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ACCOUNTING FOR FACTOR VARIABLES

IN BIG DATA REGRESSION
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Abstract: Continuous and factor explanatory variables are both important in linear

regressions. To fit a linear model using factor variables, the traditional implementa-

tion of the least squares approach defines a number of dummy variables. However,

this approach is difficult to apply to big data because the size of the design matrix

can be inflated significantly by a factor variable, even if the number of factor levels

is only moderately large. By treating the factor variable as an index, this study

proposes a new approach, called the index least squares approach, to overcome this

difficulty. Combined with the technique of scanning data by rows, the index least

squares approach can provide exact solutions simultaneously to a group of linear

models with factor variables. Therefore, it avoids the memory barrier caused by the

size of the design matrix. Because the memory needed is unrelated to the number

of observations, the index least squares approach can be used even when the size

of a massive data set is hundreds of times higher than the memory available to the

computing system.

Key words and phrases: Big data, factor variables, index array of sufficient statis-

tics, index least squares, parallel or cluster computation, scanning data by rows.

1. Introduction

The traditional implementation of the least squares approach in a linear

regression, called the traditional implementation for short, was developed for

small or moderate-sized data. It cannot be applied to big data because of mem-

ory and computational efficiency barriers (Lin and Xi (2011); Meeker and Hong

(2014)). Previous work on big data focuses on solutions to individual models.

Examples include the regression cube technique (Chen and Dong (2006)), the

divide-and-recombine approach (Guha et al. (2012)), the sampling (or subsam-

pling) approach (Dhillon et al. (2013); Ma and Sun (2015); Wang, Yang and

Stufken (2018)), the updating estimation approach (Ener (2009)), the online up-

dating approach (Schifano et al. (2016)), and the aggregated estimating equation
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approach (Lin and Xi (2011)). In all of these, the main task is to develop an

efficient algorithm to fit a specific model. If another model is studied, then the

entire algorithm must be used again, which is an extremely inefficient way to

fit statistical models to big data. Another issue, ignored in the aforementioned

approaches, is the impact of the types of explanatory variables. At least three

types have been identified: continuous variables, nominal variables (also called

factor variables), and ordinal variables. The traditional implementation for a

model with factor variables is to define a set of dummy variables. Although this

works well for small or moderate data, it does not always work in the case of

big data, because the size of the design matrix can be significantly inflated, even

when the number of factor levels is only moderately large. The goal of this study

is to propose a new approach, called the index least squares approach, that can

efficiently and simultaneously provide exact solutions to a group of linear models

with factor variables.

The size of a data set is relative to the available computing resources. For

example, a data set may be considered large if its size exceeds 20% of the size

of Random Access Memory (RAM), and massive if it exceeds 50% of the size

of RAM (Emerson and Kane (2012)). Memory barriers may be partially solved

by the external memory algorithm (EMA) (Vitter (2008)). The EMA does not

change mathematical formulae in the computation. Instead, it attempts to solve

the out-of-memory problem by storing information used by the computation on

a hard disk, and processing partial information to memory once at a time. Once

the usage is over, the EMA releases the memory and puts the partial information

back to the hard disk. For an extremely big data set that cannot be loaded to the

memory of a single processor, a common solution in computer science is to parti-

tion the data set into a number of subsets using parallel or cluster computation

(Battey et al. (2018); Lin and Xi (2011); Meeker and Hong (2014)). Examples

include MapReduce (Dean and Ghamawat (2008); Miner and Shook (2012)) and

Spark (Zaharia et al. (2010)), in which most of the information processing tasks

consider a similar structure, and the same computation is applied over a large

number of records by many processors (Fernández et al. (2014)). From a compu-

tational perspective, much effort has been put into active open source statistical

R packages, such as biglm and RHIPE. Spark uses similar methods. However,

one of the most important features of Spark is that it processes all information

in memory. It can be hundreds of times faster than other parallel or cluster

computation frameworks that process information in hard disks (Fang, Yang and

Zhang (2017)).
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Statistical approaches and algorithms are important when formulating par-

allel or cluster computation. It is well known that storage and computational

sizes are two different problems. One may have a scenario that the size of data

is not large but the memory needed in a computation is huge. Although the

entire data set has been successfully loaded to memory, it cannot be analyzed by

any traditional ways. We initially studied this scenario and gained some ideas.

Assume that a regression model with n observations has one response variable,

q continuous explanatory variables, and one factor variable. The factor variable

may be constructed by original levels of a factor variable or combined levels of a

few factor variables. Therefore, the number of factor levels, denoted by I, may be

large. If the factor variable is ignored, then the number of columns of the design

matrix in the main effects model is q. If the factor variable is studied, then the

number of columns of the design matrix can be as high as qI. A computer needs

O(nq) memory size to load the data set. However, it needs O(nqI) memory to

construct the design matrix in the traditional implementation. For instance, if

n = 106, q = 102, and I = 102, then the size of the data is about 800 MB,

but the size of the design matrix is about 80 GB, implying that the traditional

implementation cannot be used.

An extremely difficult situation can appear in a linear regression with factor

variables. Such a situation may still be present in parallel or cluster computa-

tion, and can be serious even, if the number of factor levels is only moderately

large. We propose a new approach, called the index least squares approach, to

overcome the difficulty. The idea is motivated from the technique of scanning

data by rows (Zhang and Yang (2017a)), where only individual rows are loaded

sequentially from hard disks to memory. With just one access of the entire data

set, exact solutions to a group of statistical models can be derived simultaneously.

With a slight modification, it can also be applied to variable or feature selection

(Yang and Zhang (2016a,b)), penalized likelihood (Zhang and Yang (2017b)),

and dimension reduction (Zhang and Yang (2016, 2018)). A great advantage

is that the technique can be easily combined with well-known parallel or clus-

ter computation frameworks, such as MapReduce and Spark. The index least

squares approach is developed under the technique of scanning data by rows. It

can be used to fit linear models with factor variables. Because the design matrix

is sparse, we compare our approach with the sparse matrix approach (Pinar and

Heath (1999)) in our simulation studies. An advantage is that the index least

squares approach only needs sufficient statistics but the sparse matrix approach

needs the entire data.
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The remainder of this article is organized as follows. In Section 2, we briefly

review the traditional implementation of the least squares approach with factor

variables. In Section 3, we review the technique of scanning data by rows without

factor variables. In Section 4, we propose our approach. In Section 5, we migrate

our approach to parallel or cluster computations. In Section 6, we evaluate the

performance of our approach by comparing it with the traditional implementation

and the sparse matrix approaches (by simulations). In Section 7, we apply our

approach to an airline data set. In Section 8, we conclude the paper.

