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Abstract: Statistical learning is evolving quickly, with increasingly sophisticated

models seeking to incorporate the complicated data structures from modern sci-

entific and business problems. Varying-index coefficient models extend varying-

coefficient models and single-index models for semiparametric regressions. This

new class of model offers greater flexibility in terms of characterizing complicated

nonlinear interaction effects in a regression analysis. To safeguard against outliers

and extreme observations, we consider a robust quantile regression approach to

estimate the model parameters. High-dimensional loading parameters are allowed

in our development, under reasonable theoretical conditions. Thus, we propose a

regularized estimation procedure to select the significant nonzero loading parame-

ters, identify linear functions in varying-index coefficient models, and consistently

estimate the parametric and nonparametric components. Under some technical as-

sumptions, we show that the proposed procedure is consistent in terms of variable

selection and linear function identification, and that the proposed parameter es-

timation enjoys the oracle property. Extensive simulation studies are carried out

to assess the finite-sample performance of the proposed method. We illustrate our

methods using an example based on New Zealand workforce data.

Key words and phrases: High-dimensional data, penalty, quantile regression, semi-

parametric regression, varying index coefficient model.

1. Introduction

Semiparametric regression models are powerful statistical learning approaches

that are popular in scientific and business research studies because they enjoy the

merits of both parametric and nonparametric models. We consider the varying-

index coefficient model (VICM) proposed by Ma and Song (2015). This new class

of model extends varying-coefficient models (Fan and Zhang (1999)), single-index

models (Xia et al. (2002)), single-index coefficient models (Xue and Wang (2012)),

and almost all other familiar semiparametric models. To safeguard against out-

liers and extreme observations, we consider a robust quantile regression (QR)

approach to fit the VICM. Specifically, for a given quantile level τ ∈ (0, 1),
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varying-index coefficient QR models are given by

Qτ (Y |X,Z) =

d∑
l=1

mτ,l(Z
Tβτ,l)Xl, (1.1)

where X = (X1, . . . , Xd)
T , X1 ≡ 1, Z = (Z1, . . . , Zp)

T are covariates for the re-

sponse variable Y ∈ R, βτ,l = (βτ,l1, . . . , βτ,lp)
T are unknown loading parameters

for the lth covariate Xl, and mτ,l(·) are unknown nonparametric functions, for

l = 1, . . . , d. Let ετ = Y − Qτ (Y |X,Z) be the model error with an unspecified

conditional density function fετ (·|X,Z) and a conditional cumulative distribu-

tion function Fετ (·|X,Z) of ετ given (X,Z). In the remainder of the paper,

we drop the subscript τ from βτ,l, mτ,l(·), ετ , fετ (·|X,Z), and Fετ (·|X,Z) to

simplify the notation. However, it is helpful to bear in mind that these quantities

are τ -specific. Note that ε’s conditional τth quantile is equal to zero; that is,

P (ε ≤ 0|X,Z) = Fε(0|X,Z) = τ . For the sake of identifiability, we assume that

β =
(
βT1 , . . . ,β

T
d

)T
belongs to the following parameter space:

Θ =
{
β =

(
βTl : 1 ≤ l ≤ d

)T
: ‖βl‖2 = 1, βl1 > 0,βl ∈ Rp

}
,

where ‖.‖2 denotes the L2 norm such that ‖ξ‖2 =
(
ξ21 + · · ·+ ξ2s

)1/2
, for any

vector ξ = (ξ1, . . . , ξs)
T ∈ Rs. Model (1.1) is quite general, and includes many

other existing models as special cases: (i) when ml(·) is assumed to be constant or

a linear function, it reduces to the linear regression model with interactions; (ii)

when d = 1 and Xl = 1, it is the single-index model; (iii) when ml(·) is constant

for l ≥ 2 and X1 = 1, it is the partial linear single-index model; (iv) when the

common coefficient vector βl is used, it is the single-index coefficient model; and

(v) when we consider X = Z and the common coefficient vector βl, it reduces to

the well-known adaptive varying-coefficient model.

The VICM offers a flexible way to model and assess the nonlinear interaction

effects between the covariates X and Z. Note that the choice of these special-

ized model forms may depend on the application. For example, in econometric

studies, it is often of interest to summarize the effects of multiple input variables

within a single variable, and then to perform a regression analysis on the com-

bined variable and other ordinary variables. The well-known capital asset pricing

model (CAPM) and the Fama-French three-factor model both introduce derived

variables in their model representations. Such variables may invoke linear or

nonlinear interactions in the regression function with other variables, even those

used to create the index variables. Experienced data analysts may suggest that



HIGH-DIMENSIONAL VARYING INDEX COEFFICIENT QUANTILE REGRESSION MODEL 675

predictors be properly used in different components of X and Z. How to design

X and Z objectively from data remains an interesting question. However, fully

addressing this question is very challenging, and beyond the scope of this study.

Thus, similarly to traditional studies on index models, we assume that X and

Z are given in the data set, and that there is no overlapped term between X

and Z. Our main interest is to perform statistical inferences on both the loading

coefficients βl and the nonparametric functions ml (·), for l = 1, . . . , d.

Ma and Song (2015) proposed a profile least squares estimation procedure

for the VICM and established its theoretical properties. Their work focused on a

mean regression, which is suitable for nicely distributed data, such as Gaussian

data, but may perform badly in the presence of outliers and heavy-tailed errors.

Our model (1.1) imposes different assumptions on the error structure and, thus,

produces a novel and robust framework applicable to a wider variety of applica-

tions. The estimation methods and the associated asymptotic theories are thus

different to those of Ma and Song (2015).

Since the seminal work of Koenker and Bassett (1978), QRs have emerged as

an important alternative to the mean regression. It is well known that an infer-

ence based on a QR is more robust against distribution contamination (Koenker

(2005)). A full range of quantile analyses can provide a more complete description

of the conditional distribution. It is now widely acknowledged that an analysis

based on a QR may lead to more appropriate findings. For example, climatolo-

gists often pay close attention to how the high quantiles of tropical cyclone inten-

sity change over time (Elsner, Kossin and Jagger (2008)), because these generate

strong winds and waves, often resulting in heavy rain and storm surges. In the

health sciences, medical scientists often study the effects of maternal behaviors

on the low quantiles of birth-weight distributions (Abrevaya (2001)). Further-

more, in business and economics, petroleum is a primary source of nonrenewable

energy, and has important effects on industrial production, electric power genera-

tion, and transportation (Marimoutou, Raggad and Trabelsi (2009)). Thus, most

analysts focus on the high quantiles of oil prices, because oil price fluctuations

have considerable effects on economic activity. The QR framework considered

in this study may affect all of these fields, where a direct application of a mean

regression is inappropriate.

