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Abstract: Matching methods are widely used for causal inference in observational

studies. Of these methods, nearest neighbor matching is arguably the most pop-

ular. However, nearest neighbor matching does not, in general, yield an average

treatment effect estimator that is consistent at the
√
n rate. Are matching methods

not
√
n-consistent in general? In this paper, we examine a recent class of matching

methods that use integer programming to directly target aggregate covariate bal-

ance, in addition to finding close neighbor matches. We show that under suitable

conditions, these methods can yield simple estimators that are
√
n-consistent and

asymptotically optimal.

Key words and phrases: Causal inference, integer programming, matching methods,

observational studies, propensity score.

1. Introduction

In observational studies, matching methods are widely used for causal infer-

ence. The appeal of matching methods lies in the transparency of their covariate

adjustments. These adjustments are an interpolation based on the available data,

rather than an extrapolation based on a potentially misspecified model (Rubin

(1973); Rosenbaum (1989); Abadie and Imbens (2006)). The structure of the

data after matching is also simple (often, a self-weighted sample), making sta-

tistical inferences and sensitivity analyses straightforward (Rosenbaum (2002,

2010, 2017)). Matching methods are commonly used under the identification as-

sumptions of strong ignorability (Rosenbaum and Rubin (1983)) or selection on

observables (Imbens and Wooldridge (2009)), but are also used under the differ-

ent assumptions required by instrumental variables (e.g., Baiocchi et al. (2010))

and discontinuity designs (e.g., Keele, Titiunik and Zubizarreta (2015)).

Although there is extensive literature on matching methods, large-sample

characterizations of matching estimators have centered around nearest neighbor

matching only (Abadie and Imbens (2006, 2011)). In its simplest form, this

Corresponding author: José R. Zubizarreta, Departments of Health Care Policy, Biostatistics, and Stati-
stics, Harvard University, Cambridge, MA 02138-2901, USA. E-mail: zubizarreta@hcp.med.harvard.
edu.

https://doi.org/10.5705/ss.202020.0343
mailto:zubizarreta@hcp.med.harvard.edu
mailto:zubizarreta@hcp.med.harvard.edu


1790 WANG AND ZUBIZARRETA

algorithm matches each treated unit to the closest available control in terms

of a covariate distance (e.g., the Mahalanobis distance; Rubin (1973)). In an

important paper, Abadie and Imbens (2006) showed that the resulting difference-

in-means estimator is not, in general,
√
n-consistent for the average treatment

effect when matching with replacement. This estimator contains a bias that

decreases at a rate inversely proportional to the number of covariates used for

matching. As a result, its convergence can be very slow when matching on many

covariates.

Different variants of nearest neighbor matching have been proposed to ad-

dress this issue. In one variant, Abadie and Imbens (2011) proposed a class of

bias-corrected matching estimators, where the missing potential outcomes are

imputed using a regression model. This imputation corrects the bias of classical

nearest neighbor matching. In another variant, Abadie and Imbens (2016) for-

malized matching on the estimated propensity score, which reduces the matching

space into a single dimension. All of these variants achieve
√
n-consistency. How-

ever, in these cases, the faster convergence rate depends on specifying either the

treatment or the outcome model correctly, or restricting the outcome model to

be Lipschitz continuous on the covariates.

Here, we study a recent class of optimization-based matching methods that

directly target aggregate covariate balance, and do not explicitly model the treat-

ment or the outcome (Zubizarreta (2012); Diamond and Sekhon (2013); Nikolaev

et al. (2013); Zubizarreta, Paredes and Rosenbaum (2014)). These methods for-

mulate the matching exercise as an integer programming problem. For instance,

cardinality matching (Zubizarreta, Paredes and Rosenbaum (2014)) optimizes

the number of matched treated and control units, subject to constraints that

approximately balance the empirical distributions of the covariates. We show

that, under suitable conditions, the resulting difference-in-means treatment ef-

fect estimator is
√
n-consistent, asymptotically normal, and semiparametrically

efficient. These results show that matching for aggregate covariate balance can

be asymptotically optimal when nearest neighbor matching with replacement is

not. To the best of our knowledge, this is the first work to show that a matching

estimator can be semiparametrically efficient under suitable conditions.

To perform this asymptotic analysis of matching for balance, we establish

a connection between matching and weighting. We view matching as a form of

weighting for covariate balance that weights both the treatment and the con-

trol units, and encodes an assignment between them. Examples of weighting

methods for covariate balance include Hainmueller (2012), Imai and Ratkovic

(2014), Zubizarreta (2015), Chan, Yam and Zhang (2016), Fan et al. (2016),
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Zhao and Percival (2017), Athey, Imbens and Wager (2018), Hirshberg and Wa-

ger (2021), Zhao (2019), and Wang and Zubizarreta (2020). This connection

between matching and weighting enables us to analyze matching for balance us-

ing asymptotic techniques developed for weighting.

