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Abstract: Unwanted variation, including hidden confounding, is a well-known prob-

lem in many fields, but particularly in large-scale gene expression studies. Recent

proposals to use control genes, genes assumed to be unassociated with the covariates

of interest, have led to new methods to deal with this problem. Several versions of

these removing unwanted variation (RUV) methods have been proposed, includ-

ing RUV1, RUV2, RUV4, RUVinv, RUVrinv, and RUVfun. Here, we introduce a

general framework, RUV*, that both unites and generalizes these approaches. This

unifying framework helps clarify the connections between existing methods. In par-

ticular, we provide conditions under which RUV2 and RUV4 are equivalent. The

RUV* framework preserves an advantage of the RUV approaches, namely, their

modularity, which facilitates the development of novel methods based on existing

matrix imputation algorithms. We illustrate this by implementing RUVB, a version

of RUV* based on Bayesian factor analysis. In realistic simulations based on real

data, we found RUVB to be competitive with existing methods in terms of both

power and calibration. However, providing a consistently reliable calibration among

the data sets remains challenging.

Key words and phrases: Batch effect, correlated test, gene expression, hidden con-

founding, negative control, RNA-seq, unobserved confounding, unwanted variation

1. Introduction

Many experiments and observational studies in genetics are overwhelmed

with unwanted sources of variation, such as processing dates (Akey et al. (2007)),

the lab that collects a sample (Irizarry et al. (2005)), the batch in which a sample

is processed (Leek et al. (2010)), and subject attributes, such as environmental

factors (Gibson (2008)) and ancestry (Price et al. (2006)). These factors, if

ignored, can result in incorrect conclusions (Gilad and Mizrahi-Man (2015)) by,

for example, inducing dependencies between samples or inflating test statistics,

making it difficult to control false discovery rates (Efron (2004, 2008, 2010)).
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Figure 1. Histograms of p-values from two-sample t-tests when group labels are ran-
domly assigned to samples. Each panel is from a different random seed. The p-value
distributions all clearly deviate from uniform.

Many of the aforementioned sources of variation are likely to be observed,

in which case, standard methods exist to control for them (Johnson, Li and

Rabinovic (2007)). However, most studies also contain unobserved sources of un-

wanted variation, which can be problematic (Leek and Storey (2007)), even in the

ideal case of a randomized experiment. To illustrate this, we took 20 samples from

an RNA-seq data set (GTEx Consortium (2015)), and randomly assigned them

into two groups of 10 samples. Because the group assignment is independent

of each gene’s expression level, the group labels are theoretically unassociated

with all genes; thus, any observed “signal” must be artifactual. Figure 1 shows

histograms of the p-values from two-sample t-tests for three different random-

izations. In each case, the distribution of the p-values differs greatly from the

theoretical uniform distribution. Thus, even in this ideal scenario, where group

labels were randomly assigned, problems can arise. One way to understand this is

to note that the same randomization is being applied to all genes. Consequently,

if many genes are affected by an unobserved factor, and this factor happens, by

chance, to be correlated with the randomization, then the p-value distributions

will be non-uniform. In this sense, the problems here can be viewed as being due

to correlation among the p-values; see Efron (2010) for an extensive discussion.

(The issue of whether the problems in any given study are caused by correlation,

confounding, or something different is both interesting and subtle; see the dis-

cussion in Efron (2010) and Schwartzman (2010), for example. For this reason,

we adopt the “unwanted variation” terminology of Gagnon-Bartsch and Speed

(2012), rather than alternative terminologies such as “hidden confounding.”)

In recent years, many methods have been introduced to try to solve prob-

lems due to unwanted variation. Perhaps the simplest approach is to estimate

sources of unwanted variation using a principal components analysis (Price et al.
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(2006)), and then to control for these factors by using them as covariates in sub-

sequent analyses. Indeed, in genome-wide association studies, this simple method

is widely used. However, in gene expression studies, the method suffers from the

problem that the principal components will typically also contain the signal of

interest, so controlling for them risks removing that signal. To address this, Leek

and Storey (2007, 2008) introduced the surrogate variable analysis (SVA), which

uses an iterative algorithm to estimate the latent factors that do not include the

signal of interest (see also Lucas et al. (2006)). To account for unwanted varia-

tion, the SVA assumes a factor-augmented regression model (Section 2.1), which

has a long history (and others Fisher and Mackenzie (1923); Cochran (1943);

Williams (1952); Tukey (1962); Gollob (1968); Mandel (1969, 1971); Efron and

Morris (1972); Freeman (1973); Gabriel (1978)). Since the SVA, numerous sim-

ilar approaches have emerged, including those of Behzadi et al. (2007), Kang,

Ye and Eskin (2008), Carvalho et al. (2008), Kang et al. (2008), Stegle et al.

