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Abstract: Estimating optimal individualized treatment rules (ITRs) in single- or

multi-stage clinical trials is a key element of personalized medicine and, as a result,

is receiving increasing attention within the statistical community. Recent works

have suggested that machine learning approaches can provide significantly better

estimations than those of model-based methods. However, a proper inference for es-

timated ITRs has not been well established for machine learning-based approaches.

In this paper, we propose an entropy learning approach for estimating optimal

ITRs. We obtain the asymptotic distributions for the estimated rules in order to

provide a valid inference. The proposed approach is demonstrated to perform well

through extensive simulation studies. Finally, we analyze data from a multi-stage

clinical trial for depression patients. Our results offer novel findings not revealed

by existing approaches.

Key words and phrases: Dynamic treatment regime, entropy learning, personalized

medicine.

1. Introduction

An important goal of personalized medicine is to develop a decision support

system to provide adequate management for individual patients with specific

diseases. Estimating individualized treatment rules (ITRs) using evidence from

single- or multi-stage clinical trials is a key element of such a system. As a re-

sult, estimation methods are receiving increasing attention within the statistical

community. The methods for estimating ITRs include Q-learning (Watkins and

Dayan (1992); Murphy (2005); Chakraborty, Murphy and Strecher (2010); Gold-

berg and Kosorok (2012); Laber et al. (2014); Song et al. (2015)) and A-learning

(Robins, Hernan and Brumback (2000); Murphy (2003)). Q-learning models the

conditional mean of the outcome, given historical covariates and treatments us-

ing a well-constructed statistical model. A-learning models the contrast function
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that is sufficient for a treatment decision.

Recently, Zhao et al. (2012) discovered that it is possible to cast the esti-

mation of the optimal regime into a weighted classification problem. Based on

this, Zhao et al. (2012, 2015) proposed an outcome-weighted learning (OWL) di-

rectly optimizes the approximate expected clinical outcome, where the objective

function is a hinge loss, weighted by individual outcomes. This method has been

shown to outperform the model-based approaches, such as Q- and A-learning,

in numerical studies, and the asymptotic behavior might be established, owing

to its convexity Hjort and Pollard (2011). However there is no valid inference

procedure for the parameters in the optimal treatment rules, owing to the non-

differentiability of the hinge loss near the decision boundary. Furthermore, the

minimization operator is more or less heuristic.

In this paper, we propose a class of smooth-loss-based outcome-weighted

learning methods for estimating optimal ITRs, among which, one special case of

the proposed losses is a weighed entropy loss (Murphy (2012)). By using contin-

uously differentiable loss functions, we not only maintain the Fisher consistency

of the derived treatment rule, but also obtain a proper inference for the param-

eters in the derived rule. Furthermore, we quantify the uncertainty of the value

function under the estimated treatment rule, which is potentially useful for de-

signing future trials and comparing the results with those of other, nonoptimal

treatment rules. Numerically, in contrast to existing inferences for the model-

based approaches, such as the bootstrap approach for Q-learning, our inference

procedure does not require tuning parameters. In addition, the proposed method

yields a more accurate inference in finite-sample numerical studies.

Note that Bartlett, Jordan and McAuliffe (2006) produced a profound con-

ceptual work on classification loss, for a relatively general setting. However, to

link their work to recursive or dynamic optimization is not trivial. To do so, we

employ a logistic loss. Luedtke and van der Laan (2016b) tried to create a unified

surrogate loss function for outcome-dependent learning. Their method of show-

ing the validity of their approach differs from our derivation. Our justification is

more intuitive and our algorithm is also different. Whereas super learning is a

general and powerful method, a logistic regression can be implemented easily and

fits our needs directly. Moreover, the asymptotic properties of our estimators are

established in order to conduct a proper inference, which is not addressed in the

above-mentioned studies.

The paper is structured as follows. In Section 2, we introduce the proposed

entropy learning method for single- and multi-stage settings. In Section 3, we
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provide the asymptotic properties of our estimators. In Section 4, simulation

studies are conducted to assess the performance of our methods. In Section 5,

we apply entropy learning to the well-known STAR*D study. We conclude the

paper in Section 6. Technical proofs are provided in the Supplementary Material.

2. Method

2.1. Smooth surrogate loss for outcome-weighted learning

To motivate our approach of choosing a smooth surrogate loss to learn the

optimal ITRs, we first consider data from a single-stage randomized trial with

two treatment arms. A treatment assignment is denoted by A ∈ A = {−1, 1}. A

patient’s prognostic variables are denoted as a p-dimensional vector X. We use

R to denote the observable clinical outcome, also called the reward, and assume

that R is positive and bounded from above, with larger values of R being more

desirable. Data consist of {(Xi, Ai, Ri) : i = 1, . . . , n}.
For a given treatment decision D, which maps X to {−1, 1}, we denote PD as

the distribution of (X, A,R), given that A = D(X). Then, an optimal treatment

rule is one that maximizes the value function

ED(R) = E
{
R

I(A = D(X))

Aπ + (1−A)/2

}
, (2.1)

where π = P (A = 1|X). Following Qian and Murphy (2011), it can be shown

that the maximization problem is equivalent to the problem of minimizing

E
{
R

I(A 6= D(X))

Aπ + (1−A)/2

}
. (2.2)

The latter is a weighted classification error that can be estimated using the

observed sample, as follows:

n−1
n∑
i=1

{
Ri

I(Ai 6= D(Xi))

Aiπ + (1−Ai)/2

}
. (2.3)

Owing to the discontinuity and nonconvexity of the 0-1 loss on the right-hand side

of (2.2), the direct minimization of (2.3) is difficult and a parameter inference

is infeasible. To resolve this problem, the hinge loss from the support vector

machine (SVM) was proposed as a substitute for the 0-1 loss (Zhao et al. (2012,

2015)). However, owing to the nondifferentiability of the hinge loss, the inference

remains challenging. This motivates us to seek a smoother surrogate loss function

for estimation.

Consider an arbitrary surrogate loss h(a, y) : {−1, 1} × R 7→ R. Then, by
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replacing the 0-1 loss with this surrogate loss, we estimate the treatment rule by

minimizing

Rh(f) = E
{
R

h(A, f(X))

Aπ + (1−A)/2

}
. (2.4)

To prevent nonconvexity, we require that h(a, y) be convex in y. Furthermore,

simple algebra gives

E
{

R

Aπ + (1−A)/2
h(A, f(X))

∣∣∣X = x

}
= E[R|X = x, A = 1]h(1, f(x)) + E[R|X = x, A = −1]h(−1, f(x))

= axh(1, f(x)) + bxh(−1, f(x)),

where ax = E[R|X = x, A = 1] and bx = E[R|X = x, A = −1]}. Hence, for any

given x, the minimizer for f(x), denoted by yx, solves the equation

axh
′(1, y) + bxh

′(−1, y) = 0,

where h′(a, y) is the first derivative of h(a, y) with respect to y. To ensure that

the surrogate loss still leads to the correct optimal rule, which is equivalent to

sgn(ax−bx), we require that the solution have the same sign as (ax−bx). On the

other hand, because axh
′(1, y) + bxh

′(−1, y) is nondecreasing in y, we conclude

that for ax > bx, if axh
′(1, 0) + bxh

′(−1, 0) ≤ 0, then the solution yx should be

positive; however, for ax < bx, if axh
′(1, 0) + bxh

′(−1, 0) ≥ 0, then the solution

yx should be negative. In other words, a sufficient condition to ensure the Fisher

consistency is

(ax − bx)(axh
′(1, 0) + bxh

′(−1, 0)) ≤ 0.

However, because ax and bx can be arbitrary nonnegative values, this condition

holds if and only if

h′(1, 0) = −h′(−1, 0) and h′(1, 0) ≤ 0.

In conclusion, the choice of h(a, y) should satisfy the following:

(I) For a = −1 and 1, h(a, y) is twice differentiable and convex in y;

(II) h′(1, 0) = −h′(−1, 0) and h′(1, 0) ≤ 0.

Many loss functions satisfy the above two conditions. Here, we consider loss

functions of the form h(a, y) = −ay + g(y). Then, the first condition automati-

cally holds if g is twice differentiable and convex. The first equation in the second

condition also holds. Finally, because h′(1, 0) = −1+g′(0), the second part holds

if we choose g such that g′(0) = 0. A special case is to choose
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Figure 1. Comparison of loss functions.

g(y) = 2 log(1 + exp(y))− y,

with the corresponding loss function,

h(a, y) = −(a+ 1)y + 2 log(1 + exp(y)),

which corresponds to the entropy loss for a logistic regression (Figure 1). Hence-

forth, we use this loss function, although the results apply to any general smooth

loss that satisfies these two conditions. Correspondingly, (2.4) becomes

R(f) = E
{

R

Aπ + (1−A)/2
[−0.5(A+ 1)f(X) + log(1 + exp(f(X)))]

}
. (2.5)

2.2. Learning optimal ITRs using the entropy loss

Now, suppose the randomized trial involves T stages, where patients might

receive different treatments across the multiple stages. With some abuse of

notation, we use Xt, Rt, and At to denote the set of covariates, clinical out-

come, and corresponding treatment, respectively, at stage t = 1, . . . , T , and let

St = (X1, A1, . . . ,Xt−1, At−1,Xt) be the history by t.

A dynamic treatment regime (DTR) is a sequence of deterministic decision

rules, d = (d1, . . . , dT ), where dt is a map from the space of history information

St, denoted by St, to the action space of available treatments At = {−1, 1}. The

optimal DTR maximizes the expected total value function Ed(
∑T

t=1Rt), where

the expectation is taken with respect to the distribution of (X1, A1, R1, . . . ,XT ,
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AT , RT ), given the treatment assignment At = dt(St).

DTRs aim to maximize the expected cumulative rewards; hence, the opti-

mal treatment decision at the current stage must depend on subsequent decision

rules. This motivates a backward recursive procedure that first estimates the

optimal decision rule at future stages. Then, it determines the optimal de-

cision rule at the current stage by restricting the analysis to those subjects

who have followed the estimated optimal decision rules. Assume that we ob-

serve data (X1i, A1i, R1i . . . ,XT i, AT i, RT i), for i = 1, . . . , n, forming n inde-

pendent and identically distributed (i.i.d.) patient trajectories, and let Sti =

{(X1i, A1i, . . . , At−1,i,Xti) : i = 1, . . . , n}, for 1 ≤ t ≤ T . Denote π(At,St) =

Atπt−(1−At)/2, where πt = P (At = 1|St), for t = T, . . . , 1. Suppose that we al-

ready possess the optimal regimes at stages t+ 1, . . . , T , denoted as d∗t+1, . . . , d
∗
T .

Then, the optimal decision rule at stage t, d∗t (St), should maximize

E


(

T∑
j=t

Rj

)∏T
j=t+1 I(Aj = d∗j (Sj))∏T

j=t π(Aj ,Sj)
I(At = dt(St))

∣∣St
 ,

where we assume all subjects have followed the optimal DTRs after stage t.

Hence, d∗t is a map from St to {−1, 1} that minimizes

E


(

T∑
j=t

Rj

)∏T
j=t+1 I(Aj = d∗j (Sj))∏T

j=t π(Aj ,Sj)
I(At 6= dt(St))

∣∣St
 .

Following (2.5), we consider an entropy learning framework in which the decision

function at stage t is given as

dt(St) = 2I

{
(1 + exp(−ft(Xt)))

−1 >
1

2

}
− 1 = sgn{ft(Xt)}, (2.6)

for some function ft(·). Here, for simplicity, as defined in equation (2.6), the

decision rule is assumed to depend on the history information St through Xt

only. Although St = St−1 ∪ {At−1,Xt}, any elements in St−1 and At−1 can be

included as one the covariates in Xt. Hence, this assumption is not stringent

at all. In particular, our method remains valid when Xt is set to St. Given

the observed samples, we obtain estimators for the optimal treatments using the

following backward procedure.

Step 1. Minimize

− 1

n

n∑
i=1

{
RT i

π(AT i,ST i)
[0.5(AT i + 1)fT (XT i)− log(1 + exp(fT (XT i)))]

}
.(2.7)

to obtain the stage-T optimal treatment regime. This is the same as the single-
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stage treatment selection procedure. Let f̂T be the estimator of fT obtained by

minimizing (2.7). Then, for a given ST , the estimated optimal regime is given

by d̂T (ST ) = sgn(f̂T (XT )).

Step 2. For t = T − 1, . . . , 1, sequentially minimize

− n−1
n∑
i=1

{
(
∑T

j=tRji)
∏T
j=t+1 I(Aji = d̂j(Sji))∏T

j=t π(Aji,Sji)

[
0.5(Ati + 1)ft(Xti)

− log(1 + exp(ft(Xti)))
]}
, (2.8)

where d̂t+1, . . . , d̂T are obtained prior to stage t. Let f̂t be the estimator of ft
obtained by minimizing (2.8). Then, for a given St, the estimated optimal regime

is given by d̂t(St) = sgn(f̂t(Xt)).

Let Hpt be the set of all functions from Rpt to R. As outlined in Section

2.1, the following proposition justifies the validity of our approach.

Proposition 1. Suppose

ft = arg maxf∈HptE

{
(
∑T

j=tRj)
∏T
j=t+1 I(Aj = sgn(fj(Xj)))∏T
j=t π(Aj ,Sj)[

0.5(At + 1)f(Xt)− log(1 + exp(f(Xt)))
]}
, (2.9)

backward through t = T, T − 1, . . . , 1. We have d∗j (Sj) = sgn(fj(Xj)), for j =

1, . . . , T .

Let Vt = E(d∗t ,...,d
∗
T )
∑T

i=tRi be the maximal expected value function at stage

t. After obtaining the estimated decision rules d̂T , . . . , d̂t, for simplicity, we esti-

mate Vt by

V̂t = n−1
n∑
i=1

{
(
∑T

j=tRji)
∏T
j=t+1 I(Aji = d̂j(Sji))∏T

j=t π(Aji,Sji)
I(Ati = d̂t(Sti))

}
. (2.10)

Note that our results also fit into the more general and robust estimation frame-

work constructed by Zhang et al. (2012), Zhang et al. (2013).

3. Asymptotic Theory for Linear Decisions

Suppose the vector of stage-t covariates Xt is of dimension pt, for 1 ≤ t ≤ T ,

and assume that the function ft(Xt) in (2.7) and (2.8) is of the linear form

ft(Xt) = (1,X>t )βt, for some βt ∈ Rpt+1. Then, (2.7) and (2.8) can be carried

out as a weighted logistic regression. In this section, we establish the asymp-
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totic distributions of the estimated parameters and value functions under the

aforementioned linear decision assumption. Note that when the true unknown

solution is nonlinear, similarly to other linear learning rules, our approach can

be understood only as finding the best approximation of the true solution (2.9)

in the linear space.

We consider the multi-stage case only, because the results for the single-

stage case are the same as those for stage T . For the multi-stage case, denote

X∗t = (1,X>t )> and the observations X∗ti = (1,X>ti)
>, for t = 1, . . . , T and

i = 1, . . . , n. Then, the n× (pt + 1) design matrix for stage t is given by Xt,1:n =

(X∗t1, . . . ,X
∗
tn)>. Let β0t = (β0t0, β

0
t1, . . . , β

0
tpt)
> be the solution to (2.9) at stage t,

and let β̂t = (β̂t0, β̂t1, . . . , β̂tpt)
> be its estimator, obtained by solving (2.7) when

t = T and (2.8) when t = T − 1, . . . , 1.

3.1. Parameter estimation

By setting the first derivative of (2.8) to zero for stage t, where 1 ≤ t ≤ T−1,

we have

0 = − 1

n

n∑
i=1

{(∑T
j=tRji

)∏T
j=t+1 I(Aji = d̂j(Sji))∏T

j=t π(Aji,Sji)[
0.5(Ati + 1)− exp(X∗>ti βt)

1 + exp(X∗>ti βt)

]}
X∗ti.

The Hessian matrix of the left-hand side of the above equation is:

Ht(βt) =
1

n
X>t,1:nDt(βt)Xt,1:n,

where Dt(βt) = diag{dt1, . . . , dtn} with

dti =
(
∑T

j=tRji)
∏T
j=t+1 I(Aji = d̂j(Sji))∏T

j=t π(Aji,Sji)
· exp(X∗>ti βt)

(1 + exp(X∗>ti βt))
2
.

Because Rti is positive, Ht(βt) is positive-definite with probability one. Conse-

quently, the objective function in (2.8) is strictly convex, implying the existence

and uniqueness of β̂t, for t = T − 1, . . . , 1. This is also true for t = T , using a

similar argument. To obtain the asymptotic distribution of the estimators, we

need the following regularity conditions:

(A1) It(βt) is finite and positive-definite for any βt ∈ Rpt+1, t = 1, . . . , T , where

It(βt) = E
(
∑T

j=tRj)
∏T
j=t+1 I(Aj = dj(Sj))∏T

j=t π(Aj ,Sj)
· exp(X∗>t βt)X

∗
tX
∗>
t

(1 + exp(X∗>t βt))2
.
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(A2) There exists a constant BT , such that Rt < BT , for t = 1, . . . , T . In

addition, we assume that Xt1i, . . . ,Xtni are i.i.d. random variables with

bounded support, for i = 1, . . . , pt. Here, Xtij is the jth element of Xti.

