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Abstract: When making important decisions, it is crucial to be able to quantify
the uncertainty and control the error of any classifiers. We propose a selective
classification framework that provides an “indecision” option for observations that
cannot be classified with confidence. The false selection rate (FSR), defined as
the expected fraction of erroneous classifications among all definitive classifications,
provides a useful error rate notion that trades a fraction of indecisions for fewer
classification errors. We develop a new class of locally adaptive shrinkage and
selection (LASS) rules for FSR control in the context of high-dimensional linear
discriminant analysis (LDA). LASS is easy to analyze, exhibits robust performance
across sparse and dense regimes, and controls the FSR under weaker conditions
than those of existing methods. Lastly, we demonstrate the empirical performances
of LASS using both simulated and real data.
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1. Introduction

Linear discriminant analysis (LDA) is widely used in classification problems.
We focus on the basic setup, which assumes that the observations are p-
dimensional vector-valued features, drawn with equal probability from one of
the following two multivariate normal distributions:

N(p1,Y) (class 1) and N (s, X) (class 2). (1.1)

Let W € RP be a new observation. Denote g = (p; + p2)/2 and d = p; — po.
The procedure that achieves the minimal misclassification risk is Fisher’s linear
discriminant rule:

S =T{(W —p)'S'd< 0} +2-I{(W —p)'2"'d >0}, (1.2)

which assigns W to class ¢ if 6 = ¢, for ¢ = 1,2. When p,, p, and
Y are unknown, common practice is to construct a data-driven LDA rule by
obtaining suitable estimates of the unknown quantities in (1.2). In a high-
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dimensional setting, naive sample estimates become highly unstable, and nu-
merous regularized LDA rules have been proposed that achieve substantial
improvements in prediction accuracy (Friedman| (1989)); Tibshirani et al.| (2003);
Witten and Tibshirani (2009); Cai and Liu (2011)); Shao et al.| (2011)); Mai, Zou
and Yuan| (2012)); |Cai and Zhang| (2019); among others). However, we still do
not know how to assess the uncertainty and control the decision errors in a high-
dimensional LDA. As such, we propose a selective classification approach that
controls the false selection rate (FSR). We develop a new class of data-driven LDA
rules based on locally adaptive shrinkage and selection (LASS), and show how
to use LASS in decision-making scenarios to control the FSR at a user-specified
level.

1.1. Selective classification and FSR

Uncertainty quantification and error control are crucial in many sensitive
decision-making scenarios. Decision errors, which can be very expensive to
correct, are often unavoidable, owing to the intrinsic ambiguity of a classification
problem. Consider the ideal setting in which the multivariate normal parameters
W1, Mo, and 3 are known. Then, among all classification rules, the LDA rule
achieves the minimum classification risk 1 — ®((1/2)vVd"¥~1d), where ®(-) is the
cumulative distribution function (CDF) of a standard normal variable. However,
this minimum risk can still be unacceptably high when the signal-to-noise ratio
VdTY¥~1d is low. The problem is exacerbated in practice, particularly in high-
dimensional settings, where we must employ “plug-in” rules learned from limited
training data.

In contrast to conventional classification algorithms, which are forced to
classify all new observations, a useful strategy for uncertainty quantification
involves providing an indecision option (also referred to as an abstention or a
reject option) for any observations that cannot be classified with confidence. The
observations with indecisions can then be evaluated separately. This strategy
is attractive when the cost of handling indecisions is less than that of fixing a
classification error. To see how the proposed strategy aligns with social and policy
objectives, consider a high-consequence classification scenario in which we need
to assess the likelihood of a defendant becoming a recidivist. Obviously, the social
cost of incorrectly classifying a low-risk individual as a recidivist is much higher
than that of an indecision. Thus, it is worth collecting additional contextual
knowledge about the convicted individual to mitigate this ambiguity. Similarly,
in medical screening, a misclassification can result in either missed medical care
or unnecessary treatments, both of which can be much more expensive than
conducting a more careful examination/evaluation of the patient.

Suppose we observe labeled training data D", The goal is to predict
the classes for m new observations D'** = {W; : 1 < j < m}. We consider a
selective classification framework that makes definitive decisions only on a selected
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subset of D'*** and the remaining subjects receive indecisions (i.e., be rejected for
further investigation). The reject/indecision option, which is much less expensive
to handle, is considered as wasted opportunity, rather than a severe error. We
propose to controlling the FSR, which is the expected fraction of erroneous
classifications among all definitive classifications. Selective classification with
FSR control provides an effective approach to uncertainty quantification and
error control. We demonstrate that with the reject/indecision option, the FSR
can be controlled at a user-specified level. When the signal-to-noise ratio is low,
the degree of ambiguity in the classification task can be, in a sense, captured
by the fraction of indecisions in D****. Hence, a more powerful data-driven rule,
subject to the FSR constraint, means fewer indecisions, and less wasted effort
performing separate evaluations.

1.2. FSR control using LASS

The task of controlling the FSR in a high-dimensional LDA is challenging;
we start by discussing several limitations of existing works.

First, the methodology and theory of many high-dimensional LDA rules (e.g.,
Cai and Liu| (2011)); Shao et al|(2011);|Mai, Zou and Yuan|(2012));|Cai and Zhang
(2019)) critically depend on strong sparsity assumptions, which may not hold
in practice. The sparsity assumption is counter-intuitive from the perspective
of classification error control. Consider the simple case in which all nonzero
coordinates in d = pu; — p take the same value. Then, a larger [, norm of d (i.e.,
nonsparse setting) virtually implies that the two classes are better separated and,
hence, it should become easier to control the classification risk. However, many
state-of-the-art LDA rules lack theoretical justifications, and often perform poorly
in the supposedly easier nonsparse setting (Section 5). Second, analyzing the
error rate of a classifier often requires a precise quantification of the quality of its
outputs, which is intractable, in general, due to the complexity of contemporary
LDA rules. Finally, most learning algorithms focus on improving prediction
performance, rather than avoiding high-consequence decision errors. However, to
tailor existing algorithms to trade a fraction of indecisions for fewer classification
errors, how to calibrate suitable data-driven thresholds to control the FSR at a
user-specified level remain unclear.

