.98 1.49 1.000 1.000 1.000 1.000

III DC-SIS1 1,495.15 427.61 0.024 0.026 0.016 0.002
DC-SIS 8.24 2.99 1.000 1.000 1.000 1.000

I: left-censored, right-censored, interval-censored rates of 20%, 20%, 60%; II: left-censo-
red, right-censored, interval-censored rates of 20%, 60%, 20%; III: left-censored, right-
censored, interval-censored rates of 60%, 20%, 20%; MMS: the average value of S among
500 replications; RSD: defined as IQR/1.34, where IQR denotes the interquartile range
of S over 500 replications; DC-SIS1: the naive DC-based SIS procedure that set Y =
(U, V,∆1,∆2,∆3); DC-SIS: the proposed method.

Setup 3. In this setup, we generated the failure time of interest Ti from the

transformation model

H(T ) = −βT
0 Z + ε,

where we took H(t) = log{0.5(e2t − 1)}, β0 = (1, 0.7,06, 0.8, 1.0,0p−10)
T, and

Z ∼ Np(0,Σ), with Σ = (0.5|i−j|), for i, j = 1, . . . , p. Here, we have four ac-

tive covariates in Z1, Z2, Z9, and Z10, giving the index set of active covariates

A = {1, 2, 9, 10}. We considered three choices for the distribution of ε, namely, the

standard normal distribution, the standard logistic distribution, and the type-I

extreme value distribution. The obtained simulation results on the same quan-

tities as above are presented in Table 4, which again suggest that the proposed

procedure DC-SIS gives satisfactory results and seems to be robust with respect

to the error distribution. In addition, the proposed procedure DC-SIS again

outperforms the DC-SIS1 procedure.

To further assess the performance of the proposed screening procedure in

terms of S, Figure 1 gives box plots of S obtained based on 500 replications

under the three setups discussed above for the left-censored, right-censored, and

interval-censored rates being 20%, 20%, and 60%, respectively. Again, they indi-
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Table 4. The simulation results on S (the minimum model size needed to include all
active covariates), Pe (the selection proportions for each active covariate), and Pa (the
selection proportion for all active covariates) for setup 3

Pe
p n Fε Method MMS RSD Z1 Z2 Z9 Z10 Pa

2,000 100 Norm DC-SIS1 44.79 17.91 0.934 0.936 0.826 0.918 0.668

DC-SIS 5.45 0.75 0.998 0.998 0.992 0.996 0.984

Logistic DC-SIS1 120.69 83.21 0.850 0.802 0.664 0.752 0.388

DC-SIS 16.97 5.97 0.984 0.980 0.914 0.974 0.858

Extreme DC-SIS1 41.28 19.59 0.946 0.938 0.838 0.900 0.688

DC-SIS 7.42 0.75 1.000 0.994 0.976 0.994 0.966

200 Norm DC-SIS1 4.86 0.00 1.000 1.000 0.996 0.998 0.994

DC-SIS 4.01 0.00 1.000 1.000 0.998 1.000 0.998

Logistic DC-SIS1 17.21 1.49 0.992 0.988 0.962 0.992 0.940

DC-SIS 4.26 0.00 1.000 1.000 0.998 1.000 0.998

Extreme DC-SIS1 5.45 0.00 1.000 1.000 0.994 1.000 0.994

DC-SIS 4.02 0.00 1.000 1.000 1.000 1.000 1.000

4,000 100 Norm DC-SIS1 83.56 41.04 0.910 0.890 0.794 0.870 0.568

DC-SIS 7.24 0.75 0.994 0.998 0.976 1.000 0.968

Logistic DC-SIS1 227.90 142.91 0.766 0.706 0.612 0.704 0.266

DC-SIS 23.19 8.21 0.970 0.960 0.906 0.946 0.810

Extreme DC-SIS1 92.87 39.18 0.890 0.870 0.820 0.872 0.586

DC-SIS 8.94 0.75 0.996 0.992 0.972 0.992 0.952

200 Norm DC-SIS1 5.99 0.00 0.998 0.998 0.998 1.000 0.994

DC-SIS 4.03 0.00 1.000 1.000 1.000 1.000 1.000

Logistic DC-SIS1 18.52 3.73 0.996 0.982 0.938 0.988 0.904

DC-SIS 4.15 0.00 1.000 1.000 1.000 1.000 1.000

Extreme DC-SIS1 5.29 0.00 1.000 0.998 0.998 0.998 0.994

DC-SIS 4.02 0.00 1.000 1.000 1.000 1.000 1.000

Fε: the distribution of ε; MMS: the average value of S among 500 replications; RSD:
defined as IQR/1.34, where IQR denotes the interquartile range of S over 500 replications;
DC-SIS1: the naive DC-based SIS procedure that set Y = (U, V,∆1,∆2,∆3); DC-SIS:
the proposed method.

cate that the proposed procedure gives excellent performance and can screen out

the inactive covariates, as expected.

6. A Data-Driven Log-Ratio Criterion

As discussed above, to apply the proposed screening procedure and other

existing screening procedures, one needs to choose a selection threshold value.

Here, a common choice is given by Fan and Lv (2008), who suggested a hard

cutoff value d0 = dn/ log ne. In general, using this choice relies on the sparsity
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Figure 1. Boxplots of S for setups 1 (top), 2 (middle), and 3 (bottom).

assumption, meaning that only a small number of variables or covariates are

truly associated with the response variable of interest. This is often true in many

situations, including gene selection and biomedical imaging data analysis. On

the other hand, it is apparent that the sparsity assumption may not hold, and

a data-driven criterion for the choice would be useful. Based on Theorem 2, we

propose the following log-ratio criterion.