(A3) Denote Yt = X∗>t β0t and let gt(y) be the density function of Yt, for 1 ≤ t ≤ T .

We assume that y−1gt(y) → 0 as y → 0. In addition, we assume that

there exists a small constant b, such that for any positive constant C and

β ∈ Nt,b := {β : |β − β0t |∞ < b}, P (|X∗>t β| < Cy) = O(y) as y → 0.

(A4) There exist constants 0 < ct1 < ct2 < 1, such that ct1 < πt < ct2, for

t = 1, . . . , T , and P (
∏T
j=1 I(Aj = d∗j (Sj)) = 1) > 0.

Remark 1. By definition, It(βt) is positive semidefinite. In A1, we assume

that It(βt) is positive-definite to ensure that the true optimal treatment rule is

unique and estimable. The boundedness assumption, A2, can be relaxed further

using truncation techniques. Assumption A3 indicates that the probability of

Yt ≤ Cn−1/2 is o(n−1/2). This is necessary to ensure that the optimal decision

is estimable, and is essential to establishing asymptotic normality without an

additional Bernoulli point mass, as in Laber et al. (2014). Assumption A4 ensures

that the treatment design is valid, such that the probability of a patient being

assigned to the unknown optimal treatments is nonnegligible.

Theorem 1. Under assumptions A1−A4, for t = T, . . . , 1, and any constant

κ > 0, there exists a large enough constant Ct,

P

(
|β̂t − β0t |∞ > Ct

√
log n

n

)
= o

(
log n

n

)
, (3.1)

and given X∗t , for any x > 1 and x = o(
√
n), we have

P

(
|X∗>t (β0t − β̂t)| >

xWt√
n

∣∣∣∣X∗t) =

{
1 +O

(
x3√
n

)}
Φ(−x) +O

(
log n√
n

)
,(3.2)

where W 2
t = Var(X∗>t (β0t − β̂t)) and Φ(·) is the cumulative distribution function

of the standard normal distribution. In addition, for the ith sample, we have

E

∣∣∣∣∣∣
T∏
j=t

I(Aji = d̂j(Sji))−
T∏
j=t

I(Aji = d∗j (Sji))

∣∣∣∣∣∣ = o

(
log n

n

)
. (3.3)

Furthermore, we have,
√
nIt(β

0
t )(β̂t − β0t )→ N(0,Γt), (3.4)

where Γt = (γtjk)1≤j,k≤p+1 with
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γtjk = E

[
(
∑T

j=tRji)
∏T
j=t+1 I(Aji = dj(Sji))∏T

j=t π(Aji,Sji)

]2

·
[
0.5(Ati + 1)− exp(X∗>ti β

0
t )

1 + exp(X∗>ti β
0
t )

]2
X∗tijX

∗
tik,

and X∗tij is the jth element of X∗ti.

Remark 2. The proof of Theorem 1 is not straightforward because, for stage

t < T , the n terms in the summation of the objective function (2.8) are weakly

dependent on each other. Note that the estimation errors of the indicator func-

tions in (2.8) might aggregate when the estimators are obtained sequentially.

Thus, we need to show that the estimation errors of these indicator functions are

well controlled. By establishing Bernstein-type concentration inequalities (3.1)

and large deviation results (3.2) for the parameter estimation, we establish error

bounds (3.3) for the estimation of these indicator functions. This enables us to

establish the asymptotic distribution of the estimators. Detailed proofs are pro-

vided in the Supplementary Material. On the other hand, from the proofs, we

can see that the asymptotic results in the above theorem would also hold if other

loss functions satisfying the two conditions discussed in Section 2.1 are used, with

some corresponding modifications to Condition (A1) and the covariance matrix.

In practice, we estimate Γt in Theorem 1 by Γ̂t = (γ̂tjk)1≤j,k≤pt+1, with

γ̂tjk =
1

n

n∑
i=1

[
(
∑T

j=tRji)
∏T
j=t+1 I(Aji = d̂j(Sji))∏T

j=t π(Aji,Sji)

]2

·

[
0.5(Ati + 1)− exp(X∗>ti β̂t)

1 + exp(X∗>ti β̂t)

]2
X∗tijX

∗
tik.

The covariance matrix of
√
n(β̂t−β0t ) can be estimated by: Σ̂t = H−1t (β̂t)Γ̂tH

−1
t

(β̂t).

3.2. Estimating the optimal value function

In this subsection, we establish the asymptotic normality of the estimated

maximal expected value function defined in (2.10) when f(x) is a linear function

of x.

Theorem 2. Under the same assumptions as Theorem 1, we have
√
n(V̂t − Vt)→ N(0,ΣVt), t = 1, . . . , T,

where V̂t is defined as in (2.10) and,
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ΣVt = E

{
(
∑T

j=tRj)
∏T
j=t+1 I(Aj = dj(Sj))∏T

j=t π(Aj ,Sj)
I(At = dt(St))

}2

−

{
E

(
∑T

j=tRj)
∏T
j=t+1 I(Aj = dj(Sj))∏T

j=t π(Aj ,Sj)
I(At = dt(St))

}2

.

When conducting inferences, ΣVt can be estimated using the empirical esti-

mators,

Σ̂Vt =
1

n

n∑
i=1

{
(
∑T

j=tRji)
∏T
j=t+1 I(Aji = d̂j(Sji))∏T

j=t π(Aji,Sji)
I(Ati = d̂t(Sti))

}2

−

{
1

n

n∑
i=1

(
∑T

j=tRji)
∏T
j=t+1 I(Aji = d̂j(Sji))∏T

j=t π(Aji,Sji)
I(Ati = d̂t(Sti))

}2

.

3.3. Testing treatment effects

In practice, treatments in some stages might not be effective for some pa-

tients. When the true optimal treatment rule is linear in Xt, a nonsignificant

treatment effect on stage t, for some 1 ≤ t ≤ T , is equivalent to X∗>t β0t = 0.

Here, X∗t = (1,X>t )>. From Theorem 1 we immediately have that, given Xt,

X∗>t β̂t → N(X∗>t β0t ,
1
nX∗>t It(β

0
t )−1ΓtIt(β

0
t )X∗t ). Therefore, we can use X∗>t β̂t

as a test statistic when testing the significance of the treatment effects: for a

realization x∗t and a given significance level α, we reject H0 : x∗>t β0t = 0 if√
n|(x∗>t Ît(β̂t)

−1Γ̂tÎt(β̂t)x
∗
t )
−1/2x∗>t β̂t| > Φ(1 − α/2), where Ît(β̂t), Γ̂t(β̂t) are

empirical estimators of It,Γt, respectively, evaluated at β̂t, and Φ(·) is the cu-

mulative distribution function of the standard normal distribution.

Before we proceed to the numerical studies, note that the theoretical results

obtained here are still valid if the model is mis-specified. However, the parameters

we are estimating are the maximizer of (2.5) under the linear space, not the

parameters in the optimal decision rules.

4. Simulation Study

We conduct numerical studies to assess the performance of our proposed

methods.

One-stage. The treatment A is generated uniformly from {−1, 1} and is in-

dependent of the prognostic variables X = (x1, . . . , xp)
>. We set the reward

R = Q(X) + T (X, A) + ε, where T (X, A) reflects the interaction between the

treatment and the prognostic variables, and ε is a random variable such that
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ε = |Y |/10, where Y follows a standard normal distribution. This folded normal

error is chosen because R is restricted to be positive. We consider the following

models.

Model 1. x1, x2, x3 are generated independently and uniformly in [−1, 1].

We generate the reward R = Q(X) + T (X, A) + ε by setting T (X, A) = 3(0.4−
x1 − x2)A, Q(X) = 8 + 2x1 − x2 + 0.5x3. In this case, the decision boundary is

determined only by x1 and x2.

Model 2. X = (x1, x2, x3)
> is generated from a multivariate normal distri-

bution with mean zero and covariance matrix Σ = (σij)3×3, where σij = 0.5|i−j|,

for 1 ≤ i, j ≤ 3. We generate the reward R by setting T (X, A) = (0.8 − 2x1 −
2x2)A, Q(X) = 5 + 0.5x21 + 0.5x22 + 0.5(x23 + 0.5x3). The decision boundary of

this case is also determined by x1 and x2.

Next, we consider multi-stages cases. The treatments At are generated inde-

pendently and uniformly from {−1, 1}, and are independent of the p-dimensional

vector of prognostic variables Xt = (xt1, . . . , xtp)
>, for t = 1, . . . , T . ε is gener-

ated in the same way as in the single stage.

Two-stage.

Model 3. The Stage 1 outcome R1 is generated as follows: R1 = (1−5x11−
5x12)A1 + 11.1 + 0.1x11 − 0.1x12 + 0.1x13 + ε, where x11, x12, x13 are generated

independently from a uniform distribution in [−1, 1]. The Stage 2 outcome R2

is generated by R2 = 0.5A1A2 + 3 + (0.2− x21 − x22)A2 + ε, where x2i = x1i, for

i = 1, 2, 3. In this case, the covariates from the two stages are identical.

Model 4. We use the same setting as that in Model 3, except that we set

x2i = 0.8x1i+0.2Ui, for i = 1, 2, 3, where Ui is randomly generated from U [−1, 1].

In this case, the covariates from the two stages are different and correlated.

4.1. Estimation and classification performance

We first examine the performance of the estimated coefficient parameters,

the corresponding value functions, and the classification accuracy.

For stage t, given the sample size n, we repeat the simulation 2,000 times.

Then, we compute the coverage rate CRtj , which is the proportion that [β̂tj −
1.96σ̂tjj , β̂tj + 1.96σ̂tjj ] covers the true parameter βtj , for j = 0, . . . , p, where σ̂tjj
is the (j, j)th element of Σ̂t. CRVt is defined similarly for the coverage rate of

the value function. A validation set with 100,000 observations is simulated to

compute the oracle values and assess the performance of our approach.

We set the sample size to n = 50, 100, 200, 400, and 800. The coverage rates

under Models 1−4 are given in Tables 1 and 2. For each replication under each
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Table 1. Coverage rates of the expected value function and coefficient parameters under
Models 1 and 2.

Model 1 Model 2
n CRV1

CR10 CR11 CR12 CR13 CRV1
CR10 CR11 CR12 CR13

50 0.927 0.948 0.950 0.938 0.945 0.946 0.944 0.937 0.931 0.924
100 0.936 0.950 0.947 0.949 0.944 0.942 0.947 0.949 0.945 0.940
200 0.942 0.954 0.947 0.955 0.952 0.951 0.950 0.950 0.953 0.947
400 0.940 0.949 0.960 0.954 0.944 0.946 0.963 0.952 0.949 0.933
800 0.944 0.944 0.953 0.947 0.943 0.951 0.955 0.952 0.954 0.943

Table 2. Coverage rates of the expected value function and coefficient parameters under
Models 3 and 4.

Model 3 Stage 1 Stage 2
n CRV1

CR10 CR11 CR12 CR13 CRV2
CR20 CR21 CR22 CR23

50 0.872 0.946 0.937 0.945 0.947 0.912 0.949 0.939 0.951 0.951
100 0.928 0.949 0.956 0.953 0.948 0.941 0.952 0.956 0.954 0.940
200 0.936 0.947 0.942 0.942 0.951 0.950 0.950 0.946 0.948 0.935
400 0.941 0.943 0.948 0.943 0.950 0.943 0.948 0.952 0.948 0.956
800 0.957 0.944 0.955 0.945 0.941 0.954 0.939 0.951 0.952 0.952

Model 4 Stage 1 Stage 2
50 0.865 0.948 0.944 0.941 0.947 0.908 0.942 0.948 0.942 0.942

100 0.908 0.951 0.939 0.954 0.940 0.942 0.955 0.943 0.947 0.949
200 0.941 0.940 0.943 0.951 0.948 0.948 0.948 0.954 0.954 0.951
400 0.945 0.944 0.946 0.956 0.952 0.948 0.943 0.951 0.947 0.950
800 0.954 0.949 0.946 0.957 0.953 0.951 0.950 0.963 0.952 0.950

model, we also compute the misclassification rate at each stage. Figure 2 gives

the box plots of the misclassification rates over 2000 replications for all four

models.

From Tables 1 and 2, we observe that the coverage rates are close to the

nominal level (95%), and improve as the sample size increases, indicating that

the asymptotic normality of our estimators is well established. In particular, the

coverage rates of the coefficient parameter estimators are very close to 95%, even

when the sample size is as small as 50. The box plots in Figure 2 also indicate

that the misclassification rate of the estimated decision rule decreases toward

zero as the sample size increases.

Note that the ultimate goal of dynamic treatment regimes is to maximize

the value functions. Next we compare our entropy learning with Q-learning and

outcome-weighted learning in terms of the value function estimation. Throughout

this paper, Q-learning and outcome-weighted learning are implemented using the
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Figure 2. Box plot of misclassification rates over 2,000 replications.

R package “DTRlearn.” In addition to Models 1−4, we also consider the following

nonlinear cases.

Model 5. x1, x2, x3 are generated independently and uniformly in [−1, 1].

We generate the reward R = Q(X, A) + ε with Q(X, A) = [−T (X)(A + 1) +

2 log(1 + exp(T (X)))]−1, where T (X) = (x1 − x2 + 2x1x2).

Model 6. This is identical to Model 5, except that x1, x2, x3 are discrete

variables generated independently and uniformly in {−1, 0, 1}.
Model 7. The Stage 1 outcome R1 is generated as follows: R1 = [0.2 −

T1(X1)(A1 + 1) + 2 log(1 + T1(X1))]
−1 + ε, where T1(X1) = x11 − x12 + 2x213 +
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Table 3. Comparison of value functions using entropy learning (E-learning), Q-learning,
and outcome-weighted learning (OW-Learning) under Models 1−8.

Model E-Learning Q-Learning OW-Learning
Model 1 10.2(0.1) 10.3(0.0) 10.3(0.0)
Model 2 9.4(0.1) 9.4(0.0) 9.4(0.0)

Model 3 Stage 2 3.7(0.1) 3.7(0.0) 3.7(0.0)
Model 3 Stage 1 14.5(0.4) 15.0(0.0) 15.0(0.0)
Model 4 Stage 2 3.6(0.1) 3.6(0.0) 3.6(0.0)
Model 4 Stage 1 14.5(0.6) 15.0(0.0) 15.0(0.0)

Model 5 1.8(0.0) 1.7(0.0) 1.8(0.0)
Model 6 4.8(0.1) 4.1(0.1) -(-)

Model 7 Stage 2 1.5(0.0) 1.5(0.0) 1.5(0.0)
Model 7 Stage 1 1.1(0.1) 1.0(0.0) 1.1(0.1)
Model 8 Stage 2 3.0(0.1) 2.8(0.2) -(-)
Model 8 Stage 1 1.9(0.3) 0.9(0.2) -(-)

2x11x12, with x11, x12, x13 generated independently from a uniform distribution

in [−1, 1]. The Stage 2 outcome R2 is generated by R2 = [0.05 + (1 + A2)(1 +

A1)/4−T2(X2)(A2 +1)+2 log(1+T2(X2))]
−1 +ε, where x2i = x1i, for i = 1, 2, 3,

and T2(X2) = x21 − x22 + 2x223 + 2x21x22.

Model 8. This is identical to Model 7, except that x11, x12, x13 are discrete

variables generated independently and uniformly in {−1, 0, 1}.
For each model, we generate 200 random samples and the corresponding

estimated treatment rules used to compute the value function using (2.3), with

a validation set of size n = 500,000. The above procedure is repeated 100 times;

the results are reported in Table 3.

From Table 3, we note the value functions of our entropy learning method are

comparable with those of Q-learning and outcome-weighted learning under Mod-

els 1−4. However, under Models 5 and 7, where the true treatment regimes are

nonlinear, the value functions of entropy learning and outcome-weighted learning

are very similar, and seem to be slightly better than those of Q-learning. How-

ever, when we consider discrete covariates in Models 6 and 8, outcome-weighted

learning barely produces a result, owing to the large condition number when

solving a system of equations.

4.2. Testing X∗>t β0t = 0

In the dynamic treatment regime literature, the nonregularity condition

P (X∗>t β0t = 0) = 0 is usually required (e.g., in Q-learning) to enable parameter

inferences. Here, we examine the performance the entropy learning approach
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Figure 3. P-value of X>β̂1 under case 1 over 1,000 replications.

when testing X∗>t β0t = 0.

• Case 1: Test X∗>β01 = 0 under model 1. Let X∗ = (1, x1, x2, x3)
> be the

covariate of a new observation and β01 = (β010, β
0
11, β

0
12, β

0
13)
> be the true

parameters. By setting x1 = x3 = 1 and x2 = −(β010 + x1β
0
11 + x3β

0
13)/β

0
12,

we have X∗>β01 = 0.

• Case 2: Test X∗>1 β01 = 0 under model 4. We set x11 = x13 = −1 and

x12 = −(β010 + x11β
0
11 + x13β

0
13)/β

0
12.

We set n = 50, 100, 200, 400. Note that

X∗>t β̂t → N(X∗>t β0t ,X
∗>
t It(β

0
t )−1ΓtIt(β

0
t )Xt).

We use X∗>t Ît(β̂t)
−1Γ̂tÎt(β̂t)X

∗
t to estimate the variance of X∗>t β̂t, where Ît and

Γ̂t are the empirical estimators of It and Γt. For each case, we run the simulation
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Figure 4. P-value of X>
1 β̂1 under case 2 over 1,000 replications.