We propose a class of FSR rules based on a LASS algorithm. LASS consists
of three steps: estimate a score according to the LDA rule ; ordering all
individuals based on the estimated scores; and choose upper and lower thresholds
with which to select individuals into the two classes, with unselected individuals
assigned to the indecision group. We prove theories to establish the asymptotic
validity of LASS for FSR control. A key innovation in our method is the
construction of intuitive and easy-to-analyze shrinkage factors that are capable of
reducing uncertainty with much weaker assumptions on sparsity. LASS provides
a principled and theoretically solid LDA rule that performs comparably with



1824 GANG, SHI AND SUN

state-of-the-art classification rules (e.g., Cai and Liu| (2011)); Shao et al.| (2011));
Cai and Zhang (2019)) in the sparse setting, and substantially better under the
nonsparse setting. The theoretical adaptiveness of LASS to unknown sparsity and
its robust numerical performance across sparse and dense settings are attractive,
particularly in real-world applications in which we can only “bet on sparsity”;
this working assumption (of sparsity) can distort the hardness of the problem,
and hence lead to wrong choices of method.

1.3. Our contributions

Our work makes several contributions to the literature. First, selective
classification via FSR control provides a useful approach in risk-sensitive decision-
making scenarios, where classification errors may have a significant effect on
a person’s social, economic, or health status. Second, we develop a novel
shrinkage rule for estimating the linear discriminant score, which is effective
for reducing uncertainty in high dimensions. The proposed rule is intuitive,
easy-to-analyze, and enjoys strong theoretical properties. Third, we derive data-
adaptive decision boundaries based on the shrunken LDA rule to select and
classify observations. Theoretical guarantees on FSR control are established
under much weaker conditions compared with those of existing theories on sparse
LDA.

1.4. Related works

Here, we discuss several related lines of research to further explain the merits
of LASS and place our contributions in context.

The idea of indecision, also referred to as a reject option, has been considered
in several works in the classification literature (Herbei and Wegkamp| (2006]);
Franc, Prusa and Voracek (2023)).The intrinsic ambiguity in classification can
also be characterized using set-valued classifiers (Lei (2014)); Guan and Tibshirani
(2022))). In terms of interpretation, indecision means that we refrain from making
a decision in order to avoid misclassification, whereas the set-valued output aims
to guarantee that the true state matches one of our output labels with high
probability. We extend the notion of indecision from a single-decision setup
to a multiple-decision setup, where decision errors become critical. The FSR
framework provides a new tool for dealing with inflated errors when many units
must be classified at the same time.

Under a high-dimensional sparse setting, Bickel and Levina, (2004) show
that the naive Fisher’s rule performs no better than a random guess. Many
regularized LDA rules have been proposed to exploit the sparse structure in data;
including the shrunken centroid method (Tibshirani et al.| (2003)), the LPD and
AdaLDA rules (Cai and Liu/(2011));/Cai and Zhang|(2019) ), and other penalized or
thresholding methods (Shao et al.| (2011)); Mai, Zou and Yuan (2012)). However,
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as we demonstrate in our numerical studies, these methods do not work well
under a nonsparse setting. LASS, which employs an adaptive shrinkage rule with
robust performance across sparse and dense regimes, is provably valid for error
rate control.

Exemplified by the James Stein estimator (James and Stein| (1992))) and
Tweedie’s formula (e.g., |Brown and Greenshtein (2009); Efron (2011)); Koenker
and Mizera| (2014])), shrinkage is a powerful and ubiquitous idea in compound
estimation. Under the independence assumption (i.e., ¥ is a diagonal matrix),
implementing of the LDA rule requires a compound estimation of g and
d. [Efron (2009), |Greenshtein and Park (2009), and Dicker and Zhao (2016)
propose empirical Bayes (EB) methods (Tweedie’s formula and g-estimation)
for constructing “plug-in” LDA rules. EB shrinkage can effectively reduce
uncertainty in high dimensions, without the sparsity assumption. However,
there are several drawbacks. First, existing EB rules ignore correlations, which
may lead to suboptimal shrinkage factors, and hence inferior LDA rules. In
contrast, LASS performs shrinkage in a coordinate-wise shrinkage manner, which
enjoys strong numerical and theoretical properties under dependence. Second, in
contrast to EB “plug-in” rules, which are rather complicated to analyze, the
uncertainty quantification of LASS is simple, enabling data-driven rules and
theory on FSR control.

1.5. Organization and notation

The remainder of the paper is organized as follows. Section 2 presents the
problem formulation and derives the oracle rule for FSR control. The data-driven
LASS is developed in Section 3, with its theoretical properties established in
Section 4. Numerical results are presented in Section 5. Proofs and additional
numerical results are relegated to the Supplementary Material.

Summary of notation. Denote g = (@ + p2)/2, d = (dy,...,d,)" = p1 — po,
X = (Xh R XLD)T = (1/711) 27:11 X, and Y = (}717 s 7?11)T = (1/%2) Z?:zl Y,
I,, denotes the p x p identity matrix. For matrix A and 1 < w < oo, the matrix
l,, norm is defined as ||Al||, =supjq|, <1 AZ|,. When v € R? is a vector, |[v||, is
the vector [, norm ||v], := (325, v )1/ . The largest and smallest eigenvalue of
A are denoted by A,.q.(A) and A, (A), respectively.