(2008), Friguet, Kloareg and Causeur (2009), Kang et al. (2010), Listgarten

et al. (2010), Stegle et al. (2010), Wu and Aryee (2010), Gagnon-Bartsch and

Speed (2012), Fusi, Stegle and Lawrence (2012), Stegle et al. (2012), Sun, Zhang

and Owen (2012), Gagnon-Bartsch, Jacob and Speed (2013), Mostafavi et al.

(2013), Perry and Pillai (2013), Yang et al. (2013), Chen and Zhou (2017), Lee

et al. (2017), Wang et al. (2017), McKennan and Nicolae (2020), McKennan and

Nicolae (2019), and Gerard and Stephens (2020), among others.

As noted above, a key difficulty in adjusting for unwanted variation in expres-

sion studies is distinguishing between the effect of a treatment and the effect of

factors correlated with the treatment. Available methods deal with this problem

in different ways. Here, we focus on methods that use “negative controls” to help

achieve this goal. In the context of a gene expression study, a negative control is

a gene whose expression is assumed to be unassociated with all covariates (and

treatments) of interest. Under this assumption, negative controls can be used

to separate sources of unwanted variation from the treatment effects. The idea

of using negative controls in this way appears in Lucas et al. (2006), and was

recently popularized by Gagnon-Bartsch and Speed (2012) and Gagnon-Bartsch,

Jacob and Speed (2013) in a series of methods and programs known as removing

unwanted variation (RUV). There are many RUV methods, including RUV2 (for

RUV 2-step), RUV4, RUVinv (a special case of RUV4), RUVrinv, RUVfun, and

RUV1.

Understanding the relative merits and properties of the various RUV meth-

ods, which all aim to solve essentially the same problem, is a non-trivial task.

The main contribution of this study is to present a general framework, RUV*,
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that encompasses all versions of RUV (Section 4). RUV* represents the prob-

lem as a general matrix imputation procedure, providing a unifying conceptual

framework, and opening up new approaches based on the large body of literature

on matrix imputation. Our RUV* framework also provides a simple and modular

way to account for uncertainty in the estimated sources of unwanted variation,

which is an issue ignored by most methods. While developing this general frame-

work, we make detailed connections between RUV2 and RUV4, exploiting the

formulation in Wang et al. (2017).

On notation: throughout, we denote matrices using bold capital letters (A),

except for α and β, which are also matrices. Bold lowercase letters are vectors

(a), and non-bold lowercase letters are scalars (a). Where there is no chance

for confusion, we use non-bold lowercase to denote scalar elements of vectors or

matrices. For example, aij is the (i, j)th element of A, and ai is the ith element

of a. The notation An×m denotes that the matrix A is an n-by-m matrix. The

matrix transpose is denoted by Aᵀ, and the matrix inverse is denoted by A−1.

In general, sets are denoted using calligraphic letters (A), and the complement

of a set is denoted with a bar (Ā).

2. RUV4 and RUV2

2.1. Review of the two-step rotation method

Most existing approaches to this problem (Leek and Storey (2007, 2008);

Gagnon-Bartsch and Speed (2012); Sun, Zhang and Owen (2012); Gagnon-Bartsch,

Jacob and Speed (2013); Wang et al. (2017)) are based in some way on using a

factor analysis (FA) to capture unwanted variation. Specifically, they assume:

Yn×p = Xn×kβk×p +Zn×qαq×p +En×p, (2.1)

where, in the context of a gene expression study, yij is the normalized expression

level of the jth gene on the ith sample, X contains the observed covariates, β

contains the coefficients of X, Z is a matrix of unobserved factors (sources of

unwanted variation), α contains the coefficients ofZ, andE contains independent

(Gaussian) errors with means zero and column-specific variances var(eij) = σ2
j .

In this model, the only known quantities are Y and X.

To fit (2.1), it is common to apply a two-step approach (e.g., Gagnon-Bartsch,

Jacob and Speed (2013); Sun, Zhang and Owen (2012); Wang et al. (2017)). The

first step regresses outX and then, using the residuals of this regression, estimates

α and σj . The second step assumes α and σj are known, and estimates β and Z.
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Wang et al. (2017) helpfully frame this two-step approach as a rotation followed

by an estimation in two independent models. We now review this approach.