1,000 times, and for each replication, we compute the p-value of X∗>t β̂t. P-

value plots are given in Figures 3 and 4. We can see that the p-values follow a

uniform distribution in [0, 1], indicating that our tests perform well in detecting

nonsignificant treatment effects.

4.3. Type-I error comparison with Q-learning

We next assess the performance of the hypothesis tests, because it is often

of interest to investigate the significance of the coefficient parameters. Note that

in Models 3 and 4, we have β13 = β23 = 0. We then compute the type-I error

to test β13 = 0 and β23 = 0. In the optimization problems (2.7) and (2.8), the

decisions Ai are formularized as the weights of a weighted negative log-likelihood.

Consequently, unlike Q-learning (Zhao, Kosorok and Zeng (2009)), the objective

functions for the estimation of the parameters become continuous functions, and
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Table 4. Type-I error comparison using entropy learning and Q-learning, where “Elearn”
refers to entropy learning and “Qlearn” refers to Q-learning.

Model 3 Model 4
H0 : β13 = 0 H0 : β23 = 0 H0 : β13 = 0 H0 : β23 = 0

n Elearn Qlearn Elearn Qlearn Elearn Qlearn Elearn Qlearn
50 0.063 0.069 0.050 0.057 0.060 0.054 0.055 0.056

100 0.044 0.063 0.054 0.056 0.044 0.057 0.043 0.055
400 0.049 0.043 0.055 0.043 0.047 0.053 0.047 0.046
800 0.050 0.059 0.044 0.064 0.047 0.053 0.054 0.055

parameter inferences become feasible, even without the nonregularity condition.

For comparison, we compute the same quantities using the bootstrap scheme

for Q-learning. Note that, in general, βij in entropy learning differs from the

βij in Q-learning. However, in Models 3 and 4, x13 and x23 are not involved

in the treatment selection part; hence, the true β in both entropy learning and

Q-learning is zero. Here, the significance level α is set to 0.05, and we consider

n = 50, 100, 400, 800. The simulation is repeated 2,000 times, and the results

are given in Table 4. Most of the type-I errors using entropy learning are closer

to α = 0.05, indicating that our learning method can be more appropriate for

testing the significance of covariates.

5. Application to STAR*D

We consider a real-data example extracted from the Sequenced Treatment

Alternatives to Relieve Depression (STAR*D) study funded by the National In-

stitute of Mental Health. STAR*D is a multisite, prospective, randomized, mul-

tistep clinical trial of outpatients with nonpsychotic major depressive disorder;

see Rush et al. (2004) and Sinyor, Schaffer and Levitt (2010) for further details

on the study. The complete trial involved four sequential treatment stages (or

levels), and patients were encouraged to participate in the next level of treat-

ment if they failed to achieve remission or experience an adequate reduction in

symptoms.

During the first level of the STAR*D study, patients initially took the antide-

pressant citalopram, a selective serotonin reuptake inhibitor (SSRI). Those who

did not experience a remission of symptoms for up to 14 weeks had the option of

continuing to level 2 of the trial, where they could explore additional treatment

options designed to help them become symptom-free (Rush et al. (2006)). Be-

cause there was one single treatment for all patients in level 1, we do not discuss
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these data further.

Level 2 of the study offered seven treatments: four “switched” options, in

which study participants changed from citalopram to a new medication or talk

therapy; and three “augmented” options, in which patients added a new medica-

tion or talk therapy to the citalopram they were already receiving. Data taken

from Level 2 are treated as first-stage observations, and we define A1 = −1

if the treatment option is a switch, and A1 = 1 if the treatment option is an

augmentation.

During levels 1 and 2 of the STAR*D trial, which started with 2,876 par-

ticipants, about half of all patients became symptom-free. The other half were

then eligible to enter level 3, where as in level 2, patients were given the choice of

either switching medications or adding to their existing medication (Fava et al.

(2006)). Data taken from level 3 of this trial are treated as second-stage obser-

vations, and we define A2 = −1 if the treatment option is a switch, and A2 = 1

if the treatment option is an augmentation.

After excluding cases with missing values, we obtain a sample of 316 pa-

tients whose medical information from the two stages are available. Of the 316

patients, 119 are assigned to the augmentation group, and 197 are assigned to the

switch group in Stage 1. Then, 115 are assigned to the augmentation group, and

201 are assigned to the switch group in Stage 2. The 16-item Quick Inventory

of Depressive Symptomatology-Self-Report (QIDS-SR(16)) scores were obtained

during treatment visits for the patients, and are considered the primary outcome

variable in this study. To accommodate our model, where the reward is positive

and “larger is better,” we used R = c−QIDS-SR(16) as the reward at each level,

where c is a constant that bounds the empirical QIDS-SR(16) scores. In this

study, we simply set c = 30 so that all QIDS-SR(16) scores are positive.

Following earlier analysts (e.g., Kuk, Li and Rush (2010, 2014)), we con-

sider the following set of clinically meaningful covariates: (i) chronic depression

indicator, equal to one if the chronic episode > 2 years, and 0 otherwise; (ii)

gender, where male= 0 and female= 1; (iii) patient age (years); (iv) the general

medical condition (GMC), defined as one in presence of one or more general med-

ical conditions, and zero otherwise; (v) the anxious feature, defined as one if the

Hamilton Depression Rating Scale anxiety/somatization factor score ≥ 7, and

zero otherwise (Fava et al. (2008)). In addition, we consider (vi) week, the num-

ber of weeks patients spent in the corresponding stage when the QIDS-SR(16)

scores at exit were determined, and (vii) the baseline QIDS-SR(16) scores at the

corresponding stages. These covariates are summarized in Table 5.
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Table 5. Summary statistics for the covariates in the STAR*D study: for continuous
variables, we report the means and standard deviations; for dichotomous variables, we
report proportions and standard deviations.

Chronic Gender Age GMC
Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1

Switch 0.29(0.03) 0.29(0.03) 0.51(0.04) 0.46(0.04) 43.99(0.88) 45.78(0.84) 0.59(0.04)
Augmentation 0.26(0.04) 0.26(0.04) 0.49(0.05) 0.57(0.05) 44.76(1.05) 41.65(1.11) 0.56(0.05)

GMC Anxiety Week QIDS-SR(16)
Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2

Switch 0.62(0.03) 0.76(0.03) 0.74(0.03) 9.21(0.30) 7.48(0.34) 14.96(0.29) 14.54(0.31)
Augmentation 0.51(0.05) 0.70(0.04) 0.73(0.04) 9.64(0.40) 9.35(0.46) 13.45(0.37) 12.77(0.37)

Table 6. Entropy learning for the STAR*D study.

Stage 1 Stage 2
coefficient(sd) p-value coefficient(sd) p-value

Entropy learning
intercept 0.855 (0.987) 0.386 0.452 (0.792) 0.569
chronic -1.231 (0.455) 0.007 0.103 (0.314) 0.742
gender -0.604 (0.340) 0.859 0.702 (0.269) 0.009
age 0.001 (0.016) 0.950 -0.028 (0.012) 0.022
gmc 0.089 (0.359) 0.805 -0.121 (0.274) 0.658
anxious 0.095 (0.373) 0.799 0.235 (0.298) 0.431
week 0.066 (0.036) 0.071 0.089 (0.029) 0.002
qctot -0.084 (0.044) 0.056 -0.111 (0.034) 0.001
A1 - - 0.925 (0.273) 0.001

V̂i 59.617 (5.485) - 25.697 (1.325) -

We applied the methods introduced in this paper to estimate the covariate

effects on the optimal treatment allocation for the patients in this study. The

fitted results under the entropy learning approach are given in Table 6. The table

shows that the baseline QIDS-SR(16) score is a significant predictor of whether a

patient should be treated using the switch option or the argumentation option in

both stages. More specifically, given other covariates, if the patient has a higher

baseline score, adopting a switch option might have better medical outcome.

In addition, for the Stage 2 analysis, the baseline score, gender, age, and the

treatment time are all significant when determining the best treatment options.

Interestingly, the treatment time is significant and has a positive sign, indicating

that, given other covariates, treatment argumentation might benefit the patients

for a longer term.

For comparison, using the same sets of covariates, the estimation results

based on Q-learning are given in Table 7, where the estimated confidence in-



E-LEARNING 1653

Table 7. Bootstrap confidence interval of Q-learning for the STAR*D study. Lower:
lower bound of the 95% confident interval; Upper: upper bound of the 95% confident
interval.

Stage 1 Stage 2
coefficient Lower Upper coefficient Lower Upper

Q-learning
intercept 0.99 -4.28 5.50 -2.17 -5.32 0.73
chronic -0.48 -2.31 1.33 -0.63 -1.75 0.48
gender 0.66 -0.80 2.24 1.30 0.37 2.28
age -0.03 -0.09 0.04 0.02 -0.03 0.07
gmc 0.06 -1.48 1.59 0.26 -0.83 1.39
anxious 1.35 -0.32 3.00 0.62 -0.45 1.65
week -0.14 -0.31 0.04 -0.07 -0.16 0.02
qctot -0.06 -0.24 0.14 -0.02 -0.16 0.11
A1 - - - 0.11 -0.44 0.66

V̂i 40.34 32.08 48.60 20.54 17.83 23.25

tervals are obtained using the bootstrap procedure. Table 7 shows that gender

is identified as the only important factor for the treatment selection at stage 2.

This method may be less powerful than our proposed entropy learning method,

because it may miss potentially useful markers. Consequently, Q-learning may

not be able to achieve the most appropriate treatment allocation using a set

of important personalized characteristics identified from a significance study. To

compare the performance of the proposed method with Q-learning in terms of the

value function, we also compute the estimated mean and standard deviation of

the value functions, using the fitted regimes obtained using our method and the

Q-learning method; see the V̂i values in Tables 6 and 7. We observe larger mean

value functions for our entropy learning approach, indicating that our treatment

regime is outperforming that of Q-learning in this data set.

The entropy learning approach may be incorrectly interpreted by some prac-

titioners. The fitted regression model should not be confused with an ordinary

association study, in which we fit unweighted logistic regression models to the

two stage data (see Table 8). In fact, the significant findings from Table 8 only

establish how covariates affect the likelihood of being observed in a treatment,

in lieu of the likelihood of being allocated the most appropriate treatment.

Finally, because the original design at level 2 of the STAR*D trial was an

equipoise-stratified design, one potential source of confounding effects could be

due to a patients preference for the strata in the design. A further examination

of this issue should include a patients preference in the treatment estimation
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Table 8. Ordinary association study for the STAR*D data using logistic regression
models.

Stage 1 Stage 2
coefficient(sd) p-value coefficient(sd) p-value

intercept 0.210 (0.740) 0.777 0.182 (0.772) 0.813
chronic -0.183 (0.279) 0.511 0.141 (0.296) 0.635
gender 0.012 (0.242) 0.961 0.537 (0.260) 0.039
age 0.010 (0.011) 0.352 -0.030 (0.012) 0.012
gmc -0.093 (0.259) 0.719 -0.219 (0.275) 0.425
anxious -0.117 (0.275) 0.671 0.096 (0.295) 0.744
week 0.032 (0.029) 0.269 0.098 (0.027) < 0.001
qctot -0.091 (0.030) 0.003 -0.104 (0.031) 0.001
A1 - - 0.851 (0.260) 0.001

strategies if we trust that patients selection of treatment options (between switch

and augmentation) within each stratum is random, as assumed in the original

equipoise-stratified design (Sinyor, Schaffer and Levitt (2010)).

6. Discussion

Many open questions can be addressed using our proposed method. First,

the linear specification of the treatment allocation rule may be replaced with

a nonparametric formulation, such as a partly linear model or an additive re-

gression model. The implementation of such methods is now widely available in

most statistical packages. More effort is required to establish similar theoretical

properties to those discussed here, and to achieve interpretable results.

Second, to carry out the clinical study and select the best treatment using

our approach, it is necessary to evaluate the required sample size at the design-

ing stage. Applying our theoretical results attained, we can calculate the total

number of subjects for every treatment group. However, more empirical studies

on various types of settings and data distributions can provide stronger support

for the suggestion based on the asymptotic results.

Finally, missing values are quite common in a multi-stage analysis. Most

analysts follow the standard practice of excluding cases with missing observations,

under the missing-at-random assumption. It is a difficult task to investigate why

data are missing, and an even more difficult task to address the problem when

missing is not at random. We encourage further research in this direction.
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Supplementary Material

The Supplement Material provides the technical proofs for the propositions

and theorems.
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ing to estimate optimal individualized treatment rules. Their study makes sev-

eral major contributions. First, it proposes a class of smooth outcome-weighted

loss functions for estimating optimal individualized treatment rules. Second, the

Fisher consistency and a proper inference for the parameters of the estimated

treatment rules can be established in the proposed general framework.

The proposed smooth loss function is motivated by the sign consistency of

the derived optimal treatment rule. When the true optimal treatment decision

rule is contained in the considered class of treatment rules, can the estimated

optimal treatment rule obtained using entropy learning be shown to have sign

consistency asymptotically? In addition, given a treatment rule, the proposed

smooth loss function is just an approximation to the weighted classification error

loss (corresponding to the value function). Is it possible to quantify the difference

between the value functions under the derived optimal rule using entropy learning

and the true optimal rule? Among the class of proposed smooth loss functions,

is it possible to find an optimal loss function that minimizes the value difference?

To derive the asymptotic properties of the parameter estimates in the de-

rived optimal treatment rule, the authors make a few assumptions. In par-

ticular, assumption (A3) ensures that the optimal decision is estimable. Does

this assumption exclude the possibility of having a nonregular setting, that is

P (X∗t
′β0t = 0) > 0. Under the nonregular setting, can we establish the asymp-

totic distributions of the estimators in the derived optimal treatment rule and

its associated estimated value function, as in Theorems 1 and 2? Finally, can the

proposed entropy learning method be extended to accommodate multiple treat-

ment options at each treatment stage? I would appreciate comments from the

authors on these issues.

Department of Statistics, North Carolina State University, 5112 SAS Hall, 2311

Stinson Drive, Raleigh, NC 27695, USA.

E-mail: lu@stat.ncsu.edu
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DISCUSSION

Xin He1, Shirong Xu2 and Junhui Wang2

1Shanghai University of Finance and Economics

and 2City University of Hong Kong

We would like to congratulate Drs. Jiang, Song, Li, and Zeng (JSLZ) for

their well-written and thought-provoking work, which bridges machine learning

and statistical inferences when estimating optimal individualized treatment rules

(ITRs), and opens numerous avenues for future research on related topics. Below

we discuss the paper from two aspects: its extension to kernel-based nonpara-

metric ITRs, and inferences for nonparametric ITRs.

1. Kernel-based Nonparametric ITRs

JSLZ assume that the decision functions ft(x), for t = 1, . . . , T, have a lin-

ear form, which facilitates the model fitting and statistical inferences. However,

in the machine learning community, much research is being conducted on non-

parametric decision functions, for example, in a reproducing kernel Hilbert space

(RKHS; see Kimeldorf and Wahba (1971); Shen et al. (2003); Wang and Shen

(2007); Wang, Shen and Liu (2008); Zhao et al. (2015); Qi and Liu (2018), and

the references therein). An RKHS provides a flexible framework for modeling

nonparametric functions without explicitly enumerating the functional basis. It

can be fully induced by any symmetric and nonnegative definite kernel function,

where the choice of kernel functions relies on the available prior information

about ft. In practice, if no prior information is available, it is a common practice

to use the Gaussian kernel, which is known to be universal in the sense that any

continuous function can be well approximated by the induced RKHS under the

infinity norm Steinwart (2005).

To extend JSLZ to estimate kernel-based nonparametric ITRs, we consider

the case of ft ∈ HK , an RKHS induced by some kernel function K(·, ·). The

formulation of the kernel-based nonparametric ITRs then becomes

min
ft∈HK

− 1

n

(
ωt �

(
0.5(At + 1n)� f t + ln ξt)

))T
1n + λn‖ft‖2K , (1.1)

where ωt = (ωt1, . . . , ωtn)T , At = (At1, . . . , Atn)T , f t = (ft(x
t
1), . . . , ft(x

t
n))T , �

denotes a componentwise product, ξt = (ξt1, . . . , ξtn)T with ξti =
(
1+

exp(ft(x
t
i))
)−1

, and ‖ft‖2K = 〈ft, ft〉K is the associated RKHS-norm of ft. By the
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Table 1. Comparison of value function of linear and nonparametric ITRs with their
standard errors in parenthesis.

Method Linear ITR Nonparametric ITR
Value function 1.568(0.010) 1.629(0.008)

representer theorem Kimeldorf and Wahba (1971), the minimizer of (1.1) must

have the form

ft(x
t) =

n∑
i=1

αtiK(xti,x
t) = αTt Kn(xt),

where αt = (αt1, . . . , αtn)T and Kn(xt) = (K(xt1,x
t), . . . ,K(xtn,x

t))T . More-

over, let K =
(
(K(xi,xj))

)n
i,j=1

. Then f t = Kαt and ‖ft‖2K = αTt Kαt. After

substituting these into (1.1), the optimization task with respect to the infinite-

dimensional ft simplifies to an equivalent optimization task with respect to the

n-dimensional αt, which can be solved by a slightly modified algorithm, as in

JSLZ. It is evident that the kernel-based formulation in (1.1) is fairly similar to

the original linear model of JSLZ, while admitting flexible model structures of

ft, thus allowing for general covariate effects on the ITRs.