Despite its connection to weighting, matching for balance retains some essen-

tial features of nearest neighbor matching and other optimal covariate distance

matching algorithms (e.g., Hansen (2004)). In a similar way to distance matching

algorithms, matching for balance can also focus on forming close unit matches, in

addition to achieving aggregate covariate balance. In fact, matching for balance

can be followed by re-matching for homogeneity to not only preserve aggregate

covariate balance in the matched sample, but also to minimize the total covariate

distances between its matched units (see Zubizarreta, Paredes and Rosenbaum

(2014) for details). As discussed by Rosenbaum (2005) and Visconti and Zu-

bizarreta (2018), re-matching for homogeneity can improve the efficiency and

sensitivity of certain matching estimators to unobserved covariates. The main

finding of this study is that matching for balance (along with re-matching for

homogeneity) can improve the large-sample properties of the classical difference-

in-means estimator in causal inference, achieving asymptotic optimality under

suitable conditions.

The remainder of this paper is organized as follows. In Section 2, we describe

the identification assumptions, matching methods, and the matching estimator.

In Section 3, we present and discuss our main results. In Section 4, we evaluate

the empirical performance of the estimator. Section 5 concludes the paper. All

proofs are provided in the Supplementary Material.

2. Matching for Aggregate Covariate Balance

In this section, we describe the causal estimation problem, and introduce a

class of matching methods that target aggregate covariate balance. We use the

potential outcomes framework for causal inference (Neyman (1923, 1990); Rubin

(1974)). With binary treatments, this framework posits that each unit, indexed

by i = 1, . . . , N , has a pair of potential outcomes {Yi(0), Yi(1)}, where Yi(1) is

realized if unit i is assigned to treatment (Zi = 1), and Yi(0) is realized if the

unit is assigned to control (Zi = 0). Thus, for each unit i, we observe either Yi(0)

or Yi(1), and the observed outcome is expressed as Yi = ZiYi(1) + (1− Zi)Yi(0).

In our setting, the units i = 1, . . . , N are a random sample from a population of

interest and, thus, the potential outcomes are viewed as random variables.

Denote Xi as the vector of observed covariates of unit i. These covariates can
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be continuous or discrete. Given these covariates, we assume strong ignorability

of the treatment assignment (Rosenbaum and Rubin (1983): Zi ⊥⊥ {Yi(0), Yi(1)} |
Xi, and 0 < Pr(Zi = 1 | Xi) < 1. As implied by our notation, we also require the

stable unit treatment value assumption (SUTVA; Rubin (1980)).

The goal is to estimate the average treatment effect (ATE), µ = E[Yi(1) −
Yi(0)]. We choose this goal for notational convenience only. For example, our

arguments for consistent and efficient estimation of the ATE can be extended

directly to the ATT, µt = E[Yi(1)− Yi(0) | Zi = 1].

We study matching methods that directly balance the empirical distribu-

tions of the observed covariates. Examples of these methods are provided by

Zubizarreta (2012), Diamond and Sekhon (2013), and Nikolaev et al. (2013);

other related examples include Fogarty et al. (2016), Pimentel et al. (2015), and

Kallus (2020). At a high level, these methods aim to balance the covariates,

or certain transformations of them, that span a function space (see Wang and

Zubizarreta (2020) for a discussion). We call these matching methods matching

for balance. Extending the formulation in Zubizarreta, Paredes and Rosenbaum

(2014), we study the following matching method:

max. M (2.1)

s.t. mij ∈ {0, 1}, i, j = 1, . . . , n, (2.2)
n∑
j=1

(1− Zj)mij = M, ∀i ∈ {i : Zi = 1}, (2.3)

n∑
i=1

Zimij = M, ∀i ∈ {j : Zj = 0}, (2.4)

n∑
i=1

n∑
j=1

ZiZjmij =

n∑
i=1

n∑
j=1

(1− Zi)(1− Zj)mij = 0, (2.5)∣∣∣∣∣∣
n∑
i=1

n∑
j=1

Zi(1− Zj)mij{Bk(Xi)−Bk(Xj)}∑n
i=1

∑n
j=1 Zi(1− Zj)mij

∣∣∣∣∣∣ < δk, , k ∈ [K] (2.6)

∣∣∣∣∣∣
n∑
i=1

n∑
j=1

(1− Zi)Zjmij{Bk(Xi)−Bk(Xj)}∑n
i=1

∑n
j=1(1− Zi)Zjmij

∣∣∣∣∣∣ < δk, k ∈ [K], (2.7)

where mij is a binary decision variable that indicates whether unit i is matched to

unit j (2.2). Equations (2.3) and (2.4) require each treated unit be matched to M

control units, and each control unit be matched to M treated units, respectively.