2. Problem Formulation

This section first introduces a generalized discriminant rule, then defines the
FSR, and finally outlines the roadmap.

2.1. The generalized discriminant rule

Let W be a new observation and S = S(W) be a generic score, with
a larger (smaller) S indicating a higher chance of being in class 2 (class 1).
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Suppose we need to classify m new observations {W; : 1 < j < m}, drawn with
equal probability from (1.1). It is natural to consider the following generalized
discriminant rule § = (J; : 1 < j < m), where

5, =1{SW,) <t} +2-I{SW,) >t.}, 1<j<m. (2.1)

In the above, t; and t, represent the lower and upper thresholds, respectively, with
the requirement that ¢; < t¢,. A key difference between the two discriminant rules
and is that uses t; = t, = 0, whereas allows t; < t,. The
interval (¢;,t,) is called an ambiguity region. The true class of any observation
that falls within this region cannot be determined with confidence. The values of
t, and t, are determined according to user-specified error rates, as discussed in
the next subsection. It follows that ¢, defined in , can take three possible
values in the action space A = {0,1,2}, with §; = k indicating that we classify
W, into class k, for k = 1,2, and 9, = 0 indicating that we choose an indecision or
rejection option (Herbei and Wegkamp| (2006); Sun and Wei| (2011)); Lei| (2014))).
Denote {#; : 1 < j < m} € {1,2}™ as the unknown true classes. Consider the
example of medical screening, where 6; = 1 (§; = 2) indicates that the patient
is healthy (sick). Then, a patient with J; = 1 will not receive the treatment, a
patient with J; = 2 will receive the treatment, and a patient with §; = 0 will be
evaluated.

2.2. FSR

In risk-sensitive applications, we view misclassifications as severe errors, and
so need to control them at a low level. Under the selective inference framework
(Benjamini (2010))), the error rate is defined to assess the quality of the selected
subset, in which observations receive definitive classifications. In contrast, the
indecisions are viewed as wasted opportunities, and are used to describe the
notion of power.

For the binary setting, we may encounter two types of misclassifications:
(0 =1,6 =2) and (# = 2,6 = 1). If the two directions are symmetric, it is
natural to consider the FSR:

> L(0; # 95,0, #0)
{010 #0)p vl |7

where z V y = max(z,y). The FSR is considered in Rava et al.| (2021)) in a

FSR =E (2.2)

different context (fairness in machine learning), and is analogous to the false
discovery rate (FDR; Benjamini and Hochberg (1995)) in one-class classification
problems (outlier detection) (Bates et al.| (2023);|Angelopoulos et al.| (2021)). The
FSR reduces to the misclassification rate (1/m)E{>"7",(0; # J;)} if indecisions
are not allowed (i.e., §; # 0, for every 1 < j < m).
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In the asymmetric situation, we define the class-specific FSR

Z;ﬂﬂ 1(6; = ¢, 0; # ¢)
{3 =0}Vl

This provides a useful notion of an error in applications in which one type of

FSR*=E

c=1,2. (2.3)

error is more sensitive than the other, and we need to set different tolerance
levels for the two types of errors (The class-specific FSR® is connected to,
but fundamentally different from the Neyman—Pearson classification framework
(Scott and Nowak (2005); |[Rigollet and Tong| (2011))) for asymmetric error control.
The class-specific FSR®, as a concept under the selective inference framework, is
analogous to the FDR in multiple testing, whereas Neyman—Pearson classification
operates under the classical Type I/II error paradigm in single hypothesis testing.
Moreover, the two lines of research focus on substantially different issues). To this
end, we focus on the setup that allows class-specific constraints: FSR® < a, for
c=1,2. As a special case, we can set a; = ay = a. Given that there is at least
one classification for each class, and if the class-specific constraints FSR® < « are
fulfilled for both ¢ = 1 and ¢ = 2, then the global constraint FSR < «a defined
in (2.2)) is also fulfilled asymptotically; a proof of this statement is provided in
Section S8 of the Supplementary Material.

The selective classification framework enables FSR control at a user-specified
level, which may not be possible without the indecision option. However, the
price we pay is the wasted opportunity of performing separate evaluations on the
indecisions. The user-specified error bounds «. reflect our tolerance levels of the
associated risks. To simultaneously quantify the degree to which the decisions can
be trusted and minimize the wasted effort, we consider a constrained optimization
problem. Let ECC = E{}_7", 1(f; = ¢,)} denote the expected number of correct
classifications. The goal is to

maximize the ECC subject to FSR® < a, ¢ =1, 2. (2.4)

The constrained optimization formulation has not been considered under
a classification setup, although the idea is related to the multiple testing
formulation in Sun and Cai (2007)). There are several crucial differences between
the two formulations. First, Sun and Cai (2007) propose minimizing the false
nondiscovery rate (FNR), subject to a constraint on the FDR. Under this multiple
testing setup, we only have one alternative state, and the decision takes values
in {0,1}. In contrast, the selective classification formulation has two alternative
states, and the decision takes values in {0,1,2}. This requires new optimality
theory. Second, in multiple testing, each data point corresponds to the value
of a one-dimensional summary statistic (e.g., p-value or z-value). In contrast,
the observation W in our setup is a high-dimensional vector, which makes the
theoretical analysis significantly more challenging.
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2.3. Oracle rules for FSR control

In this subsection, we derive a class of oracle FSR rules. To motivate our
methodology, consider an asymptotically equivalent error rate (Supplementary
Material Section S3), the marginal FSR

(X7, 1(5, = c.6, # )}
E(Y7, 106, =0)

We aim to develop a selective classification rule that solves the following
constrained optimization problem: maximize the ECC subject to mFSR® < «,

mFSR® =

(2.5)

c=1, 2. Next, we prove an intuitive result that the optimal mFSR rule is a
thresholding rule based on the optimal LDA function S7 = (W; — u)"%"'d (or
its monotone transformations).