We now examine the numerical performance of the kernel-based nonparamet-

ric ITRs using the simulated example in Qi and Liu (2018), where R = Q(x) +

T (x, A)+ ε, with T (x, A) = 3.8(0.8−x21−x22)A,Q(x) = 1+x1 +x2 +2x3 +0.5x4,

and ε ∼ N(0, 1). We consider the Gaussian kernel, set the training sample size

as 400 and the validation sample size as 200,000, and set the ridge parameter

λn = 0.001. The experiment is repeated 100 times, and the averaged value

function values are summarized in Table 1.

Clearly, the nonparametric ITR outperforms its linear counterpart in the

simulated example with nonlinear decision boundaries. In practice, as pointed

out in Qi and Liu (2018), the selection of the kernel function can be regarded as a

tuning parameter selection problem, with the optimal function being determined

using some data-adaptive selection criterion.

2. Inference for Nonparametric ITRs

Few studies examine inferences related to machine-learning-based methods,

partly because of their “parameter-free” frameworks. A similar concern is raised

in JSLZ, although their inference results are still developed for linear ITRs. In

fact, recent attempts have been made to develop inference tools for kernel-based

approaches. For example, Jiang, Zhang and Cai (2008) provides an inference
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for the prediction error of a kernel-based support vector machine, and Zhao

et al. (2015) conducts an inference for kernel-based approaches to estimate the

dynamic treatment regimes. The key idea is to utilize resampling techniques

to draw inferences on a criterion about the prediction errors of the machine-

learning-based methods. Similar treatments can be extended to inferences for

the predicated value function of the nonparametric ITRs.

Given the training sample On = {(R1i, A1i,x
1
i , . . . ., RT i, ATi,x

T
i )}ni=1, the

estimated optimal decision functions f̂ = (f̂1, . . . , f̂T )T can be obtained as in

Section 1. Then, for a new observation O0 = (R10, A10,x
1
0, . . . ., RT0, AT0,x

T
0 ),

we consider the predicted value function V 0
t (f̂t), with f̂t = (f̂t, . . . , f̂T ), and its

estimate V̂t(f̂t,On). Here, V 0
t (f̂t) and V̂t(f̂t,On) are defined as in JSLZ. We then

randomly split On into K disjoint subsets O
(1)
n , . . . , O

(K)
n of equal size. For each

k, we use all observations not in O
(k)
n to obtain f̂ (−k) = (f̂

(−k)
1 , . . . , f̂

(−k)
T )T ,

as in Section 1, and use O
(k)
n to compute the cross-validated value function.

The procedure is repeated for k = 1, . . . ,K, and the final cross-validated value

function is

V̂CVt,n =
1

K

K∑
k=1

V̂t(f̂
(−k),O(k)

n ).

As shown in Jiang, Zhang and Cai (2008), the asymptotic distribution of
√
n
(
V̂CVt,n

− V 0
t (f̂t)

)
is the same as that of

√
n
(
V̂t(f̂t,On)− V 0

t (f̂t)
)
.

To approximate the distribution of
√
n
(
V̂CVt,n − V 0

t (f̂t)
)
, we consider a per-

turbed version of (1.1), such that

f̃t = argmin
ft∈HK

− 1

n
Gt �

(
ωt �

(
0.5(At + 1n)� f t + ln ξt)

))T
1n + λn‖ft‖2K , (2.1)

where Gt = (Gt1, . . . , Gtn)T is drawn from an exponential distribution with unit

mean and variance. By sequentially solving (2.1), we obtain f̃ = (f̃1, . . . , f̃T )T .

Specifically, for stage t, we calculate

W̃t = n−1/2
n∑
i=1

(
V̂t(f̃t, oi)− V̂t(f̂t,On)

)
Gti, (2.2)

where oi denotes the ith sample of On. Note that, given On, the only random

variable in (2.1) is Gti. More importantly, the computed W̃t in (2.2) can be

regarded as a realization of a random variable whose distribution can approximate

the distribution distribution of
√
n
(
V̂CVt,n − V 0

t (f̂t)
)

very well, given On. Thus in

practice, we generate {Gti}ni=1 repeatedly M times, and obtain a large number

of realizations W̃t = {W̃tm}Mm=1 to approximate the distribution of
√
n
(
V̂CVt,n −
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V 0
t (f̂t)

)
. Therefore, the confidence interval for the prediction value function in

stage t can be obtained based on the empirical distribution of W̃t.

We now construct an approximate confidence inference for the predicted

value function of the nonparametric ITRs in the simulated example in Section

1, with sample size 500 and five-fold cross-validation. We first calculate the

true prediction value function by repeatedly generating On independently 1,000

times. Then, for each On, we calculate the cross-validated value function V̂CVn .

Therefore, the true value function can be computed as the average of V̂CVn . To

obtain the interval estimators, we generate On independently 100 times. For

each On, we compute V̂CVn , generate G repeatedly to obtain 250 realizations of

W̃ , and compute the estimated 95% confidence interval. This leads to a 94%

coverage rate, which is comparable to the reported coverage rates in JSLZ for

parametric ITRs, and may be improved upon with further computational efforts.

3. Concluding Remarks

We appreciate the opportunity to contribute to the discussion on this excel-

lent paper. JSLZ provide proper statistical inferences for machine-learning-based

methods when estimating ITRs, and leave numerous open questions for further

research. For example, it is of great interest to investigate the statistical infer-

ences for the kernel-based nonparametric ITRs theoretically, which enjoy model

flexibility and can be adjusted based on prior information. We would like to

congratulate JSLZ again on their enlightening work, and look forward to seeing

similar future research.
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DISCUSSION

Min Qian and Bin Cheng

Columbia University

We would like to congratulate Professors Jiang, Song, Li, and Zeng (JSLZ)

on their stimulating article on dynamic treatment regimes (DTR), in which they

make an interesting connection between the entropy loss and the optimal DTR.

We found the article enjoyable to read, and we thank the editors for the oppor-

tunity to discuss it.

DTRs employ treatment decision rules that can be used to tailor a treatment

based on a patient’s needs over time. Current methods for estimating DTRs can

be classified into two branches: the indirect approach (e.g., Q-learning; see Mur-

phy (2005)), and the direct approach. The direct approach requires that we deal

with a nonconvex optimization problem, owing to the existence of an indicator

loss, and a surrogate loss is often used (e.g., the hinge loss used in Zhao et al.

(2015)). JSLZ proposed replacing the indicator loss with a smooth surrogate

entropy loss, and obtained asymptotic normality results for the estimated pa-

rameters and value functions for inferences. Below, we first discuss the inference

problem and the conditions. Then, we examine the problem from a risk bound

point of view.

Inferences are critical in DTRs, because they help researchers to decide on

mailto:he.xin17@mail.shufe.edu.cn
mailto:shirongxu2-c@my.cityu.edu.hk
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the best treatment for each patient with a measure of confidence. However, it is

challenging to make inferences when the data present around the decision bound-

ary (Robins (2004); Laber et al. (2014)). In a linear decision boundary setting,

following JSLZ’s notation, this means that |X∗Tt β0t | has a nonnegligible probabil-

ity mass around zero. Indeed, the asymptotic normality results in JSLZ rely on

a low-noise condition, namely that |X∗Tt β0t | is bounded away from zero in prob-

ability (Assumption A3). The same problem occurs in the (indirect) Q-learning

setting. Laber et al. (2014) showed that the parameters are asymptotically nor-

mal when |X∗Tt β0t | is bounded away from zero, and nonnormal otherwise; an

adaptive procedure was proposed to solve this problem. From a treatment deci-

sion point of view, for a patient with X∗t = x∗t , because the treatment decision is

based on the sign of x∗Tt β0t , it is essential to test whether x∗Tt β0t = 0. Thus, the

behavior of X∗Tt β̂t around zero is of great interest. As such, we wish to address

the nonregularity issue in the entropy learning framework.

Interestingly, the low-noise condition is also related to the convergence rate,

in terms of the risk bounds. Below, we establish two risk bounds for the entropy

loss function, following Bartlett, Jordan and McAuliffe (2006). We demonstrate

these bounds in the single-stage decision setting. However, the results for the

multi-stage setting are similar.

Let X be a random vector containing patient pre-treatment variables, A ∈
{−1, 1} be the treatment assignment, and R be a positive scalar outcome that

is bounded from above. Let π(X) , P (A = 1|X) denote the known treatment

randomization probability. The value function for a treatment decision rule D :

X → {−1, 1}, namely V (D), is defined as the expected outcome if the study

population follows the decision rule. The goal is to estimate the optimal decision

rule Dopt that maximizes V (D). It is easy to see that

V (D) = E
[

RI(A = D(X))

(Aπ(X) + (1−A)/2)

]
.

Thus, maximizing V (D) is equivalent to minimizing E[RI(A 6= D(X))/(Aπ(X)+

(1−A)/2)]. JSLZ proposed replacing the indicator loss I(A 6= D(X)) with a sur-

rogate entropy loss h : {−1, 1} × R → R+, defined as h(a, y) = −(a + 1)y/2 +

log(1 + ey). Define

Rh(f) = E
[

Rh(A, f(X))

(Aπ(X) + (1−A)/2)

]
.

Minimizing Rh(f) yields fopt(x) = arg minf :X→RRh(f) = log(E(Y |X = x, A =

1)/E(Y |X = x, A = −1)). It can be shown that Dopt(X) = sign(fopt(X)).
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The following theorem connects the excess value, V (Dopt)− V (D), to the excess

entropy risk, Rh(f)−Rh(fopt). The proof is similar to that of Bartlett, Jordan

and McAuliffe (2006), and thus is omitted.

Theorem 3. Suppose R is positive and bounded from above by a constant B > 0.

Then, for any f : X → R and D : X → {−1, 1}, such that D(X) = sign(f(X)),

we have

ψ
(
V (Dopt)− V (D)

)
≤ Rh(f)−Rh(fopt), (1.1)

where ψ : R+ → R is defined as

ψ(θ) , (θ + 2B) log

(
2B

θ + 2B

)
+ (θ +B) log

(
θ +B

B

)
.

Furthermore, if there exists β > 0 and c > 0 such that, for all ε > 0,

P (0 < |E(Y |X, A = 1)− E(Y |X, A = −1)| < ε) ≤ cεβ, (1.2)

then we have

c′
{
V (Dopt)− V (D)

}β/1+β
ψ

{
(V (Dopt)− V (D))1/(1+β)

2c′

}
≤ Rh(f)−Rh(fopt),

(1.3)

for some c′ > 0.

The risk bounds provide a way to evaluate the performance of the estimated

decision rules. This type of result has been provided in Qian and Murphy (2011)

for indirect learning, and in Zhao et al. (2012, 2015) for direct learning meth-

ods. The left-hand side of risk bounds (1.1) and (1.3) characterize the distance

between the estimated decision rule and the optimal decision rule in terms of

value. The right-hand side, Rh(f) −Rh(fopt), describes the asymptotic behav-

ior of the entropy risk. To see that, we replace f and D in the above theorem

with the estimates f̂(X) ,X∗T β̂ and D̂(X) , sign(X∗T β̂), respectively, where

X∗ = (1,XT )T , and β̂ is obtained by minimizing the empirical entropy risk.

Then, Rh(f̂)−Rh(fopt) can be decomposed as

Rh(f̂)−Rh(fopt) = [Rh(f̂)−Rh(f∗)] + [Rh(f∗)−Rh(fopt)], (1.4)

where f∗(X) , X∗Tβ∗ minimizes the entropy risk Rh(f) in the linear decision

space. The second term in (1.4), Rh(f∗)−Rh(fopt), is the approximation error,

which measures the distance between the model and the truth. The first term,

Rh(f̂)−Rh(f∗), is the estimation error. Using Taylor’s expansion, we can verify

that Rh(f̂)−Rh(f∗) = O((β̂ − β∗)2), which is Op(n
−1), as shown in JSLZ.

Owing to the convexity of ψ(·), it is easy to verify that the risk bound in

(1.3) always gives an equivalent or better rate than that in (1.1). The low-
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noise condition (1.2) plays a critical role here. Note that (1.2) is a variant of

Assumption A3 in JSLZ. Intuitively, when it is less likely to have point mass

around the decision boundary, we would expect to learn the optimal decision

rule more quickly and thus, experience a faster rate of convergence.

In summary, when a nonnegligible noise presents around the decision bound-

ary (i.e., the low-noise condition is violated), there are difficulties in both learning

the optimal decision rules and making statistical inferences under the null for var-

ious direct and indirect learning methods. An interesting research direction in

this area would be to combine the inference with machine learning in order to

improve the learning efficiency at the decision boundary.
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1. Introduction

We congratulate the authors on their innovative method for estimating dy-

namic treatment regimes (DTRs) (Jiang et al. (2019)). They introduced the

entropy learning (E-learning) framework, which circumvents the need to model

the conditional mean outcome directly given the covariates, when estimating an

optimal DTR. Their method extended the work of Zhao et al. (2012, 2015) and

Rubin and van der Laan (2012) by using a smooth surrogate loss function en-

abling them to obtain valid statistical inferences about the parameters in the

DTR, as well as related quantities. In this discussion, we extend their work to

consider model misspecification, the estimation of more flexible DTRs, and the

treatment cost in the hypothesis test of no treatment effect in order to circumvent

an unpleasant regularity assumption.

Our discussion is organized as follows.

1. We point out two consequences of restricting our attention to a linear class

of candidate DTRs when an optimal DTR over an unconstrained class does

not belong to this class:

(a) In general, the infinite-sample limit of the proposed E-learning estima-

tor depends on the treatment assignment probabilities.

(b) In general, the estimated optimal value is inconsistent for the value

under the optimal linear DTR, that is, the maximal mean reward at-

tainable under a linear DTR.

2. We study the estimation of an optimal DTR over an unrestricted class using

the loss function proposed by the authors. We show the following:

(a) The unconstrained true-risk minimizer is the conditional log “relative

reward” (RR).
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(b) We can estimate the conditional log RR well by optimizing over an

essentially unrestricted class, where here, and throughout, we use “es-

sentially unrestricted” to refer to a class FM of cádlág functions, with

a variation norm bounded by a given M < ∞ (van der Laan (2017);

Benkeser and Van Der Laan (2016)).

(c) We provide theoretical guarantees under which the value of the es-

timated DTR, based on estimating the conditional log RR over an

essentially unrestricted class, converges to the optimal value at a fast

rate.

3. We discuss the conditions that required to apply the test of the null of

no individual-level stage-τ treatment effect, as proposed by the authors.

Importantly, note that the validity of the proposed test relies on the null of

no treatment effect not holding at any future stage t > τ . This requirement

seems concerning because, if the null of no effect at time τ is plausible, then

it would seem that the null at times t > τ may also be plausible. Note that

introducing a treatment cost to the clinical decision could help mitigate this

concern.

2. Consequences of Misspecification of the Linear Model

2.1. Dependence of the infinite-sample limit of the E-learning estima-

tor on the treatment assignment probabilities

Recall that β0t indexes the linear DTR that minimizes the population-level

E-learning risk, which represents the infinite-sample limit of the estimated lin-

ear decision rule parameters β̂t. In this section, we show that, in general, β0t
depends on the treatment mechanisms, that is, the probability of receiving a

given treatment at each stage, given past covariates. This dependence is of more

than academic interest — indeed, it can lead to counterintuitive results in real

applications of the proposed method. For example, suppose that two clinical

trials are run on the same population but with different treatment assignment

mechanisms. In this case, the optimal linear decision rules in the two trials can

differ substantially, even if the sample sizes are very large.

Momentarily, we will provide a simple example of such a discrepancy between

the estimands, in two settings. Before doing so, we provide a brief analytical

argument showing why this dependence of β0t on the treatment mechanism should

be expected. Recall that the authors consider the DTR to be determined by a
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linear function, namely, xt 7→ x∗t
>βt, where, for any stage-t covariate xt, x

∗
t ≡

(1, xt). In particular, the rule recommended by the DTR (−1 or 1) is determined

by the sign of x∗t
>βt. In this case, the authors showed that β̂t converges to the

population-level minimizer of the E-learning risk; that is,

β0t (π) = argmin
βt∈Rpt+1

E

[
(
∑T

j=tRj)
∏T
j=t+1 1{Aj = sgn(X∗j

>β0j )}∏T
j=t π(Aj , Sj)

h(At, X
∗
t
>βt)

]
,

(2.1)

which is defined by iterating backwards through times t = T, T − 1, . . . , 1, where

h(a, y) = −(a + 1)y + 2 log(1 + exp(y)), and β0t (π) emphasizes the (potential)

dependence of β0t on the treatment assignment probabilities π.

The authors also considered the case when the linearity assumption is not

true, that is, when the population-level minimizer of their risk over an unre-

stricted class is nonlinear; in Section 3.1, we provide a familiar interpretation for

this minimizer. When linearity does not hold, the authors note that β0t should be

understood as the best approximation of the true population-level minimizer in

the collection of linear rules, namely, {xt 7→ x∗t
>βt : βt}. We now argue that β0t

depends on the treatment assignment mechanism when the linearity assumption

is not true. First note that the risk function at stage T can be expressed as

follows:

E
[

RT
π(AT , ST )

h(AT , X
∗
T
>βT )

]
= E

{
E

[
RTh(AT , X

∗
T
>βT )

∣∣∣∣∣ST
]}

.