Equation (2.5) ensures that no treated unit is matched to another treated unit,



MATCHING FOR BALANCE 1793

and that no control unit is matched to another control unit; in other words,

only matches between different treatment groups are allowed. Finally, Equations

(2.6) and (2.7) ensure that the covariate distributions of the matched treated and

control units are balanced. In these constraints, the functions Bk(·) are suitable

transformations of the covariates. Each of them maps the multivariate covariate

vector Xi into a suitable summary scalar. For example, they can be polynomials

or wavelets. Thus, Equations (2.6) and (2.7) constrain the imbalances in these

basis functions in the matched sample up to a level δk. The constant δk is a tuning

parameter chosen by the investigator. Zhao (2019) and Wang and Zubizarreta

(2020) describe algorithms to automatically select the tuning parameter δk in

covariate balance optimization problems such as those in (2.1)–(2.7).

On the whole, the optimization problem (2.1)–(2.7) finds the largest matched

sample with replacement that is balanced according to the conditions specified in

(2.6) and (2.7). An interesting feature of this approach is that it accomplishes the

task of matching with replacement without predefining the 1 : M matching ratio,

instead optimizing M from the data at hand, subject to the aggregate covari-

ate balance constraints. We may posit additional constraints in order to match

without replacement:
∑n

i=1 Zimij ≤ 1, ∀j ∈ {j : Zj = 0}. In the asymptotic

analyses below, we focus on matching with replacement, but these analyses can

be extended to matching without replacement.

Of course, the above optimization problem of matching for balance may be

infeasible. For example, this is the case under practical violations of the posi-

tivity assumptionor, more specifically, if there is limited overlap in the covariate

distributions, as characterized by the functions Bk(·). In this case, one can either

base the covariate adjustments on a model that goes beyond the support of the

data, or discard some units and possibly change the target of inference (Crump

et al. (2009)). In this regard, the infeasibility certificate of the matching for bal-

ance problem provides valuable information to characterize the data at hand. In

the Supplementary Material, we provide sufficient conditions that guarantee the

existence of a solution to the matching for balance optimization problem.

In order to estimate the ATE with matching for balance, we use the following

simple difference-in-means estimator:

µ̂ :=
1

n

[
n∑
i=1

Zi

{
Yi −

∑n
j=1(1− Zj)mijYj∑n
j=1(1− Zj)mij

}

+

n∑
i=1

(1− Zi)

(∑n
j=1 ZjmijYj∑n
j=1 Zjmij

− Yi

)]
. (2.8)
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This estimator computes the average difference between each unit and its matches.

For example, the first term of (2.8) is the difference between the outcome of each

treated unit Yi and the mean outcome of the units it is matched to, {Yj : mij =

1, Zj = 0}. Analogously, the second term is the difference between the outcome of

each control unit Yi and the mean outcome of its matches, {Yj : mij = 1, Zj = 1}.
Using (2.3) and (2.4), we can rewrite this difference-in-means estimator as

µ̂ =
1

n


n∑
i=1

ZiYi +

n∑
j=1

∑n
i=1(1− Zi)mij

M
ZjYj


−


n∑
i=1

(1− Zi)Yi +

n∑
j=1

∑n
i=1 Zimij

M
(1− Zj)Yj


 . (2.9)

This form implies that each unit j receives weight {1 +
∑n

i=1(1 − Zi)mij/M} if

it is treated, and weight {1 +
∑n

i=1 Zimij/M} if it is a control. Using (2.3) and

(2.4), we can also rewrite the covariate balance constraints in (2.6) as

1∑n
i=1 Zi

∣∣∣∣∣∣
n∑
i=1

ZiBk(Xi)−
n∑
j=1

∑n
i=1 Zimij

M
(1− Zj)Bk(Xj)

∣∣∣∣∣∣ < δk,

1∑n
i=1(1− Zi)

∣∣∣∣∣∣
n∑
i=1

(1− Zi)Bk(Xi)−
n∑
j=1

∑n
i=1(1− Zi)mij

M
ZjBk(Xj)

∣∣∣∣∣∣ < δk.

We observe that the weights of the units in both the constraints and the ATE

estimator are functions of the frequencies to which they are matched, namely,

wT (Xj) =

∑n
i=1(1− Zi)mij

M
if Xj is treated, (2.10)

wC(Xj) =

∑n
i=1 Zimij

M
if Xj is control. (2.11)

Note that the numerator and denominator of the weights wT (Xj) and wC(Xj)

must be integers, owing to (2.2) and (2.3). This restricts the values that the

weights can take. Aside from this constraint, the integer program for matching

resembles the convex optimization problem in covariate balancing weights (Zhao

(2019); Wang and Zubizarreta (2020)).

This connection between matching and weighting allows us to establish the

asymptotic optimality of matching for balance. In the following section, we show

that under suitable conditions, the above difference-in-means ATE estimator is
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√
n-consistent, asymptotically normal, and semiparametrically efficient. As men-

tioned, we focus on the ATE for simplicity of exposition. These consistency and

asymptotic normality results readily extend to the ATT, because the integer pro-

gramming problem for the ATT is analogous to that of the ATE. The difference

is that we match control units to each treated unit, but not treated units to

controls. Note that calculating the asymptotic variance of the ATT estimator

is more nuanced. In particular, the semiparametric efficiency bound depends on

whether we know the true model for the propensity score.