2. Traditional Implementation

Based on individual observations of a data set with p̃ explanatory variables

and the first one for the intercept, a linear regression model is proposed as

yi = x>i β + εi, (2.1)

for all i ∈ {1, . . . , n}, where yi is the numeric value for the ith record of the

response, xi = (1, xi1, . . . , xi(p−1))
> is a vector constructed from the ith record of

explanatory variables, β = (β0, . . . , βp−1)
> is a parameter vector for regression

coefficients, εi
i.i.d.∼ N(0, σ2) is the error term, and n is the sample size. In this

setting, we have p = p̃ if all explanatory variables are continuous, and only

main effects are considered; or, p = p̃(p̃ + 1)/2 if all interaction effects are also

considered. Therefore, p varies in (2.1).

The traditional implementation of the least squares approach, called the

traditional implementation for short, is proposed under the matrix expression of

(2.1) as

y = Xβ + ε, (2.2)

where y = (y1, . . . , yn)> is the response vector, X = (x>1 , . . . ,x
>
n )> is the design

matrix, and ε ∼ N(0, σ2In) is the error vector. The least squares estimator

(LSE) or the uniform minimum variance unbiased estimator (UMVUE) of β is

β̂ = (X>X)−1X>y. The UMVUE of σ2, which is also the MSE of the model,

is σ̂2 = y>[I −X(X>X)−1X>]y/(n − p). For the significance of the regression

coefficients, we also need Ĉov(β̂) = σ̂2(X>X)−1. To ensure the existence of β̂

and Ĉov(β̂), we need to assume that p < n and X is full rank (i.e., rank(X) = p).

The traditional implementation can also be applied when factor variables are

involved. Assume that a model contains q continuous explanatory variables and

one factor variable with I levels. Let ni be the number of observations under the
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ith level of the factor variable. Then, variables of the model can be expressed as

D = {(yij ,x>ij , i) : i = 1, . . . , I, j = 1, . . . , ni}, (2.3)

where xij = (1, xij1, . . . , xij(q−1))
> represents the (i, j)th vector of continuous

explanatory variables.

A common way is to take into account the interaction effects between a few

continuous explanatory variables and the factor variable. Without loss of gen-

erality, we assume that the interaction effects between the former q0 continuous

explanatory variables and the factor variable are included, but the next q − q0
are not. By the dummy variable approach, a baseline ANOCVA (analysis of

covariance) model is proposed as

yij = w>ijα+ w>ijωi + z>ijδ + εij , εij
i.i.d.∼ N(0, σ2), (2.4)

for i = 1, . . . , I and j = 1, . . . , ni, where wij = (1, xij1, . . . , xij(q0−1))
>, represents

the vector of explanatory variables included in the interaction effects, zij =

(xijq0 , . . . , xij(q−1))
>, represents that of those not included, α = (α0, . . . , αq−1)

>,

ω1 = 0, ωi = (ωi0, · · ·ωi(q0−1))
> when i 6= 1, and, δ = (δq0 , . . . , δq−1)

>. Let

yi = (yi1, . . . , yini
)>, Wi = (w>i1, . . . ,w

>
ini

)>, and Zi = (z>i1, . . . , z
>
in1

)>. Then,

(2.4) becomes

yi = Wiα+ Wiωi + Ziδ + εi, εi
ind.∼ N(0, σ2Ini

). (2.5)

To apply the traditional implementation, one needs to define X in (2.2) as

X =


W1 0 · · · 0 Z1

W2 W2 · · · 0 Z2

...
...

. . .
...

...

WI 0 · · ·WI ZI

 , (2.6)

with β = (α>,ω>2 , . . . ,ω
>
I , δ

>)>. The setting ω1 = 0 in (2.4) can make X in

(2.2) full rank, implying that the traditional implementation can be used.

Although it performs well for small or moderate data, the traditional imple-

mentation is difficult to apply to big data owing to the size of X. The reason is

that the size of X, which is n(q0I + q − q0), can be much higher than the size of

observed data. Because n is often large (e.g., n ≥ 107), the size of X can be over

a few hundred GB if I is only moderately large.

We have identified two distinct situations. In the first, an extremely large



6 ZHANG AND YANG

n, but only a small or moderately large p are induced. This is common if fac-

tor variables are not involved, or if factor variables with only a few levels are

involved. Because the size of p is not a concern, previous parallel or cluster com-

putation algorithms using MapReduce or Spark can be applied. In the second,

an extremely large p is induced, although n may be even larger. This may ap-

pear if factor variables with many factor levels are involved. Note that factor

levels in (2.3) may be constructed by combinations of observed factor levels of

several factor variables. The number of combined levels can be extremely large.

If (2.2) is applied to parallel or cluster computation, then the size of individual

X in subsets may also be large. Therefore, the presence of factor variables can

significantly affect how we approach big data.

3. Scanning Data By Rows

In the traditional implementation, such as that used by R, the first step

loads all data to memory. Statistical approaches and algorithms can only be

used in the second step. If the first step fails, then it is impossible to carry out

any fitting procedures in the second step. The EMA (Vitter (2008)), which is

used by SAS, can partially overcome the difficulty. If the memory needed by an

algorithm is greater than that available to the computer, the EMA attempts to

store information used by the algorithm on the hard disk, and processes partial

information to memory. The EMA does not change the algorithm, and still faces

the memory barrier caused by factor variables.

To overcome this difficulty, the technique of scanning data by rows is pro-

posed, in which we load data from disk and perform a statistical analysis as a

single step (Zhang and Yang (2017a)). This provides exact solutions to a num-

ber of linear models simultaneously. The technique can be applied even if the

size of the data is hundreds of times higher than the memory size available to

the computing system. The technique focuses on (2.1) and avoids (2.2), using a

concept called a regression array of sufficient statistics (or a regression array for

short), defined as

S = (syy, sxy,Sxx) =

(
n∑

i=1

y2i ,

n∑
i=1

yixi,

n∑
i=1

xix
>
i

)
. (3.1)

The regression array S, which is well known in the statistical literature (Klotz

(1995) among others), is an unstructured array because the sizes of its three

components are not identical. Thus, it cannot be interpreted in the usual way of
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arrays or vectors.

The implementation of scanning data by rows based on the regression array

is straightforward. Let

Sm = (sm,yy, sm,xy,Sm,xx) =

(
m∑
i=1

y2i ,

m∑
i=1

yixi,

m∑
i=1

xix
>
i

)

be the partial sum of the previous m rows. If Sm is derived after the mth row of

the data is scanned, then

Sm+1 = (sm,yy + y2m+1, sm,xy + ym+1xm+1,Sm,xx + xm+1x
>
m+1)

is its updated value after the (m + 1)th row is scanned. The final result of S is

derived after the last row is scanned. Thus, we have

β̂ = S−1xx sxy, (3.2)

and

σ̂2 =
syy − s>xyS

−1
xx sxy

n− p
. (3.3)

Moreover, we have Ĉov(β̂) = σ̂2S−1xx .

A great advantage is that the proposed technique avoids the major difficulty

caused by the size of X. Because rows are loaded sequentially, the computation

of S only needs O((p+ 1)2) memory size, which is unrelated to n. The technique

can be used for an extremely large data set by a computer with a limit memory

size if p is not extremely large. Because formulations of regression arrays depend

on statistical models, statistical approaches are involved in scanning the data.