First, let X = QR denote the QR decomposition of X, where Q ∈ Rn×n

is an orthogonal matrix (QᵀQ = QQᵀ = In) and Rn×k = (Rᵀ
1 ,0)ᵀ, where

R1 ∈ Rk×k is an upper-triangular matrix. Multiplying (2.1) on the left by Qᵀ

yields

QᵀY = Rβ +QᵀZα+QᵀE. (2.2)

Suppose k = k1 + k2, where the first k1 covariates of X are not of direct

interest, but are included because of various modeling decisions (e.g., an intercept

term, or covariates that need to be controlled for). The last k2 columns of X are

the variables of interest, whose putative associations with Y the researcher wishes

to test. Let Y1 ∈ Rk1×p be the first k1 rows of QᵀY ,Y2 ∈ Rk2×p be the next k2

rows of QᵀY , and Y3 ∈ R(n−k)×p be the last n − k rows of QᵀY . Conformably

partition QᵀZ into Z1, Z2, and Z3, and QᵀE into E1, E2, and E3. Let

R1 =

(
R11 R12

0 R22

)
.

Finally, partition β = (βᵀ
1 ,β

ᵀ
2 )ᵀ so that β1 ∈ Rk1×p contains the coefficients

for the first k1 covariates, and β2 ∈ Rk2×p contains the coefficients for the last k2

covariates. Then, (2.2) may be written as three models,

Y1 = R11β1 +R12β2 +Z1α+E1, (2.3)

Y2 = R22β2 +Z2α+E2, (2.4)

Y3 = Z3α+E3. (2.5)

Importantly, the error terms in (2.3), (2.4), and (2.5) are mutually indepen-

dent. This follows from the easily proved fact that E is equal in distribution

to QᵀE. Thus, the aforementioned two-step estimation procedure changes as

follows: first, estimate α and σj using (2.5); second, estimate β2 and Z2, given

α and σj , using (2.4). Equation (2.3) contains the nuisance parameters β1, and

is ignored.

2.2. RUV4

One approach to distinguishing between unwanted variation and effects of

interest is to use “control genes” (Lucas et al. (2006); Gagnon-Bartsch and Speed

(2012)). A control gene is assumed a priori to be unassociated with the covari-
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Procedure 1. RUV4

1. Estimate α and Σ using FA (Definition 1) on Y3 in (2.5). Call these estimates α̂

and Σ̂.

2. Estimate Z2 using control genes (equation (2.8)). Let Σ̂C = diag(σ̂2
j1
, . . . , σ̂2

jm
), for

ji ∈ C, for all i = 1, . . . ,m.

RUV4 in Gagnon-Bartsch, Jacob and Speed (2013) estimates Z2 using the ordinary
least squares (OLS)

Ẑ2 = Y2Cα̂
ᵀ
C(α̂Cα̂

ᵀ
C)
−1. (2.6)

Alternatively, Wang et al. (2017) implement a variation of RUV4 (which we call
CATE, and is implemented in the R package cate) that estimates Z2 using the
generalized least squares (GLS)

Ẑ2 = Y2CΣ̂
−1
C α̂

ᵀ
C(α̂CΣ̂

−1
C α̂

ᵀ
C)
−1. (2.7)

3. Estimate β2 using (2.4), as follows:

β̂2 = R−1
22 (Y2 − Ẑ2α̂).

ate(s) of interest. More formally, the set of control genes, C ⊆ {1, . . . , p}, has the

property that

βij = 0 for all i = k1 + 1, . . . , k, and j ∈ C,

and is a subset of the truly null genes. Examples of control genes used in practice

are spike-in controls (Jiang et al. (2011)), used to adjust for technical factors

(e.g., sample batch), and housekeeping genes (Eisenberg and Levanon (2013)),

used to adjust for both technical and biological factors (e.g., subject ancestry).

RUV4 (Gagnon-Bartsch, Jacob and Speed (2013)) uses control genes to es-

timate β2 in the presence of unwanted variation. Let Y2C ∈ Rk2×m denote the

submatrix of Y2 with columns that correspond to the m control genes. Sim-

ilarly, subset the relevant columns to obtain β2C ∈ Rk2×m, αC ∈ Rq×m, and

E2C ∈ Rk2×m. The steps for RUV4, including the variation of Wang et al. (2017),

are presented in Procedure 1. (For simplicity, we focus on the point estimates

of effects here. For an assessment of the standard errors, see Section S6 of the

Supplementary Material.)

The key idea in Procedure 1 is that, for the control genes model (2.4), be-

comes

Y2C = R22β2C +Z2α̂C +E2C ,

= Z2α̂C +E2C , (2.8)
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e2Cij
ind.∼ N(0, σ̂2

j ). (2.9)

The equality in (2.8) follows from the property of control genes that β2C = 0.

Step 2 of Procedure 1 uses (2.8) to estimate Z2.

Step 1 of Procedure 1 requires an FA of Y3. We formally define an FA as

follows.