3. Asymptotic Properties of Matching for Balance

In this section, we show that under standard assumptions, matching for

balance is asymptotically optimal: the resulting ATE estimator is
√
n-consistent,

asymptotically normal, and semiparametrically efficient.

We start by describing the assumptions required. We posit three sets of

conditions on the basis functions B(x) = (B1(x), . . . , BK(x))>, the propensity

score function π(x) = Pr(Zi = 1 |Xi = x), and the mean potential outcome

functions E[Yi(z) |Xi = x] for z ∈ {0, 1}.

Assumption 1. Assume the following conditions hold on the basis functions

B(x) = (B1(x), . . . , BK(x))>. There exist constants C0, C1, C2 > 0 such that:

1. supx∈X ||B(x)||2 ≤ C0K
1/2, where X is the domain of the covariates X,

which is compact.

2. ||E[B(Xi)
>B(Xi)]||2 ≤ C1.

3. λmin{E[B(Xi)B(Xi)
>]} > C2, where λmin{E[B(Xi)B(Xi)

>]} denotes the

smallest eigenvalue of the matrix E[B(Xi)B(Xi)
>].

Assumptions 1.1–1.3 are standard regularity conditions on the basis func-

tions. They restrict their magnitude by the norm of the length-K basis function

vector. These conditions are common in nonparametric sieve estimation (see As-

sumption 4.1.6 of Fan et al. (2016) and Assumption 2(ii) of Newey (1997)). They

are satisfied by many classes of basis functions, including the regression spline,

trigonometric polynomial, and wavelet bases (Newey (1997); Horowitz and Mam-

men (2004); Chen (2007); Belloni et al. (2015); Fan et al. (2016)).

Assumption 2. Assume the following conditions hold on the propensity score

function π(x) = Pr(Zi = 1 |Xi = x):

1. There exists a constant C3 > 0 such that C3 < π(x) < 1− C3.
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2. There exist vectors (λ∗1T )K×1, (λ
∗
1C)K×1 such that the true propensity score

function π(·) satisfies supx∈X |1/π(x)−B(x)>λ∗1T | = O(K−rπ) and supx∈X
|1/{1− π(x)} −B(x)>λ∗1C | = O(K−rπ), where rπ > 1.

3. There exists a setM such that the propensity score function satisfies 1/π(x)

M and 1/{1−π(x)} ∈ M. Moreover, the setM is a set of smooth functions

such that log n[]{ε,M, L2(Pr)} ≤ C4(1/ε)1/k1, where n[]{ε,M, L2(Pr)} de-

notes the covering number of M by ε-brackets, L2(Pr) is the norm defined

as ||m1(·)−m2(·)||L2(Pr) = E[m1(Xi)−m2(Xi)]
2, C4 is a positive constant,

and k1 > 1/2.

Assumption 2.1 requires overlap between the treatment and the control pop-

ulations. This is part of the identification assumption described in Section 2.

Assumption 2.2 is a smoothness condition on the inverse propensity score func-

tion. It requires that the inverse propensity score be uniformly approximable by

the basis functions B(x) = (B1(x), . . . , BK(x))>. For example, when we choose

the basis functions to be multidimensional splines or power series, this assump-

tion is satisfied for rπ = s/d, where s is the number of continuous derivatives

of 1/π(x), and d is the dimension of x, for x with a compact domain X (Newey

(1997)). Assumption 2.3 constrains the complexity of the function class to which

the inverse propensity score function belongs. This assumption is satisfied, for

example, by the Hölder class with smoothness parameter s defined on a bounded

convex subset of Rd, with s/d > 1 (van Der Vaart and Wellner (1996); Fan

et al. (2016)). This is a key assumption that enables the use of empirical process

techniques when establishing consistency and asymptotic normality.

Assumption 3. Assume the following conditions hold on the mean potential

outcome functions Yz(x)
∆
= E[Yi(z) |Xi = x] for z ∈ {0, 1}:

1. E|Yi − Y0(Xi)| <∞ and E|Yi − Y1(Xi)| <∞.

2. |µ| <∞, where µ = E[Yi(1)− Yi(0)] is the true average treatment effect.

3. There exist ry > 1/2, (λ∗2C)K×1, and (λ∗2T )K×1 such that supx∈X |Y0(x) −
B(x)>λ∗2C | = O(K−ry) and supx∈X |Y1(x)−B(x)>λ∗2T | = O(K−ry).

