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Abstract: The machine learning and statistical modeling cultures provide contrast-

ing approaches to statistical analysis. In an article in this journal, Loh, Eltinge,

Cho and Li compare these approaches in the setting of imputation of large data

sets, recommending machine-learning methods. All the compared methods make

assumptions, and I note that these assumptions receive more critical assessment

for the model-based approaches than for the tree-based machine-learning methods.

I discuss in particular the assumptions about the missing-data mechanism implied

by the differing approaches. I question the extent to which general conclusions can

be drawn from their simulation study, given the relatively strong performance of

the method that discards the incomplete cases, and the limited exploration of the

relevant design space.

Key words and phrases: Imputation, missing data, machine learning, nonresponse

weighting, tree and forest methods.

1. Introduction: Machine Learning and Statistical Modeling Approa-

ches to Imputation

There is a spirited competition between classical statistical modeling and al-

gorithmic machine learning-based approaches popular in computer science, par-

ticularly in the context of “big data” not collected according to a purposeful

statistical design. Lively references include Tukey (1962), Donoho (2017) and, in

particular, Breiman (2001). The latter considers the prediction of an outcome

variable Y based on a set of predictors X, and contrasts classical parametric

statistical modeling with machine-learning approaches, where the relationship

between Y and X is viewed as a “black box”, and the focus is on algorithms like

trees, forests and neural nets that lead to good predictions.

Loh et al. (2019, henceforth LECL) consider this competition in the context

of large data sets with a general multivariate pattern of missing data. The authors

assemble a wide array of imputation approaches, and compare them in the con-
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text of a real (although somewhat narrowly defined) missing data problem from

the Consumer Expenditure Survey. The comparison is worthwhile, but I think

the simulation in the paper provides limited information about the strengths and

weaknesses of the approaches. I think the paper reflects a widespread tendency

to minimize the importance of assumptions in “automatic” machine-learning ap-

proaches, particularly when compared with more explicitly model-based alterna-

tives. These concerns motivate this commentary.

Imputation of missing data is a form of prediction, and since tree and forest

methods seem to do well for prediction, they seem good candidates for impu-

tation. The likelihood-based approaches in LECL are in the general realm of

classical statistical modeling, although their imputations are not always based

on the likelihood for a coherent joint distribution of the variables. This is the case

for the “chained equations” method discussed further below. So-called “doubly-

robust” methods of imputation that incorporate inverse probability weights are

more accurately termed “quasi-likelihood” methods.

Tree-based regression methods have a long history, dating back at least to

Belson (1959). A popular early tree method in the social sciences was Auto-

matic Interaction Detection (Morgan and Sonquist (1963)). Tree-based methods

are algorithms, but I would argue that underlying them are statistical models,

which have their own set of assumptions, strengths and weaknesses. Categoriz-

ing continuous variables requires a choice of cut-points, and often relationships

of continuous predictors are smooth rather than the step functions implied by

categorization. Alternatives such as splines retain smoothness without imposing

strong assumptions on the form of the relationship between outcome and pre-

dictor. The data-driven approach to forming trees is akin to forward selection

methods in regression, and shares some of the weaknesses of that approach. It

provides ample allowance for interactions that might be neglected in additive

regression models, but it may be more reasonable to give main effects and low-

order interactions higher priority than higher order effects in a regression model;

in Bayesian modeling this can be achieved by assuming flat prior distributions for

low-order effects, but proper prior distributions for high-order effects that allow

shrinkage of their coefficients towards zero.

Forests can be viewed as arising from mixtures of tree models, sacrificing

interpretability of the black box for improved prediction. Indeed, mixing over a

set of plausible models seems to work well in prediction competitions like Netflix

(Bell, Koren and Volinsky (2008)). From my Bayesian perspective, Bayesian

model mixing is a desirable alternative, as models are weighted by their posterior
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plausibility, with weights that provide useful information about the plausibility

of each model.