Definition 1. A factor analysis (FA), F , of rank q ≤ min(n, p) on Y ∈ Rn×p

is a set of three functions F = {Σ̂(Y ), Ẑ(Y ), α̂(Y )}, such that Σ̂(Y ) ∈ Rp×p is

diagonal with positive diagonal entries, Ẑ(Y ) ∈ Rn×q has rank q, and α̂(Y ) ∈
Rq×p has rank q.

RUV4 allows the analyst to choose the FA. Thus, rather than a single method,

RUV4 is a collection of methods indexed by the FA used. When we need to be

explicit about this indexing, we write RUV4(F).

Procedure 2. RUV2 (without nuisance covariates; Gagnon-Bartsch and Speed (2012))

1. From (2.1), estimate Z by FA on YC . Call this estimate Ẑ.

2. Estimate β by regressing Y on (X, Ẑ). That is,

β̂ = (XᵀSX)−1XᵀSY ,

where S = In − Ẑ(ẐᵀẐ)−1Ẑᵀ.

Procedure 3. RUV2 in rotated model framework of Section 2.1

1. Estimate Z2 and Z3 by FA on
(
Y2C
Y3C

)
. Call these estimates Ẑ2 and Ẑ3.

2. Estimate α and Σ by regressing Y3 on Ẑ3. That is,

α̂ = (Ẑᵀ
3 Ẑ
−1
3 )Ẑᵀ

3Y3 and (2.10)

Σ̂ =
diag[(Y3 − Ẑ3α̂)ᵀ(Y3 − Ẑ3α̂)]

n− k − q
. (2.11)

3. Estimate β2 with
β̂2 = R−1

22 (Y2 − Ẑ2α̂). (2.12)
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2.3. RUV2

Procedure 2 summarizes the RUV2 method introduced in Gagnon-Bartsch

and Speed (2012). It involves two steps: first, estimate the factors causing un-

wanted variation from the control genes; then, include these factors as covariates

in the regression models for the non-control genes. Gagnon-Bartsch, Jacob and

Speed (2013) extend this procedure to deal with nuisance covariates by adding

a preliminary step that rotates Y and X onto the orthogonal complement of

the space spanned by the nuisance covariates (equation (64) in Gagnon-Bartsch,

Jacob and Speed (2013)).

Like RUV4, RUV2 is a class of methods indexed by the FA used, which we

here denote by RUV2old(F). In Procedure 3, we present a method, RUV2new(F),

that we then prove is equivalent to RUV2old (Theorem 1; proved in Section S2 of

the Supplementary Material).

Theorem 1. For a given orthogonal matrix Q ∈ Rn×n and an arbitrary nonsin-

gular matrix A(Y ) that (possibly) depends on Y , suppose

F1(Y ) = {Σ̂(Y ), Ẑ(Y ), α̂(Y )}, and (2.13)

F2(Y ) = {Σ̂(QᵀY ),QẐ(QᵀY )A(Y ),A−1(Y )α̂(QᵀY )}. (2.14)

Then,

RUV2old(F2) = RUV2new(F1).

That is, Procedure 2 using FA (2.13) is equivalent to Procedure 3 using FA (2.14).

The equivalence of RUV2old and RUV2new in Theorem 1 involves using differ-

ent FAs in each procedure. One can ask under what conditions the two procedures

would be equivalent if given the same FA. Corollary 1 states that it suffices for

the FA to be left orthogonally equivariant (see Section S3 of the Supplementary

Material for the proof).

Definition 2. An FA of rank q on Y ∈ Rn×p is left orthogonally equivariant if

{Σ̂(QᵀY ), Ẑ(QᵀY )A(Y ),A(Y )−1α̂(QᵀY )} = {Σ̂(Y ),QᵀẐ(Y ), α̂(Y )},

for all fixed orthogonal Q ∈ Rn×n and an arbitrary nonsingular A(Y ) ∈ Rq×q

that (possibly) depends on Y .

Corollary 1. Suppose F is a left orthogonally equivariant FA. Then,

RUV2old(F) = RUV2new(F).
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Figure 2. Pictorial representation of the differences between RUV2, RUV4, RUV3, and
RUV*.

A well-known FA that is left orthogonally equivariant is the truncated sin-

gular value decomposition (formally defined in Section S1 of the Supplementary

Material), and this is the only option available in the R package ruv (Gagnon-

Bartsch (2015)).

From now on, we use RUV2 to refer to Procedure 3, not Procedure 2, even

if the FA is not orthogonally equivariant. (By Theorem 1, this corresponds to

Procedure 2 with some other FA.)

3. RUV3

Gagnon-Bartsch, Jacob and Speed (2013) provide a lengthy comparison be-

tween RUV2 and RUV4 (their Section 3.4). However, they provide no mathemat-

ical equivalencies. We now introduce RUV3, a version of both RUV2 and RUV4.