4. The potential outcome functions satisfy Y0(·) ∈ H and Y1(·) ∈ H, where H is

a set of smooth functions satisfying log n[]{ε,H, L2(Pr)} ≤ C5(1/ε)1/k2, C5

is a positive constant, and k2 > 1/2. As in Assumption 2.3, n[]{ε,H, L2(Pr)}
denotes the covering number of H by ε-brackets, and L2(Pr) is the norm

||m1(·)−m2(·)||L2(Pr) = E[m1(Xi)−m2(Xi)]
2.
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Assumptions 3.1 and 3.2 are regularity conditions on the mean potential

outcomes. Assumptions 3.3 and 3.4 are analogous to Assumptions 2.2 and 2.3;

they constrain the smoothness of the mean potential outcome functions and the

complexity of the function class to which they belong. Under strong ignorability,

one may get a rough sense of the function approximation quality (Assumption

2.3) by evaluating the prediction error of a fitted outcome model on a holdout

sample. This model explains the observed outcomes in terms of the K basis

functions of the observed covariates plus the treatment assignment indicator.

The approximation is likely to be good if the prediction error is small on the

holdout data. That said, such an empirical evaluation provides only a rough

sense of the quality of the approximation, because we have only finite samples.

Note that while no specific modeling assumptions are required for the inverse

propensity score function and the potential outcome functions, Assumptions 2.2

and 2.3 do require that both have the same form of smoothness, namely, that

they can all be well approximated by the same set of basis functions.

Assumption 4. Assume the following conditions on the matching for balance

problem:

1. K = o(n1/2).

2. ||δ||2 = Op[K
1/2{(logK)/n+K−rπ}], where δ = (δ1, . . . , δK).

3. n1/{2(rπ+ry−0.5)} = o(K), where rπ and ry are the smoothness parameters

defined in Assumptions 2.2 and 3.3.

Assumption 4.1 quantifies the rate at which the number of basis functions we

balance can grow with the number of units. Assumption 4.2 limits the extent to

which there can be imbalances in the basis functions. Despite these imbalances,

we show that the optimal large-sample properties of the matching estimator are

maintained. Assumption 4.3 characterizes the growth rates of K and n with

respect to the uniform approximation rates rπ and ry.

Now, we state the main result of this paper.

Theorem 1. Under Assumptions 1, 4, 3, 2, the ATE estimator

µ̂ :=
1

n

[
n∑
i=1

Zi

{
Yi −

∑m
j=1(1− Zj)mijYj∑m
j=1(1− Zj)mij

}

+

n∑
i=1

(1− Zi)

{∑m
j=1 ZjmijYj∑m
j=1 Zjmij

− Yi

}]
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is
√
n-consistent, asymptotically normal, and semiparametrically efficient:

√
n(µ̂− µ)

d→ N (0, Vopt),

where Vopt is equal to the semiparametric efficiency bound

Vopt = E
[

Var[Yi(1) | Xi]

π(Xi)
+

Var[Yi(0) | Xi]

1− π(Xi)
+ {E[Yi(1)− Yi(0) | Xi]− µ}2

]
,

and π(Xi) is the propensity score of unit i. If, in addition, ry > 1 holds, then the

estimator

V̂K =

n∑
i=1

[
Ziw(Xi)Yi −

∑n
i=1 Ziw(Xi)Yi∑n

i=1 Zi

− (1− Zi)w(Xi)Yi +

∑n
i=1(1− Zi)w(Xi)Yi∑n

i=1(1− Zi)

− ŶT (Xi)×
{
Ziw(Xi)−

1∑n
i=1 Zi

}
+ŶC(Xi)×

{
(1− Zi)w(Xi)−

1∑n
i=1(1− Zi)

}]2

is a consistent estimator of the asymptotic variance Vopt, where

ŶT (Xi) = B(Xi)
>
{∑n

i=1 Ziw(Xi)B(Xi)
>B(Xi)∑n

i=1 Zi

}−1

·
{∑n

i=1 Ziw(Xi)B(Xi)Yi∑n
i=1 Zi

}
ŶC(Xi) = B(Xi)

>
{∑n

i=1(1− Zi)w(Xi)B(Xi)
>B(Xi)∑n

i=1(1− Zi)

}−1

·
{∑n

i=1(1− Zi)w(Xi)B(Xi)Yi∑n
i=1(1− Zi)

}
.

Proof. The proof uses empirical process techniques to analyze the ATE estima-

tors, as in Fan et al. (2016) (see also Wang and Zubizarreta (2020)). The key

challenge in this proof lies in the need to characterize the entire class of matching

solutions in matching for balance. More specifically, the optimization objective

of matching for balance does not involve the matching solution mij directly, so it

does not correspond to a unique matching solution. Hence, we need to study the

ATE estimates resulting from all possible matching solutions. In contrast, the

balancing weights (Wang and Zubizarreta (2020)) and the covariate balancing

propensity score (Fan et al. (2016)) both work with optimization objectives that

involve all the weights; these problems also assume a unique weighting solution
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with infinite samples.

The proof starts by showing that the implied weights of matching for balance

(2.10) approximate the true inverse propensity score function π(x)−1. Moreover,

this approximation is consistent, owing to the balancing constraints (Equations

(2.6)–(2.7)). The rest of the proof involves a decomposition of µ̂ − µ into seven

components, where six of them converge to zero in probability, and the other

is asymptotically normal and semiparametrically efficient. Each of the first six

components can be controlled by the bracketing number of the function classes of

the inverse propensity score and the outcome functions. Assumption 2.3 and 3.4

provide this control. The full proof is provided in Section A of the Supplementary

Material.