The time of the scanning is proportional to n, but the memory size is not. Once

S is derived, the entire data set can be discarded in the remaining computation.

The technique of scanning data by rows is extremely efficient in fitting a group

of linear models simultaneously.

The implementation of the proposed technique relies on specifications of

statistical models. For example, (2.2) is treated as an equivalent expression of

(2.1) in traditional statistics, but this is not true under the framework of a big

data regression. The usage of (2.2) implies that the design matrix X can be used

in fitting procedures, but the usage of (2.1) does not. The technique of scanning

data by rows is developed under (2.1) but not under (2.2), implying that (2.1)

has more computational advantages than (2.2). In the remainder of the paper,

we treat (2.2) as an invalid expression.
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4. Proposed Approach

We propose our approach based on the index array of sufficient statistics.

We focus our approach on the case when only one factor variable is involved. The

factor levels can be interpreted as original levels of a factor variable or combined

levels of a few factor variables. We present the basic theory of our approach in

Section 4.1. We study the multiple model problem in Section 4.2. We compare

our approach with the traditional implementation in Section 4.3. We briefly

discuss the case of two or more factor variables in Section 4.4.

4.1. Index least squares

We treat the factor variable in (2.4) as an index variable, and propose the

index least squares approach. We modify (2.4) as follows:

yij = w>ijγi + z>ijδ + εij , εij
i.i.d.∼ N(0, σ2), i = 1, . . . , I, j = 1, . . . , ni, (4.1)

where γ1 = α and γi = ωi +α, for i 6= 1. Then, (2.5) becomes

yi = Wiγi + Ziδ + εi, εi
ind.∼ N(0, σ2Ini

). (4.2)

To apply the traditional implementation, we define X in (2.2) as

X =


W1 0 · · · 0 Z1

0 W2 · · · 0 Z2

...
...

. . .
...

...

0 0 · · ·WI ZI

 , (4.3)

with β = (γ>1 , . . . ,γ
>
I , δ

>)>. This can be used when the size of X is not large.

For an index variable with I levels when X is large, the index least squares

approach is proposed under a modification of (4.1) as

yij = w>ijγi + z>ijδi + εij = w̃>ijγ̃i + εij , εij
i.i.d.∼ N(0, σ2), (4.4)

for i = 1, . . . , I and j = 1, . . . , ni, where δi = (δiq, . . . , δi(q−1))
>, w̃ij = (w>ij , z

>
ij)
>,

and γ̃i = (γ>i , δ
>
i )>. The sample size of the data is n =

∑I
i=1 ni. We assess (4.1)

under (4.4) by testing

H0 : δi = δi′ , ∀ i, i′ = 1, . . . , I. (4.5)
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We treat (4.4) as a full model and (4.1) as a reduced model. We wish to fit

both (4.1) and (4.4) together, and then to test whether (4.4) can be reduced to

(4.1). Therefore, we need solutions to both estimation and hypotheses testing

problems.

Let xij = (0>q , . . . ,0
>
q , w̃

>
ij ,0

>
q , . . . ,0

>
q )> and β = (γ̃>1 , . . . , γ̃

>
I )>, where 0q

is the q-dimensional vector with all components equal to zero and w̃ij resides at

the ith position of the expression of xij . Then, (4.4) becomes

yij = x>ijβ + εij , εij
i.i.d.∼ N(0, σ2), (4.6)

leading to the regression array of sufficient statistics as

S = (syy, sxy,Sxx) =

 I∑
i=1

ni∑
j=1

y2ij ,

I∑
i=1

ni∑
i=1

yijxij ,

I∑
i=1

ni∑
j=1

xijx
>
ij

 , (4.7)

where syy is a value, sxy is a qI-dimensional vector, and Sxx is a qI × qI-

dimensional matrix. The implementation of (4.7) relies on the size of Sxx. If

qI is small or moderately large (e.g., qI ≤ 104), such that the size of Sxx (e.g.,

≤ 800 MB correspondingly) is lower than the memory size of the computer, then

we can use (3.2) and (3.3) to fit (4.4). If qI is extremely large (e.g., qI ≥ 105),

then the size of Sxx (e.g., ≥ 80 GB correspondingly) is higher than the memory

size of the computing system. Thus, we cannot use (3.2) and (3.3).

We want to precisely fit (4.1) and (4.4) even when qI is extremely large. The

approach is developed under properties of the loglikelihood function of (4.4) as

`(γ̃1, . . . , γ̃I , σ
2) = −n

2
log(2π)− n

2
log σ2 − 1

2σ2

[
syy − 2

I∑
i=1

(s>i,wyγi + s>i,zyδi)

+

I∑
i=1

(γ>i Si,wwγi + 2γ>i Si,wzδi + δ>i Si,zzδi)

]
, (4.8)

where syy =
∑I

i=1

∑ni

j=1 y
2
ij , si,wy =

∑ni

j=1 yijwij , si,zy =
∑ni

j=1 yijzij , Si,ww =∑ni

j=1 wijw
>
ij , Si,wz =

∑ni

j=1 wijz
>
ij , Si,zz =

∑ni

j=1 zijz
>
ij , s̃i,wy =

∑ni

j=1 yijw̃ij ,

and S̃i,ww =
∑ni

j=1 w̃ijw̃
>
ij . Then,

S̃i,ww =

(
Si,ww Si,wz

Si,zw Si,zz

)
(4.9)

and
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s̃i,wy =

(
si,wy

si,wz

)
ind.∼ N(W̃iγ̃i, σ

2S̃i,ww), (4.10)

where Si,zw = S>i,wz and W̃i = (w̃>i1, . . . , w̃
>
ini

)>. If (4.5) holds, then

s̃i,wy =

(
si,wy

si,wz

)
ind.∼ N

[(
Wiγi
Ziδ

)
, σ2

(
Si,ww Si,wz

Si,zw Si,zz

)]
. (4.11)

By the first expression of (4.8), we obtain the sufficient statistics of (4.4) as

S = (syy, s̃1,wy, . . . , s̃I,wy, S̃1,ww, . . . , S̃I,ww). (4.12)

By the second expression of (4.8), together with (4.9) and (4.10), the above is

equivalent to

S = (syy, s1,wy, . . . , sI,wy, s1,zy, . . . , sI,zy,

S1,ww, . . . ,SI,ww,S1,zw, . . . ,SI,zw,S1,zz, . . . ,SI,zz).
(4.13)

Definition 1. The factor variable used in the derivation of (4.12) or (4.13) is

called the index variable, and the corresponding S is called the index array of

sufficient statistics of (4.4), or the index array for short. The statistical approach

based on the index array only is called the index least squares approach.

The size of the regression array given by (4.7) is (qI)2+qI+1. The size of the

index array given by (4.12) or (4.13) is q2I+qI+1. After adjusting by symmetry,

the index array is equivalent to the minimum sufficient statistics of (4.4). The

usage of the index array is more efficient than the usage of the regression array,

because the memory needed is reduced from a quadratic function of I to a linear

function of I. Therefore, our approach can be used even if I is extremely large.