Consider a generalized discriminant rule 8(¢;,t2) = (6; : 1 < j < m) of
the form (2.1): §; = I1(1 —T7 < ;) 4 2[(T? < t,), for 1 < j < m, where T7 =
T(W;) = P(0; = 1|W;) = exp(S])/(exp(S]) + 1), and t;,t, € (0,1) are the
lower and upper thresholds, respectively, satisfying ¢; < 1 — t5. Because TV is a
monotone transformation of ST, generalized LDA rules based on T7 and ST, with
suitably adjusted thresholds, are equivalent. We use 77 instead of ST to facilitate
the development of a step-wise algorithm, which is described at the end of this
section.

Let Q°(t.) be the mFSR of §(t1, t2), for ¢ = 1,2. Define the oracle thresholds
tor = sup{t: Q°(t) < a.}, for ¢ = 1,2. To avoid assigning an individual to
multiple classes, we assume that a; and a, have been chosen such that t},, and
t3 i are both less than or equal to 0.5 (This assumption facilitates our theoretical
development. If overlapping selection occurs in practice, we can simply classify
the individual to the class with a larger class probability P(6; = c¢|W;), for
¢ =1,2.). Define the oracle mFSR procedure dor = (655 : 1 < j < m), where

hr=T(1-T7 <thp) +2-1(T7 <tl,). (2.6)
The next theorem shows that dppr is optimal.

Theorem 1. Let D, ., be the collection of all classification rules such that for
any 8 € Dy, 0y, MFSR; < oy and mFSR} < ay. Then, ECCs < ECCs,,,, for
any 6 € Dy, a,-

The thresholds tj,, and t}; in the oracle rule (2.6) can be calculated
approximately using the following step-wise algorithm. Denote T as the ith
ordered statistic of {T",...,T™}. Let
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_ 1 5: (m—1)
ki=min<1<j<m: - {1 T *’}<a ,
' { N ] N '] 1 =0 B 1}

1,
kzzmax{lgjgm;,ZT@gaz}. (2.7)
‘]izl

As indicated by the theory in Section 4, t}, and t2 5 can be consistently estimated
by t&r = min (1 —T=*) 0.5) and #2; = min (T*2),0.5), respectively, under
mild conditions. Here, 0.5 is imposed to avoid overlapping selections. To see
why the step-wise algorithm ([2.7) makes sense, note that the moving average
(1/r) Z;ZITU) provides an estimate of mFSR® when r observations with the
smallest 77 are selected to class 2 (cf., |Sun and Cail (2007))). Hence, it follows
from that 2, corresponds to the largest threshold such that the estimated
FSR? is below a,. The explanation for £}, is similar.

Denote 85, = {I(1 —T79 <thy) +2-1(T7 <t3,):1<j<m}. The next
theorem shows that the step-wise algorithm is valid.

Theorem 2. Consider the oracle setting in which T? are known, forj =1,...,m.
Then, we have FSR*(6%5) < a and mFSR"(8%5) < au, for k=1,2.

Remark 1. 4;, 5, is asymptotically optimal in the sense that ECCs: /ECCs,,,, —
1 as m — oo. This fact can be proved using similar arguments to those presented
in the proof of Theorem 4.

2.4. Issues and roadmap

The FSR control in selective classification, which is closely related to the FDR
(Benjamini and Hochberg| (1995)) control in multiple testing, presents unique
challenges in high-dimensional inference. In multiple testing, the null distribution
of the p-values is assumed to be known precisely; hence, FDR rules, such as the
Benjamini-Hochberg algorithm, can be derived to determine a proper p-value
threshold that upper bounds the FDR. However, in classification, the scores (S’j’r
or T9) must be estimated from the training data with noise. For state-of-the-art
LDA rules in the high-dimensional setting (Cai and Liu| (2011);|Shao et al.| (2011));
Mai, Zou and Yuan (2012); Dicker and Zhao (2016)); |Cai and Zhang| (2019)), the
distributions of the estimated scores (and hence the p-values) are, in general,
unknown, rendering the uncertainty quantification and analysis of the error rate
intractable.

We take a different approach and develop a data-driven FSR rule in two steps.
In the first step, we provide an efficient and robust score Sj, which employs a new
shrinkage rule that works well across sparse and dense regimes. In the second
step, we develop a step-wise algorithm based on S’j. Owing to the easy-to-analyze
shrunken mechanism, we show that we can precisely quantify the uncertainty in
the estimated score and its stochastic contribution to the errors by running the
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algorithm, establishing the theory on FSR control.

3. The Data-Driven LASS Procedure

The key step in estimating the score ST is to develop a good estimate for
d = py — po. In high-dimensional settings, most regularized LDA rules bet on
the sparsity of d (e.g., [Tibshirani et al| (2003); |Shao et al.| (2011))) to reduce
the high variability in the sample estimates. However, the sparsity requirement,
which may not hold in practice and often only serves as a working assumption, is
counter-intuitive in the sense that the two classes are better separated because d
has more nonzero elements. In contrast, Efron (2009), |Greenshtein and Park
(2009), and Dicker and Zhao (2016) propose LDA rules based on Tweedie-
type shrinkage estimators of d, sidestepping the sparsity assumption. Existing
nonsparse LDA rules have two limitations. First, Tweedie-type estimates are
intractable to analyze, making it difficult to assess the uncertainty in the
classification. Moreover, Tweedie’s formula requires that the elements in d must
be independent, which leads to an efficiency loss when the dependence structure
is highly informative (Cai and Liul (2011)); [Shao et al. (2011)). We propose
an easy-to-analyze shrinkage estimator that overcomes the above limitations.
The methodology and illustrative examples are provided in Sections 3.1 and
Section S4, respectively, of the Supplementary Material. The data-driven LASS
procedure is presented in Section 3.2.