An intuitive explanation of Theorem 1 relies on two observations. The first

observation is that the ATE is an estimand derived from the entire population,

rather than from individual units. The asymptotic optimality of our ATE es-

timator depends primarily on whether the covariate distribution of the treated

units is close in aggregate to that of the control units. For this type of estimator,

how the individual units are matched to each other plays a secondary role. More

specifically, the ATE estimator depends only on the number of times each treated

(or control) unit is matched. Thus, an aggregate covariate balance is sufficient

for the asymptotic optimality of the matching estimators for the ATE. Matching

for balance precisely targets this aggregate covariate balance. Equations (2.6)

and (2.7) ensure that the covariate distributions after matching are balanced in

aggregate for the treated and control units.

The second observation is the connection between matching for balance and

covariate balancing weights (Hainmueller (2012); Imai and Ratkovic (2014); Zu-

bizarreta (2015); Chan, Yam and Zhang (2016); Fan et al. (2016); Zhao and Perci-

val (2017); Zhao (2019); Wang and Zubizarreta (2020)). Both methods formulate

the estimation problem as a mathematical program under similar covariate bal-

ancing constraints to those in (2.6) and (2.7). Covariate balancing weights have

been shown to be asymptotically optimal. Thus, if matching for balance admits

a solution, its implied weights, as in (2.10), are as good as the covariate balancing

weights. For this reason, under the conditions required by Assumptions 1, 2, 3,

4, matching for balance can also be asymptotically optimal for the difference-in-

means estimators for the ATE. When these assumptions do not hold, the nearest

neighbor matching estimator for the ATE (which is a competing semiparametric

estimator) does not similarly achieve the semiparametric efficiency bound.

We conclude this section with a discussion of Theorem 1 and its assumptions.

Unlike other matching methods that assume a correct propensity or outcome
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model, Theorem 1 studies matching for balance that posits explicit conditions on

covariate balance. Such conditions are practically appealing because covariate

balance is typically what is checked in practice. Other regularity conditions and

smoothness conditions are standard in nonparametric sieve estimation.

Under these conditions, Theorem 1 establishes the asymptotic optimality of

the simple difference-in-means estimator for the ATE, after matching for aggre-

gate covariate balance. In practice, these conditions indicate the following: (i)

using basis functions, such as power series or wavelets (Assumption 1); (ii) con-

sidering settings with a smooth inverse propensity score and potential outcome

functions, with more continuous derivatives than the number of covariates (As-

sumptions 2 and 3); and (iii) restricting the number of balancing basis functions

K and the approximate balance tolerance δ to scale appropriately with the num-

ber of samples (roughly, K = O(n1/2−ε) and δ = O[K1/2{(logK)/n + K−rπ}],
where ε > 0 is a small number (Assumption 4). Although Assumptions 4 of

Theorem 1 states that one may balance up to K = O(n1/2−ε) basis functions

as the sample size goes to infinity, in practice, one should proceed with caution

in any given finite sample. The matching for balance optimization problem may

not admit a solution. Even if a solution exists, the finite-sample performance of

the resulting estimator may not be ideal. As Robins and Ritov (1997) suggested,

nonparametric estimators may suffer from the curse of dimensionality. A non-

parametric estimator with good finite-sample performance may not exist without

knowledge of the true propensity score.

Note that Abadie and Imbens (2011) also devise a matching estimator that

is consistent at the
√
n-rate, but matching for balance achieves the

√
n-rate in

a different way. Abadie and Imbens (2011) correct the bias in nearest neigh-

bor matching by positing a consistent regression model for the mean potential

outcome function. In contrast, matching for balance avoids this bias by directly

balancing the observed covariates in aggregate. Balancing covariates in aggre-

gate has been shown to be equivalent to nonparametric estimation of the inverse

propensity score and mean potential outcome functions (Fan et al. (2016); Zhao

and Percival (2017); Hirshberg and Wager (2021); Zhao (2019); Wang and Zu-

bizarreta (2020)). This nonparametric approach relieves us from positing a model

for the mean potential outcome function that needs to be specified correctly. Al-

though Theorem 1 requires certain conditions on both the propensity score and

the potential outcome functions, it shows that the matching for balance estimator

can achieve semiparametric efficiency beyond
√
n-consistency.

Finally, Abadie and Imbens (2012) provide a martingale representation of a

widespread nearest neighbor matching estimator and derive its asymptotic distri-
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bution. They decompose the estimator into a martingale term and a conditional

bias term. Both their and our analysis require that the conditional bias term van-

ish in order to achieve asymptotic consistency. Specifically, Abadie and Imbens

(2012) posit regularity conditions under which the conditional bias term con-

verges in probability to zero. Theorem 1 uses the covariate balance conditions in

(2.6) and (2.7) to ensure that the conditional bias term vanishes.