Note too that the treatments at previous stages are contained in the history

ST . Thus the previous treatment assignment mechanism π(Aj , Sj), for j < T ,

influences the marginal distribution of ST and, hence, could influence β0T . At

any stage t < T , there is a similar potential for β0t to depend on the treatment

mechanisms at all previous stages j < t. Moreover, the term
∏T
j=t+1 1{Aj =

sgn(X∗j
>β0j )} in (2.1) allows β0t to depend on the decision rules β0j at all future

stages j > t. Therefore, β0t depends on the treatment assignment mechanisms at

the current stage and future stages π(Aj , Sj), for t ≤ j < T . By this argument,

we can show that, for all t, β0t can depend on π(Aj , Sj), for all j = 1, . . . , T −
1. Consequently, collecting two data sets from the same population, but with

different treatment assignment probabilities, can lead to different infinite-sample

limits for the E-learning estimators used in the two settings.

We use a simple two-stage example to illustrate how this dependence on

the treatment mechanism can affect the interpretation of the study results. We

consider two data-generating mechanisms, which are identical in all ways except
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Table 1. Population-level parameters β0
t indexing an optimal DTR at stage t, β0

t , in a
two-stage example with different treatment assignment mechanisms. These parameter
values were obtained via a Monte Carlo approximation with sample size 5×106. Note that
these parameters—particularly the slopes—are markedly different in the two scenarios.

Setting Treatment assignment First stage, β0
1 Second stage, β0

2

mechanism Intercept, β0
10 Slope, β0

11 Intercept, β0
20 Slope, β0

21

1 π(1) 0.69 0.00 1.50 0.00
2 π(2) 0.28 -2.53 0.79 -0.88

for their treatment mechanisms. We denote the treatment mechanisms in the

two settings by π(1) and π(2), respectively. We show that the coefficients in (2.1)

vary between the two scenarios. Specifically, we show that β01(π(1)) 6= β01(π(2))

and β02(π(1)) 6= β02(π(2)). In both examples, S1 = X1 follows a standard normal

distribution, and X2|A1 = a1 and X1 = x1 follow a normal distribution with

mean a1x1 and variance one. We consider a setting where the investigator is only

interested in maximizing the final reward, such that R1 = 0 and R = R2. The

outcome regression is given by E[R|S2 = s2, A2 = a2] = 1{a2 = 1}[2x21 1{a1 =

1}+ 1{a1 = −1}+ 2x22] + 1{a2 = −1}. We let π
(k)
t denote P (At = 1|St) in each

scenario k. In the first scenario, we let π
(1)
1 = π

(1)
2 = 0.5. In the second scenario,

we let π
(2)
1 = 0.9 when X1 < 0.5 and π

(2)
1 = 0.1 when X1 > 0.5. Similarly,

π
(2)
2 = 0.9 when X2 < 0.5 and π

(2)
2 = 0.1 when X2 > 0.5.

Table 1 presents β0t for the two scenarios in this example where only the

treatment assignment mechanisms vary. We can clearly see that β0t depends on

the treatment assignment mechanism. Suppose these two β0t parameters are es-

timated from two large clinical trials that are identical in all aspects, except for

their treatment assignment mechanisms. On the one hand, based on the results

from the first trial, because β021(π
(1)) and β011(π

(1)) are very close to zero, poli-

cymakers might conclude that the two treatments have very similar effects. On

the other hand, based on the results from the second trial, because β021(π
(2)) < 0

and β011(π
(2)) < 0, policymakers might conclude that the two treatments have

different effects for different people. Consequently, they might discourage prac-

titioners from collecting the variables X1, X2 on future patients, based on the

results from the first trial, but might encourage them to do so and use a linear

DTR, based on the results from the second trial.

2.2. Inconsistency of the estimated optimal value

Note that although the asymptotic normality of β̂t for β0t can be shown to
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hold, even when the true E-learning risk minimizer is nonlinear, a similar result

cannot be established for the proposed estimator of the optimal value. In fact,

the estimator V̂t may not even be consistent for V ∗t ≡ maxβt∈Rpt+1 Vt(βt) in this

case, which is the optimal value that can be possibly obtained from a linear DTR.

This possible inconsistency arises because the surrogate loss used to obtain the

decision rules differs from the zero-one loss used to define the optimal value.

When the restricted class F of DTRs does not contain an optimal DTR over

an unrestricted class, the DTR that minimizes the population-level surrogate

risk over F may differ from the DTR that maximizes the optimal value over F .

Therefore, the value of the estimated DTR need not converge to V ∗t .

We illustrate this possible inconsistency of V̂t for V ∗t using a single-stage

scenario. To simplify the notation, throughout this example, we omit the stage

index t. The data are generated as follows: X ∼ Unif(−1, 1), P (A = 1|X) = 0.5,

E[R|A = −1, X = x] = 1, and E[R|A = 1, X = x] = 2x2. The population-level

E-learning coefficients β0 maximize the following surrogate for the value function

in β = (β0, β1):

−R(β) = E
[
R[0.5(A+ 1)(β0 + β1X)− log(1 + exp(β0 + β1X))]

Aπ + (1−A)/2

]
.

This quantity differs from the value function,

V (β) = E
[
R1{A = sgn(β0 + β1X)}

Aπ + (1−A)/2

]
. (2.2)

We denote the maximizer of V by β†. Note that because the value function is

nonconcave, finding β† in our numerical example is challenging. Therefore we

instead use β† to denote any near maximizer of this function.

As can be seen in Table 2, the value of β† is strictly larger than the value of

β0 in this example. Given that the value of β† is a lower bound on the maximum

V ∗ of (2.2), this fact does not impact our conclusion that V (β0) < V ∗.

It can be shown that the estimator of the optimal value proposed by the

authors V̂ is consistent for V (β0). Hence it is inconsistent for the optimal value

that can be obtained from a linear decision rule V ∗.

Returning now to the general case, note that although V̂t may be inconsistent

for the optimal value V ∗t among the class of linear decision rules, this quantity is

always a conservative estimator of the true optimal value, in the sense that

Vt(β
0
t ) ≤ max

βt∈Rpt+1
Vt(βt) ≡ V ∗t , (2.3)

Refer to the definition of Vt above Eq. 2.10 in the paper under discussion. Hence,

V̂t provides information about whether it is worth advocating a wide application
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Table 2. Two linear DTRs and their optimal values. β0 is the “true linear DTR”
for which the estimated DTR using the surrogate loss is consistent and minimizes the
population-level surrogate risk. β† is a linear DTR that nearly maximizes the value.
Note that V (β†) > V (β0).

Parameter indexing the DTR, β Value, V (β)
β0 = (−0.41, 0.00) 1.00
β† = (−2.52, 3.55) 1.07

of a DTR in a given setting: if V̂t were very large compared with Vt(Dt,current)

for the current standard decision rule at stage t, Dt,current, then we would be

confident of benefiting from implementing the DTR. Furthermore, from (2.3),

a (1 − α)-level confidence lower bound for the limit Vt(β
0
t ) of V̂t is also a valid

(1−α)-level lower confidence bound for V ∗t . Therefore, even if the optimal value

V ∗t is of interest, rather than the value of the rule indexed by β0t , it is still useful

to obtain a valid confidence lower bound for Vt(β
0
t ) under misspecification.

A natural question that arises is the following: is it possible to derive the

asymptotic normality of V̂t as an estimator of Vt(β
0
t ) under regularity conditions,

thus leading to a valid inference?

3. Nonparametric Decision Rules

3.1. Unconstrained true-risk minimizer

The loss function proposed by the authors yields (to the best of our knowl-

edge) a novel approach to robustly estimating the counterfactual log relative risk.

Consider the single-stage setting, with the population-level E-learning risk

R(f) = E
[
R[−0.5(A+ 1)f(X) + log(1 + exp(f(X)))]

Aπ + (1−A)/2

]
. (3.1)

Our goal is to minimize this risk, where the form of f is left unrestricted. In this

case, the function f0 that minimizes this quantity is the conditional log relative

reward :

f0(x) = log

(
E[R|A = 1, X = x]

E[R|A = −1, X = x]

)
. (3.2)

This leads to a way of estimating the conditional relative risk (instead of reward)

function nonparametrically, without estimating the conditional mean function

(a, x) 7→ E[R|A = a,X = x]. First, let R denote an indicator of the occurrence

of an event; next, minimize the risk in (3.1) over a large class of functions. We

consider the relative risk instead of the relative reward here, because this is a
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more common measure of effect size in epidemiology. This is similar to the result

for the conditional average treatment effect (CATE). Inspired by Rubin and van

der Laan (2007), Luedtke and van der Laan (2016c) showed that we can use least

squares with pseudo outcomes [1{A = 1}/π − 1{A = −1}/(1− π)]R, or doubly

robust variants thereof, to nonparametrically estimate the CATE.

A natural question that arises is the following: for any contrast of conditional

means E[R|A = 1, X] and E[R|A = −1, X] (e.g., odds ratio), is it possible to

select a surrogate loss function h or, in general, a risk function R that allows us

to estimate that conditional contrast function without estimating the conditional

mean function? In DTRs, the conditional contrast is of interest. Because a

correct specification of the conditional mean function implies correct specification

of the conditional contrast function, it is never more difficult to correctly specify

the conditional contrast than it is to correctly specify the conditional mean.

In many cases, we expect that it will be easier. For example, when a test of

treatment effect heterogeneity is conducted, the null hypothesis is often that

there is no treatment effect. When there is no heterogeneity in the treatment

effect, which is an apparently plausible scenario, given that this is often the

null of interest, any contrast between the conditional means E[R|A = 1, X] and

E[R|A = −1, X] is constant. Therefore, to correctly specify this quantity, it

suffices to use a learner that is able to learn a constant function. We note that

all natural learners satisfy this property.

We conclude by noting that it is possible to estimate an optimal DTR based

on the log relative risk, rather than using the log relative reward. Let f̂ denote the

estimated log relative risk above. The estimated DTR is then x 7→ −sgn{f̂(x)},
where f̂ is the estimated conditional log relative risk function. One advantage of

“reversing the reward” in this fashion is that, in many cases, the event is rare, and

it is more common to model the relative risk for a rare event than it is to model

the relative reward, where the reward is defined as the absence of the event.

It may also be easier to compare f̂ with results from other studies, especially

case-control studies, where odds ratios are reported as an approximation of the

relative risk.

3.2. Nonparametric estimator of the true-risk minimizer with a bounded

total variation norm

A promising approach to flexibly estimating the conditional log RR is to

minimize the empirical risk over the function class FM of cádlág functions, with

total variation norms bounded by some M < ∞. Similar approaches have been
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applied successfully to least-squares and logistic losses for regressions. The ap-

proach used in these settings is termed the highly adaptive LASSO (HAL) (van

der Laan (2017); Benkeser and Van Der Laan (2016)). Under certain conditions,

owing to a bound on the uniform entropy of the class FM , these empirical risk

minimizers based on a loss function L have been shown to have an op(n
−1/4)

convergence rate, even when there are numerous covariates and discontinuities

in the true function. We first introduce the notation for an empirical process.

For a distribution P and a function g, Pg ≡
∫
g(o)dP(o), and we use P to denote

the true distribution from which we draw the observed data. From a high level,

these conditions require that:

1. there is a uniform bound on L,

2. f 7→ P{L(f)−L(f0)} is locally quadratic for f ∈ FM , where f0 is the true

function and L is the loss function,

3. the L2(P )-distance between L(f) and L(f0),
[
P{L(f)− L(f0)}2

]1/2
, is

bounded by P{L(f)− L(f0)}.

Note that Condition 2 is similar to, but different from, Condition 3. Condition 2

describes the local behavior of the loss-based dissimilarity P{L(f)− L(f0)} be-

tween functions f and f0, whereas Condition 3 shows how this dissimilarity upper

bounds the L2(P )-distance between the loss functions L(f) and L(f0). Refer to

Lemma 1 in van der Laan (2017) for further details.

Although the optimization over such a rich function class seems computa-

tionally intractable, the HAL approach can be readily implemented. As its name

suggests, a HAL estimator can be computed using a LASSO regression. Because

the authors’ loss function and linearity assumption on the decision rule corre-

spond to a weighted logistic regression, the corresponding HAL estimator can be

computed using a weighted LASSO logistic regression, as follows:

minimize
1

n

n∑
i=1

Ri[−0.5(Ai + 1)fβ(Xi) + log(1 + exp(fβ(Xi)))]

Aiπ + (1−Ai)/2
(3.3)

subject to |β0|+
∑

s⊂{1,...,p},s 6=∅

n∑
k=1

|βs,k| ≤M, (3.4)

where

fβ(x) = β0 +
∑

s⊂{1,...,p},s 6=∅

n∑
k=1

1(Xk,s ≤ xs)βs,k. (3.5)

Here we use the notation in Benkeser and Van Der Laan (2016): for a nonempty
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index set s, xs denotes the entries of x ∈ Rp that are in the index set s, and the

≤ in 1(Xk,s ≤ xs) holds entrywise.

3.3. Guarantees on the value of an essentially unrestricted estimated

optimal rule

In the single-stage setting, we can use a nonparametric estimator of the

DTR to estimate the optimal value. Using the results in Section 7.5 of Luedtke

and van der Laan (2016b), which are based on arguments given in Audibert

and Tsybakov (2007), we can show that, under fairly weak conditions, if the

L2(P )-convergence rate of the estimated conditional log RR function f̂n is rn,

that is,
[
P{f̂n − f0}2

]−1/2
= Op(rn), then the value of the DTR defined using

the estimated log RR, V (f̂n), converges to the true optimal value, V (f0) =

maxf V (f), at rate Op(r
2(α+1)/(α+2)
n ), where α > 0 is a constant in the following

margin condition:

P
(
0 <

∣∣E[R|A = 1, X]− E[R|A = −1, X]
∣∣ ≤ t)

= P
(
0 < E[R|A = −1, X]

∣∣exp(f0(X))− 1
∣∣ ≤ t)

≤ Ctα,
(3.6)

for all t, where f0 is defined in (3.2) and C ≥ 0 is a constant. Under some

conditions, the L2(P )-convergence rate of the HAL estimator is op(n
−1/4). If we

assume that the density of E[R|A = 1, X]−E[R|A = −1, X] is bounded near zero

when X is drawn from the marginal distribution of the covariates, then we can

take α = 1, such that the optimal value for the estimated decision rule converges

to the true optimal value at rate op(n
−1/3), regardless of the number of covariates

used in the DTR when the HAL approach is used to estimate f0.

Note that (3.6) can be viewed as a more general form of Condition A3 given in

the paper under discussion, in two respects. First, (3.6) applies when the linearity

assumption fails to hold. Second, (3.6) allows us to study the performance of the

learned rule under a range of α-dependent margin conditions.

Finally , note that the nonparametric estimation for the decision rule can

also be applied in a multistage setting. To learn a DTR using HAL, we can

iterate backwards through stages t = T, T − 1, . . . , 1 to minimize the surrogate

empirical risk in Eqs. 2.7 and 2.8 in the paper under discussion over functions

similar to (3.5), subject to constraints similar to (3.4). The convergence rate of

the estimated optimal value requires further investigation.
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4. Nonregularity

In Section 3.3 of their paper, the authors present a test of the significance

of the treatment effect at stage τ , for 1 ≤ τ ≤ T . Specifically, their proposed

test relies on the result from their Theorem 1. That is, for a given stage-τ

covariate xτ , the following distributional convergence holds under the conditions

of Theorem 1:
√
nx∗>τ [β̂τ − β0τ ]⇒d N(0, x∗>τ Στ (β0τ )x∗τ ). (4.1)

Here, xτ ∈ Rpτ , x∗τ ≡ (1, xτ ), and, for βτ ∈ Rpτ+1, Στ (βτ ) ≡ Iτ (βτ )−1ΓτIτ (βτ )−1

is a (pτ + 1) × (pτ + 1) matrix; refer to Condition A1 and Theorem 1 of the

paper under discussion for the definitions of Iτ and Γτ , respectively. To test

the null hypothesis H0(xτ ) : x∗>τ β0τ = 0 against the complementary alterna-

tive, the authors proposed an α-level test that rejects the null hypothesis if√
n|(x∗>τ Σ̂τ (β̂τ )x∗τ )−1/2x∗>τ β̂τ | exceeds the (1−α/2)-quantile of the standard nor-

mal distribution, where Σ̂τ (·) is an estimate of Στ (·).
Note that (4.1) fails to hold in important scenarios that are of scientific

interest. The simplest example occurs when βt = (0, 0, . . . , 0), for some t > τ .

In this case, Condition A3 of Theorem 1 in the paper under discussion fails to

hold; thus (4.1) is not implied by Theorem 1. The inability to establish (4.1) in

this setting does not appear to be due to the requirement of a sufficient-but-not-

necessary condition in the theorem statement. Indeed, Robins (2004) studies

“exceptional laws” of this form in detail, arguing that a condition similar to

Condition A3 is essentially necessary for a valid inference. See also Theorem 3.3

in Laber et al. (2014) and Theorem 1 in Luedtke and van der Laan (2016b)

for related results. Exceptional laws lead to nonregular inferences and, thus,

the failure of convergence results such as those in (4.1). Informally, exceptional

laws arise when the optimal decision for an individual randomly drawn from the

population is nonunique at some stage; that is, the same expected reward is

attained for this individual, regardless of the treatment he or she receives.