Another important contribution of this study is that we consider high-dimen-

sional learning issues for the quantile VICM. In fact, recent advances in technolo-

gies for cheaper and faster data acquisition and storage have led to explosive

growth in data complexity in a variety of scientific areas, such as medicine, eco-

nomics, and environmental science. We have to consider a realistic solution to the
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“large n, diverging p” data setting. Specifically, we allow the dimension of the co-

variates Z to increase to infinity as the sample size increases. Many penalty-based

estimation methods have been proposed to address the high-dimensional issue

(Fan and Li (2006); Giraud (2015); Hastie, Tibshirani and Wainwright (2015)).

This framework can effectively reduce the model bias and improve the prediction

performance of the fitted model. Fan and Peng (2004) first studied the noncon-

cave penalized likelihood estimation when the number of covariates increases with

the sample size. Later, Wang, Zhou and Qu (2012) extended their method to gen-

eralized linear models for longitudinal measurements. The high-dimensional issue

has also been investigated for semiparametric models. Wang and Wang (2015)

applied the smoothly clipped absolute deviations (SCAD) penalty to perform

variable selection for single-index prediction models with a diverging number of

index parameters. Fan, Liu and Lu (2017) presented a penalized empirical like-

lihood approach for high-dimen sional semiparametric models.

Variable selection for model (1.1) is challenging, because the high-dimensional

loading parameter is structured within the unknown nonparametric function co-

efficients. We adopt a spline basis approximation for the estimation of ml(·),
and estimate the unknown vector of the loading parameters βl under the spar-

sity assumption. In addition, we correctly identify the linear interaction effects

between the covariates. That is, we want to decide whether it is necessary to

model ml(·) nonparametrically for all d varying index functions. Ma and Song

(2015) constructed a generalized likelihood ratio statistic to test whether there

exists a linear interaction effect between covariates. Although this test approach

works very well for low-dimensional problems, it is computationally infeasible

when the number of covariates is large. To this end, we develop a group penal-

ization method that can quickly and effectively differentiate linear functions from

nonparametric functions. The theoretical justification is also nontrivial for this

complicated setting.

2. QR Estimation of Functions and Loadings

2.1. Estimation procedures

Suppose that {(Xi,Zi, Yi), 1 ≤ i ≤ n} is an independent and identically dis-

tributed (i.i.d.) sample from model (1.1). Similarly to Wang and Wang (2015), we

assume that each Zik, for i = 1, . . . , n, k = 1, . . . , p takes a value in [a, b], where a

and b are some finite numbers. B-spline basis functions are commonly used to ap-

proximate the unknown smooth functions, owing to their desirable numerical sta-

bility in practice (de Boor (2001)). We thus adopt a nonparametric approach to
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estimate the index functions. More specifically, let B(u) = (Bs(u) : 1 ≤ s ≤ Jn)T

be a set of normalized B-spline basis functions of order q (q ≥ 2) with Nn internal

knots and Jn = q+Nn. We then approximate ml(·) using a linear combination of

B-spline basis functions ml(·) ≈ B(·)Tλl, where λ =
(
λT1 , . . . ,λ

T
d

)T
is the spline

coefficient vector with λl = (λls : 1 ≤ s ≤ Jn)T , for l = 1, . . . , d.

Let ρτ (u) = u {τ − I(u ≤ 0)} be the quantile loss function, where I(·) is an

indicator function. We obtain the estimators of the spline coefficients λ and the

loading parameters β by minimizing

Lτn (λ,β) =

n∑
i=1

ρτ

{
Yi −

d∑
l=1

B
(
ZT
i βl

)T
λlXil

}
, (2.1)

subject to the constraints ‖βl‖2 = 1 and βl1 > 0. Minimizing (2.1) with respect

to all unknown quantities requires nonstandard nonlinear programming, and the

solution is usually difficult to obtain directly. To address this computing difficulty,

we adopt the profile iterative procedure to estimate βl and ml(·). The detailed

steps are given below.

Step 0. Initialization step: Obtain an initial value β̂(0), with ‖β̂(0)
l ‖2 = 1. Further

details on how to generate the initial values can be found in Appendix A of

the Supplemental Material.

Step 1. For a given β, λ̂(β) can be attained using λ̂ (β) = argminλ∈RdJnLτn (λ,β).

This leads to m̂l(·,β) = B(·)T λ̂l(β), for l = 1, . . . , d. According to (de

Boor (2001), p. 116), the first-order derivative ṁl(·) can be approximated

by the spline functions of one order lower than that of ml(·). Then, we have
ˆ̇ml(·,β) = Ḃ(·)T λ̂l(β), where Ḃ is the first-order derivative of B.

The parameter space Θ specifies that β lies on the boundary of a unit

ball. Therefore, for a given λ, the function Lτn (λ,β) is not differentiable at

point β. To handle this constraint, we employ the “remove-one-component”

method to change the restricted QR to an unrestricted QR. Specifically, for

βl = (βl1, βl2, . . . , βlp)
T , let βl,−1 = (βl2, . . . , βlp)

T be a (p − 1)-dimensional

parameter vector after removing βl1 in βl. Then, βl, for l = 1, . . . , d, can be

rewritten as

βl = βl(βl,−1) =
(√

1− ‖βl,−1‖22,β
T
l,−1

)T
, ‖βl,−1‖22 < 1. (2.2)

It is obvious that βl is infinitely differentiable with respect to βl,−1, and the

Jacobian matrix is given by
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Jl (βl,−1) =
∂βl
∂βTl,−1

=

−
βTl,−1√

1− ‖βl,−1‖22
Ip−1

 ,

where Ip is a p × p identity matrix. Denote β−1 = (βT1,−1, . . . ,β
T
d,−1)

T . Then,

β−1 belongs to

Θ−1 =
{
β−1 =

(
βTl,−1 : 1 ≤ l ≤ d

)T
: ‖βl,−1‖22 < 1,βl,−1 ∈ Rp−1

}
.