We propose the following algorithm to compute S, given by (4.12) or (4.13).

It assumes that a massive data set has already been stored on a hard disk. The

algorithm only needs O(q2I + qI + 1) memory for the entire computation.

We propose the profile maximum likelihood approach, equivalent to the pro-

file least squares approach, to estimate the model parameters in (4.1) and (4.4).

The computation must be carried out completely by the index array. It is enough

for us to provide those for (4.1), as the results for (4.4) can be easily modified.

We assume that only S given by (4.13) is available. Because the intercept is

included, the first component of si,wy is
∑ni

j=1 yij and the (1, 1)th entry of Si,ww

is ni. Then, we can compute ȳi =
∑n

i=1 yij/ni and n =
∑I

i=1 ni by S. As Si,ww

and Si,zz are q0×q0 and (q−q0)× (q−q0)-dimensional matrices, respectively, we
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Algorithm 1 Scan Data by Rows for S in (4.12) By A Single Processor

Input: A massive data set on a hard disk
Output: syy, s̃1,wy, . . . , s̃I,wy, and S̃1,ww, . . . , S̃I,ww

procedure Updating S by Rows
Let all of syy, s̃1,wy, . . . , s̃I,wy, and S̃1,ww, . . . , S̃I,ww be zero.
for the kth row of the data do update syy = syy + y2k, and if the level of the index

variable is i then update s̃i,wy = s̃i,wy + ykw̃k and S̃i,ww = S̃i,ww + w̃kw̃>
k until the

last row is scanned
end for
Output

end procedure

can also obtain q0 and q, implying that the residual degrees of freedom of (4.1)

and (4.4) are available.

Let the loglikelihood function of (4.1) be `(γ1, . . . ,γI , δ, σ
2). Maximizing

`(γ1, . . . ,γI , δ, σ
2) with respect to γi for a given δ, we obtain the conditional the

MLE (also the conditional LSE) of γi, given δ, as

γ̂i,δ = S−1i,ww(si,wy − Si,wzδ). (4.14)

Putting γ̂i,δ into the loglikelihood function, we obtain the profile loglikelihood

function `P (β, σ2) of (4.1). Maximizing `P (δ, σ2) with respect to δ, we derive

the MLE (also the LSE) of δ as

δ̂ =

[
I∑

i=1

(Si,zz − Si,zwS−1i,wwSi,wz)

]−1 [ I∑
i=1

(si,zy − Si,zwS−1i,wwsi,wy)

]
. (4.15)

By (4.11), we obtain the variance-covariance matrix of δ̂ as

V(δ̂) = σ2

[
I∑

i=1

(Si,zz − Si,zwS−1i,wwSi,wz)

]−1
.

By (4.14), we have the MLE (also the LSE) of γi as

γ̂i = γ̂i,δ̂ = S−1i,ww(si,wy − Si,wzδ̂). (4.16)

Still by (4.11), we obtain the variance-covariance matrix of γ̂i as

V(γ̂i)=σ2

S−1i,ww+S−1i,wwSi,wz

[
I∑

k=1

(Sk,zz−Sk,zwS−1k,wwSk,wz)

]−1
Si,zwS−1i,ww

 .
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The covariance matrix between δ̂ and γ̂i is

Cov(δ̂, γ̂i) = −σ2S−1i,wwSi,wz

[
I∑

k=1

(Sk,zz − Sk,zwS−1k,wwSk,wz)

]−1
.

The covariance matrix between γ̂i and γ̂i′ for distinct i and i′ is

Cov(γ̂i, γ̂i′) = σ2S−1i,wwSi,wz

[
I∑

k=1

(Sk,zz − Sk,zwS−1k,wwSk,wz)

]−1
Si′,zwSi′,ww.

The sum of squares of errors (SSE) is

SSE = syy −
I∑

i=1

s>i,wyS
−1
i,wwsi,wy −

[
I∑

i=1

(si,zy − Si,zwS−1i,wwsi,wy)

]>
[

I∑
i=1

(Si,zz − Si,zwS−1i,wwSi,wz)

]−1 [ I∑
i=1

(si,zy − Si,zwS−1i,wwsi,wy)

]
.

The UMVUE of σ2, which is also the MSE of the model, is σ̂2 = SSE/[n−q−
q0(I−1)]. The MLE of σ2 is σ̂2MLE = SSE/n. The maximum of the loglikelihood

function is

`(γ̂1, . . . , γ̂I , δ̂, σ̂
2
MLE) = `P (δ̂, σ̂2MLE) = −n

2

(
1 + log

2π

n

)
− n

2
log(σ̂2MLE).

(4.17)

Using σ̂2 or σ̂2MLE , we can obtain V̂(δ̂), V̂(γ̂i), Ĉov(δ̂, γ̂i), and Ĉov(γ̂i, γ̂i′) (i 6=
i′). We treat those as the estimators of V(δ̂), V(γ̂i), Cov(δ̂, γ̂i), and Cov(γ̂i, γ̂i′)

(i 6= i′), respectively. Then, we derive the estimators of γi, δ, and σ2 in (4.1),

which can be modified to estimators of γ̃i and σ2 in (4.4). We also derive the

variance-covariance matrix of γ̃i in (4.4) by letting q0 = q. Then, we formulate

an F -test to assess (4.5).

4.2. Multiple model analysis

One of the most important tasks in our approach is to identify the optimal

model, where we need to compare multiple models. The standard way is to study

hypotheses of a full model versus a reduced model. Both are modified from (4.1).

Let the full model be

yij = w>FijγFi + z>FijδF + εij , εij
i.i.d.∼ N(0, σ2F ), i = 1, . . . , I, j = 1, . . . , ni, (4.18)
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where wFij = (1, xFij1, . . . , xFij(qF0−1))
>, zFij = (xFijqF0

, . . . , xFij(qF−1))
>, γFi =

(γFi0, . . . , γFi(q0−1))
>, and δF = (δqF0

, . . . , δF (qF−1))
>. Let the reduced model be

yij = w>RijγR,i +z>RijδR + εij , εij
i.i.d.∼ N(0, σ2R), i = 1, . . . , I, j = 1, . . . , ni, (4.19)

where wRij = (1, xRij1, . . . , xRij(qR0−1))
>, zRij = (xRijqR0

, . . . , xRij(qR−1))
>, γRi =

(γRi0, . . . , γRi(q0−1))
>, δR = (δqR0

, . . . , δR(qR−1))
>. If both (w>F,ij , z

>
F,ij)

> and

(w>R,ij , z
>
R,ij)

> are subvectors of w̃ij such that they can be treated as reduced

models of (4.4), then both models can be fitted by S.

If we choose wFij = w̃ij without zFij in (4.18) and wRij = wij and zRij = zij
in (4.19), then (4.18) and (4.19) become (4.4) and (4.1), respectively. Therefore,

we can test (4.5). If we choose wFij = wRij and zRij as a subvector of zFij , then

we can test the significance of the components of δF not contained in δR. This

is a test for main effects. If we choose wRij as a subvector of wFij , then we can

also test the significance of interaction effects.