2. The Comparisons in LECL

LECL compare imputation methods for estimating the mean of Y = amount

of interest and dividend income, for people with this income type, in the Bureau

of Labor Statistics Consumer Expenditure Survey (CES). Methods compared in-

clude various tree and forest methods of imputation, and imputation based on

“model-based” approaches. Simulations are conducted to mimic the CES miss-

ing data pattern. The paper favors tree and forest methods over model-based

alternatives, as can be seen in the following extract from the abstract: “Stan-

dard adjustments based on item imputation and on propensity weighting... can

be challenging when auxiliary variables are numerous and are themselves subject

to incomplete data problems. This paper shows how classification and regres-

sion trees can overcome these problems...The results show that if the number

of auxiliary variables is not small or if they have substantial missingness rates,

likelihood methods can be impracticable or inapplicable. Tree or forest methods

are always applicable, are relatively fast, and have higher efficiency under real-

data situations with incomplete patterns similar to that in the aforementioned

[Consumer Expenditure] Survey.”

The thirteen imputation methods compared in the paper can be grouped into

three broad classes: (a) Trees and forests to predict the response indicator R. The

inverse of the resulting predicted probabilities are then used as weights (IPW).

Specifically, GCT and RCT model R using GUIDE and CART classification trees,

and GCF is a forest version of GCT. (b) Trees and forests to impute missing

values of Y . Specifically, GRT and RRT impute the conditional mean of Y using

GUIDE and RPART classification trees, and GRF is a forest version of GRT.

(c) Other “existing” approaches. Specifically, SIM = mean imputation; MICE =

chained equation multiple imputation (MI), which regresses each variable in turn

on all the others, with missing values replaced by most recent imputations. LECL

use MICE software (Van Buuren and Groothuis-Oudshoorn (2011)). AME =

Amelia; AIPW = Amelia-augmented IPW; DRT, DRF = doubly robust methods,

with the mean of Y predicted using GRT, GRF.
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3. Applicability of the Methods, and their Underlying Assumptions

Regression methods, based on trees or parametric models, assume that the

regressions estimated on cases with Y observed are well-specified. They also

assume that the predictions based on the observed data apply to cases with Y

missing. This in turn involves assumptions about the missingness mechanism,

since nonresponse is not under our control.

The assumptions of parametric models, and in particular the assumed form

of the mean function relating Y to the X’s, tend to be explicit – which vari-

ables are included, assumed functional form, which interactions are included,

and so on. The fact that assumptions are explicit in parametric models can be

seen as a strength, not a weakness, since the statement allows for model criti-

cism and refinement. The assumptions of parametric methods, both concerning

what predictors are included in the mean function and the missing at random

(MAR) assumption (Rubin (1976); Little and Rubin (2002)) for the missingness

mechanism, are mentioned prominently in LECL.

Of the “model-based” methods, I like the chained equations MI, represented

in LECL by MICE (Van Buuren and Groothuis-Oudshoorn (2011)). MI allows

the propagation of imputation uncertainty, and the chained equation modeling of

a sequence of conditional distributions is very flexible. In particular, regressions

can be tailored to variable type – linear regression for continuous outcomes, logis-

tic regression for binary outcomes, Poisson regression for count data, and so on;

splines can be used to model nonlinear relationships with continuous variables;

and interactions can be included to model lack of additivity. This is achieved

at the expense of a lack of a coherent joint distribution of the variables, but

I think flexibility trumps theoretical cohesiveness in applications. Concerning

chained equation MI, LECL write that “Little is known about the performance

of the methods in real-world settings where variables are not normally distributed

(e.g., categorical variables) and probabilities of missingness are not determined

by logistic regression... To our knowledge, only three published simulation stud-

ies used real data ... None had more than 20 X variables and only one had

missing values in X.”

I would respond that MI have been extensively applied, to both large and

small data sets –Google Scholar currently lists over 2,300 citations to MICE,

and over 1,600 citations to the alternative IVEware (Raghunathan et al. (2001)).

This count ignores applications using other software. Van Buuren and Groothuis-

Oudshoorn (2011) list about 80 references to the application of chained equation
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MI in real applications, many of which are not restricted to normal variables.