3.1. Methodology

Let X, and Y} be the kth coordinate of X and Y, respectively. We consider
a class of shrinkage estimators

d

(dr:1<k<p)={(Xp—Vi)g:1<k<p}, (3.1)

where ¢, € (0,1) is a coordinate-wise shrinkage factor. To effectively reduce the
uncertainty and to quantify the associated misclassification risks, g, needs to be
designed carefully such that it converges to 1/0 at appropriate rates according to
the strength of the signal. The proposed method chooses the following class of

qk:
g1k (’Xk - Yk’)

= - — — —— 3.2
o 9o (|Xk - Yk|) + 91k (|ch - Yk|) (32)

where g, and gy, are the density functions of AN(0,(n; + ny)/niny) and

N2 + 0o + /(2 + 0260 + 4}/ [(n1 + na)/2n1m0] log p, (n1 + na) /nins),
respectively, b > 0 is a small constant, and &y, is the pooled sample variance of

{Xi.:i=1,...,n1} and {Yir : ¢ = 1,...,no}. The constant b > 0 is included
in the definition only for theoretical considerations. In practice, we can choose
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b ~ 0 or simply set b = 0. In all our simulations and data analyses, we report
the results with b = 0.1.

The behavior of ¢ is qualitatively different, depending on the strength
of di. The following proposition shows an intuitively appealing demarcation
phenomenon of ¢, implying that the multiplicative shrinkage rule (3.1]) produces
effects similar to that of hard-thresholding rules: strong signals are kept, and
moderate/weak signals are suppressed.

Proposition 1. Consider q, defined in (3.2). Let a = {(2 + b)\/orx +
V(24 b)204, + 4} and € be an arbitrarily small constant. Define the following

three groups:
G ={1<k<p:|d> (ar/2 + €)/((n1 + ny)/2n1n2) logp} (strong signals);
Go = {1 <k < p: dul = o/ (s F7i3)2ma) o P)} (weak signals);

Gy = {1 <k <p:|d < (an/2 — €)\/((n1 +n2)/2n1n2)logp and k ¢ Go}
(moderate signals).

Then, there exists v > 0 independent of p, n1, and no, such that
(a) 1 —E(qx | k€ Gi) =O0(p™7);
(b) E(qr | k € G5) = O(p™");
(¢) E(gi | k € Go) = O(p~ 7).

We mention some merits of the proposed shrinkage rule. First, under
the dense regime, the multiplicative factor ¢, can produce significantly less
noisy estimates than the original observations, while retaining more nonzero
coordinates than thresholding rules do. This leads to shrinkage rules with
robust and superior performance at different sparsity levels. Second, unlike LDA
rules based on Tweedie’s formula (Efron| (2009); Dicker and Zhao (2016))), the
coordinate-wise shrinkage scheme in does not require independence between
di. Finally, the multiplicative rule is easy to analyze and leads to provably valid
rules for FSR control.

3.2. The data-driven LASS procedure

We propose estimating S7= (W ;—p) ™S 'd by S;=(W;—(X + Y)/2)T8d.
First, ¥7! is the estimated precision matrix and d is the proposed shrinkage
estimate . The estimation of the precision matrix has been intensively
studied in the literature; see Liu and Luo (2015)), |Cai, Liu and Zhou (2016),
Loh and Tan| (2018), Wang et al. (2013), |Sun and Zhang| (2013]), |Cai, Liu
and Luo| (2011)), and [Yuan (2010) for related works. In our numerical studies,
we use the ACLIME estimator proposed in |Cai, Liu and Zhou (2016). Next,
d = (X: — Yaq,..., (X, — Y,)g,), where ¢ is as defined in . Let
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T9 := exp(S;)/(1 4 exp(S;)). Denote {TW : 1 < j < m} as the ordered statistics.
Define

1 < o
ki=min{l<j<m:— 1-Tm ) <ay b,
1 { >J] > j+1;( ) < 1}

1 .
k‘zzmax{lgjgm:. E 7 Sag}. (3.3)
et

The data-driven LASS procedure is given by 6= (51, ... 0m), where
§,=1 {1 — 79 < min (1 (O 0.5)} r2.1 {TJ’ < min (T(k2>, 0.5)} . (3.4)

Remark 2. If we choose a; = «ay = 0.5, then indecisions are not allowed, by
. That is, LASS becomes a classical rule that makes definitive classifications
on all individuals. We show that LASS is still superior to existing methods in
both theory and numerical performance under this classical setup (Corollary 1 in
Section 4 and Section 5.1).

4. Theoretical Properties of LASS

This section studies the theoretical properties of the data-driven LASS
procedure. We focus on the regime of ((n; + ny)/nins)logp — 0, which requires
that the dimension does not grow too fast relative to the sample size. Here,
We consider issues related to FSR control and optimality in turn. A discussion
of connections to existing works is given in Section S7 of the Supplementary
Material.

We first state and explain a few conditions needed in our theoretical analysis.

(A1) The covariance matrix ¥ = (041)1<k,1<p satisfies 0 < €y < op, < 1/€, for
all 1 < k < p, where ¢ is a fixed positive constant.

(A2) The estimated precision matrix 3! satisfies |21 — %12 = o(1).