We show that it is the only such procedure that is both RUV2 and RUV4.

3.1. The RUV3 procedure

The main goal in all methods is to estimate β2C̄ , the coefficients correspond-

ing to the non-control genes. This involves incorporating information from four

models, which can be written in matrix form:(
Y2C Y2C̄
Y3C Y3C̄

)
=

(
Z2αC +E2C R22β2C̄ +Z2αC̄ +E2C̄
Z3αC +E3C Z3αC̄ +E3C̄

)
. (3.1)

The major difference between RUV2 and RUV4 is how the estimation pro-

cedures interact in (3.1); see Figure 2 for illustration. RUV2 performs an FA on

(Y ᵀ
2C ,Y

ᵀ
3C)

ᵀ, then regresses Y3C̄ on the estimated factor loadings. RUV4 performs

an FA on (Y3C ,Y3C̄), then regresses Y2C on the estimated factors. The main goal

in both, however, is to estimate Z2αC̄ , given Y2C , Y3C , and Y3C̄ .
Estimating Z2αC̄ , given Y2C , Y3C , and Y3C̄ is, in essence, a matrix imputation

problem. In the context of matrix imputation (not removing unwanted variation),
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Owen and Wang (2016) generalize the methods of Owen and Perry (2009), sug-

gesting that after applying an FA to Y3C , one should use the estimates Ẑ2 and α̂C̄
from (3.2) and (3.3), respectively, and then set Ẑ2αC̄ = Ẑ2α̂C̄ . This corresponds

to an FA, followed by two regressions, followed by an imputation step. Following

the theme of this study, we would add an additional step, estimating β2C̄ using

(3.5).

This estimation procedure (Procedure 4) unifies RUV2 and RUV4, and so

we call it RUV3. The unification is formalized in the following theorem (see

Section S4 of the Supplementary Material for the proof).

Theorem 2. A procedure is a version of RUV4 (Procedure 1) and RUV2 (Pro-

cedure 3) if and only if it is also a version of RUV3 (Procedure 4).

Procedure 4. RUV3

1. Perform FA on Y3C to obtain estimates of Z3, αC , and ΣC .

2. Regress Y2C on α̂C to obtain an estimate of Z2, and regress Y3C̄ on Ẑ3 to obtain
estimates of αC̄ and ΣC̄ . That is,

Ẑ2 = Y2CΣ̂
−1
C α̂

ᵀ
C(α̂CΣ̂

−1
C α̂

ᵀ
C)
−1, (3.2)

α̂C̄ = (Ẑᵀ
3 Ẑ3)−1Ẑᵀ

3Y3C̄ , (3.3)

Σ̂C̄ =
diag[(Y3C̄ − Ẑ3α̂C̄)

ᵀ(Y3C̄ − Ẑ3α̂C̄)]

n− k − q
. (3.4)

3. Estimate β2 using
β̂2 = R−1

22 (Y2C̄ − Ẑ2α̂C̄). (3.5)

4. A More General Framework: RUV*

A key insight that arises from unifying RUV2 and RUV4 (and RUV3) into

a single framework is that they share a common goal: estimating Z2αC̄ , which

represents the combined effects of all sources of unwanted variation on Y2C̄ . This

insight suggests a more general approach: any matrix imputation procedure can

be used to estimate Z2αC̄ ; RUV2, RUV3, and RUV4 are just three versions that

rely heavily on linear associations between submatrices. Indeed, we need not even

assume a factor model for the form of the unwanted variation. Furthermore, we

can incorporate uncertainty into the estimates. In this section, we develop these

ideas to provide a more general framework for removing unwanted variation,

which we call RUV*.
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4.1. More general approaches to matrix imputation

To allow for more general approaches to matrix imputation, we generalize

(3.1) to (
Y2C Y2C̄
Y3C Y3C̄

)
=

(
Ω(φ)2C Ω(φ)2C̄
Ω(φ)3C Ω(φ)3C̄

)
+

(
0 R22β2

0 0

)
+E, (4.1)

where Ω is the unwanted variation, parameterized by some φ. When the un-

wanted variation is represented by a factor model, we have that φ = {Z,α} and

Ω(φ) = Zα.

The simplest version of RUV* fits this model in two steps:

1. Use any appropriate procedure to estimate Ω2C̄(φ), given {Y2C ,Y3C ,Y3C̄};

2. Estimate β2 using

R−1
22 (Y2C̄ −Ω2C̄(φ̂)).