The earliest application of chained equations MI was to the 1989 Survey of

Consumer Finances (Kennickell (1991)). Khare et al. (1993) apply MI based on

a joint model to multivariate missing data in the (quite large) National Health

and Nutrition Examination Survey (NHANES). The method does very well in

an associated simulation study on real NHANES data (Ezzati-Rice et al. (1993,

1995)), which assesses confidence coverage as well as point estimation. Large

surveys that use chained equation MI include the Consumer Expenditure Sur-

vey (Paulin, Fisher and Reyes-Morales (2006)), and the Health Interview Survey

(Schenker et al. (2006)). Lee and Carlin (2010) assess chained equation MI in a

simulation study that draws random samples from a large synthetic population

created to resemble data from the US National Longitudinal Study of Adolescent

Health. Akande, Li and Reiter (2017) compare MI methods for categorical data in

a simulation based on the American Community Survey, favoring default regres-

sion tree and Bayesian mixture model approaches over default chained equations

approaches based on additive models.

LECL claim that MICE “fails” with many X’s. I think this means that

they couldn’t get it to work, since there is no obvious reason why regression on

a large set of units and predictors can’t succeed. See, for example, Stuart et al.

(2009), who successfully apply chained equation MI to a data set with 9,000 cases

and 400 variables. LECL’s description of missing data – “About 20% of these

variables have missing values; 67 of them have more than 95% missing values”

– seems to confuse missingness with “not applicable” (NA), which is not really

missing data.

LECL suggest multicollinearity (for normal regression) and quasi-complete

separation (for logistic regression) as explanations for failure of chained equation

methods in their setting. These are much studied problems. Multicollinearity

can be overcome by simple approaches such as stepwise selection, which, although

flawed, may not be too bad for prediction (e.g. Dempster, Schatzoff and Wermuth

(1977)), particularly given that LECL focuses on point estimation rather than

the impact of variable selection on assessing imputation uncertainty.

I am currently engaged with colleagues in the Institute for Social Research

at Michigan in a project to multiply impute wealth variables in the Health and

Retirement Survey, using IVEware. This is a much larger and more complex

problem than that addressed by LECL, involving simultaneously imputing both

recipiency and amount of many wealth-related variables, in a longitudinal set-

ting with large numbers of predictors, some also missing. We have encountered
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problems with multicollinearity, often because more than one slightly different

version of the same variable exists in the data file. Excluding such duplicates,

and applying methods like stepwise selection, overcomes these problems. More

sophisticated alternatives to stepwise regression are regularization methods like

ridge regression or the lasso, which are applied to chained equations in Deng et

al. (2016).

Concerning logistic regression, Clogg et al. (1991) describe a simple remedy

for quasi-complete separation in the application of logistic regression to multi-

ple imputation for the (extremely large) U.S. Census industry and occupational

recoding project. Computing power has advanced exponentially since that ap-

plication, which is now more than 25 years old.

The impression given by LECL is that the tree algorithm will automatically

lead to good predictions of missing values. I think this uncritical assessment is

common for algorithmic methods, where the underlying model is treated as a

“black box” and not explicitly scrutinized. But tree methods do make assump-

tions about the form of the mean function, as discussed, for example, in James

et al. (2013). In particular, the categorization of continuous predictors assumes

that the relationship with the outcome is a step function that is flat for the in-

tervals within each category, and has jumps between the categories. The set of

predictors available at each split is determined by forward selection, a method

that is known to have limitations as a variable selection method (e.g. Dempster,

Schatzoff and Wermuth (1977)).

Concerning the missingness mechanism, LECL argue that the MAR assump-

tion that underlies chained equation methods is “artificial”, but the missingness

assumptions underlying tree-based methods is “natural”. The tree methods as-

sume a missing not at random (MNAR) mechanism, because they include indica-

tors of missingness of predictors as covariates. In their simulations, LECL create

a complete data set from the CES, and then use a GUIDE forest to estimate the

missingness probability for each case and create missing values. This method of

creating missing data applies the same MNAR mechanism as that assumed by

the GUIDE methods, biasing the simulations against methods that assume other

mechanisms, including MAR. LECL write: “A major feature of the experimental

design is the novelty of ensuring that predictor variables are naturally missing,

i.e., not constrained to be MAR, in the simulation population.” Generating

data under a particular MNAR mechanism does not address the performance of

methods for the multitude of other possible MNAR mechanisms. Moreover, the

specific form of MNAR assumed by the tree methods is not scrutinized. It can be
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Figure 1

illustrated in the simple case where both the outcome Y and one of the predictors

(say X) have missing values, and other variables (say Z) are fully observed. This

leads to four patterns of missing data, as in Figure 1.