Step 2. Let β = β(β−1), with the aforementioned definition βl = βl(βl,−1), for

1 ≤ l ≤ d. Based on the estimators λ̂l, m̂l, and ˆ̇ml from Step 1, we can con-

struct the QR estimating equations for β−1 by setting ∂Lτn(λ̂(β),β)/∂β−1 =

0. However, the equations involve a nonsmooth function ψτ (u) = ρ̇τ (u) =

τ − I (u ≤ 0). This adds difficulty to the computation, despite there being

a linear programming solver (e.g., Jin et al. (2003)). We circumvent this

problem by smoothing the function ∂Lτn(λ̂(β),β)/∂β−1, that is, by replac-

ing ψτ (·) with a smooth function ψτh (·) (Whang (2006)). For this purpose,

we introduce Gh (x) = G (x/h), where G (x) =
∫
u<xK (u)du, K (·) is a ker-

nel function and h is a bandwidth. Then, we construct the approximation

function ψτh (·) = τ −1+Gh (·), and the smoothed estimating equations for

β−1 are given as

Rτnh (β−1) = −
n∑
i=1

ψτh

{
Yi −

d∑
l=1

B
(
ZT
i βl

)T
λ̂l (β)Xil

}

×


ˆ̇m1

(
ZT
i β1,β

)
Xi1J

T
1 Zi +

(
∂λ̂(β)T

∂β1,−1

)
Di(β)

...

ˆ̇md

(
ZT
i βd,β

)
XidJ

T
d Zi +

(
∂λ̂(β)T

∂βd,−1

)
Di(β)


= 0,

(2.3)

where Di(β) = (Di,sl(βl), 1 ≤ s ≤ Jn, 1 ≤ l ≤ d)T , with Di,sl(βl) = Bs(Z
T
i

βl)Xil. Then, we employ the Fisher scoring algorithm to obtain the esti-

mates,

β
(k+1)
−1 = β

(k)
−1 −

[
∂Rτnh (β−1)

∂βT−1

]−1
Rτnh (β−1) |β−1=β

(k)
−1
. (2.4)
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Step 3. Repeat Steps 1 and 2 until convergence, and denote the final estimators

as β̂−1 and λ̂. Then, we apply formula (2.2) to obtain β̂, and construct the

estimators of ml(·) as m̂l(·, β̂) = B(·)T λ̂l(β̂), for l = 1, . . . , d.

Remark 1. Another merit of the kernel smoothing method is that we can quickly

obtain the covariance matrix estimation of β̂ by using the sandwich formula,

which effectively avoids estimating the density function of the random error.

2.2. Theoretical properties

Let β0 = {(β0
1)
T
, . . . , (β0

d)
T }T be the true parameters in model (1.1), where

β0
l = {β0l1, (β0

l,−1)
T }T and β0

l,−1 = (β0l2, . . . , β
0
lpn

)T , for 1 ≤ l ≤ d. Here, the

subscript n in pn is used to make it explicit that the dimension of the loading

parameters pn may depend on n. Let ‖g‖2 =
{∫

g2(x)dx
}1/2

be the L2 norm of a

function g. Now, we define the spaceM as a collection of functions with finite L2

norm on [a, b]d × Rd by M = {g(u,x) =
∑d

l=1 gl(ul)xl, Eg
2
l (Z

Tβl) <∞}, where

u = (u1, . . . , ud)
T and x = (x1, . . . , xd)

T . For 1 ≤ k ≤ pn, we assume that g0k is a

minimizer in M for the following optimization problem:

P(Zk) = g0k
(
U(β0),X

)
(2.5)

=

d∑
l=1

g0l,k(Z
Tβ0

l )Xl (2.6)

= argmin
g∈M

E
[
fε (0|X,Z) {Zk − g

(
U
(
β0
)
,X
)
}2
]
, (2.7)

where U(β0) = (ZTβ0
1, . . . ,Z

Tβ0
d)
T . Next, let P(Z) = {P(Z1), . . . ,P(Zpn)}T ,

Z̃ = Z − P(Z), H(β0
−1) = E{fε (0|X,Z) [(ṁl

(
ZTβ0

l ,β
0
)
XlJ

0T
l Z̃)dl=1]

⊗2}, and

M(β0
−1) = E[(ṁl

(
ZTβ0

l ,β
0
)
XlJ

0T
l Z̃)dl=1]

⊗2
, with J0

l = Jl(β
0
l,−1), for 1 ≤ l ≤ d,

A⊗2 = AAT for any matrix A, and (al)
d
l=1 = (aT1 , . . . ,a

T
d )T for any vector al.

For any positive numbers an and bn, we denote an � bn if an/bn = o(1). Denote

the space of the rth-order smooth function as C(r) [a, b] = {ϕ|ϕ(r) ∈ C [a, b]},
where f (i) (v) = dif (v)/dvi. Let fY (y |X,Z) and FY (y |X,Z) be the con-

dition density and the conditional cumulative distribution function of Y given

(X,Z), respectively, and let ν ≥ 2 be an integer. To prove the theoretical

results of the proposed estimators of the nonparametric functions and loading

coefficients, we need the following technical conditions.

(C1) For βl in the neighborhood of β0
l , the density function fUl(βl)(·) of the

random variable Ul(βl) = ZTβl is bounded away from zero on [a, b], for

1 ≤ l ≤ d, and satisfies the Lipschitz condition of order 1 on [a, b].
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(C2) For every 1 ≤ l ≤ d and 1 ≤ k ≤ pn, g0l,k ∈ C(1)[a, b] and ml ∈ C(r)[a, b],

for some integer r ≥ 2. At the same time, the spline order q satisfies

q ≥ r + 2.

(C3) X has bounded support, and E(XXT |ZTβ0
l = ul) is positive definite, for

all ul ∈ [a, b].

(C4) E[(ṁl

(
ZTβ0

l ,β
0
)
XlJ

0T
l Z̃)dl=1]

⊗2 has eigenvalues that are bounded and

bounded away from zero.

(C5) For all u in a neighborhood of 0, fε (u |X,Z) is bounded away from zero

and is ν times continuously differentiable with respect to u.

(C6) The kernel function K (u) is nonnegative, bounded, symmetrical, continu-

ous, and compactly supported on [−1, 1]. Furthermore, for some constant

CK 6= 0, K (·) is a νth-order kernel function. For example,
∫
ujK (u) du

is equal to one if j = 0, zero if 1 ≤ j ≤ ν − 1, and CK if j = ν.

(C7) The positive bandwidth h satisfies nh2ν → 0.

Remark 2. Conditions (C1)–(C2) are standard conditions for a VICM, and are

similar to conditions (C1), (C2), and (C5) in Ma and Song (2015). Condition (C3)

is similar to condition (C3) in Ma and Xu (2015) and Assumption 3 in Whang

(2006). Condition (C4) is similar to condition (C7) in Xue and Wang (2012), and

ensures that the asymptotic variance for the estimator of β0 exists. Condition

(C5) is similar to Assumption 4 in Whang (2006). From condition (C5) and

the fact that ε = Y −
∑d

l=1ml(Z
Tβ0

l )Xl, the conditional density fY (y |X,Z )

satisfies the Lipschitz condition of order one and fY (
∑d

l=1ml(Z
Tβl)Xl|X,Z) is

bounded away from zero for β in a neighborhood of β0. Conditions (C6)–(C7)

are necessary conditions on the kernel function and the bandwidth h, which are

also required in Whang (2006). Condition (C7) ensures that the smoothing has

an asymptotically negligible bias on the estimator of β0.