This idea is represented in the rightmost panel of Figure 2, and its rela-

tionships with the other RUV approaches are illustrated in the Supplementary

Material, Figure S1. Rather than restricting factors to being estimated using a

linear regression, RUV* allows any imputation procedure to be used to estimate

Ω2C̄(φ). This opens up a large body of literature on matrix imputation for use

in removing unwanted variation with control genes (e.g., Hoff (2007); Allen and

Tibshirani (2010); Candes and Plan (2010); Stekhoven and Bühlmann (2012);

van Buuren (2012); Josse, Sardy and Wager (2016)). (Note that RUV* is more

general than RUVfun of Gagnon-Bartsch, Jacob and Speed (2013); see Section S5

of the Supplementary Material.)

4.2. Incorporating uncertainty in the estimated unwanted variation

As in previous RUV methods, the second step of RUV* treats the estimate

of Ω2C̄(φ) from the first step as if it were “known.” Here, we generalize this,

using Bayesian ideas to propagate the uncertainty.

Although using Bayesian methods in this context is not new (Stegle et al.

(2008, 2010); Fusi, Stegle and Lawrence (2012); Stegle et al. (2012)), our de-

velopment shares one of the great advantages of the RUV methods, namely,

their modularity. That is, RUV methods separate the analysis into smaller, self-

contained steps: the FA step, and the regression step. Modularity is widely used

in many fields: mathematicians modularize results using theorems, lemmas, and

corollaries; and computer scientists modularize code using functions and classes.
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Modularity has many benefits, including the following: (i) it is easier to concep-

tualize an approach if it is broken into small, simple steps; (ii) it is easier to

discover and correct mistakes; and (iii) it is easier to improve an approach by

improving specific steps. These advantages also apply to developing statistical

analyses and methods. For example, using a new method for the FA in an RUV

does not require a whole new approach; one simply replaces the truncated SVD

with the new FA.

To describe this generalized RUV*, we introduce a latent variable Ỹ2C̄ , and

write (4.1) as (
Y2C Ỹ2C̄
Y3C Y3C̄

)
= Ω(φ) +E, (4.2)

Y2C̄ = R22β2 + Ỹ2C̄ . (4.3)

Now, consider the following two-step procedure:

1. Use any appropriate procedure to obtain a conditional distribution h(Ỹ2C̄) =

p(Ỹ2C̄ |Ym), where Ym = {Y2C ,Y3C ,Y3C̄}.

2. Perform an inference for β2 using the likelihood

L(β2) = p(Y2C̄ ,Ym|β2)

= p(Ym)

∫
p(Y2C̄ |Ỹ2C̄ ,β2)p(Ỹ2C̄ |Ym) dỸ2C̄

∝
∫
δ(Y2C̄ − Ỹ2C̄ −R22β2)p(Ỹ2C̄ |Ym) dỸ2C̄

= h(Y2C̄ −R22β2),

where δ(·) indicates the Dirac delta function.

Of course, in step 2, one could perform a classical inference for β2, or place a

prior on β2 and perform a Bayesian inference.

This procedure requires an analytic form for the conditional distribution h.

An alternative is to assume that we can sample from this conditional distribu-

tion, which yields a convenient sample-based (or “multiple imputation”) RUV*

algorithm.

1. Use any appropriate procedure to obtain samples Ỹ
(1)

2C̄ , . . . , Ỹ
(t)

2C̄ from a condi-

tional distribution p(Ỹ2C̄ |Ym).

2. Approximate the likelihood for L(β2) using the fact that β̂
(i)
2 = R−1

22 (Y2C̄ −
Ỹ

(i)

2C̄ ) is sampled from a distribution proportional to L(β2). (This distribution
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is guaranteed to be proper; see Section S11 of the Supplementary Material.)

For example, in step 2 we can approximate the likelihood of each element of β2

using a normal likelihood

L(β2j) ≈ N(β2j ; β̂2j , ŝ
2
j ), (4.4)

where β̂2j and ŝj are the mean and standard deviation, respectively, of β̂
(i)
2 . Al-

ternatively, a t likelihood can be used. Either approach provides an estimate and

a standard error for each element of β2 that accounts for the uncertainty in the

estimated unwanted variation. (In contrast, the various methods used by other

RUV approaches do not account for this uncertainty; see Section S6 of the Sup-

plementary Material.) Here, we use these values to rank the “significance” of the

genes by the value of β̂2j/ŝj . They could also be used as inputs to the empirical

Bayes method in Stephens (2017) to obtain measurements of significance related

to false discovery rates.

Other approaches to the inference in Step 2 are also possible. For example,

given a specific prior on β2, the Bayesian inference for β2 could be performed

by re-weighting these samples according to this prior distribution (see Section S8

of the Supplementary Material). This re-weighting yields an arbitrarily accurate

approximation to the posterior distribution p(β2|Ym,Y2C̄) (see Section S9 of the

Supplementary Material). Posterior summaries using this re-weighting scheme

are easy to derive (see Section S12 of the Supplementary Material).