Consistent estimation of the precision matrix ¥ ~! has been studied inten-
sively. Effective estimators and sufficient conditions for consistent estimation are
discussed by, among others, Bickel and Levina; (2008]), [Yuan, (2010), Liu and Luo
(2015)), |Ca1, Liu and Zhou (2016), and Avella-Medina et al.| (2018). A more
detailed discussion of (A2) is provided in the Supplementary Material S9.

(A3) |G| > 1 and |Gs|] = O(niny/(ny + n9)), where G; and Gz are defined
in Proposition 1 and correspond to collections of strong and moderate
coordinates, respectively, of d.

n (A3), |Gi| > 1 provides a sufficient condition under which LASS makes at
least one definitive classification with high probability. As opposed to existing
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works that require the sparsity of both G; and Gs;, we do not impose an upper
bound on |G;|. Our condition seems to be sensible, because having more strong
signals (dj, € Gy) is helpful for distinguishing the two classes, and what really
hurts the performance of LDA rules is an overwhelming number of nonzero
elements of moderate strength (d;, € G3). The condition |G3| = O(nyny/(ny + n2))
corresponds to a weaker notion of sparsity, in the sense that the sparsity or
approximate sparsity conditions in existing works (e.g., |Cai and Liu| (2011))) are
violated if |G3| > niny/(ny + ng). Note that the conventional sparsity notion
assumes that there are relatively few signals, whereas we require that relatively
few signals of moderate strength fall within the narrow range defined by G3, which
eliminates the need for the counter-intuitive sparsity condition on G;, as used
in existing works. The superiority of LASS under the dense signal setting is
illustrated in our numerical results (Section 5). The next theorem establishes the
asymptotic validity of LASS for FSR control.

Theorem 3. Let & be the data-driven LASS procedure defined in (3.4). Under
conditions (A1)~(A3), we have mFSR; < a. + o(1) and FSR; < a. + o(1), for
c=1,2.

Our conditions on error rate control are substantially different in nature to
those required by state-of-the-art LDA rules. First, the sparsity of 7! is not
a necessary condition for our theory on FSR control (Note that even when the
sparsity of ¥~ ! is needed for consistent estimation, the sparsity conditions on X!
and d usually correspond to fundamentally different notions in scientific studies.
Our theory seems more sensible, because it eliminates the need for the sparsity
of d). Second, our theory needs neither sparsity nor a consistent estimation
of d. In particular, if )7, 5 d? — oo, as long as Y, . d2 also goes to oo, we
can still perfectly separate the two classes under condition (A3). Finally, in
contrast to existing works, our theory has no restrictions on the norm of d or
¥ ~1d. Note that estimation and classification are fundamentally different tasks:
the assumptions on the norm are natural for estimation problems, but counter-
intuitive for classification problems, where larger norms make the classification
task easier and lead to lower error rates.

Next, we investigate the asymptotic optimality of LASS. Because the
moderate and weak signals have been shrunk to values close to zero, LASS is
asymptotically optimal if weak and moderate signals have negligible effects or if
strong signals have dominating effects. We formalize this intuition in the next
theorem.

Theorem 4. In addition to conditions (A1)—(A3), if either of the following two
conditions hold

(A4) Zk¢91 di =o(1),
(A5) Zkegl d;, — o0,
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then we have mFSR; < a. + o(1), FSR; < a. + o(1), and ECC5/ECCs,,,, =
1+ 0(1).

If we let a; = a3 = 0.5, then the FSR control setup reduces
to the classical setup where indecisions are not allowed. Let 4 be a
classification rule taking only values one or two, and define L(d) =
P{0; #0;[(X;,1 <i<ng),(Y;,1<i<mng)}, R@O) = E{L@B)}. A direct
consequence of Theorem 4 is given below.

Corollary 1 (Risk consistency). Suppose we choose a; = as = 0.5. Then,

~

under conditions (A1)-(A3) and one of (A4) and (A5), we have R(d)—R(6") — 0,
where 8 is the oracle Fisher’s rule.

5. Numerical Experiments

This section illustrates the numerical performance of LASS using both
simulated and real data. The simulation considers two setups: the conventional
setup that does not allow indecisions (Section 5.1), and the selective classification
setup that aims to control the FSR (Section 5.2). Two real data sets are discussed
in Section 5.3 and Section S6 of the Supplementary Material. In all analyses,
LASS is implemented using b = 0.1 in , and the ACLIME method (Cai, Liu
and Zhou (2016))) is adopted for estimating X~'. For the simulated data, we take
ny = ng = n.

5.1. Simulation: Conventional setup

We start with the classical setting in which no indecisions are allowed. We
compare LASS with the following methods: (a) Fisher’s rule, using the true p;,
o, and X7 (denoted “Oracle”), which serves as the optimal benchmark for all
classification rules; (b) the LPD rule proposed by |Cai and Liu (2011]) (denoted
“LPD”), which is implemented using the code provided on the authors’ website;
(c) the AdaLDA rule proposed by (Cai and Zhang| (2019)) (denoted “AdaLDA”),
which is implemented using the code provided on the authors’ website; (d)
Fisher’s rule, using sample estimates of wi, mgo, and ¥~! (denoted “Naive”);
specifically, ST is estimated as (W; — (X +Y)/2)TS X —Y), where 7 is
the Penrose inverse of the sample covariance matrix; (e) the L, logistic regression
method (denoted “Lasso”), here, we follow |Lei (2014) and choose the tuning
parameter using cross-validation; and (f) the empirical Bayes method proposed
in Efron| (2009)) (denoted “Ebay”). We use the R-package Ebay to estimate d, and
estimate ¥ ! using a diagonal matrix in which the diagonals are the inverses of
the sample variances. We present numerical results in the next two subsections
to show that LASS (a) is comparable to state-of-the-art methods in the sparse
case, and (b) substantially outperforms competing methods in the dense case.
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5.1.1. Sparse setting

Let gy = (0,...,0)" € RP, and p, be a vector with the first 10 entries being
0.5, the next 10 0.1(logp/n)'/2, and the rest zero. We consider the following
three correlation structures that are widely considered in the literature (Cai and
Liu (2011); |Cai and Zhang) (2019); |Avella-Medina et al.| (2018)):

Model 1: Band graph. Let X' = Q = (w;j)pxp, Where w;; = 1, w; i1 =
Wit1,i = 035, Wi i+2 = Wit2,4i = 0175, and Wi; = 0 if ‘Z — ]’ > 2.