Theorem 1. Assume conditions (C1)–(C7) and n1/(2r+2) � Jn � n1/4 hold. If

n−1p3n = o(1), then ∀en ∈ Rd(pn−1), such that eTnen = 1, and we have

(i) ‖β̂−1 − β0
−1‖2 = Op(

√
pn/n ),

(ii) n1/2eTnM
−1/2(β0

−1)H(β0
−1)(β̂−1 − β0

−1)
d→N (0, τ(1− τ)), where

d→ de-

notes convergence in distribution.

Theorem 2. Under the same conditions of Theorem 1, for 1 ≤ l ≤ d, we have

|m̂l(ul, β̂)−ml(ul)| = Op(
√
Jn/n+ J−rn ) uniformly, for any ul ∈ [a, b].
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In practice, we approximate P(Zik) using its spline estimator Pn(Zik), with

its explicit form given in (A.29) of the Supplementary Material. Let P̂n(Zik) =

Di(β̂)T {
∑n

i=1 ŵiDi(β̂)Di(β̂)T }−1
∑n

i=1 ŵiDi(β̂)Zik, ŵi = h−1K(ε̂i/h), ε̂i = Yi−∑d
l=1 m̂l(Z

T
i β̂l, β̂)Xil, P̂n(Zi) = {P̂n(Zi1), . . . , P̂n(Zipn)}T , Ẑi = Zi − P̂n(Zi),

Ĵl = Jl(β̂l,−1), Hn(β̂−1) =
∑n

i=1 ŵi[(
ˆ̇ml(Z

T
i β̂l, β̂)XilĴ

T
l Ẑi)

d
l=1]

⊗2, and Mn(β̂−1)

=
∑n

i=1 [ψτ{ε̂i}( ˆ̇ml(Z
T
i β̂l, β̂)XilĴ

T
l Ẑi)

d
l=1]

⊗2.

Remark 3. Based on the above results, we apply the following sandwich formula

to consistently estimate the asymptotic covariance of β̂−1:

Ĉov
(
β̂−1

)
= H−1n

(
β̂−1

)
Mn

(
β̂−1

)
H−1n

(
β̂−1

)
. (2.5)

Furthermore, we define Ĵ = ⊕dl=1Ĵl = diag(Ĵ1, . . . , Ĵd) as the direct sum of the

Jacobian matrices Ĵ1, . . . , Ĵd with dimension dpn×d(pn−1). Then, we can obtain

the estimated asymptotic covariance of β̂ as Ĉov(β̂) = ĴĈov(β̂−1)ĴT .

3. Penalized Estimation for High-dimensional Loading Parameters

Thus far, all covariates Z in model (1.1) have been assumed to be important

for predicting the response variable. However, the true model is often unknown.

On the one hand, fitted models may be seriously biased and non-informative if

important predictors are omitted. On the other hand, including spurious covari-

ates may unnecessarily increase the complexity and further reduce the estimation

efficiency. Thus, a fundamental issue is selecting variables for the VICM with a

diverging number of loading parameters. As usual, we assume the model is sparse,

in the sense that most of the components of β are essentially zero. Recall from

the preceding section, after profiling, we obtain a single objective function as

a function of β. We can then introduce a common penalty toward sparsity to

regularize the coefficient. More specifically, we modify (2.3) to be

Rτnh (β−1) + nbα1
(β−1) = 0, (3.1)

where bα1
(β−1) = [ ṗα1

(|β12|) sgn(β12), . . . , ṗα1
(|β1pn |) sgn(β1pn), . . . , ṗα1

(|βdpn |)
× sgn(βdpn)] is a d(pn − 1) vector with sgn(t) = I(t > 0)− I(t < 0), and ṗα1

(·) is

the first-order derivative of the SCAD penalty function, defined by

ṗα1
(x) = α1

{
I (x ≤ α1) +

(aα1 − x)+
(a− 1)α1

I (x > α1)

}
,

where a > 2, pα1
(0) = 0, and α1 is a nonnegative penalty parameter that regulates

the complexity of the model. In our simulation studies and real-data analysis,
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we set a = 3.7. The iterative majorize-minorize (MM) algorithm proposed by

Hunter and Li (2005) can be incorporated to estimate β−1 in (3.1). Specifically,

for a fixed α1, we obtain the estimator β̄α1,−1 of β−1 using the following iterative

procedure:

β
(k+1)
α1,−1 = β

(k)
α1,−1 −

{[
∂Rτnh (β−1)

∂βT−1
+ n∆α1

(β−1)

]−1
(3.1)

× [Rτnh (β−1) + nbα1
(β−1)]

}∣∣∣∣∣
β−1=β

(k)
α1,−1

, (3.2)

where ∆α1
(β−1) = diag(ṗα1

(|β12|)/(κ+ |β12|), . . . , ṗα1
(|β1pn |)/(κ+ |β1pn |), . . . ,

ṗα1
(|βdpn |)/(κ+ |βdpn |)), and κ is a small number, such as 10−6. The above

iterative formula is similar to the MM algorithm of Hunter and Li (2005), and

its convergence can be similarly justified using their Proposition 3.3 under the

stationary and continuity assumptions.

We next study the asymptotic properties for the proposed penalized es-

timator, including the well-known sparsity and oracle properties. In general,

we define the true coefficients as β0
l,−1 = ((β

0(1)
l,−1)

T , (β
0(2)
l,−1)

T )T , with β
0(1)
l,−1 =

(β0l2, . . . , β
0
lsl

)T and β
0(2)
l,−1 = (β0l(sl+1), . . . , β

0
lpn

)T , where β0lj 6= 0 for j = 2, . . . , sl,

and β0lj = 0 for j = sl + 1, . . . , pn; β
0(1)
−1 = ((β

0(1)
1,−1)

T , . . . , (β
0(1)
d,−1)

T )T ; and β
0(2)
−1 =

((β
0(2)
1,−1)

T , . . . , (β
0(2)
d,−1)

T )T . Correspondingly, we also divide β̄α1l,−1 into two parts,

namely, β̄α1l,−1 = ((β̄
(1)
α1l,−1)

T , (β̄
(2)
α1l,−1)

T )T , with β̄
(1)
α1l,−1 = (β̄α1l2, . . . , β̄α1lsl)

T

and β̄
(2)
α1l,−1 = (β̄α1l(sl+1), . . . , β̄α1lpn)T . Here, we assume the number of nonzero

components in βl is fixed, for l = 1, . . . , d; that is, sl does not vary with n. Define

β̄
(1)
α1,−1 = ((β̄

(1)
α11,−1)

T , . . . , (β̄
(1)
α1d,−1)

T )T and β̄
(2)
α1,−1 = ((β̄

(2)
α11,−1)

T , . . . , (β̄
(2)
α1d,−1)

T

)T . We need to introduce some additional conditions to derive the asymptotic

theory.