Note that the validity of (4.1) actually relies on a condition that is slightly

weaker than Condition A3 in the work under discussion. If Condition A3 were

strictly required, then this would seem to pose a major problem for the authors’

test of a treatment effect at xτ . Specifically, Condition A3 requires that, with

probability one, the stage-τ treatment effect is nonzero at the covariate Xτ , where

Xτ is a random stage-τ covariate drawn from the distribution P that generated

the data. Therefore, if the user knows in advance that Condition A3 is valid,

then, given a random Xτ ∼ P drawn independently of the data, a test that rejects
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the null hypothesis H0(Xτ ) without considering the data will make the correct

decision, with probability one, over the draw of Xτ ∼ P . Fortunately, a conver-

gence result of the form given in (4.1) can hold under a weaker condition than

Condition A3. Although this weaker condition would continue to require that

Condition A3 holds for all t > τ , it would not require that Condition A3 holds

for t = 1, . . . , τ . This would allow the user to avoid assuming that H0(xτ ) holds

P -almost surely over xτ in order to obtain a valid test of H0(xτ ). Nonetheless,

the user would still be required to assume that the optimal treatment decisions at

all future stages are almost surely unique. Given that the purpose of the authors’

proposed test is to test whether the optimal treatment for a given individual is

unique at some stage—namely, stage τ—it seems problematic to make an a priori

assumption that this individual’s optimal treatment will be unique at all future

stages.

A possible approach to mitigating this concern is to take the treatment cost

into account when making the stage-τ treatment decision. Suppose that treat-

ment 1 is more expensive than treatment −1. In this case, for a given patient,

it is natural to test whether treatment 1 yields a sufficiently large additional

reward γτ that it is worth applying this more expensive treatment. This can

be formalized by testing the null hypothesis H ′0(xτ ) : x∗>τ β0τ ≤ γτ against the

complementary alternative. In this scenario, the uniqueness of the rule at each

stage would be ensured by replacing each instance of X∗>t β0t in Condition A3

by (X∗>t β0t − γt). Here γt is the threshold on X∗>t β0t at which administering

treatment 1 at time t becomes cost-effective; that is, it yields a clinical benefit,

while still satisfying a given cost constraint. Unlike the authors’ proposed test,

which needs to assume that the alternative hypothesis holds at all future stages

t > τ , this modification of Condition A3 does not require the unpleasant as-

sumption, that the expensive treatment is cost-effective at all future stages. This

kind of cost-constrained or resource-limited setting has been studied previously

by Luedtke and van der Laan (2016a), Toth and van der Laan (2018) and Van-

derWeele et al. (2018). Importantly, in the settings of these works, the standard

errors for the summaries of the optimal DTR changed in these cost-constrained

settings. This is because these works assume that γτ is not specified directly, but

instead is specified through a constraint on the expected treatment cost, which,

in turn, implies a threshold γτ that must be estimated from the data. We suspect

that the standard errors of the estimators of the true E-learning risk minimizer

would change similarly in this setting.
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5. Conclusion

We close by again congratulating the authors on their important contribution

to estimations and statistical inferences for optimal DTRs.
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DISCUSSION

Stefan Wager

Stanford University

Policy Learning. The problem of policy learning (or learning optimal treat-

ment regimes) has received considerable attention across several fields, including

statistics, operations research, and economics. In its simplest setting, we ob-

serve a sequence of independent and identically distributed samples (Xi, Ai, Ri),

where Xi ∈ Rp is a vector of features, Ai ∈ {−1, +1} is a randomly assigned

action, and Ri ∈ R is a reward. We then seek to learn a good decision rule

d : Rp → {−1, +1} that can be used to assign actions in the future. Following

the Neyman–Rubin causal model (Imbens and Rubin (2015)), we assume po-

tential outcomes Ri(−1) and Ri(+1), corresponding to the reward that the i-th

subject would have experienced had it been assigned action −1 or +1 respec-

tively, such that Ri = Ri(Ai). We write the conditional average treatment effect

as τ(x) = E
[
Ri(+1)−Ri(−1)

∣∣Xi = x
]
.

Given this setting, the expected reward from deploying a decision rule d is

V (d) = E [Ri(d(Xi))]; we refer to this quantity as the value of d. Furthermore,

assuming randomization such that {Ri(−1), Ri(+1)} ⊥⊥ Ai, we have (Kitagawa

and Tetenov (2018); Qian and Murphy (2011))

V (d) = E
[

1 ({Ai = d(Xi)})Ri
Aiπ + (1−Ai)/2

]
, π = P [Ai = 1] , (1.1)

and it is natural to consider learning a decision rule d̂ by maximizing an empirical

estimate V̂ (d) of V (d) over a class D of candidate decision rules. Contributions to

mailto:qiuhx@uw.edu
mailto:aluedtke@uw.edu
mailto:laan@berkeley.edu
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this problem from the statistics literature, including those of Qian and Murphy

(2011) and Zhao et al. (2012), are reviewed by Jiang et al. (2019); related results

from neighboring fields, including extensions to observational studies and multi-

action settings, are developed by Athey and Wager (2017), Dud́ık, Langford and

Li (2011), Hirano and Porter (2009), Kallus (2018), Kallus and Zhou (2018),

Kitagawa and Tetenov (2018), Manski (2004), Stoye (2009, 2012), Swaminathan

and Joachims (2015), and Zhou, Athey and Wager (2018).

Jiang et al. (2019) present a thought-provoking approach to statistical infer-

ence for the policy learning problem. They start by observing that the empirical

analogue V̂ (d) of the objective function in (1.1) is discontinuous in the decision

rule d(·), and so exact asymptotic analysis is complicated. To avoid this diffi-

culty, they propose first solving a surrogate problem with a smooth loss function

(they assume all rewards R to be positive),

f̂ = argmin
f∈F

{
1

n

n∑
i=1

Ri
Aiπ + (1−Ai)/2

(
−(Ai + 1)

2
f(Xi) + log

(
1 + ef(Xi)

))}
,

(1.2)

and then obtain a decision rule by thresholding f̂ , that is, a rule of the form

d̂(x) = sign(f̂(x)). Jiang et al. (2019) show that the loss function used in (1.2) is

Fisher-consistent; this implies that that, under reasonable conditions and if the

class F in (1.2) is unrestricted, then a regularized variant of their procedure is

consistent for the maximizer of the value function V (·) in large samples. These

results are also extended to the dynamic decision-making context.

Parametrizing Policy Learning. Relative to existing methods, the main ad-

vantage of the approach of Jiang et al. (2019) is that, because the “entropy

loss” minimized in (1.2) is smooth, we can provide an exact characterization

of the asymptotic behavior of f̂ using classical second-order theory. Such re-

sults are particularly intriguing when we restrict ourselves to a parametric class

f(x) = c + xβ, as then we can use the results of Jiang et al. (2019) to quantify

the uncertainty in the parameters ĉ and β̂ that underlie the learned decision rule

d̂(x) = sign(ĉ+ xβ̂).

Jiang et al. (2019) go further still, and propose using a regression table to

summarize the uncertainty in ĉ and β̂; Table 1 shows an example based on a

simple simulation study described at the end of this note. Looking at Table 1,

we may feel inclined to cautiously conclude that the first feature X1 matters for

treatment personalization. Jiang et al. (2019) present a similar table to quantify
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Table 1. Regression table for the optimal linear rules in the simulation design (1.5),
following the entropy learning approach of Jiang et al. (2019). Here, n = 4, 000, p = 5,
standard errors are obtained via the bootstrap, and p-values less than 0.05 are indicated
in bold.

intercept beta 1 beta 2 beta 3 beta 4 beta 5
point estimate 0.429 −0.177 0.031 −0.022 0.070 0.022
standard error 0.096 0.089 0.069 0.083 0.082 0.078

p-value 0.000 0.047 0.652 0.794 0.392 0.779

the value of personalized depression treatments in the context of the STAR*D

study (Sinyor, Schaffer and Levitt (2010)), and argue that gender, age, and

other features are significant in determining the best treatment options. Such

regression tables have the potential to have a large impact on practice as they

present information about optimal treatment rules in a familiar, easy-to-read

format.

This regression table approach presents a marked departure from the stan-

dard approach to policy learning based on utilitarian regret (Manski (2004)). For

example, using the latter approach, Athey and Wager (2017) and Kitagawa and

Tetenov (2018) consider the case where the class D of allowable decision rules

has a finite Vapnik–Chervonenkis dimension VC(D), and show that the policy

d̂ learned by empirical maximization of the objective (1.1) over D has regret

bounded by

R
(
d̂
)

= OP

(√
VC (D)

n

)
, R (d) = sup

{
V (d′) : d′ ∈ D

}
− V (d) . (1.3)

The key distinction between the results of Jiang et al. (2019) that underlie their

regression tables and those of Athey and Wager (2017) and Kitagawa and Tetenov

(2018) presented above is that the latter do make any optimality claims about

the functional form of d̂. Rather, they are only focused on high-level properties

of d̂, in particular the expected reward from deploying it d̂.

Interpreting Regression Tables. A major question left open in the above dis-

cussion is how the p-values in Table 1 ought to be used in applied data analysis.

If a coefficient in the learned rule has a significant p-value, as in Table 1, how

should we take this into account in practice? As discussed in Jiang et al. (2019),

we should in general not expect the population minimizer of (1.2) to actually

be linear in applications; however, given reasonable model-free assumptions, the

confidence intervals above ought to cover the population minimizers
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−
−

Figure 1. Point estimates for ĉ and β̂1, . . . , β̂5 on the design (1.5), aggregated across
1,000 simulation replications.

{c∗, β∗} (1.4)

= argmin
c, β

{
E
[

Ri
Aiπ + (1−Ai)/2

(
−(Ai + 1)

2
(c+Xiβ) + log

(
1 + ec+Xiβ

))]}
.

The question then becomes one of understanding how to interpret c∗ and β∗ in a

general non-parametric setting. A first encouraging result is that, if there is no

treatment effect, then the null model minimizes the above loss:

Proposition 1. If τ(x) = 0 for all x ∈ Rp and Ai is randomized, then {c∗ = 0,

β∗ = 0} is a minimizer of the population entropy loss (1.4).

In precision medicine, we are often interested in the more subtle question

of whether personalized treatment is useful. One might then hope for a result

of the following type: if the treatment effect is constant, i.e., τ(x) = τ for all

x ∈ Rp, then β∗ = 0. However, this is not true in general. It is possible to

design data-generating distributions with no treatment heterogeneity, but where

the minimizer β∗ in (1.4) is nonzero. Furthermore, it is possible to design settings

where where E
[
Cov

[
τ(X), Xj

∣∣X−j]] is positive but β∗j is negative, etc.

A Simulation Study. To investigate the extent to which nonzero β∗ may arise in

a problem without any treatment heterogeneity, we consider a simple simulation

example. We generate data as follows, with n = 4, 000 and p = 5:
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Xij
iid∼Bernoulli

(
1

2

)
, Ai ∼ Bernoulli

(
1

3

)
, Ri = Xi1 +

Ai + 1

3
+ Ei, (1.5)

where the treatment is randomized, and Ei is an exogenous standard exponential

random variable. The treatment effect is obviously constant (τ = 2/3), but a

simple calculation shows that β∗1 is nonzero. Figure 1 reports numerical results,

and we observe that the point estimate for β̂1 is in fact systematically nega-

tive. What’s going on here is that the baseline expected reward E
[
Ri(−1)

∣∣Xi

]
changes with Xi1, and this affects β∗1 even when there is no treatment hetero-

geneity.

This simulation was also the basis for the results given in Table 1, which

presents bootstrap confidence intervals obtained on a single simulation run. When

aggregated over 400 simulation replications, these 95% confidence intervals for

β∗1 , . . . , β
∗
5 cover 0 with probabilities 22%, 94%, 96%, 94%, and 96%, respec-

tively. The upshot is that any interpretation of p-values such as those in Table 1

is rather delicate, and a significant p-value for β∗j cannot necessarily be taken as

evidence that variable j is needed for designing optimal personalized treatments.

An R script replicating these simulation results is available as Algorithm 1 in the

Appendix.

Closing Thoughts. Providing simple and interpretable insights about optimal

personalized treatment rules is a challenging task. Existing approaches to policy

learning provide utilitarian regret bounds as in (1.3). These bounds require no

assumptions on the functional form of the optimal treatment assignment rule.

However, one downside of the utilitarian regret approach is that it does not pro-

vide much information about the functional form of good treatment assignment

rules—rather, in the tradition of learning theory (e.g., Vapnik (2000)), it only

seeks to show that d̂ is not much worse than the best rule in the class D.

The discussed paper proposes a contrasting approach based on hypothe-

sis testing that allows for simple summaries. However, as discussed above, the

resulting p-values are difficult to interpret. In particular, the fact that β̂j is

significantly different from 0 does not necessarily imply that Xj is useful for

personalized treatment assignment, or that there is any treatment heterogene-

ity at all. In a general non-parametric setting, results on Fisher consistency of

the entropy objective do not translate into a simple characterization the limiting

parameters β∗ of linear policies obtained via entropy learning.

Interpretable, flexible, and robust significance assessment for policy learning

remains an important problem. In a recent advance, Rai (2018) built on the em-
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pirical maximization approach (1.3) and proposed confidence sets D̂ ⊂ D for the

optimal policy d∗ ∈ argmax {V (d′) : d′ ∈ D}; however, these confidence sets have

a generic shape (they are obtained by inverting a hypothesis test), and so cannot

be summarized in a simple way as in Table 1. Finally, Nie and Wager (2017),

Zhao, Small and Ertefaie (2017), and others have studied flexible estimation of

the treatment effect function τ(x); however, this statistical task is only indirectly

linked to the problem of inference about optimal policies.

Appendix

Algorithm 1 Replication script for simulation results

rm(list = ls()); set.seed(1)

# Assume that treatment A is coded as +/- 1.

entropy_treat = function(R, A, X) {

X.with.intercept = cbind(1, X)

prob = mean(A == 1)

loss = function(beta) {

theta = X.with.intercept %*% beta

mean(R / (A * prob + (1 - A) / 2) *

(-(A + 1) / 2 * theta + log(1 + exp(theta ))))

}

nlm.out = nlm(loss , rep(0, ncol(X) + 1))

nlm.out$estimate

}

boot_se = function(R, A, X, B = 100) {

boot.out = replicate(B, {

bidx = sample.int(length(A), length(A), replace = TRUE)

entropy_treat(R[bidx], A[bidx], X[bidx ,])

})

boot.var = var(t(boot.out))

boot.se = sqrt(diag(boot.var))

}

n = 4000; p = 5; pi = 1/3

all.results = lapply(1:400, function(idx) {

A = 2 * rbinom(n, 1, pi) - 1

X = matrix(rbinom(n * p, 1, 0.5), n, p)

R = X[,1] + (A + 1) / 3 + rexp(n)

beta.hat = entropy_treat(R, A, X)

se.hat = boot_se(R, A, X)

rbind(beta.hat , se.hat)

})

# For Table 1

beta.hat = all.results [[1]][1 ,]

standard.errors = all.results [[1]][2 ,]
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pvalues = 2 * pnorm(-abs(beta.hat) / standard.errors)

# For aggregate coverage

zscores = Reduce(rbind , lapply(all.results ,

function(lll) (lll[1 ,] / lll[2 ,])))

round(colMeans(abs(zscores) < qnorm(0.975))[-1], 2)

# For Figure 1

point.estimates.raw = lapply(1:1000, function(idx){

A = 2 * rbinom(n, 1, pi) - 1

X = matrix(rbinom(n * p, 1, 0.5), n, p)

R = X[,1] + (A + 1) / 3 + rexp(n)

beta.hat = entropy_treat(R, A, X)

data.frame(est=beta.hat , coef=0:p)

})
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1. Introduction

We congratulate Jiang, Song, Li, and Zeng (JSLZ) on their thought-

provoking contribution to the growing literature on classification-based estima-

tion of optimal treatment regimes. We also wish to thank the Editor for organiz-

ing this discussion; we are honored to be a part of it. We begin with a discussion

of why one might choose to apply a classification-based estimator of an optimal

treatment regime and what advantages a surrogate-based approach might offer.

Motivated by this discussion, as well as comments made by JSLZ, we then evalu-

ate some of the criticisms leveled against Q-learning and direct search methods,

which do not use a convex surrogate. For simplicity, we focus on a single deci-

sion; however, the points and methodologies presented here extend readily to the

multi-decision setting.

mailto:swager@stanford.edu
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1.1. Classification-based estimators

Classification-based estimators recast the estimation of an optimal treat-

ment regime as a weighted classification problem (Zhang et al. (2012a); Zhao et

al. (2012); Rubin and van der Laan (2012); Zhang et al. (2012b, 2013)). Such

recasting has the obvious advantage exposing the cache of methodologies and the-

ories already developed for classification to the problem of estimating an optimal

treatment regime. Leveraging so-called machine learning methods to improve

the quality of estimated optimal regimes has become a major focus of method-

ological research among both regression-based methods (e.g., Zhao et al. (2011);

Moodie, Dean and Sun (2013); Taylor, Cheng and Foster (2015); Murray, Yuan

and Thall (2018); Ertefaie and Strawderman (2018); Zhang et al. (2018)) and

classification-based methods (e.g., Zhao et al. (2015); Zhou et al. (2017); Zhang

and Zhang (2018); Liu et al. (2018); Qi and Liu (2018)). As JSLZ note in their

abstract, entropy learning is an example of such research.