Let RX and RY denote response indicators for X and Y respectively, with

value 1 if the corresponding variable is observed and 0 if it is missing. Any impu-

tation method assumes (implicitly or explicitly) a model for the joint distribution

for (X,Y,RX , RY ) given Z. A general statement of the MAR assumption (see

Example 1.13 in Little and Rubin (2002)) is

Pr(RX = RY = 0|Z,X, Y ) = g00(Z),

Pr(RX = 0, RY = 1|Z,X, Y ) = g01(Z, Y ),

Pr(RX = 1, RY = 0|Z,X, Y ) = g10(Z,X),

Pr(RX = RY = 1|Z,X, Y ) = 1− g01(Z, Y )− g10(Z,X)− g00(Z),

with functions g00(Z), g01(Z, Y ), g10(Z,X), that do not need to be explicitly mod-

eled under the MAR model-based approach. In terms of the predictive distribu-

tions for imputation, these conditions imply that

f(X|Z, Y,RX = 0, RY = 1, θ) = f(X|Z, Y, θ), (3.1)
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f(Y |Z,X,RY = 0, RX = 1, θ) = f(Y |Z,X, θ), (3.2)

f(X,Y |Z,RX = 0, RY = 0, θ) = f(X,Y |Z, θ), (3.3)

where densities f are distinguished by their arguments. In MICE and other

model-based MAR approaches, imputations of missing values of Y and X are

linked to the complete-data distributions on the right sides of (3.1)–(3.3) by it-

eration. On the other hand, suppose that, as in a tree algorithm, RX is included

as a predictor in the regressions to impute missing values of Y , and RY is in-

cluded as a predictor in the regressions to impute missing values of X. Resulting

imputations make the following MNAR assumptions, since the regression on the

right side of each equation is estimated on the data and then used to impute the

missing values of the outcomes of the regression on the left side:

f(Y |Z,X,RY = 0, RX = 1, θ) = f(Y |Z,X,RY = 1, RX = 1, θ), (3.4)

f(Y |Z,RY = 0, RX = 0, θ) = f(Y |Z,RY = 1, RX = 0, θ), (3.5)

f(X|Z, Y,RX = 0, RY = 1, θ) = f(X|Z, Y,RX = 1, RY = 1, θ), (3.6)

f(X|Z,RX = 0, RY = 0, θ) = f(X|Z,RX = 1, RY = 0, θ). (3.7)

This is a form of pattern-mixture model Little (1993). It is not clear to me why

the particular MNAR assumptions (3.4)–(3.7) are better or “more natural” than

the MAR assumptions (3.1)–(3.3). In particular, if X is predictive of both Y and

missingness of Y (RY ) after conditioning on Z, then the failure to condition on

X in Eq. (3.5) when imputing Y for cases where X is missing (RX = 0) leads

to bias. Empirically, we cannot tell whether (3.4)–(3.7) is better or worse than

(3.1)–(3.3) – there is no information in the data to decide this question – but tree

and forest methods do make an assumption about the missingness mechanism,

that is, they are not “assumption-free.”

Statements in LECL about inefficiency of MAR-based methods are based not

on theory, but on (to my mind) questionable implementations of these methods

in the simulation study. I conjecture based on considerations in Little (1993) that

methods based on (3.1)–(3.3) are likely to be more, not less, efficient than meth-

ods based on (3.4)–(3.7). The reason is that MAR bases imputations of missing

values on the distribution of all the data, whereas (3.4)–(3.7) bases imputations

on the distribution of subsets of the data.