(C8) lim infn→∞ lim infx→0+
ṗα1

(x) /α1 > 0.

(C9) an = max2≤j≤pn,1≤l≤d{ṗα1
(|β0lj |), β0lj 6= 0} = O

(
n−1/2

)
.

(C10) bn = max2≤j≤pn,1≤l≤d{|p̈α1
(|β0lj |)|, β0lj 6= 0} → 0 as n→∞.

(C11) There are constants C1 and C2 such that |p̈α1
(x1)− p̈α1

(x2)| ≤ C2|x1 − x2|
when x1, x2 > C1α1.

(C12) Assume {β0l2, . . . , β0lsl}
d
l=1 satisfy min1≤l≤d,2≤j≤sl |β0lj |/α1 →∞ as n→∞.
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Remark 4. Conditions (C8)–(C11) are the regularity conditions on the penalty

given in Fan and Peng (2004), and condition (C12) is similar to condition (H) of

Fan and Peng (2004), which is used to obtain the oracle property.

Theorem 3. Under conditions (C1)–(C11) and n1/(2r+2) � Jn � n1/4, if

n−1p3n = o(1) as n → ∞, we have ‖β̄α1,−1 − β0
−1‖2 = Op(

√
pn(n−1/2 + an)),

where an is given in condition (C9).

Let M(1) and H(1) be the
∑d

l=1 (sl − 1)×
∑d

l=1 (sl − 1) sub-matrices ofM(β0
−1

) and H(β0
−1), respectively, corresponding to β

0(1)
−1 .

Theorem 4. Under conditions (C1)–(C12) and n1/(2r+2) � Jn � n1/4, if α1 →
0,
√
n/pnα1 →∞, and n−1p3n = o(1) as n→∞, with probability tending to one,

the consistent estimator β̄α1,−1 in Theorem 3 satisfies

(i) β̄
(2)
α1l,−1 = 0 for 1 ≤ l ≤ d;

(ii)
√
n(β̄

(1)
α1,−1 − β

0(1)
−1 )

d→N
(
0, τ(1− τ)(H(1))−1M(1)(H(1))−1

)
.

Now, we define J0 = ⊕dl=1J
0
l = diag(J0

1 , . . . ,J
0
d ) as the direct sum of the

Jacobian matrices J0
1 , . . . ,J

0
d with dimension dpn×d(pn−1). For 1 ≤ l ≤ d, βl can

be estimated as β̄α1,l = (β̄α1,l1, . . . , β̄α1,lpn)T , with β̄α1,l1 = (1−
∑pn

k=2 β̄
2
α1,lk

)1/2.

From Theorem 4 (ii), we can use the multivariate delta method to obtain the

asymptotic normality of β̄
(1)
α1 = (β̄

(1)T
α1,1

, . . . , β̄
(1)T
α1,d

)T , with β̄
(1)
α1,l

= (β̄α1l1, β̄α1l2, . . . ,

β̄α1lsl)
T , for 1 ≤ l ≤ d. That is,

√
n(β̄

(1)
α1 − β0(1))

d→N(0, τ(1 − τ)J0(1)(H(1))−1

M(1)(H(1))−1J0(1)T ), where J0(1) is a sub-matrix of J0 corresponding to β0(1), and

β0(1) = (β011, . . . , β
0
1s1 , . . . , β

0
d1, . . . , β

0
dsd

)T .

Remark 5. Theorem 3 shows that β̄α1,−1 is a
√
n/pn-consistent estimator if

an = O(n−1/2). Theorem 4 indicates that β̄α1,−1 is consistent in terms of variable

selection and has the oracle property when the number of loading parameters

diverges. These results provide a theoretical guarantee for the application of our

proposed estimation for the high-dimensional QR VICM. Based on the iterative

procedure (3.1), we estimate the asymptotic covariance matrix of β̄α1,−1 using

the following sandwich formula:

Ĉov
(
β̄α1,−1

)
= H̄−1n

(
β̄α1,−1

)
Mn

(
β̄α1,−1

)
H̄−1n

(
β̄α1,−1

)
, (3.3)

where H̄n

(
β̄α1,−1

)
= Hn

(
β̄α1,−1

)
+ n∆α1

(
β̄α1,−1

)
, and Mn and Hn are defined

as in subsection 2.2.

Remark 6. The main reason that we do not consider variable selection for

Xk, 1 ≤ k ≤ d is as follows. Based on our model Qτ (Y |X,Z) =
∑d

l=1mτ,l(Z
T
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βτ,l)Xl, it is easy to see that mτ,l (·) = 0 implies that βτ,l can take any value. In

fact, βτ,l has no impact on Qτ (Y |X,Z) after fixing mτ,l (·) = 0. In this case, our

considered model is unidentifiable. Consequently, for the sake of model identifica-

tion, we assume that all components mτ,l (·), for l = 1, . . . , d are nonzero. Thus,

it is not practical for us to implement variable selection for Xk, for 1 ≤ k ≤ d

(because this is usually equivalent to finding mτ,l(·) = 0). In addition, in practice,

many variables are usually used to construct the index function (thus, a high-

dimensional Z), but relatively fewer variables used for X. Hence, we consider

variable selection to be a more relevant issue for Z, and examine it in detail.

Remark 7. Ultrahigh-dimensional variable selection (p � n) has recently be-

come very popular, especially for genetic studies. There are practical challenges

to allowing p > n in our methods. First, note that we assume ‖βl‖2 = 1, for

l = 1, . . . , d, for the sake of model identifiability, indicating that | βlk |< 1, for

l = 1, . . . , d and k = 1, . . . , p. Thus, it is practically difficult to separate all

nonzero coefficients in β from ultrahigh-dimensional background noise, because

the true signal is rather weak (< 1). Thus far, even recently, existing research

findings on nonparametric index models have been based mostly on fixed p or on

diverging dimensionality with p < n; see Wang and Wang (2015), Huang et al.

(2014), Lian and Liang (2016), Zhang et al. (2016), Ma and He (2016), Zhao et

al. (2017), Zhao and Lian (2017), and Zhang, Lian and Yu (2017), among others.