Let σ̂2F and σ̂2R be the MSEs of (4.18) and (4.19), respectively. Then, (n −
pF )σ̂2F and (n − pR)σ̂2R are the SSEs of (4.18) and (4.19), respectively, where

pF = qF0
(I − 1) + qF and pR = qR0

(I − 1) + qR are their model degrees of

freedom, respectively. By the standard way, we construct an F-statistic as

F ∗ =
[(n− pR)σ̂2R − (n− pF )σ̂2F ]/(pF − pR)

σ̂2F
. (4.20)

We use F ∗ to test (4.19) under (4.18). It follows the FpF−pR,n−pF
-distribution.

Large values of F ∗ lead to a rejection of (4.19).

An obvious advantage of our approach is that we only need to access the data

once in the entire comparison. The goal of the access is to derive S. For any

wFij and zFij in (4.18) and wRij and zRij in (4.19), we can obtain exact values

of γ̂F,i, δ̂F , σ̂2F , γ̂R,i, δ̂R, and σ̂2R by S only, implying that (4.20) can be applied.

As plenty of models can be specified by (4.18) and (4.19), we have obtained an

extremely efficient way to study a group of regression models together. This is

different from typical ways used by many software packages (e.g., R and SAS) as

they always use the entire data set to fit statistical models.

4.3. Relation to traditional implementation

It is important to study the theoretical connections between our proposed

approach and the traditional implementation of the least squares approach. We

assume that the traditional implementation is carried out by a supercomputer,
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such that (2.2) can always be applied, even if X is very large. We want to

show that the results given by our approach are identical to those given by the

traditional implementation.

We use (γ̂1, . . . , γ̂I , δ̂) and σ̂2 to denote our approach. We use (γ̂T1, . . . , γ̂TI ,

δ̂T ) and σ̂2T to denote the traditional implementation, derived under (4.2), with

X given by (4.3). We use (α̂T , ω̂T2, . . . , ω̂TI , δ̂T ) to denote the traditional im-

plementation under (2.5), with X given by (2.6). Then, α̂T = γ̂T1 and ω̂T i =

γ̂T i − γ̂T1, for i = 2, . . . , I. The variance-covariance matrices can be formulated,

respectively. We use F ∗ and F ∗T to represent the test statistics in the comparison

between (4.18) and (4.19) from our and the traditional approaches, respectively.

Theorem 1. γ̂i = γ̂T i, for i = 1, . . . , I, δ̂ = δ̂T , and σ̂2 = σ̂2T .

Proof: By the fact that X>X, X>y, and y>y given by (4.3) and (4.13) are

identical, we can show the conclusion by simply comparing the formulations of

(4.15) and (4.16) with those given by the traditional implementation.

Theorem 2. V(γ̂i) = V(γ̂Ti), V(δ̂i) = V(δ̂T i), Cov(γ̂i, δ̂) = Cov(γ̂T i, δ̂T ), and

Cov(γ̂i, γ̂i′) = Cov(γ̂T i, γ̂T i′), for distinct i, i′ = 1, . . . , I.

Proof: We draw the conclusion by comparing each case in Section 4.1 with those

given by the traditional implementation.

Corollary 1. α̂T = γ̂1, ω̂T i = γ̂i − γ̂1, V(α̂T ) = V(γ̂1), V(ω̂T i) = V(γ̂i) +

V(γ̂1)−Cov(γ̂i, γ̂1)−Cov(γ̂1, γ̂i), Cov(α̂T , ω̂T i) = Cov(γ̂1, γ̂i), Cov(ω̂T i, ω̂T i′) =

V(γ̂i) + V(γ̂i′) − Cov(γ̂i′ , γ̂i) − Cov(γ̂i, γ̂i′), Cov(α̂T , δ̂T ) = Cov(γ̂1, δ̂), and

Cov(ω̂T i, δ̂T ) = Cov(γ̂i, δ̂)− Cov(γ̂1, δ̂), for i, i′ = 2, . . . , I with i 6= i′.

Proof: The conclusion is directly implied by Theorems 1 and 2.

Corollary 2. F ∗ = F ∗T .

Proof: The conclusion is directly implied by Theorem 1.

We classify our approach as an exact approach, because its results are identi-

cal to those given by the traditional implementation. Because fitting procedures

based on the traditional implementation may need as much as O(nqI) memory

size, whereas those based on index least squares formulations need O(q2I+qI+1)

memory size, we successfully avoid the difficulty caused by the memory barrier

in traditional fitting procedures.
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4.4. Extension

We have two methods to extend our approach to a model with at least two

factor variables. The first, called the combined factor approach, uses a combined

factor to represent all of the factors. The second, called the mixed index least

squares and dummy variable approach or mixed approach for short, treats one

factor variable as an index and all the rest as dummy variables. We introduce

the two methods based on two factor variables cases below.

Let A and B be the two factor variables with I and J levels denoted by

A1, . . . , AI and B1, . . . , BJ , respectively. Let F be a combined factor for A and

B. Then, F has IJ levels, which can be represented by Fij = (Ai, Bj), for

i = 1, . . . , I and j = 1, . . . , J . The observed data can be expressed as

D = {(yijk,x>ijk, Ai, Bj) : i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , nij}, (4.21)

where xijk = (1, xijk1, . . . , xijk(q−1))
> represents the (i, j, k)th observed vector of

explanatory variables.

In the combined factor approach, we express (4.21) as

D = {(yik,x>ik, Fi) : i = 1, . . . , IJ, k = 1, . . . , ni}. (4.22)

Then, Fi, with i = 1, . . . , IJ , can be used to represent all of the factor levels

of F . Using the same method given in Section 4.1, we can define S by (4.12),

which contains at most IJq2 real numbers. Note that S is an array of sufficient

statistics. We can fit a model similar to (4.1) only using S.

In the mixed approach, we only treat A as an index variable, and account

for B using dummy variables. Let bj
′

ijk = 1 if the (i, j, k)th level of B is j′ or

bj
′

ijk = 0 otherwise. Then, we obtain J dummy variables for B. Let x̃ijk =

(b1ijkx
>
ijk, . . . , b

J
ijkx

>
ijk)>. Then, x̃ijk is a qJ-dimensional vector. We equivalently

express (4.21) as

D =

(yij , x̃
>
ij , Ai) : i = 1, . . . , I, j = 1, . . . ,

J∑
j=1

nij

 . (4.23)

We can also define an S similar to (4.12), where the size of S is at most IJ2q2.

In the case when both I and J are large, the combined factor approach can

significantly reduce the memory needed in the computation. However, if J is

small, then the mixed approach can also be used. For instance, if I = 1,000,
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J = 50, and q = 100, then the memory needed in the combined factor approach

is about 0.5 GB but the memory needed in the mixed approach is over 23 GB. If

I increases 10 times, but J decreases 10 times, such that I = 104 and J = 5, then

the memory needed in the combined factor approach is still about 0.5 GB but

the memory needed in the mixed approach is reduced to about 2.3 GB. Thus, it

is important to justify the impact of I and J in extensions of our approach.