Model 2: AR(1) structure. Let X' = Q = (w;;)px,, Where w;; = 0.31°77.

Model 3: Block structure. Let ¥~' = Q = (B+41,)/(1+6), where b;; = b;; =
0.05 - Bernoulli(0.1) for 1 <4 < p/2, andi < j < p, b;; = b;; = 0.05 for
p/2+1<i<j<p,b;=1forl<i<p, and § = max{—\,.;n(B),0} +0.1.

The size of the training set is n = 400, with p varying from 500 to 1000.
The misclassification rate is computed based on m = 2,000 test points generated
from NV (u1,Y) or N (o, 2) with equal probability. We repeat the experiment 100
times, and report the misclassification rates (in percentage) in Table 1.

The Naive method can be substantially improved on by LPD, AdaLDA, and
LASSO, all of which make strong assumptions on the sparsity structure of the
data-generating model. Although no method dominates, LASS and AdaLDA
seem to perform best among all methods considered. LASS is comparable to
AdaLDA in terms of the overall effectiveness across the three settings. This
is impressive because (Cai and Zhang (2019) show that AdaLDA is minimax
optimal in sparse LDA. The next simulation shows that in the nonsparse setting,
LASS substantially outperforms AdaLLDA. Similarly to LASS, the Ebay method
adopts the shrinkage idea and does not make strong assumptions on the sparsity
structure. Ebay performs reasonably well. However, it relies on the independence
assumption, has no theoretical guarantee on the convergence of the error rate,
and is less effective than LASS in all settings.

5.1.2. Dense setting

Consider the three models in the previous section. The choices of p; and X
are the same, but g, contains more nonzero entries: the first (p/4) entries are 0.4,
and the rest are zero. The misclassification rates (in percentage) are summarized
in Table 2. As expected, methods that rely heavily on the sparsity assumption of
d, such as LPD and AdaLDA, do not perform well. We mention a few important
patterns in the results. First, the performance of LPD and AdaLDA deteriorates
as p increases. This is undesirable, considering that the classification problem
seems to have become easier, as shown in the improved performance of the oracle
rule. In many settings, LPD and AdaLLDA perform worse than Naive. Second,
Ebay does relatively well when p is small, but its performance also deteriorates
as p increases. Furthermore, the misclassification rates can be much higher than
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Table 1. Comparison of average misclassification rate in percentage. The smallest error
rate (after that by the oracle) in each setting is indicated in bold.

P Oracle Naive LASS LPD AdaLDA LASSO Ebay
Model 1
500 13.74 29.39 14.78 15.78 14.79 15.75 15.93
600 13.64 33.12 14.72  15.52 14.55 15.78 15.66
700  13.81 38.51 15.02  15.80 14.85 16.10 15.99
800 13.64 47.72 14.87  15.89 14.81 16.12 15.62
900  13.70 41.66 1444 1741 14.75 16.31 15.79
1,000  13.70 41.16  14.59 18.06 14.73 16.27 15.92
Model 2
500  14.82 30.68 1598 16.61 15.77 16.72 16.03
600 14.81 34.45 16.15  16.68 15.77 16.84 16.35
700  14.79 39.08 16.21  16.67 15.86 16.92 16.36
800  14.71 47.83 16.13  16.77 15.91 16.98 16.02
900  14.87 41.79 16.19 18.14 15.86 17.08 16.37
1,000  14.92 41.25 16.38  18.72 15.92 17.11 16.51
Model 3
500  21.16 36.20 2293 23.83 23.71 24.21 23.31
600  20.87 39.44 2314 24.23 24.04 24.69 23.48
700  21.00 42.81 23.52 24.69 24.49 25.03 23.88
800  20.99 48.59  23.82 25.00 24.87 25.28 24.08
900  21.02 44.22  24.29 25.78 25.37 26.01 24.48
1,000  21.05 43.02 24.72 27.04 26.11 26.41 25.08

those of the oracle benchmark. Third, LASS and Lasso substantially outperform
the competing methods in most settings. The performance of both improves as
p increases, exhibiting the same desirable trend as that of the oracle rule. LASS
dominates Lasso, and the gap in the error rate is substantial in several settings.

5.2. Simulation: FSR control

We now examine the selective inference setup in which the goal is to
control the FSR. For Naive, Lasso and Ebay, we first form an estimate for the
discriminant, denoted as S;, and then use 77 = exp(S;)/(1 4 exp(S;)) in
and , which serve as the base algorithm for FSR control. LPD and AdaLLDA
are omitted, because they only produce the signs of the discriminants, and it is
unclear how to adjust the algorithms for FSR control.

Next, we present our results pertaining to FSR control in the sparse settings
considered in Section 5.1.1, but omit the results for the dense settings in Sections
5.1.2. This is because when the classification task becomes easy (as indicated by
Table 2), the misclassification rate is so low that the FSR framework is no longer
needed.