To illustrate the potential for RUV* to produce new RUV methods, we im-

plement a version of RUV* in which we use a Markov chain Monte Carlo scheme

to fit a simple Bayesian FA model and, hence, perform the sampling-based im-

putation in Step 1 of RUV*. See Section S10 of the Supplementary Material for

details. We refer to this method as RUVB.

5. Empirical Evaluations

We now compare the methods using simulations based on real data (GTEx

Consortium (2015)). The simulation procedure is described in detail in Sec-

tion S13 of the Supplementary Material. In brief, we use random subsets of real

expression data to create “null data” that contain real (but unknown) “unwanted

variation.” Then, we modify these null data to add a known signal. We vary the

sample size (n = 6, 10, 20, 40), number of genes (p = 1,000), number of control

genes (m = 10, 100), and proportion of null genes (π0 = 0.5, 0.9, 1).

Being based on real data, these simulations involve realistic levels of un-
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wanted variation. However, they also represent a “best-case” scenario, in which

treatment labels are randomized with respect to the factors causing this unwanted

variation (see Section S16 of the Supplementary Material for a discussion on the

effects of correlated confounding). They also represent a best-case scenario in

that the control genes given to each method are simulated to be genuinely null

(See Section S17 of the Supplementary Material for a discussion on the effects of

misspecifying the negative controls). Even in this best-case scenario, unwanted

variation is a major issue, and, as we shall see, obtaining well-calibrated inferences

is challenging.

5.1. The methods compared

We compare the standard OLS regression against five other approaches:

RUV2, RUV3, RUV4, CATE (the GLS variant of RUV4), and RUVB. In the

preceding sections, we focused on how these methods obtain point estimates for

β2. However, in practice, one also needs to find standard errors for these esti-

mates. Just as there are many approaches to producing point estimates, there are

many ways of producing standard errors. Here, key techniques include “MAD

variance calibration” (Wang et al. (2017)), “control gene variance calibration”

(Gagnon-Bartsch, Jacob and Speed (2013)), and empirical Bayes variance mod-

eration (EBVM) (Smyth (2004)); see Section S6 of the Supplementary Material

for further detail. Our experience is that the choice of technique can greatly affect

the results, particularly the calibration of the interval estimates. We therefore

experimented with several approaches to estimating the standard error for each

method. We summarize the results by presenting the best-performing version of

each method. See Section S15 of the Supplementary Material for more extensive

discussion.

For RUVB, we considered two approaches to producing the mean and vari-

ance estimates: (i) using sample-based posterior summaries (see Section S12 of

the Supplementary Material); and (ii) using the normal approximation to the

likelihood in Equation (4.4).

5.2. Comparisons: sensitivity vs. specificity

We compare the power of methods to distinguish null and non-null genes by

computing the area under the receiver operating characteristic curve (AUC) for

each method, while varying the significance threshold.

The clearest result here is that the methods all consistently outperform the

standard OLS (see the Supplementary Material, Figure S3). This emphasizes

the benefits of removing unwanted variation in terms of improving the power to
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detect real effects. For small sample size comparisons (e.g. three vs. three) the

gains are smaller, though still apparent, presumably because reliably estimating

the unwanted variation is more difficult for small samples.

A second clear pattern is that using EBVM to estimate the standard errors

consistently improved the AUC performance: the best-performing method in each

family uses EBVM. As might be expected, these benefits are greatest for smaller

sample sizes (see the Supplementary Material, Figure S3).

Compared with these two clear patterns, the differences between the best-

performing methods in each family are more subtle. Figure 3(a) compares the

AUC of the best method in each family with that of RUVB, which performed

best overall in this comparison. (The results are shown for π0 = 0.5; the results

for π0 = 0.9 are similar). We highlight four main results:

1. RUVB has the best mean AUC of all methods we explored;

2. The RUV4/CATE methods perform less well (relative to RUVB) when there

are few control genes and the sample size is large;

3. In contrast, the RUV2 methods perform less well (relative to RUVB) when

the sample size is small and there are few control genes;

4. RUV3 performs somewhat stably (relative to RUVB) across the sample sizes.

The mean AUCs for RUVB are given in the Supplementary Material, Figure S2.

5.3. Comparisons: calibration

We also assessed the calibration of the methods by examining the empirical

coverage of their nominal 95% confidence intervals for each effect (based on the

standard theory for the relevant t distribution in each case).

We begin by examining the “typical” coverage for each method in each sce-

nario by computing the median (across data sets) of the empirical coverage. We

find that, without variance calibration, all method families except RUV4/CATE

achieve satisfactory typical coverage (somewhere between 0.94 and 0.97) across

all scenarios (Figure 3(b) shows the results for π0 = 0.5; other values yielded

similar results, not shown). The best-performing RUV4/CATE method was of-

ten overly conservative in scenarios with few control genes, especially with larger

sample sizes.