By the time the seminal papers on classification-based estimation were pub-

lished in the statistics literature, the potential benefits of leveraging modern

classification methods (as well as modern regression methods) to improve per-

formance in reinforcement learning problems had been known for more than

a decade in the computer science literature (see Lagoudakis and Parr (2003);

Barto and Dietterich (2004); Ernst, Geurts and Wehenkel (2005) and references

therein). In many canonical engineering and computer science applications, the

goal is to construct treatment regimes (aka policies or decision strategies) that

will be deployed in the field, e.g., to guide the motion of a robot (Singh et al.

(1994); Yang and Meng (2000); Finn and Levine (2017)) or to select actions

in a strategy game (Silver et al. (2016, 2018)). In such settings, the perfor-

mance of a learned regime in its target environment is often of paramount im-

portance, whereas factors like intepretability and knowledge generation are sec-

ondary. However, in the context of precision medicine, optimal treatment regimes

are typically estimated as part of a secondary, i.e., hypothesis-generating, anal-

ysis. In such cases, interpretability is key even (or perhaps especially) when

the data actually are informing real-time decision support (Nahum-Shani et al.

(2017); Tewari and Murphy (2017); Luckett et al. (2018)). Clinicians (rightly)

are unwilling to cede their clinical decisions to an unintelligible black-box esti-

mated from a single clinical trial or observational study; indeed, interpretability

is now mandated for algorithm-based clinical decision support in the European

Union (see Goodman and Flaxman (2017)).
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If the goal is to generate new clinical knowledge by means of an interpretable

estimated optimal treatment regime, a reasonable approach is to posit a class of

acceptable regimes, e.g., those that can be represented as linear thresholds (as in

JSLZ, and many others), trees (Zhang et al. (2012a); Laber and Zhao (2015); Zhu

et al. (2017); Sies and Van Mechelen (2017); Tao, Wang and Almirall (2018)),

or lists (Zhang et al. (2015); Wang and Rudin (2015); Lakkaraju and Rudin

(2017); Zhang et al. (2018)). When constructing and evaluating such estimators,

we believe that the following factors are key: (F1) consistency for the optimal

regime within the class under consideration, (F2) formal inference procedures

for the performance of the learned regime, and (F3) diagnostic procedures to

identify any loss in performance induced by restricting the class of regimes, e.g.,

a confidence interval for the difference in value between the optimal regime in

the restricted class relative to a larger superclass of regimes.

To the best of our knowledge, (F3) has received little attention in the litera-

ture, though it seems critical, especially for highly structured regimes like those

representable as lists. With surrogate-based approaches like entropy learning,

one potentially promising approach to (F3) would be to consider a confidence

interval for the difference between the value of a regime estimated using a non-

linear kernel and that of a linear regime. JSLZ use smoothness of the entropy loss

to provide confidence sets for the value of the learned rule, thus addressing (F2).

However, entropy-based learning, like Q-learning, need not satisfy (F1). We note

that this does not contradict Proposition 1 of JSLZ, as the proposition applies

when optimizing over the space of all possible decision rules, not the restricted

class of linear decision rules. The lack of (F1) in surrogate-based methods is not

a new observation, see Qian and Murphy (2011) and Kosorok and Laber (2019)

for examples with squared error loss. In Section 3, we provide an example with

entropy loss in which (F1) does not hold, yet the optimal rule is representable as

a linear rule. Furthermore, while Q-learning is often criticized by proponents of

classification-based methods because of its risk of misspecification and subsequent

failure to satisfy (F1), it has the distinct advantage of allowing the use of regres-

sion diagnostics to examine model fit, thus mitigating the risk of misspecification

(Laber, Linn and Stefanski (2014); Ertefaie, Shortreed and Chakraborty (2016)).

We also note that one can separate the class of Q-functions from the class of

regimes, i.e., it is not necessary to restrict the class of Q-functions so that the

argmax operator induces the desired class of regimes (Taylor, Cheng and Fos-

ter (2015); Zhang et al. (2018)). This separation provides greater freedom in

modeling the Q-function than presentations of Q-learning sometimes imply.
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Methods that directly optimize the inverse probability weighted estimator

(IPWE), augumented inverse probability weighted estimator (AIPWE), or other

consistent estimators of the value function ensure (F1) under standard condi-

tions (e.g., uniform convergence over the class of regimes, an isolated maximizer,

etc.). There appear to be two primary objections to such an approach. The first

is that direct optimization of the IPWE/AIPWE is nonconvex and thus poten-

tially computationally burdensome (Section 2.1 JSLZ). However, the application

of stochastic optimization algorithms (Zhang et al. (2012b, 2013)), mixed inte-

ger programming (Laber, Lizotte and Ferguson (2014); Angelino et al. (2017)),

or smoothing with gradient-based procedures with multiple starts (Jiang et al.

(2017)) has proved to be successful in a wide variety of precision medicine prob-

lems similar to those considered by JSLZ. Nevertheless, such optimization meth-

ods may not be feasible in settings with massive data, e.g., electronic health

records or billing data, where the convexity in entropy learning and other meth-

ods based on convex surrogates may play a critical role (Wang et al. (2016)).

The second criticism leveled against direct optimization of the IP-

WE/AIPWE is the lack of methodologies for inference. In Section 2, we provide

one simple approach that uses an undersmoothed and nonconvex surrogate to

retain (F1) while allowing methods for cube-root asymptotics to be used to con-

duct inference and thereby, we conjecture, satisfy (F2). This approach provides

consistently higher value than entropy learning on JSLZ’s one-stage simulation

examples, while being significantly less variable. Of course, a more thorough

examination of this method is needed if any general conclusions are to be made.

2. A Simple Direct Search Estimator

2.1. Framework

For simplicity, we consider data from a single-stage randomized trial; the

extension to an observational study is straightforward. We assume that the

observed data are {(Xi, Ai, Ri)}ni=1, which comprise n i.i.d. copies of (X, A,R),

where X ∈ Rp+1 denotes baseline patient covariates, A ∈ {−1, 1} is the assigned

treatment, and R ∈ R is the outcome coded so that higher values are better. We

assume that X has an intercept and that P (A = 1|X) = P (A = 1) = π with

probability one.

We consider linear decision rules of the form d(x) = sign(x> β), where β ∈
Rp+1 and sign(u) = 1 if u > 0 and sign(u) = −1 otherwise. Define V0(β) to be

the value of the linear decision rule indexed by β ∈ Rp+1 so that



E-LEARNING 1689

V0(β) = E
[

R

Aπ + (1−A)/2
I
{
A = sign(X>β)

}]
,

where I {ν} is the indicator that the event ν is true. For any function m : Rp+1 →
R, it can be shown (e.g., Laber and Zhao (2015); Zhou et al. (2017)) that

V0(β) = E
[

R−m(X)

Aπ + (1−A)/2
I
{
A = sign(X>β)

}]
+ E {m(X)} .

Define

Z =
A {R−m(X)}
Aπ + (1−A)/2

,

so that V0(β) = F0(β) + D0, where F0(β) = E
{
ZI
(
X>β > 0

)}
and D0 =

−E {I(A = −1)Z} + E {m(X)}. The optimal rule is thus indexed by β0 =

arg maxβ V0(β) = arg maxβ F0(β). Because F0(β) = F0(kβ) for any positive

scalar k, we require that β>0 β0 = 1. (Note that a rule indexed by β0 ≡ 0 is

equivalent to a rule indexed by β0 = (−1, 0, . . . , 0) and thus there is no loss in

generality by assuming a unit norm.)

2.2. Estimation

We begin by describing a plug-in estimator of V0 and then consider a

smoothed variant that is more amenable to gradient-based optimization and infer-

ence. To estimate π, we use the sample proportion π̂n = n−1
∑n

i=1 I(Ai = 1). We

posit a linear working model of the form E(R|X = x, A = a) = x>0 γ0 + ax>1 γ1,

where x0,x1 are (possibly nonlinear) features of x, and γ0,γ1 are unknown co-

efficients. Let γ̂0,n and γ̂1,n denote the corresponding least squares estimators of

γ0 and γ1, and define m̂n(x) = x>1 γ̂0,n. Subsequently, define

Ẑn(x, a, r) =
a {r − m̂n(x)}
aπ̂n + (1− a)/2

.

and let Ẑn,i = Ẑn(Xi, Ai, Ri). The plug-in estimator of F0(β) is thus

F̂n,ns(β) =
1

n

n∑
i=1

Ẑn,iI
(
X>i β > 0

)
,

where the subscript ‘ns’ is to indicate that this estimator is non-smooth. As

noted in the introduction and by JSLZ, maximizing this objective directly can

be difficult and can complicate statistical inference. In the remainder of this

discussion, we focus on a smooth alternative to F̂n,ns.

For each β, let pβ(w, z) denote the density of (X>β, Z). It can be seen that

F0(β) =

∫
zI(w > 0)dwdz.
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We consider a kernel density estimator of pβ(w, z) of the form

p̂hβ,n(w, z) =
1

n

n∑
i=1

1

h2
φ

(
w −X>i β

h

)
φ

(
z − Ẑn,i

h

)
,

where φ(t) is a Gaussian kernel and h > 0 is a bandwidth. The smoothed

estimator is obtained by replacing pβ(w, z) with p̂hβ,n(w, z) to obtain

F̂ hn,s(β) =

∫
zI(w > 0)p̂hβ,n(w, z)dwdz =

1

n

n∑
i=1

Ẑn,iΦ

(
X>i β

h

)
,

where Φ is the CDF of a standard normal random variable. The subscript ‘s’

in F̂ hn,s(β) is to indicate that it is smooth. One may also view F̂ hn,s(β) as re-

placing the nonsmooth indicator I(t > 0) with the nonconvex surrogate Φ(t/h)

(see Jiang et al. (2017)). In the simulation experiments, we set h = n−1/2 to

ensure that any asymptotic effects of the smoothing are negligible. To obtain

an estimator of V0(β), one can use D̂n = n−1
∑n

i=1

{
I(Ai = −1)Ẑn,i + m̂n(Xi)

}
and subsequently define V̂ h

n,s(β) = F̂ hn,s(β) + D̂n.

The estimated optimal regime is indexed by the coefficients

β̂hn,s = argmax
β :β>β=1

V̂ h
n,s(β) = argmax

β:β>β=1
F̂ hn,s(β).

To facilitate inference, we transform this constrained optimization problem into

an unconstrained one by expressing β in spherical coordinates. For each β, write

β = β(θ), where θ is a p-dimensional vector, and

β1 = cos(θ1),

β2 = sin(θ1) cos(θ2),

β3 = sin(θ1) sin(θ2) cos(θ3),

...
...

...

βp = sin(θ1) . . . sin(θp−1) cos(θp),

βp+1 = sin(θ1) . . . sin(θp−1) sin(θp).

It follows that

β̂hn,s = β(θ̂hn,s), where θ̂hn,s = argmax
θ

F̂ hn,s {β(θ)} . (*)

Because F̂ hn,s {β(θ)} is not convex in θ, it may have multiple local maximizers.

One may employ any of the methods discussed in the introduction to approximate

a global maximizer. In the simulations presented in Section 3, we used a gradient

descent algorithm with multiple starts.
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2.3. Inference

To conduct inference, we work on the θ-scale to avoid the constraint

β>β = 1. We note that JSLZ appear to avoid this scaling issue by defining

the target of inference to be the population minimizer of the convex surrogate,

which is not scale-invariant but also need not maximize the value over the space of

linear decision rules. If the goal is estimation and inference for the linear rule that

maximizes the value, the issue of scale invariance may be unavoidable. The pro-

posed estimator resembles the maximum score estimator, and thus the expected

rate of convergence is n−1/3 rather than n−1/2 (Kim and Pollard (1990); Shi, Lu

and Song (2018)). It is well known that the standard nonparamteric bootstrap

fails for estimators with cube-root convergence (Abrevaya and Huang (2005)); in-

stead, we consider a modified bootstrap procedure as in Cattaneo, Jansson and

Nagasawa (2017). Denote the negative Hessian matrix of F̂ h̃n,s {β(θ)} at θ = θ̂hn,s
as

Ĥh̃
n,s = −

∂2F̂ h̃n,s {β(θ)}
∂θ∂θ>

∣∣∣∣∣
θ=θ̂hn,s

.

The bandwidth h̃ used in the construction of the Hessian need not equal the

bandwidth used to estimate the value. In our experiments, we used the local

bandwidth h̃(x) = cσ(x> β̂hn,s)n
−1/9, where c is a tuning parameter chosen so

that F̂ hn,s{β(θ)} ≈ F̂ hn,s{β(θ̂hn,s)}− (θ− θ̂hn,s)>Ĥh̃
n,s(θ− θ̂hn,s)/2 in a neighborhood

of θ̂hn,s. In addition, we adjust the diagonal elements of Ĥh̃
n,s to ensure positive

definiteness as needed.

The bootstrap procedure is as follows. Sample with replacement from the

observed data to obtain a bootstrap sample {(X∗i , A∗i , R∗i )}
n
i=1. Let π̂∗n, m̂

∗
n,

Ẑ∗n,i i = 1, . . . , n, and D̂∗n denote the bootstrap analogs of π, m̂n, Ẑn,i, ı = 1, . . . , n,

and D̂n. Define the modified bootstrap counterpart to F̂ hn,s {β(θ)} as

F̂ h∗n,s {β(θ)} = F̂ hn,s

{
β(θ̂)

}
− 1

2
(θ − θ̂hn,s)>Ĥh̃

n,s(θ − θ̂hn,s) +

1

n

n∑
i=1

Ẑ∗n,iΦ

{
X∗>i β(θ)

h

}
− 1

n

n∑
i=1

Ẑn,iΦ

{
X>i β(θ)

h

}
.

Roughly speaking, the first two terms mimic the quadratic behavior of F0 {β(θ)}
near the true value θ0, while the other two terms mimic the random fluctuations

of F̂ hn,s {β(θ)} − F0 {β(θ)}. Let

θ̂h∗n,s = argmax
θ

F̂ h∗n,s {β(θ)} , β̂h∗n,s = β(θ̂h∗n,s), and V̂ h∗
n,s(θ̂

h∗
n,s) = F̂ h∗n,s(β̂

h∗
n,s) + D̂∗n.
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Table 1. The coefficients in the estimated regime (rescaled to have unit norm) and the
value of the estimated regime. Monte Carlo standard deviations are in parentheses. For
models 1 and 2, the true value for β is (0.272,−0.680,−0.680, 0). For models 5 and 6,
the value for β is not available in closed form because the optimal regime is nonlinear.

Model Method β1 β2 β3 β4 E(V0(β̂))
1 SIPW 0.275 -0.679 -0.680 0.000 10.303

(0.010) (0.011) (0.011) (0.018) (0.006)
Ent 0.299 -0.724 -0.610 -0.017 10.200

(0.067) (0.256) (0.241) (0.210) (0.099)
QLearn 0.272 -0.680 -0.680 0.000 10.304

(0.001) (0.002) (0.002) (0.002) (0.006)
2 SIPW 0.265 -0.677 -0.669 -0.012 9.400

(0.077) (0.073) (0.075) (0.084) (0.018)
Ent 0.334 -0.648 -0.648 0.054 9.350

(0.064) (0.206) (0.224) (0.183) (0.063)
QLearn 0.271 -0.680 -0.679 -0.000 9.412

(0.038) (0.063) (0.065) (0.052) (0.012)
5 SIPW 0.255 0.676 -0.675 -0.001 1.846

(0.061) (0.054) (0.055) (0.109) (0.014)
Ent 0.043 0.708 -0.705 0.001 1.787

(0.041) (0.187) (0.186) (0.142) (0.023)
QLearn -0.123 0.727 -0.727 0.000 1.715

(0.074) (0.235) (0.233) (0.117) (0.029)
6 SIPW 0.443 0.613 -0.609 -0.000 4.817

(0.105) (0.102) (0.109) (0.154) (0.075)
Ent 0.194 0.697 -0.698 0.000 4.788

(0.080) (0.139) (0.140) (0.095) (0.144)
QLearn -0.307 0.692 -0.689 -0.000 4.087

(0.116) (0.197) (0.197) (0.119) (0.070)

The empirical percentiles of the forgoing quantities are used to construct confi-

dence sets for the components of β0 and V0(β̂
h
n,s).