5. Parallel Computation

It is important to migrate our proposed approaches to well-known parallel or

cluster computation frameworks, such as MapReduce and Spark, in which most

of the information processing tasks have similar structures. The same computa-

tion is applied over a large number of records by many processors. Finally, the

individual results are aggregated.

Suppose that the linear model given by (2.1) is processed by parallel compu-

tation. Assume that the entire data set is partitioned into K subsets. Let β̂k, for

k = 1, . . . ,K, be the estimates of β derived from the kth subsets. The divide-and-

conquer (Bentley (1980)) or divide-and-recombine (Guha et al. (2012)) techniques

attempt to combine individual final results: the final estimator of β is computed

as a weighted average of individual final results, given by
∑K

k=1wkβ̂k, where wk

satisfying
∑K

k=1wk = 1 and 0 < wk < 1 is the weight of the kth subset. A more

efficient way is to combine intermediate results (Zhang and Yang (2017a,b)). Let

S1, . . . ,SK be regression arrays of individual subsets. Then, S =
∑K

k=1 Sk is the

regression array of the entire data. One can use S to compute β̂, its variance-

covariance matrix, and σ̂2 in the model.

We modify the idea to linear models with factor variables. The key is the

derivation of the index array by parallel computation. Let Sk = (sk,yy, s̃k1,wy, . . . ,

s̃kI,wy, S̃k1,ww, . . . , S̃kI,ww) be the index array from the kth subset. Then, S =∑K
k=1 Sk is the index array of the entire data. Therefore, we propose our parallel

computation below.

Algorithm 2 Computation of S in Parallel Computation

Input: Subsets of a massive data set on a number of hard disks
Output: S for the entire data set
procedure Updating Sk by Rows Individually

Compute sk,yy, s̃k1,wy, . . . , s̃kI,wy, and S̃k1,ww, . . . , S̃kI,ww by Step 3 of Algorithm 1
for each k

Output S =
∑K

k=1 Sk
end procedure
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The main task in parallel computation is the derivation of S for the entire

data set. Once it is available, the task of parallel computation is over. The

remainder of the computations can be completely carried out by methods in

Sections 4.1 and 4.2. It is not necessary to use parallel computation if the size of

the data is lower than the size of the hard disk of a personal computer; however,

parallel computation can significantly enhance the speed of the computation.

If the data set is too large to be stored on a single hard disk, then parallel

computation must be used. Therefore, the implementation of our approach relies

on the size of hard disks but not the size of memory. Because the data set is only

scanned once, our approach is extremely efficient in fitting linear models with

factor variables in big data.

6. Simulation

We evaluated the computational advantage of our approach via simulated

examples. All computations were carried out by a third generation Intel core-i7

2.8 GHz processor with 16 GB DDR3 memory. The algorithms of our proposed

approach have been written in C++ and R. The C++ code is used in all of the

simulated examples, and the R code is used only when the size of the simulated

data was lower than the memory size of the computing system. We evaluate the

performance of our approach based on a single processor. If a parallel algorithm

is used, then its performance is reflected by the performance of algorithms car-

ried out by individual processors. Therefore, the evaluation based on a single

processor is fundamental to the understanding of our entire approach.

6.1. Comparison with traditional implementation

We have compared the results of our approach with those given by the tradi-

tional implementation, to determine whether the results were identical. To carry

out the traditional implementation, we assumed that the observed data were only

small or moderate. We used standard fitting procedures in R and SAS as well as

our proposed approach in C++ and R to analyze the data.

We assumed that the data set contained one factor variable and six continu-

ous explanatory variables, such that it was represented by D = {(yij ,x>ij , i) : i =

1, . . . , I, j = 1, . . . , ni}, where xij = (1, xij1, . . . , xij6)
> represented the jth vector

of the explanatory variables at the ith level of the factor variable. We generated

(xij1, . . . , xij6) identically and independently from a mean zero six-dimensional

multivariate normal distribution with all variances equal to 0.25 and all correla-
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Table 1. Time taken (seconds) in the traditional implementation carried out by lm in
R and proc glm in SAS, when ni = 100 for all i, where × means out of memory. It
includes the loading of data from the hard disk to memory (Load), and the fitting of the
interaction effects (Inter), main effects (Main), and true (True) models.

Size lm in R proc glm in SAS

I (MB) Load Inter Main True Load Inter Main True

100 0.5 0.32 3.51 0.12 0.71 0.09 1.05 0.10 0.26

200 1.0 0.39 28.28 0.70 5.47 0.17 8.12 0.26 1.35

500 2.5 0.65 446.12 9.97 84.24 0.25 167.45 2.38 23.25

1,000 5.1 1.06 3, 628.42 78.33 683.29 0.27 1, 367.27 16.76 228.78

2,000 10.2 1.36 × 635.27 × 0.27 × 187.52 1, 873.29

tions equal to 0.5. We generated the response from

yij = γi0 + γi1xij1 + γi2xij2 + δ3xij3 + δ4xij4 + εij , εij
i.i.d.∼ N(0, 0.252), (6.1)

for i = 1, . . . , I and j = 1, . . . , ni, where γi0 was independently generated from

N(2.5, 0.252), γi1 and γi2 were independently generated from N(0.5, 0.1252), and

δ3 = δ4 = 0.5. The model contained the main effects of the index variable,

the interaction effects between the index variable and the first two explanatory

variables, and the main effects of the first four explanatory variables. Finally, we

obtained a data set with n =
∑I

i=1 ni rows and 8 columns. We saved the data

set to the hard disk of our computer. We used a varied I to study its impact.

We studied three models. The first, called the interaction effects model,

contained all six interaction effects between the index and explanatory variables.

It was expressed as

yij = γi0 + γi1xij1 + · · ·+ γi6xij6 + εij , εij
i.i.d.∼ N(0, σ2). (6.2)

The second model, called the main effects model, only contained the main effects

of the index and explanatory variables. It was expressed as

yij = γi0 + δ1xij1 + · · ·+ δ6xij6 + εij , εij
i.i.d.∼ N(0, σ2). (6.3)

The third model was the true model, given by (6.1).

Our proposed approach was carried out by our C++ and R code. The tra-

ditional implementation was carried by the standard packages given by the lm

function in R and the proc glm procedure in SAS. We compared their compu-

tational time (Table 1). The time taken in our proposed approach based on our
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C++ codes for the three models together was all less than 1 second (C++ showed

that it was 0 seconds). The time taken based on our R code when I = 2,000 was

a slightly lower than 2.5 seconds. The time taken in the rest of the cases were all

lower than 1.2 seconds. The time taken in the traditional implementation might

be as high as an hour. The algorithms carried out by SAS were, in general, four

times faster than those carried out by R.