Of course, the patterns in LECL are more complex than Figure 1, but insight

is conveyed by looking at simpler cases.
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4. The LECL Simulation Findings

Getting particular software implementations of methods to work, with ac-

ceptable computing times, is an important issue, but it is a moving target, be-

cause software and computing power are constantly evolving. These practical

considerations aside, the main tools for assessing the properties of statistical

methods are theory and simulation studies. Since LECL do not advance theo-

retical arguments in favor of their tree methods, the main basis for comparison

of methods is their simulation study.

Simulation studies are experiments, and good ones adopt the classical ideas

of experimental design, going back to R.A. Fisher. That is:

(a) decide on the factors that potentially affect the relative performance of

the methods

(b) Manipulate these factors in a (fractional) factorial statistical design that

attempts to cover the relevant design space.

(c) Apply analysis of variance of the results for key outcomes to assist in

interpreting conclusions.

Many factors seem important in the LECL imputation setting, including

sample size, fraction of missing information, missingness mechanism, form and

strength of the true relationship between the variable with missing data and pre-

dictors (and in particular the assumed functional forms and prominence of main

effects relative to interactions), form and strength of the true relationship between

missingness and its predictors, degree of association between the propensity to

respond and the variable with missing values, and degree of misspecification of

the true models for missingness and the survey variables.

Viewed from this perspective, the simulation study in LECL studies the

mean of a single variable in a single population, manipulates just one factor,

namely the number of predictors X, and considers just two outcomes, bias and

root mean squared error (RMSE) of the estimates. I question whether general

conclusions about the compared methods can be justified from such a limited

exploration.

This is particularly true given the finding that SIM – imputing the uncon-

ditional mean of Y , a method equivalent to complete-case analysis – seems to

do about as well as any of the other methods in terms of RMSE (see Figure

4 in LECL). The relative absence of correctable bias in SIM suggests that the

simulated mechanism, as it relates to this particular Y , is not far from missing

completely at random (MCAR, see Rubin (1976)), notwithstanding the factors
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conditioned by the GUIDE method of creating missing data. Deviations from

MCAR are generally needed to differentiate alternative imputation methods,

which aim to use information on X to reduce bias and increase precision relative

to SIM.

From the LECL results in their Figure 4, it seems that CART weighting is

poor – perhaps a problem with extreme weights? Also, MICE either does not

work or is terrible... but imputing Y using MICE with no covariates at all is

equivalent to SIM, aside from simulation error from imputing draws, which can

be rendered negligible by increasing the number of multiple imputations. This

equivalent “null” version of MICE should do about as well as SIM. Inclusion of

any good predictors of Y should improve the precision of estimates relative to

this null version, leading to reduced RMSE. These observations conflict with the

reports that MICE either does not work or has much higher RMSE than SIM.

5. Conclusions

Tree and forest methods may indeed be useful tools for imputation – im-

putation is a form of prediction, and these methods can be good at this. The

methods are algorithmic and “atheoretical”, but they are not assumption-free,

making assumptions about the missingness mechanism and the form of the pre-

dictive distributions of the missing values. The “automatic” nature of these

methods tends to divert attention from the question of whether the assumptions

underlying them are reasonable.

MI methods like MICE impute draws from a predictive distribution, and

create D > 1 filled-in data sets with different values imputed. Imputing draws is

useful when statistics other than means are of interest, like extreme percentiles of

the distribution, regression parameters, or nonlinear quantities. Multiple impu-

tation is useful for improving estimation efficiency and propagating imputation

error, which is important for valid statistical inferences. None of these consid-

erations are addressed by LECL, who restrict attention to point estimation of a

mean.

I have not focused here on methods that use of propensity weights to im-

prove the robustness of imputation. Besides the methods discussed by LECL, an

approach not discussed by these authors but worthy of consideration is penalized

spline of propensity prediction (Little and An (2004); Zhang and Little (2009)).

Comparisons of alternative imputation approaches, as in LECL, are of inter-

est. Assessment of underlying assumptions, and systematic and even-handed sim-
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ulation experiments, may provide better information about the relative strengths

and weaknesses of methods.
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