Furthermore, implementing the proposed estimation procedures for p > n is com-

putationally prohibitive. We recommend that alternative dimension-reduction

statistical methodologies be developed to deal with the ultrahigh-dimensional

case. This an intriguing extension is left to future research.

4. Identification of Linear Components in a QR VICM

In varying-index coefficient models, identifying the linear interaction com-

ponents is also an important issue. Ma and Song (2015) proposed a generalized

likelihood ratio test to distinguish linear functions from nonparametric functions.

However, the classical significance tests may not be useful in high-dimensional

settings, owing to computational and theoretical concerns. Therefore, we develop

a penalized procedure to investigate whether there is a linear interaction effect

between ZTβl and Xl.

Let m̈l be the second derivative of ml. Clearly, ‖m̈l‖2 = 0 if ml is a linear

function, for 1 ≤ l ≤ d. Thus, by shrinking ‖m̈l‖2 toward zero, we can auto-

matically identify the linear and nonlinear components in model (1.1). Note that

‖m̈l‖2 =
{∫

m̈2
l (x)dx

}1/2
can be equivalently written as

√
λTl Dλl ≡ ‖λl‖D, ow-
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ing to the well-known algebraic property of the B-spline approximation, where D

is a Jn × Jn matrix with the (k, k′) entry being
∫ b
a B̈k (x) B̈k′ (x) dx. Specifically,

we minimize

λ̄ = argmin
λ∈RdJn

L∗τn
(
λ, β̄α1

)
≡ argmin

λ∈RdJn

{
Lτn

(
λ, β̄α1

)
+ n

d∑
l=1

pα2
(‖λl‖D)

}
, (4.1)

where pα2
(·) is the SCAD penalty with a penalty parameter α2, and β̄α1

is given

in Section 3. This is still a complicated nonlinear programming problem, and we

use the “ucminf” function in R to find the minimum of (4.1) using numerical com-

puting methods. This R function was developed by Hans Bruun Nielsen and Stig

Bousgaard Mortensen for general-purpose unconstrained nonlinear optimization.

It is a quasi-Newton-type algorithm, with Broyder-Fletcher-Goldfarb-Shanno up-

dating of the inverse Hessian, and a soft line search with a trust region monitoring

method.

Remark 8. One may combine two types of penalties in (2.1) to perform vari-

able selection for the loading parameters, and to detect linear/nonlinear func-

tions simultaneously; that is, Qτn (λ,β) = Lτn (λ,β) + n
∑d

l=1

∑pn
j=2 pα1

(|βlj |)
+n
∑d

l=1 pα2
(‖λl‖D). However, λ depends on β, which indicates that we cannot

simultaneously obtain the estimators of λ and β by minimizing Qτn (λ,β). To

address this difficulty, an iterative procedure is proposed to select the loading

parameter and detect the linear/nonlinear components. That is, for a given λ,

we use the penalized robust estimating equations in (3.1) to estimate and select

the loading parameters. Then, we minimize (4.1) to detect the linear/nonlinear

components for a given β.

Let λ̄ =
(
λ̄T1 , . . . , λ̄

T
d

)T
be the minimizer of L∗τn

(
λ, β̄α1

)
. Consequently, the

final estimator of ml(·) is m̄l(·) = B(·)T λ̄l, for 1 ≤ l ≤ d. Without loss of

generality, we suppose that ml is truly nonlinear for 1 ≤ l ≤ d1, and is linear for

d1 + 1 ≤ l ≤ d. We have the following theoretical results.

Theorem 5. Suppose that conditions (C1)–(C12) are satisfied. Then, together

with n1/(2r+2) � Jn � n1/4 and α2 → 0, we have for each 1 ≤ l ≤ d,

|m̄l(ul, β̄α1
)−ml(ul)| = Op(

√
Jn/n+ J−rn ) uniformly, for any ul ∈ [a, b].

Theorem 6. In addition to the conditions in Theorem 5, we further assume that

(
√
Jn/n+ J−rn )−1α2 → ∞. Then, with probability approaching one, ‖λ̄l‖D = 0,

and m̄l is a linear function, for 1 + d1 ≤ l ≤ d.
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Figure 1. Prediction error from 5-fold cross-validation with different bandwidth h = n−δ

with δ = 0.1, 0.2, . . . , 1.

5. Numerical Illustration

5.1. Selection of tuning parameters

In all our numerical studies, we use the cubic spline (q = 4) to approx-

imate the nonparametric functions ml(·) in our simulations. We choose the

number of interior knots as Nn =
[
n1/(2q+1)

]
to satisfy the theoretical require-

ment, where [a] stands for the largest integer not greater than a. The ker-

nel function K (·) is set as the second-order Bartlett kernel (ν = 2); that is,

K (u) = 3/(4
√

5)
(
1− u2

/
5
)
I
(
|u| ≤

√
5
)
. The smoothed estimating equations

(2.3) depend on the bandwidth h. We conduct a sensitivity analysis for the

selection of h in the finite samples. Let {T v, v = 1, . . . , 5} be a random parti-

tioning with size n/5 of the full data set T = (T − T v)
⋃
T v, where T − T v and

T v are the cross-validated training and test sets, respectively, for v = 1, . . . , 5.

The prediction error (PE) from the fivefold cross-validation is given by PE =

n−1
∑5

v=1

∑
(Yi,Xi,Zi)∈T v ρτ (Yi−

∑d
l=1 m̂

(v)
l (ZT

i β̂
(v)
l )Xil), where m̂

(v)
l and β̂

(v)
l are

estimators ofml and βl, respectively, using the training set T−T v, for l = 1, . . . , d.

For the quantile levels τ = 0.5, 0.75, we conduct 200 replicates for example

1, given below, with a normal error distribution. Figure 1 depicts the predic-

tion error for the fivefold cross-validation with different bandwidths h = n−δ for

δ = 0.1, 0.2, . . . , 1. It is easy to see that the PE does not vary significantly with h,

indicating that the proposed method is not sensitive to the bandwidth h. Thus,

we fix h = n−0.3 in the simulation studies to reduce the computational burden.

This choice also satisfies the theoretical requirement nh2ν → 0, with ν = 2.

The tuning parameter α1 is used to control the sparsity of β, and the tuning
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parameter α2 is used to identify the linear functions. Under fixed dimensions,

Lian (2012) demonstrated that the Schwartz information criterion (SIC) is con-

sistent in terms of variable selection in the SCAD penalized QR. However, the

traditional SIC may not work very well for a diverging number of parameters.