Although these median coverage results are encouraging, in practice, having

small variation in the coverage among data sets is also important. That is, we

would like the methods to have near-95% coverage in most data sets, not just on
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Figure 3. (a) Comparison of AUC achieved by best-performing method in each family
versus that of RUVB. Each point shows the observed mean difference in AUC, with
vertical lines indicating the 95% confidence intervals for the mean. The results are shown
for π0 = 0.5, with 10 control genes (upper facet) or 100 control genes (lower facet). All
results are below zero (the dashed horizontal line), indicating the superior performance of
RUVB. (b) Median coverage for the best-performing methods’ 95% confidence intervals
when π0 = 0.5. The vertical lines are bootstrap 95% confidence intervals for the median
coverage, made transparent and slightly horizontally dodged to increase clarity. The
horizontal dashed line is at 0.95. (c) Box plots of the coverage for the best-performing
methods’ 95% confidence intervals when π0 = 0.5 and n = 40. For both (b) and (c), the
left and right facets show the results for 10 and 100 control genes, respectively.

average. Here, the results (Figure 3(c); Supplementary Material, Figure S4) are

less encouraging: the coverage of the methods with good typical coverage (median

coverage close to 95%) varied considerably among the data sets. Nevertheless, the

variability does improve for larger sample sizes and more control genes, and in this

case, all methods improve noticeably on the performance of the OLS (Figure 3(c),

right facet). Of particular concern is that, across all methods, for many data sets,

the empirical coverage can be much lower than the nominal goal of 95%. Such

data sets might lead to problems with an over-identification of significant null

genes (“false positives”), and an under-estimation of false discovery rates.

To summarize the variability in coverage—as well as any tendency to be
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Figure 4. Mean proportion of times the coverage was either greater than 0.975 (Greater)
or less than 0.9 (Less). The column facets distinguish between sample sizes, while the row
facets distinguish between the number of control genes and the proportion of genes that
are null. The means were taken over the variance calibration method: the MAD calibrated
(S6.3), control-gene calibrated (S6.1), or sample- or normal-based RUVB approach.

conservative or anti-conservative—we calculated the proportion of data sets in

which the actual coverage deviated substantially from 95%, which we defined

as being either less than 90% or greater than 97.5%. Figure 4 shows the mean

proportions for each method (where the mean was taken over the methods that

use each type of variance calibration technique). The key findings are as follows:

1. RUVB (the normal and sample-based versions) exhibits “balanced” errors

in coverage: its empirical coverage is as likely to be too high as it is to be

too low.

2. MAD calibration tends to produce highly conservative coverage; that is,

its coverage is very often much larger than the claimed 95%, and seldom

much lower. This tends to reduce false positive significant results, but also

substantially reduces the power to detect real effects. The exception is that
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when all genes are null (π0 = 1), MAD calibration works well for larger

sample sizes. These results can be explained partly by the non-null genes

biasing the variance calibration parameter upward, an issue also noted in

Sun, Zhang and Owen (2012).

3. Control-gene calibration is often anti-conservative when there are few con-

trol genes. However, it can work well when the sample size is large and

there are many control genes. Interestingly, with few control genes, the

anti-conservative behavior gets worse as the sample size increases.

5.4. Additional simulations

As mentioned earlier, the simulation results in Sections 5.2 and 5.3 are based

on a best-case scenario in which the treatment labels are randomized for each

individual. To study the effects of correlated confounding, we extended our sim-

ulation approach to allow the treatment labels to be correlated with the latent

factors (Section S14 of the Supplementary Material). Our results, presented in

Section S16 of the Supplementary Material, indicate that RUVB and RUV3 re-

main competitive in the presence of correlated confounders.

The effects of misspecifying the negative controls are more subtle, as we

explore in Section S17 of the Supplementary Material. Our results indicate that

RUVB and RUV2 are very sensitive to the negative controls assumption, whereas

RUV3 and RUV4 are relatively robust to this assumption (an anonymous reviewer

suggested that this might be the result of the regression steps in (2.7) and (3.2)).

Thus, we should only use RUVB (and RUV2) when we have high quality negative

controls.

Software

The methods developed in this study are implemented in the R package

vicar, available at https://github.com/dcgerard/vicar. The code and in-

structions for reproducing the empirical evaluations in Section 5 are available at

https://github.com/dcgerard/ruvb sims.

Supplementary Material

The online Supplementary Material contains proofs, additional theoretical

and simulation details, and additional simulation results.

https://github.com/dcgerard/vicar
https://github.com/dcgerard/ruvb_sims
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