Consider the models in Section 5.1.1. We fix n = 400 and vary p from 200
to 800. The target FSR' and FSR? levels are both set to 0.1. The experiment is
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Table 2. Comparison of average misclassification rates in percentage. The smallest error
rate (after that by the oracle) in each setting is indicated in bold.

P Oracle Naive LASS LPD AdaLDA Lasso Ebay
Model 1
500 0.07 2.95 0.20 5.19 2.09 0.52 0.12
600 0.02 4.48 0.09 5.00 3.18 0.31 0.42
700 0.01 9.79 0.04 11.59 4.80 0.20 0.78
800 0.00 39.79 0.03 15.24 6.38 0.16 1.09
900 0.00 12.37 0.01 15.45 8.59 0.15 1.30
1,000 0.00 8.42 0.01 11.29 10.17 0.12 1.54
Model 2
500 0.08 3.02 0.23 5.48 2.05 0.54 0.16
600 0.03 4.56 0.10 4.93 2.81 0.32 0.46
700 0.01 10.08 0.05 11.80 4.38 0.23 0.79
800 0.00 39.94 0.02 12.69 6.20 0.15 1.15
900 0.00 12.67 0.01 15.27 8.14 0.13 1.32
1,000 0.00 8.36 0.01 11.31 9.42 0.10 1.56
Model 3
500 0.26 5.06 1.32 6.52 3.37 2.04 1.50
600 0.08 6.35 0.86 6.22 3.78 1.37 1.69
700 0.02 11.72 0.62 5.34 4.64 0.99 1.92
800 0.01 39.89 0.44 5.32 6.36 0.70 2.05
900 0.00 14.08 0.38 16.00 8.25 0.61 2.18
1,000 0.00 10.05 0.36 18.96 10.47 0.51 2.22

repeated for 100 times, and the average FSRs (shown in the first two columns)
and power (defined as ECC/m, and shown in the last column) are reported in
Figure 1. Our findings are as follows. First, both Naive and Ebay fail to control
the FSR. The Naive method becomes worse as p increases. This corroborates
the analysis in |Bickel and Levina/ (2004)), which shows that LDA rules based on
sample estimates suffer from high dimensionality. Second, both Lasso and LASS
control the FSR at the nominal level, showing that our proposed data-driven
algorithm is effective for FSR control when equipped with reasonably good
estimates of the scores. Third, LASS controls the FSR at the nominal level
accurately across all settings. Lasso is conservative and has lower power.

5.3. p53 mutants data

Finally, we perform classification on p53 mutants data (Danziger et al.
(2009)), which consist of 16,772 tissue samples, and a p = 5,407-dimensional
vector is measured for each sample. Among the 16,772 samples, 143 are
determined to be “active,” and the rest are determined to be “inactive.” We
randomly select 100 active samples and 100 inactive samples as our training data,
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Figure 1. Comparison of FSR and Power. Naive and Ebay fail to control the FSR. LASS
controls the FSR at the nominal level with the highest power.

and then use the remaining 43 active samples and 50 random inactive samples as
our testing set. To make the classification problem more difficult, an independent
N (0, 40) noise variable is added to each gene in both the training and the testing
sets.

We follow the previous preprocessing steps: (a) the training data are used
to estimate the sample variances; (b) genes with variances greater than 107
or smaller than 1072 are dropped,;and (c¢) the top 100 genes with the largest
t-statistics are used. The experiment is repeated 50 times, with the results
summarized in Tables 3 and 4.

Table 3 contains the results under the conventional setup. LASS performs
as well as the LPD and AdaLDA rules. However, all methods have high
misclassification rates. Hence, we consider FSR control. We set the target FSR
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Table 3. Misclassification rates of different methods.

LASS Naive LPD AdaLDA Lasso Ebay
Misclassification  30.73%  40.24% 32.34% 30.28%  31.23% 31.57%

Table 4. FSR and power comparison.

LASS Naive Lasso Ebay

FSR! 10.38% 41.90% 17.81% 32.01%
FSR? 11.51% 38.75% 16.00% 30.88%
Power 20.60% 59.38% 19.25%  68.41%

levels for both classes to 0.1. In Table 4, we compare the FSR and power of
different methods, showing that LASS effectively controls the FSR, while Naive,
Ebay, and Lasso fail to do so.

6. Conclusion

We have proposed a selective classification framework for high-dimensional
LDA problems. The proposed LASS procedure, which provides an indecision
option for observations that cannot be classified with confidence, controls the
FSR at user-specified levels. LASS is easy to analyze and has robust performance
across sparse and dense regimes.

There are several possible directions for future research. First, it would
be of interest to relax Condition (A2). Intuitively, if the signal to noise ratio
VdTYX~1d is high, then some errors in estimating 3! and d can be tolerated
without degrading the accuracy of LASS-type classifiers significantly. Second, it
is desirable to design model-free methods that guarantee FSR, control without
requiring a consistent estimation of class probabilities. Promising ideas include
constructing knockoffs or mirror sequences, as in Barber and Candes (2015) and
Leung and Sun| (2022), and using conformal techniques, as in Bates et al.| (2023);
Guan and Tibshirani (2022). Finally, we have focused on the situation in which
both the training and the test data come from two classes. It would be of interest
to generalize the framework to handle a multi-class setup, and to develop new
inference procedures for detecting novel classes (outliers) in the test data.

Supplementary Material

Supplementary Material contains proofs of the main theorems, propositions,
corollaries, and technical lemmas, an argument establishing the asymptotic
equivalence of FSR and mFSR, additional numerical results and illustrations,
an example showing the advantage of using LASS rather than LPD, a proof that
class-specific FSR control implies global FSR asymptotic control, and a discussion
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about condition (A2).
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