4. Simulation Study

Here, we illustrate the empirical performance of matching for balance. Our

simulation study is based on a real data set about the importance of market

access for economic development (Redding and Sturm (2008)). The covariates

in this data set are non-Gaussian, and cannot be characterized by their first

two moments. We focus on a setting in which both the propensity score and

the outcome are nonlinear functions of the covariates, and study the MSE and

coverage probabilities of matching for balance.

To generate the data, we take the actual covariate values from Redding and

Sturm (2008) and simulate the treatment and outcome values as follows. To

simulate the treatment assignment indicator Zi, we first fit a logistic regression

model to the original indicator in the data set. Specifically, we fit the model

Pr(Zi = 1 |Xi) = sigmoid{(α +
∑P

p=1 βjXip +
∑P

p,p′=1 βpp′XipXip′)}, where Xip

denotes the pth observed covariate of unit i. We zero out the estimated coefficients

with p-values smaller than 0.25, and retain the rest of the coefficients. Finally,

we generate the treatment assignment indicator Zi for the simulated data set

using a thresholding model Zi = 1{Z∗i > 0}, where Z∗i = (α +
∑P

p=1 βjXip +∑P
p,p′=1 βpp′XipXip′)/c+Unif(−0.5, 0.5), setting c = 50 to induce limited overlap.

Next, we simulate the potential outcomes {Yi(0), Yi(1)}. Again, we begin

by fitting a linear regression model with all possible second-order interaction

terms to the original treated and control outcomes in the sample. The model is

Yi = α′+
∑P

p=1 β
′
jXip+

∑P
p,p′=1 β

′
pp′XipXip′ +β′tTi+ εi, εi ∼ N(0, 1). As with the

treatment assignment, we zero out all estimated coefficients with p-values smaller

than 0.25, and predict the potential treated and control outcomes on the entire

sample using the fitted model. We then generate the observed outcomes using

Yi = ZiYi(1)+(1−Zi)Yi(0). This data-generating process yields a simulated data

set with the same size (122 units) as the original data set in Redding and Sturm

(2008) and outcomes determined by three covariates and four associated relevant

second-order terms. Thus, if we balance up to the kth univariate moment of the

covariates, we need to balance 3 · k basis functions.
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Using these simulated data sets, we evaluate the MSE of matching for balance

in estimating the ATE. We vary the number of basis functions that we balance by

setting the bases to be the moments of the covariates and increasing their order.

We balance the first, second, and third moments of the covariates. We set the

level of imbalance to be 0.1 standard deviations of the corresponding moment.

Figure 1 shows that as we increase the number of balancing basis functions,

the MSE of matching for balance decreases. Furthermore, because the simulated

data set has limited overlap, matching for balance achieves a lower MSE than

the standard augmented inverse propensity weighted estimator (AIPW; Robins,

Rotnitzky and Zhao (1994)), because the approximate balance constraints trade

variance for bias. Nonetheless, when covariate distributions have limited overlap,

this improvement in MSE comes at a cost. As we show below, the resulting con-

fidence intervals may exhibit lower than nominal coverage, owing to the approx-

imate covariate balance. This suggests exploring separate imbalance tolerances

for estimation and for inference. Finally, because of the nonlinearity of the in-

verse propensity score, including third order-basis functions improves the MSE,

despite the data generating-process only involving second-order terms.

Figure 1 also corroborates the discussion in Section 3 that matching for

balance may not admit a solution if we aim to balance too many basis functions.

For example, in Figure 1, matching for balance admits a solution if we balance

the first three moments of the covariates, but not if we also try to balance the

fourth moment for the given tolerance level of covariate imbalance. Note that in

such cases,
√
n-consistency may not hold, because the asymptotic results derived

in Section 3 only apply when K = o(n1/2). These asymptotic results do not apply

if matching for balance does not admit a solution when K increases in this order

and not enough matches can be found.

Figure 2a shows that as we increase the number of balancing basis functions,

the average number of matches M decreases. The reason is that balancing more

basis functions implies solving a more constrained optimization problem; hence,

the average M decreases. A similar phenomenon appears in Figure 2b, where the

average standardized covariate balance

1

K

K∑
k=1

∣∣∣∣∣∣
n∑
i=1

n∑
p=1

Zi(1− Zj)mij{Bk(Xi)−Bk(Xj)}∑n
i=1

∑n
p=1 Zi(1− Zj)mij

∣∣∣∣∣∣ /sd{Bk(Xi)}


increases with the number of balancing basis functions. (In Figure 2b, the order

of the balancing basis functions equal to zero represents covariate balance be-

fore matching.) Both metrics (the average number of matches and the average
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Figure 1. The matching for balance (MFB) estimator achieves a lower MSE than the
augmented inverse probability weighting (AIPW) estimator when the data have lim-
ited overlap. Increasing the number of balancing basis functions improves the MSE of
MFB until its optimization problem becomes infeasible. The bars indicate ±1 standard
deviation across 100 simulations.