We examined the EMA algorithm by SAS. At the beginning, SAS opened a

temporary file on the hard disk that was about two to three times larger than the

original data file. When a fitting procedure was used by proc glm, the temporary

file grew dramatically to over a thousand times as large as the original data file.

It was reduced to two to three times again after the fitting procedure was over.

The proc glm stored the information used by the computation to the temporary

file. The computation was still based on the traditional implementation.

We also compared the numerical results. We found that all of them were

identical when they were available, as expected by Corollary 1. We studied two

scenarios in the implementation of F ∗, given by Section 4.2. In the first, we

used F ∗ to assess (6.1) under (6.2). In the second, we used F ∗ to assess (6.3)

under (6.2). We treated (6.2) as the full model and (6.1) or (6.3) as a reduced

model. We found that the results were also identical, as expected by Corollary 2.

Therefore, we concluded that the index least squares approach provides an exact

solution to a big data regression with factor variables.

6.2. Comparison with sparse matrix approach

Because the design matrix was sparse, we compared our approach with the

sparse matrix approach given by the proc hpmixed procedure in SAS (Table 2).

The proc hpmixed procedure is developed for the linear mixed effects model,

but it can also be used to analyze fixed effects models if the random effects

component is not specified. The proc hpmixed procedure can handle factor

variables with large numbers of factor levels. We generated data from (6.1) with

all ni = 104 for selected I, and studied the fitting of the three models. After the

data were loaded, the proc hpmixed procedure could only be used individually,

and accessed the data set three times; in contrast, our approach was able to

be used simultaneously, with the C++ code only scanning the entire data set

once. In our R code, we loaded the data from the hard disk to the memory at

the beginning. Then, we calculated the index array in memory. After that, we

removed the data from the memory. The remaining computations were carried

out based on the index array. Because the size of the index array was not large,
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Table 2. Time taken (in minutes) in the sparse matrix approach carried out by proc

hpmixed in SAS when ni = 104, for all i, and the proposed index least square approach
by C++ and R, where × means out of memory. The results of proc hpmixed include
the loading of data (Load) and the fitting of the interaction effects (Inter), main effects
(Main), and true (True) models. The results of our approach include scanning data by
rows (Scan) in our C++ code, loading the data from the hard disk to memory (Load),
scanning data by rows in memory (Scan) in our R code, and fitting the three models
together (Fitting).

Index Least Squares

Size proc hpmixed in SAS C++ R

I (GB) Load Inter Main True Scan Fitting Load Scan Fitting

1,000 0.5 0.12 1.88 0.66 0.80 1.15 0.00 0.85 0.37 0.02

2,000 1.0 0.29 4.05 1.40 1.42 2.32 0.00 1.71 1.23 0.04

5,000 2.5 0.83 15.85 4.22 6.13 5.82 0.01 4.17 6.78 0.09

10,000 5.0 2.21 39.53 12.52 17.04 11.67 0.02 8.58 26.34 0.18

20,000 10.2 4.53 92.38 34.78 42.20 23.77 0.04 × × ×
50,000 26.6 13.69 × 96.63 125.75 61.82 0.09 × × ×

simultaneous fitting of the three models was extremely efficient. We examined

the EMA algorithm carried out by SAS. A temporary file was created on the

hard disk by the proc hpmixed. The size of the temporary file was about four

times as large as the size of the observed data set. The proc hpmixed procedure

was able to handle a data set higher than the memory size of the computer (i.e.,

I = 50,000), but it still encountered an out-of-memory problem when fitting the

interaction effects model. It could not provide the significance of the interaction

effects when I = 50,000.

6.3. Implementation to big data regression

We generated data from (6.1), with I = 5×105 and all ni = 104. The data set

contained 5× 109 rows and 8 columns. The size was about 260.8 GB. Using our

C++ code, we calculated S, given by (4.13), by scanning the entire data set on the

hard disk, which took about 618.1 minutes. After that, we fitted the interaction

effects model given by (6.2), the main effects model given by (6.3), and the true

model given by (6.1) using the index least squares approach. Their R-squared

values were 0.929232, 0.920363, and 0.92918, respectively. Their MSE (σ̂2) values

were 0.0624971, 0.0703017, and 0.0624971, respectively. We calculated γ̂i and δ̂

in all three models. In (6.1), we obtained δ̂3 = 0.500004 and δ̂4 = 0.500246,

with standard errors s(δ̂3) = 9.82(10−6) and s(δ̂4) = 9.82(10−6), respectively,
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which were close to their true values. In testing (6.3) under (6.2), we obtained

F ∗ = 209.3 with p-value 0, indicating that at least one interaction effect was

significant. In testing (6.1) under (6.2), we obtained F ∗ = 1.00044 with p-value

0.3299, indicating that the interaction effects model could be reduced to the

true model. We also studied other models. Our results showed that only effects

contained in the true model were significant, implying that the true model was

the optimal model. After the index array was derived, the fitting of all of the

statistical models was very fast (C++ showed that it was less than 0.1 minutes

in total). Therefore, our approach is extremely efficient after the index array of

sufficient statistics has been derived.

7. Application

We applied our approach to the airline data set. It can be freely downloaded

from the ASA (American Statistical Association) website. The airline data in-

clude flight delay information from 1987 to 2008, over hundreds of airports in

the United States. The entire data set is more than 40 GB in size. We initially

analyzed data for individual years separately using the standard R package. We

fitted a few basic regression models for flight delays, but we could not put the

airport code into any models that we wanted to study. The primary reason was

that the airport code was a factor variable with hundreds of levels. The standard

fitting procedure in R needed to define hundreds of dummy variables, leading to

an algorithm with a few hundred GB in the computation.

We wanted to use the indexed least squares approach to overcome the dif-

ficulty. As a few important variables were lost in earlier years, we decided to

analyze the data from 1995 to 2008. We chose minutes of flight delay as the

response variable and departure airport code as the index variable. We added

an extra seven continuous explanatory variables: they were actual elapsed time,

CRS elapsed time, air time, arrival delay, distance, taxi in, and taxi out. After

cleaning missing variables and airports with only limited numbers of flights, the

final data set contained about 73 million rows and 29 columns, where the variable

for airport codes had 287 airports. We used 1 to 287 to denote these airports.

We used the information of the response, the airport code, and the seven con-

tinuous explanatory variables in our approach. The time taken for the derivation

of the index array given by scanning data by rows was 51.36 minutes. After S
given by (4.13) was available, we fitted various models, including the model with

only the main effects of all of the explanatory and the factor variables (i.e., the
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Table 3. Type-III sum of squares of the interaction effect between the airport code
and seven continuous variables under the interaction effect model, where the MSE of the
model is 49.14.