Therefore, we adopt the following modified SIC (MSIC) to select α1:

MSIC (α1) = log
(
Lτn

(
λ̂, β̄α1

))
+
df1Cn log (n)

(2n)
,

where β̄α1
is the estimated parameter for a given α1, λ̂ is the unpenalized esti-

mator given in section 2, df1 is the number of nonzero coefficients in β̄α1
, and Cn

is required to be diverging. In our simulations and applications, we choose Cn
as Cn = max {1, log (log(dpn))} (Chen and Chen (2008)). The optimal tuning

parameter α̂opt1 is defined as α̂opt1 = min
α1

MSIC (α1). Similarly, for α2,

MSIC (α2) = log
(
Lτn

(
λ̄α2

, β̄α̂opt1

))
+
df2Jn log (n)

(2n)
,

where λ̄α2
is the estimated parameter for a given α2, and df2 is the number of

nonlinear components. Then, we have α̂opt2 = minα2
MSIC (α2). Note that every

ml(·) is characterized by a spline coefficient vector λl with dimension Jn. Thus,

df2Jn is regarded as the dimension of the nonlinear function coefficients. Our

simulation results confirm that the two proposed MSIC criteria work well for

variable selection and the identification of linear components.

5.2. Simulation studies

Example 1. In this example, our goal is to compare the proposed QR estimator

with the least squares estimator (LS; Ma and Song (2015)). We generate random

samples from the following model:

Yi =
∑d

l=1
ml

(
ZT
i βl

)
Xil + σεi, (5.1)

where σ = 0.5, d = p = 3, Xi1 = 1, (Xi2, Xi3)
T , and Zi = (Zi1, Zi2, Zi3)

T

follow multivariate normal distributions with mean zero, variance one, and con-

stant correlation coefficient 0.5. Here, we set the true loading parameters as

β1 = 1/
√

14(2, 1, 3)T , β2 = 1/
√

14(3, 2, 1)T , and β3 = 1/
√

14(2, 3, 1)T , and set

the true coefficient functions as m1(u1) = exp(u1)/5,m2(u2) = sin(0.5πu2), and

m3(u3) = u23. In order to investigate the effects of relatively heavy-tailed error dis-

tributions or outliers, we consider the following four error distributions of εi: the
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standard normal distribution (SN), t-distribution with three degrees of freedom

(t3), Laplace distribution (LA) with location parameter zero and shape param-

eter one and mixed normal distribution (MN(ρ, σ1, σ2)), which is a mixture of

N(0, σ21) and N(0, σ22), with weights 1−ρ and ρ, respectively. In this example, we

consider ρ = 0.1, σ1 = 1 and σ2 = 5. For the purpose of comparison, we consider

τ = 0.5 and the sample size n = 500 and 1,500, with 200 simulation replications.

For a fixed τ = 0.5, we have Q0.5 (Y |X,Z) = E (Y |X,Z) =
∑d

l=1ml(Z
T
i βl)Xil,

because the median and the mean of εi are both zero under the four error dis-

tributions. Therefore, it is fair to compare the proposed QR estimator with the

least squares estimator under this setting.

For the parametric part, we report the bias (Bias); empirical standard de-

viation (ESD), calculated as the sample standard deviation of 200 estimates;

estimated asymptotic standard deviation (ASD), based on the sandwich formula

(2.5); and mean absolute deviation (MAD), calculated as the mean absolute de-

viation of 200 estimates. We compute the root average squared error (RASE)

to measure the accuracy of the nonparametric estimators m̂l RASE(m̂l) =√
(1/n)

∑n
i=1 (m̂l (uil)−ml (uil))

2, uil = ZT
i β̂l, for l = 1, 2, 3. To conserve space,

we report the corresponding results for the proposed QR estimator with τ = 0.5

and the least squares estimator in Tables S2–S6 in Appendix B of the Supple-

mentary Material. Both the mean regression and the median regression in this

example are consistent to the true parameters and functions, owing to their small

bias, MAD, and RASE. The aforementioned tables show that the performance of

the proposed QR is much more stable than that of LS, especially in cases with

non-normal errors, demonstrating the robust feature of our proposed approach.

Finally, the estimated ASD is very close to the ESD, especially for n = 1,500.

This demonstrates that the sandwich covariance formula (2.5) works reasonably

well.

Example 2. In this example, we specify the conditional quantile function Qτ (Yi|
Xi,Zi) as

Qτ (Yi|Xi,Zi) = mτ,1(Z
T
i βτ,1)Xi1 +mτ,2(Z

T
i βτ,2)Xi2 +mτ,3(Z

T
i βτ,3)Xi3,

where βτ,1 = (τ1/2, τ, 2τ)
T
/
√

5τ2 + τ , βτ,2 = (τ, τ1/2, 2τ)
T
/
√

5τ2 + τ , βτ,3 =

(2τ, τ, τ1/2)
T
/
√

5τ2 + τ , mτ,1(u1) = τ1/2u1, mτ,2(u2) = τ sin(0.5πu2), and mτ,3(

u3) = −0.5 log(1− τ)u23. The covariate Xi1 = 1 and (Xi2, Xi3)
T are gener-

ated from an independent standard normal distribution. The covariates Zi =

(Zi1, Zi2, Zi3)
T are independently generated from the uniform distribution U(0,1).
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Similarly to Ma and He (2016) and Frumento and Bottai (2016), we generate Yi
as

Yi = mUi,1(Z
T
i βUi,1)Xi1 +mUi,2(Z

T
i βUi,2)Xi2 +mUi,3(Z

T
i βUi,3)Xi3,

where Ui follows the uniform distribution U(0,1). In this example, it is easy

to see that the loading coefficients βτ,l and nonparametric functions mτ,l, for

l = 1, 2, 3, are functions of τ , suggesting that the covariate effects vary with the

quantile level. Thus, the VICM model structure is more sophisticated than that

of example 1, and the mean regression method is no longer appropriate.

In this example, we consider an estimation at the quartiles τ = 0.5 and

τ = 0.75, and simulate 200 data sets with n = 500 and n = 1,500. Tables S7

and S8 in Appendix B of the Supplementary Material give the bias, ESD, ASD,

and MAD of βτ,l, and the RASE for mτ,l for the proposed method, for l = 1, 2, 3.

Note that the true loading coefficients βτ,l and the nonparametric functions mτ,l

are different at τ = 0.5 and 0.75. The proposed estimation is also consistent, with

small biases and RASE, and the ESD, ASD, MAD, and RASE become smaller

as the sample size increases.