absolute standardized mean difference in covariates) decrease as we increase the

number of basis functions that we balance. However, the MSE still improves,

because the treatment and control groups after matching are more similar in

ways that are relevant to the propensity score and outcome models. This illus-

trates the importance of balancing more basis functions than just means when the

propensity score and outcome models are non-linear on the covariates. Although

balancing a high number of basis functions can be difficult with most matching

methods (because they do not directly target covariate balance), with matching

for balance, covariate balance on the basis functions is obtained by construc-

tion. Subject to these covariate balance requirements, the matching ratio M in

matching for balance is optimized, resulting in the largest possible 1 : M/M : 1

matching ratio for the data at hand.

Finally, we evaluate the coverage probabilities of matching for balance and

AIPW. We focus on balancing the first two moments of the covariates, and vary

the imbalance tolerance δ such that δk = δ · sd{Bk(Xi)}. In Figure 3, we show

the coverage probabilities of the 95% confidence intervals constructed based on

Theorem 1. The figure shows that when the imbalance tolerance is small (δ ≤
0.01), the confidence intervals have close to nominal coverage. As the imbalance

tolerance increases, the average number of matches increases, but the coverage

probability degrades as the matched sample exhibits worse balance. In contrast,

the AIPW estimator achieves close to nominal coverage. In such cases, matching

for balance trades the imbalance tolerance δ for the matching ratio M in order

to exchange bias for variance and achieve a lower MSE, but it can compromise
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Figure 2. Average number of matches and average standardized covariate balance of
matching for balance. Although both measures decrease as we balance more basis func-
tions, the MSE still improves, because the covariate distributions of the treatment and
control groups are more similar in ways that are relevant to the propensity score and
outcome models.
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Figure 3. The confidence intervals of matching for balance achieve nominal coverage
when the level of imbalance tolerance δ is small. Increasing δ trades variance for bias,
but can degrade the coverage probabilities of the corresponding confidence intervals. In
contrast, AIPW (the dashed red line) achieves close to nomimal coverage.

coverage probabilities.

An interesting direction for future research is to use a larger value of δ for

estimation, and a smaller value for inference, such that confidence intervals are

not necessarily centered at the point estimate. This is analogous to what is some-

times done in analyses of regression discontinuity designs (Calonico, Cattaneo and

Titiunik (2014)). In general, how to select the parameter δ is an open question

in causal inference. In the context of weighting, two proposals are provided by

Zhao (2019) and Wang and Zubizarreta (2020), where δ is selected to generalize
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covariate balance across cross-validation and bootstrap samples, respectively.

5. Concluding Remarks

We have analyzed a recent class of matching methods that targets aggre-

gate covariate balance. After all, covariate balance is the main diagnostic that

investigators carry out in practice. As discussed, matching for balance does not

preclude finding close unit matches, because it can be followed by matching for ho-

mogeneity in order to minimize covariate distances between matched units, while

preserving aggregate covariate balance (see Zubizarreta, Paredes and Rosenbaum

(2014)).

Under suitable conditions, we have shown that this class of matching methods

yields a simple difference-in-means estimator that is asymptotically optimal: it

is
√
n-consistent, asymptotically normal, and semiparametrically efficient. As

discussed in the simulation study section, these conditions can be stringent in

practice, because they require that the imbalance tolerance δ decreases as the

sample size increases and there needs to exist a matching solution for such values

of δ. These results complement the fundamental results of Abadie and Imbens

(2006), who showed that a similar estimator is not, in general,
√
n-consistent for

nearest neighbor matching with replacement.

Matching for balance exemplifies how tools from modern optimization (e.g.,

Jünger et al. (2009) and Bixby (2012)) can play a central role in the design of

observational studies in general (e.g., Rosenbaum (2002) and Imbens and Ru-

bin (2015)) and in matching for covariate balance in particular (e.g., Zubizarreta

et al. (2013) and Keele, Titiunik and Zubizarreta (2015)). A natural future

research direction is to augment matching for balance as in doubly robust esti-

mators (Robins, Rotnitzky and Zhao (1994); see also Rubin (1979); Abadie and

Imbens (2011); Athey, Imbens and Wager (2018) for related approaches). An-

other promising direction is to build on the methods described in Rosenbaum

(2017) on evidence factors and sensitivity analysis for interpretable analyses of

matched observational studies.
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José R. Zubizarreta

Departments of Health Care Policy, Biostatistics, and Statistics, Harvard University, Cambridge,

MA 02138-2901, USA.

E-mail: zubizarreta@hcp.med.harvard.edu

(Received September 2019; accepted September 2021)

mailto:yixin.wang@columbia.edu
mailto:zubizarreta@hcp.med.harvard.edu

	Introduction
	Matching for Aggregate Covariate Balance
	Asymptotic Properties of Matching for Balance
	Simulation Study
	Concluding Remarks