Variable in the Mean of
interaction effect DF Squares F -value p-value

actual elapsed time 286 10,403 211.7 0
CRS elapsed time 286 6,652 135.4 0

air time 286 10,229 208.2 0
arrival delay 286 2,599 52.9 0

distance 286 3,287 66.9 0
taxi in 286 13,057 265.7 0

taxi out 286 11,482 233.7 0

main effects model), and the model with all of the interaction effects between the

factor and the seven continuous explanatory variables (i.e., the interaction effects

model). The entire computation of all models under S took 2.44 seconds. We

calculated the type-III means of the squares of the interaction effects between the

factor and the seven continuous variables (Table 3). Because all were significant,

we concluded that the interaction effects model was the most appropriate model.

We also calculated the R-squared value for each model. The R-squared values

of the interaction effects and the main effects models were 0.94817 and 0.94802,

respectively. Their root MSEs were 7.01007 and 7.01958, respectively. After

that, we fitted the model with the seven continuous variables only. We calcu-

lated the regression array of sufficient statistics, which was obtained by ignoring

the airport code in the index array of sufficient statistics. Then, we computed

the estimates of regression coefficients. We obtained its R-squared and root MSE

values, which were 0.94800 and 7.02083, respectively. The computation only took

0.09 seconds.

Because the interaction effects model was the most appropriate model, we

investigated its properties. We studied estimates of coefficients of the seven

continuous variables. We found that they varied significantly among airports

(Figure 1). An interesting issue was that the estimates of coefficients of actual

elapsed time, air time, taxi in, and taxi out with respect to airport codes could be

basically partitioned into two groups. They were close to 0 in one group or close to

−1 in another group. There were only a few airports outside of the two groups.

The airports contained by the two groups were highly consistent according to

results given by the four variables. We studied this issue and found that they

could be basically interpreted as a large airport group and a small airport group,
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Figure 1. Estimates of coefficients with respect to airports.
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respectively. The estimates of coefficients of air time, taxi in, and taxi out with

respect to airport codes in the large airport group were almost equal to 0, while

those in the small airport groups were also most equal to −1. The estimates of

coefficients of actual elapsed time with respect to airport codes in the large airport

group were almost equal to −1, while those in the small airport group were also

most equal to 0. Based on our findings, we restricted the interaction effects model

to the two groups, respectively. Although they were still significant, the F-values

of the interaction effects between the factor variable and the seven continuous

variables were significantly reduced. For instance, the F-values of the interaction

effects related to actual elapsed time, air time, taxi in, and taxi out in the large

airport group were 5.99, 2.83, 2.00, and 5.23, respectively. Comparing those with

Table 3, we concluded that the performance of the continuous variables on flight

delay highly depended on sizes of airports.

To compare, we also investigated two previous approaches: the sampling,

and the divide-and-recombine approaches. The sampling approach attempts to

sample a small number of observations from the data. Statistical models are only

fitted based on the sampled data. The procedure is often repeated many times

to make the results reliable. We found two difficulties in the implementation of

the sampling approach. One difficulty was that the number of flights among air-

ports were extremely unbalanced. For instance, each of the largest five airports

(Chicago ORD, Atlanta ATL, Dallas/Fort DFW, Los Angeles LAX, and Phoenix

PHX) had over 2.47 million flights in the entire period, but each of the smallest

five airports (Muskegon County MKG, Rhinelander/Oneida County RHI, Crater

Lake-Klamath Regional LMT, Southwest Oregon Regional OTH, and Houghton

County CMX) had less than 600 flights. Therefore, the sample could not con-

tain all airports. Another difficulty was caused by the airport codes contained

in the sampled data, which were mostly inconsistent among replications, mak-

ing it difficult to summarize the results. The divide-and-recombine approach

attempts to partition a massive data set into many small or moderate subsets.

After that, parallel computation is applied. Each subset is independently ana-

lyzed by an individual process with no communications between processes, and

outputs of subsets are recombined at the end. We identified two difficulties in

the implementation of the divide-and-recombine approach. The first was caused

by airports. We found that airport codes in data sets for individual calendar

years were not consistent. Many airports appeared in one calendar year but not

in another, which made it hard to keep airport codes consistent among subsets.

The second was caused by the memory needed in the analysis of partitioned sub-
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sets. Because of the factor variable, the memory needed in the computation of

individual processes could still be large, even if the size of the subset was not.

It was difficult to determine the size of the subsets to be partitioned. In the

comparison, we found that our approach successfully overcame the difficulties in

the sampling and the divide-and-recombine approaches.

8. Discussion

In this article, we propose the index least squares approach to conduct a

linear regression with factor variables for big data. This successfully avoids the

memory barrier caused by factor variables. If factor variables are involved, the

main difficulty in the traditional implementation is the inflation of the size of the

design matrix given by the dummy variable approach. This is not important if

the size of data is small, but it is a serious concern in big data regression.

We have several findings. First, the concept of sufficient statistics is impor-

tant in classical statistical theories, but it has not been paid much attention to

in statistical applications. In most popular statistical packages, such as R and

SAS, the first step is always the loading of the entire data set to memory. If

the first step fails, then it is impossible to do any further analysis. If sufficient

statistics are available, then we can also provide precise solutions to statistical

models. Therefore, it is not necessary to load the entire data set to memory.

Second, because accessing the entire data set on hard disks is time-consuming,

the consideration of sufficient statistics must be based on multiple models in-

stead of a specific model. We should modify the traditional concept of sufficient

statistics, such that the modified version can be used for a group of statistical

models together. This kind of sufficient statistics can provide exact solutions to

a group of models simultaneously. Third, the identification of optimal models is

important not only in traditional statistics, but also in big data regression. To

identify an optimal model, one must study many candidate models. If the size of

data is small or moderate, it is enough to evaluate a fitting procedure based on

individual models. However, if the size of the data is big, then the evaluation of

a fitting procedure based on a group of models is more appropriate. Therefore,

new criteria are needed.

Although only regression problems are studied, it does not mean that linear

regression can always capture the complicated relationship between the response

and explanatory variables. We only treat linear regression as the first step in

the development of statistical approaches to big data. Other methods beyond
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linear regression are also important. An obvious example is the case when the

response is count, where generalized linear models (GLMs) are often used. Since

the standard fitting procedure for GLMs is the iterative reweighted least squares

(IRWLS) algorithm, it is likely to extend our idea to the IRWLS for GLMs

with factor variables. In addition, if a semiparametric model is studied and its

parametric component has factor variables, then we may also define an index

variable to reduce the memory needed in the computation. Note that there

are many statistical approaches for small or moderate data. It is important to

investigate all of them under the framework of big data. The idea of the article

provides a way to study these problems.

Basically, statistical approaches can be as important as computer science

approaches. It is well-known that parallel or cluster computation is powerful in

the analysis of big data, but statistical approaches and algorithms used in the

parallel or cluster computation can significantly affect its efficiency and feasi-

bility. Previous approaches under many popular parallel or cluster computation

frameworks recommend combining final results obtained from individual subsets.

We point out that the combination of intermediate results can be more efficient

and precise. Therefore, the problem about what and where to be combined must

be investigated. Statistical approaches are important in the development of the

corresponding methodology. We believe that this should be an important future

research topic in big data analysis.
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