Example 3. The main goal of this example is to investigate the finite-sample

performance of the proposed penalized estimation approach for variable selection

and identifying linear components. We generate random samples from model

(5.1), with σ = 0.2, d = 4, m1(u1) = 0.2u31, m2(u2) = cos(0.5πu2), m3(u3) =

0.5u3, and m4(u4) = −0.5u4. In this case, we allow the last two nonparametric

components to be linear functions. The true loading parameters are βl = ςl/ ‖ςl‖2
with ςl = (ςl1, . . . , ςldn ,0pn−dn)T , for (1 ≤ l ≤ 4), where ςlk is generated from a

uniform distribution U(0.5, 1), for k = 1, . . . , dn, and 0m denotes an m-vector

of zeros. The dimension of βl is set as pn = [n1/3], and the number of nonzero

coefficients in βl is taken as dn = [n1/4]. In this example, we focus on the quantile

levels at τ = 0.1, 0.5, 0.75, and 0.9. To ensure Qτ (Y |X,Z) =
∑d

l=1ml(Z
T
i βl)Xil

at τ = 0.1, 0.5, 0.75, and 0.9, we consider εi = ςi − cτ , and cτ is the τth quantile

of the random error ςi, resulting in Qτ (εi|Xi,Zi) = 0. Here, {ςi} is an i.i.d.

random sample from SN, t3, LA, or MN. The other settings are the same as

those of example 1.

To evaluate the performance of the variable selection and the identification

of the linear components for our proposed method, we consider the following five

criteria: (1) the average number of zero coefficients that are correctly estimated

to be zero (C); (2) the average number of nonzero coefficients that are incorrectly

estimated to be zero (IC); (3) the average correctly fit (CF) percentage, which
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measures the accuracy of the variable selection procedure, where “ correctly fit”

means that the procedure correctly selects significant components from all βl, for

l = 1, 2, 3, 4; (4) the proportion of ml identified as the linear component for l =

1, 2, 3, 4 (ILCl); and (5) the proportion of correctly identified linear components

(CIL) among the four nonparametric functions. For the loading parameters,

we compute the mean square error of the oracle estimators (O.MSE), penalized

estimators (P.MSE), and unpenalized estimators (U.MSE). We also consider the

RASE of the penalized estimators (P.RASE) and the unpenalized estimators

(U.RASE), which measure the accuracy of the nonparametric estimations. In

each case, 200 data sets are generated. The simulation results are summarized in

Tables S9–S11 in Appendix B of the Supplementary Material.

Tables S9–S11 show the following observations. First, the values in the col-

umn labeled C are very close to the true number of zero-loading parameters. The

CF values increase steadily with the sample size n, and approach one quickly,

indicating that the proposed procedure is consistent in terms of variable selec-

tion. Second, the proposed penalized estimator performs similarly to the oracle

estimator in terms of the MSE, and significantly improves the estimation accu-

racy of the unpenalized estimator. Third, only the last two functions m3 and m4

are linear, in this example. Thus, note that ILCl is close to zero, for l = 1, 2,

and ILCl approaches one, for l = 3, 4, as the sample size increases. These results

show that our penalized method can correctly distinguish linear components from

nonparametric functions, with a high probability. Fourth, for the nonlinear func-

tions (m1 and m2), there is a small difference between the RASE of the penalized

and unpenalized estimators. However, our proposed penalized estimator is ob-

viously more efficient for the linear components m3 and m4, because it reduces

about 40%-60% of the RASE relative to that of the unpenalized estimator. This

is because m3 and m4 are truly identified as linear functions by the regularized

method. In summary, the proposed methods are satisfactory at different quantile

levels in terms of variable selection and the identification of linear components.

5.3. Real-data analysis

In this subsection, we illustrate the proposed approaches by analyzing a

cross-sectional data set of a workforce company, plus another health survey, in

New Zealand during the early 1990s (McCulloch (1995)). This data set consists of

physical, lifestyle, and psychological variables, and can be freely downloaded from

the R package VGAMdata. Three binary variables (sex, diabetes, nervous) and

seven continuous variables (age, cholest, dmd, feethour, sleep, sbp, dbp) are con-

sidered here as predictors. These factors may affect the body mass index (BMI )
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of the subject (Yee (2015)). In this study, our goal is to explore the functional

dependency of the body mass index on the risk factors. Thus, we take the BMI

as the response (Y ), and set the three binary variables as X (d = 4, including

an intercept) and the seven continuous variables as the covariate Z (p = 7). De-

tailed definitions of the variables are reported in Table S12. Before implementing

the estimation procedure, we normalize all continuous predictor variables to have

mean zero and variance one, and take a logarithm transformation of the response

variable. We consider both an unpenalized estimator (β̂l and m̂l) and a penalized

estimator (β̄l and m̄l) at the quantile levels τ = 0.1, 0.25, 0.5, 0.75, and 0.9.

We plot a histogram and Q-Q plot of BMI in Figure S1 of Appendix B. The

figure suggests that the response does not follow a normal distribution. Moreover,

we find that the p-value is less than 10−3 using the Shapiro–Wilk test (Shapiro and

Wilk (1965)), and therefore reject the null hypothesis of a normal distribution.

Thus, a QR analysis may be more suitable here.

The estimated values β̂ and β̄ of the loading parameters are presented in

Table S13 of Appendix B. Based on the penalized approach, the loadings are

automatically estimated as zero and produce sparse solutions. It seems that

the estimated loading parameters for τ = 0.25, 0.75, and 0.9 are sparser. For

example, at τ = 0.25, the loading parameters for Z1 and Z7 are nonzero for sex

(X2), suggesting age and dbp have interaction effects with gender on the response

BMI at the first quartile. For the diabetes status X3, age, feethour and sleep

may include interaction effects. The other parameter estimates can be interpreted

similarly.

After using the penalized estimate λ̄l discussed in Section 4, Table S14 dis-

plays the estimated functional norms ‖ λ̄l ‖D, for l = 1, 2, 3, 4, clearly indicating

that m3 is identified as nonlinear for τ = 0.1, 0.25, 0.5, 0.75, and that m4 is re-

garded as nonlinear only for τ = 0.1. In all other cases, the functions can be

treated as linear. Figure 2 reports the estimated curves and their 95% confidence

bands at different quantiles. The graphs agree with the numerical results. In

particular, the estimated function m̄1(·) appears to be an increasing function of

index ZT β̄α1,1, which indicates that the combination of seven continuous factors

has a positive effect on BMI. Other functions can be interpreted similarly for

their effects on the response. These nonlinear interaction effects between the co-

variates ZTβl and Xl cannot be detected easily without using the proposed QR

VICM.

Additional numerical results for this data analysis can be found in Appendix

B.
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Figure 2. Plots of the unpenalized estimator m̂l(·) (solid line) and its 95% pointwise
confidence intervals (dashed line), and the penalized estimator m̄l(·) (dotted line).

Supplementary Material

The online Supplementary Material contains the procedure for generating the

initial values, additional numerical results, and technical proofs of the theoretical

results.
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