Let ω̂k be defined as above and ω̂(k) denote the kth largest of all { ω̂k :

k = 1, . . . , p }. Consider the sequence { log (ω̂(k)/ω̂(k+1)) }. In general, one can

expect that the sequence will sometimes increase and sometimes decrease when k

corresponds to active covariates. Furthermore, it tends to give the largest value

when k approaches the boundary between the active and inactive covariates,
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Figure 2. The plot of ω̂k with the true model size p0 = 5, 10, 20, 50, 100.

and then decreases among the inactive covariates. This motivates the following

log-ratio criterion for choosing the selection threshold value

d∗0 = argmax
1≤j≤(p−1)

log
ω̂(k)

ω̂(k+1)
. (6.1)

To investigate the behavior of the sequence defined above, and to assess the

performance of the log-ratio criterion, we repeated the above simulation study

under setup 1 with n = 100, p = 2000, and the true model size being p0 =

5, 10, 20, 50, or 100. Figure 2 plots the first 200 ω̂(k) obtained from { ω̂k : k =

1, . . . , p }, with each ω̂k being the average value over 500 replications. Figure 3

shows a plot of the corresponding log (ω̂(k)/ω̂(k+1)). Note that in both figures,

the solid points denote the active covariates. One can see from Figure 2 that all

of the active covariates are located on the left side of the inactive covariates, and

there seems to exist a change point from which the value of ω goes smoothly.

Figure 3 indicates that the ratio log (ω̂(k)/ω̂(k+1)) indeed behaves as described

above, and confirms the effectiveness of the proposed log-ratio criterion.

7. An Application

In this section, we apply the model-free DC-based screening procedure pro-

posed in the previous sections to data from the ADNI. The participants in the

study were examined intermittently for various factors, including demographic

and clinical factors and SNPs, and are classified into three groups based on their

cognitive condition: cognitively normal, mild cognitive impairment, and AD.

Among others, one variable of interest is the time (in years) from the baseline

visit date to the AD conversion. Owing to the design of the study, only interval-
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Figure 3. The plot of log (ω̂(k)/ω̂(k+1)) with the true model size p0 = 5, 10, 20, 50, 100.

censored data are available on the AD conversion time. In the following, we

are interested in identifying the SNPs that have significant effects on the AD

conversion time.

In the analysis below, following Li et al. (2017), we focus on the 280 partic-

ipants in the mild cognitive impairment group, for whom complete information

is available about the four demographic and clinical factors identified as signif-

icantly associated with the AD conversion by Li et al. (2017). They are the

participants’ Alzheimer’s Disease Assessment Scale Score of 13 items (ADAS13),

the Rey auditory verbal learning test score of immediate recall (RAVLT.i), the

functional assessment questionnaire score (FAQ), and the MRI volume of middle

temporal gyrus (MidTemp). In addition to these four covariates, we consider

162,194 SNPs, coded as 0, 1, or 2. Note that although there are far more SNPs

in the data, most of them are constants for the subjects considered here, and thus

removed. Note that most predictors are categorical and based on the simulation

results given in Section 5, the proposed method may not perform well for the

categorical covariates when the sample is small. On the other hand, as seen in

Section 5, the proposed method is expected to perform well for both categorical

and continuous covariates for the given sample size here.

Figure 4 presents the estimated dependence measures ω̂k given by the model-

free screening procedure proposed in the previous sections for the 162,194 SNPs,

plus the four demographic and clinical factors, which correspond to k = 1, . . . , 4.

It is apparent that, as expected, the four demographic and clinical factors have

higher correlations with the AD conversion time than the individual SNPs do.

To determine the number of active SNPs, we should choose the 45 SNPs with the

highest ω̂k by using the selection rule [n/ log(n)]. To see this, Figure 5 gives the
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Figure 5. The 500 largest ω̂k values for the AD example.

largest 500 ω̂k from the largest to the smallest, and Figure 6 displays the ratio

sequence log (ω̂(k)/ω̂(k+1)) for the first 50 ratios. The former suggests that there

may be at most 100 active covariates for the AD conversion time. Furthermore,

by using the proposed log-ratio criterion, the latter indicates that there may be

around 10 or fewer than 20 active covariates.

8. Conclusion

We have considered the variable selection or identifying of important or rel-

evant variables for ultrahigh-dimensional IC failure time data, and proposed a

model-free screening procedure for this problem. To develop the proposed ap-

proach, a marginal utility ωk was derived based on the DC between a redefined

response or failure time variable and each covariate. One major advantage of the

proposed screening method is that it does not involve a nonparametric estimation
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of a survival function or any complicated numerical optimization. Thus, it can

be easily implemented and the computation is fast. Furthermore, the procedure

was shown to have the sure screening and ranking consistency properties, and a

data-driven log-ratio criterion was presented to determine the selection threshold

value. Numerical results indicated that the proposed methodology works well for

practical situations.

Noted that, as is the case of SIS procedures, the proposed DC-based screen-

ing procedure is a marginal approach developed based on marginal utilities. One

drawback of these marginal methods is that they may not perform well for situa-

tions in which covariates are jointly important, but marginally unimportant. For

this situation, one can generalize the proposed method to an iterative approach

that can take the correlation among covariates into account, or develop a new

screening method by directly incorporating the correlation information among the

covariates. Another common issue related to the feature screening of ultrahigh-

dimensional data that is not discussed much in the literature is the analysis of the

data after the feature screening or variable selection. Although many methods

have been developed for low-dimensional or high-dimensional data with respect

to estimation or simultaneous variable selection and estimation, there are few

studies on the joint analysis of the two steps or stages.

Supplementary Material

The online Supplementary Material includes detailed proofs of Theorems 1

and 2.
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