3. Experiments

3.1. A toy example adopted from Qian and Murphy (2011)

To illustrate the potential impacts of using a surrogate on consistency, we

consider the application of entropy learning on the following generative model,

which is adapted from Qian and Murphy (2011). Let X ∼ Uniform[−1, 1], A ∼
Uniform{−1, 1}, and R = 12+5A(X−1/3)2+0.5ε, where ε is standard normally

distributed and independent of X and A. The additive constant of 12 is to ensure

that the probability of obtaining a negative reward is vanishingly small. It can be
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seen that the optimal decision rule in this case is dopt(x) ≡ 1, which corresponds

to the linear estimator dopt(x) = sign (β0 + β1x) with β0 = 1 and β1 = 0. For

this generative model, the entropy loss reduces to

R(β0, β1) = 12T (β0, β1)−
1

9
(128β0 − 10β1),

where

T (β0, β1) =

{
2 log(1 + exp(β0)), if β1 = 0,{

Li2(− exp(β0 − β1))− Li2(− exp(β0 + β1))
}
/β1, if β1 6= 0,

and Li2(x) is the dilogarithm function, defined as

Li2(x) =

∫ 0

x

log(1− t)
t

dt.

Minimizing the entropy loss yields a rule of the form dent(x) = sign(β̃0 + β̃1x),

where β̃0 ≈ 0.553 and β̃1 ≈ −0.833. Direct computation shows V (dopt) = 14.22,

whereas V (dent) ≈ 13.76 (estimated using 10 million points so that standard

errors are on the order of 1 × 10−4). For comparison, the smoothed estimator

proposed in Section 2 has an average value of 14.22, which matches the optimal

value up to two significant digits.

3.2. Performance of the estimated regime

We consider models 1, 2, 5, and 6 from JSLZ as these are the one-stage set-

tings. The sample size is fixed at n = 200. We compare the regimes obtained by

(*) with the regime estimated via entropy learning and Q-learning with a linear

model. These three methods are denoted by SIPW , Ent and QLearn respec-

tively. To facilitate a fair comparison, we rescale the estimated coefficients β̂ in

each method so that β̂>β̂ = 1 and report the Monte Carlo standard deviation of

this rescaled version. The value of the estimated regime, V0(β̂), is approximated

by generating 105 patients following the estimated regime, and its expected value,

E{V0(β̂)}, is obtained by averaging over 1,000 replications.

The results are given in Table 1. We see that the smoothed method, SIPW,

achieves slightly higher value compared to entropy learning on all examples and

is considerably less variable. Q-learning is competitive with entropy learning on

these examples while also being considerably less variable. In models 1 and 2,

where the true values of β0 are available analytically, it can be seen that both

SIPW and Q-learning exhibit less bias than entropy learning.
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Table 2. The coverage rate of 95% confidence intervals for the regime coefficients and its
value.

n Model Method β1 β2 β3 β4 E(V0(β̂))
200 1 SIPW 1.000 0.999 0.998 0.990 0.949

Ent 0.998 0.963 0.968 0.970 0.904
QLearn 0.951 0.938 0.948 0.952 0.952

2 SIPW 1.000 0.984 0.977 0.982 0.946
Ent 0.990 0.978 0.981 0.969 0.948

Qlearn 0.949 0.914 0.929 0.925 0.945
2,000 1 SIPW 0.991 0.988 0.987 0.960 0.945

Ent 0.968 0.941 0.936 0.949 0.952
QLearn 0.960 0.942 0.947 0.948 0.949

2 SIPW 0.996 0.931 0.919 0.972 0.958
Ent 0.957 0.966 0.961 0.957 0.954

QLearn 0.946 0.946 0.942 0.965 0.961

3.3. Inference about the coefficients in the estimated regime

We consider models 1 and 2 in JSLZ as these comprise the one-stage settings

in which the optimal regime is linear. To explore any large sample effects, we

consider sample sizes of n = 200 and n = 2,000. We examine the coverage of

a 95% confidence interval for the coefficients indexing the optimal decision rule,

as well as the value of the estimated optimal regime. Confidence intervals for

Q-learning were based on the (unadjusted) nonparametric bootstrap. The results

are given in Table 2. We see that all three methods achieve nominal coverage.

The smoothed method, SIPW, gives slightly conservative confidence intervals.

As the sample size increases from 200 to 2,000, the coverage rates are closer to

the nominal level.

4. Discussion

Entropy learning advances a growing literature on classification-based esti-

mation of optimal treatment regimes. JSLZ are to be commended on an ele-

gant derivation of a class of estimators of which entropy loss is a member. It

is interesting to note that entropy loss has been identified as a top performer

among convex surrogates in the estimation of optimal treatment regimes using

the AIPWE rather than the IPWE as was considered here (Zhao et al. (2019)).

We expect such estimators to continue to grow in popularity especially as the

computational demands of big data make nonconvex alternatives more difficult

to implement.
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and Donglin Zeng (JSLZ, henceforth) for an exciting development in conducting

inferences on optimal dynamic treatment regimes (DTRs) learned via empirical

risk minimization using the entropy loss as a surrogate. JSLZ’s ingenuity was

to carefully propagate the asymptotic distributions of M -estimators through a

backward induction using a roll out of estimated individualized treatment regimes

(ITRs) learned by weighted entropy loss minimization. This solved an open

problem on how to conduct rigorous inference on DTRs (Laber et al. (2014)).

JSLZ’s approach leverages a rejection-and-importance-sampling estimate of

the value of a given decision rule based on inverse probability weighting (IPW;

see the first unnumbered display equation in JSLZ’s Section 2.2) and its inter-

pretation as a weighted (or cost-sensitive) classification, a celebrated reduction

(Beygelzimer and Langford (2009); Zhao et al. (2012)). Their use of smooth

classification surrogates enables their careful approach to analyzing asymptotic

distributions. However, even for evaluation purposes, the IPW estimate is prob-

lematic. The estimate is a weighted average of rewards, where, for a horizon of T

steps, the weights are the product of T indicators of whether the decision rule’s

recommendations agree with the observed actions, divided by the product of T

propensities for the observed actions. With even just two actions per step, the

numerator is most often zero. At the same time, the denominator is invariably

tiny, and minor differences in probabilities translate into large differences in their

inverse products. The result is weights that discard most of the data and are

extremely variable on whatever remains. This renders the estimator practically

useless for any horizon T longer than 2–3 and any reasonably sized sample (see

also Gottesman et al. (2019)). So, while JSLZ’s careful analysis enables us to

conduct inferences on DTRs learned by optimizing this estimate (via a surro-

gate), one might question whether DTRs learned in this way are useful to begin

with when T ≥ 3 and n is realistic, given the unreliable evaluation.

In this comment, I discuss an optimization-based alternative to evaluating

ITRs and DTRs, review several connections, and suggest directions forward.

In Kallus (2018a), I proposed an approach for evaluating and learning ITRs

based on optimal balance. Optimal balance – a technique I have also developed

for designing controlled experiments (Kallus (2018c)), designing observational

studies (Kallus (2017a,b, 2018b); Kallus, Pennicooke and Santacatterina (2018)),

and estimating marginal structural models (Kallus and Santacatterina (2018))

– directly targets the error objective of interest by optimally choosing weights

that minimize it, rather than relying on plug-in-and-pray approaches that fail for

practically sized samples, such as IPW. I show how optimal balance extends to
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DTR evaluation and discuss why it holds promise.

2. Balanced Evaluation of ITRs

JSLZ motivate their approach by first considering ITRs; I will do the same.

Indeed, using backward induction, evaluating and learning DTRs reduces to eval-

uating and learning ITRs. In their Eq. (2.1), JSLZ recall the central identity of

importance sampling, as applied to ITR evaluation, which I repeat here using

potential-outcome notation:

V (D | X) ≡ E
[∫

a∈A
R(a)dD(a | X) | X

]
= E

[
D(A | X)

L(A | X)
R | X

]
, (2.1)

where R(a) is the potential reward of action a, for any possible action a ∈ A (I

make no assumptions on A; it can be discrete or continuous); X ∈ X are the

prognostic covariates; D(a | X) is the probability (usually Dirac) of the decision

rule choosing a when seeing X; A and R are the action and reward, respectively,

observed in the data; L(a | X) is the probability of A, given X, in the data; and

we assume ignorable assignment: R(a) ⊥⊥ A | X ∀a ∈ A.

Given a sample {(Xi, Ai, Ri) : i ≤ n}, we can operationalize Eq. (2.1) by tak-

ing an empirical average of (D(Ai | Xi)/L(Ai | Xi))Ri (e.g., JSLZ’s Eq. (2.3)).

However, this can prove problematic in practice, because the density ratio

D(Ai | Xi)/L(Ai | Xi) can vary wildly, giving some units much higher weight

than others and leading to high-variance evaluation. Because of this fundamen-

tal problem, there have been many variations and iterations of this basic esti-

mator, including weight normalization and clipping (Swaminathan and Joachims

(2015)), “hybrid” clipping using estimates of E [R(a) | X] (Tsiatis and Davidian

(2007); Wang, Agarwal and Dudik (2017)), using such estimates as control vari-

ates (Dud́ık, Langford and Li (2011)), optimizing the choice of control variate

(Cao, Tsiatis and Davidian (2009); Farajtabar, Chow and Ghavamzadeh (2018)),

among others. However, these and other estimators that do not rely completely

on extrapolation via outcome modeling need to account for the covariate shift

between L and D and to weight by the density ratio D(A | X)/L(A | X), and

ultimately suffer from its fundamental instability. This is particularly problem-

atic when D(A | X) is Dirac, as is usually the case since optimal policies are

deterministic, because it means that any data point that disagrees with D’s rec-

ommendation is discarded, even if informative. Smoothing D(A | X) amounts

to shrinking the estimate, by linearity. (When A is continuous, this means all

data points are discarded; smoothing, as in Kallus and Zhou (2018), becomes a
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necessity.)

I briefly explain my optimal balancing proposal for ITR evaluation from

Kallus (2018a). Given any outcome-weighted estimator, V̂ = (1/n)
∑

i≤nWiRi,

with W = W (X1:n, A1:n), its conditional mean squared error, given the data

upon which the weights depend, decomposes to:

E

V̂ − 1

n

∑
i≤n

V (D | Xi)

2

| X1:n, A1:n

 = B2(µ;W ) +
1

n2

∑
i≤n

Wiσ
2
i ,

where σ2i = Var (Ri | Xi, Ai), µ(x, a) = E[Ri | Xi = x,Ai = a], and

B(f ;W ) =
1

n

∑
i≤n

∫
a∈A

f(Xi, a)d(Wiδ(a−Ai)−D(a | Xi)),

which, for every W , is a linear operator on the space of functions [A×X → R].

(A similar result holds if we augment the weighted estimator with an estimate

µ̂, as in AIPW.) Because µ (or the difference µ − µ̂) is unknown, this suggests

seeking weights W that make B(f ;W ) small for many functions f ∈ F . Under

appropriate conditions,

sup
f∈F

B(f ;W ) = sup
‖f‖≤1

B(f ;W ) = ‖B( · ;W )‖∗,

where ‖·‖ is the gauge of F and ‖·‖∗ its dual. Thus, we seek weights W that make

the norm of the operator B( · ;W ) small, subject to some 2-norm regularization

in order to control the variance. Because setting Wi = D(Ai | Xi)/L(Ai | Xi)

makes B(f ;W ) a sum of independent mean-zero terms, a straightforward empir-

ical process argument (see, e.g., Pollard (1990)) shows that, under appropriate

conditions on F , these weights also make ‖B( · ;W )‖∗ → 0. However, in prac-

tice, these plug-in weights still have all the problems of extreme values and being

mostly zeros. Instead, my proposal for optimally balanced evaluation of ITRs is

to choose weights that directly optimize the error objective of interest:

W ∗ ∈ argmin
W≥0 : 1/n

∑
i≤nWi=1

∥∥∥∥B( · ;W )

∥∥∥∥2
∗

+
λ

n2

∥∥∥∥W∥∥∥∥2
2

, (2.2)

which is a linearly constrained convex optimization problem.

To illustrate how this works, I include an excerpt from Kallus (2018a) in

Table 1, where I apply this to an example with |A| = 5, n = 100, and low overlap

between L and D. For simplicity, I let F be the unit ball of the RKHS with

kernel K((x, a), (x′, a′)) = δ(a − a′)e−‖x−x′‖22 and λ = 1. I include augmented

(DR) estimators, using µ̂ fitted by XGBoost, as well as normalized (Hájek) IPW.

IPW discards about 86% of the data; the balanced approach only 9%, and cor-
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Table 1. ITR evaluation performance in Kallus (2018a, Example 1).

Weights
Outcome Weighting Augmented OW (DR) ‖W‖0RMSE Bias SD RMSE Bias SD

IPW 2.209 −0.005 2.209 4.196 0.435 4.174 13.6± 2.9
NIPW 0.519 −0.181 0.487 0.754 0.408 0.634 13.6± 2.9
Balanced 0.280 0.227 0.163 0.251 −0.006 0.251 90.7± 3.2

respondingly performs much better.

3. Balanced Evaluation of DTRs

When considering sequential decisions, the fragility of IPW only becomes

worse: the weights become even sparser and more extreme, because they are

now the ratio of the product of T indicators and the product of T probabilities.

Fortunately, the approach to balanced evaluation extends to the case of DTRs,

which holds promise for salvaging DTR value estimators that rely on density

ratio weighting in any way.

In the sequential setting, we are interested in evaluating the DTR value:

V (D1:T ) ≡
∑
t≤T

{
Vt(D1:t) ≡ E

∫
a1:t∈A1:t

Rt(a1:t)dD1:t(a1:t | X1:t(a1:t−1), a1:t−1)

}
,

where D1:t(a1:t | X1:t(a1:t−1), a1:t−1) =
∏
s≤tDs(as | X1:s(a1:s−1), a1:s−1) and, for

each t and sequence of actions a1:t ∈ A1:t = A1×· · ·×At, we now have potential

outcomes for both the reward at time t and the time-dependent covariates at time

t+ 1. Our data consist of observations of trajectories X1:T , A1:T , R1:T , assuming

sequentially ignorable assignment:

Rt:T (a1:T ), Xt+1:T (a1:T−1) ⊥⊥ At(a1:t−1) | X1:t(a1:t−1), A1:t−1(a1:t−2).

As in the case of ITRs, consider estimating Vt(D1:t) by a weighted average of

outcomes. To streamline the already cumbersome notation, I discuss this in terms

of population averages. Thus, I consider the weighted average of observables

V̂t = E[W1:tRt], for some weights W1:t =
∏
s≤tWs where Ws = Ws(X1:s, A1:s).

Then, iteratively applying sequential ignorability yields a decomposition similar

to the ITR case:

V̂t − Vt(D1:t) =
∑
s≤t

Bs(µt,s;Ws), (3.1)

Bs(f ;Ws) ≡E
∫
as∈As

f (X1:s, A1:s−1, as) d (Wsδ (as −As)−Ds(as|X1:s, A1:s−1)),
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Table 2. DTR evaluation performance.

Weights
T = 3 T = 5 T = 7

RMSE Bias SD RMSE Bias SD RMSE Bias SD
IPWT 5e2 0.96 5e2 4e4 −42.94 4e4 2e2 28.61 2e2
IPW 2e2 0.41 2e2 1e4 −11.52 1e4 1e4 −2.08 1e4
NIPWT 11.82 8.39 8.32 38.07 38.01 2.03 63.10 63.09 0.64
NIPW 6.90 4.64 5.10 26.94 26.27 5.96 51.57 51.22 5.98
Bal. KG 6.28 −0.57 6.26 11.73 9.69 6.61 18.65 17.44 6.61
Bal. KM 6.87 −0.26 6.87 12.71 10.06 7.78 19.43 17.80 7.78

µt,s(x1:s, a1:s) ≡W1:s−1(x1:s−1, a1:s−1)E
[
RDt,s(a1:s) | X1:s = x1:s, A1:s−1 = a1:s−1

]
,

RDt,s(a1:s) ≡
∫
as+1:t∈As+1:t

Rt(a1:t)dDs+1:t(as+1:t | X1:t(a1:t−1), a1:t−1).

This looks rather complicated, but has a simple message: the error is a sum over

s = 1, . . . , t of a particular moment mismatch (Bs) in variables X1:s, A1:s between

the weighted data distribution and the distribution induced by deviating and fol-

lowing Ds at step s. Therefore, to obtain a good estimate, we require weights that

make this mismatch small for many functions f : X1:s×A1:s → R. As before, set-

ting Ws = Ds(As | X1:s, A1:s−1)/Ls(As | X1:s, A1:s−1) achieves this at the popula-

tion level or for very large samples, but can fail horribly in realistically sized sam-

ples. (JSLZ actually use weights
∏T
s=1Ds(As | X1:s, A1:s−1)/Ls(As | X1:s, A1:s−1)

on
∑

t≤T Rt, which is also unbiased, but even more unstable; when estimating

the average reward at time t, multiplying by density ratios for times after t is su-

perfluous and just increases the variance.) However, given any sample and some

function class Fs, we can seek weights that minimize the (empirical) worst-case

mismatches ‖Bs( · ;Ws)‖s∗, subject to some 2-norm regularization to control the

variance. Doing so amounts to nothing more than solving Eq. (2.2), for each of

t = 1, . . . , T , to obtain Wt, each time considering X1:t, A1:t−1 as the “prognostic

covariates” being balanced and at as the “action.” (We could have also placed

the W1:s−1 term in Bs, rather than in µt,s, which would have amounted to a

simple reweighting of the moment conditions being balanced; however, I focus on

the simplest reduction to repeatedly solving problems of the form of Eq. (2.2).

We can also apply Eq. (3.1) to the residuals and use an augmented DR-style

estimator.)

4. A DTR Evaluation Example

To demonstrate how this works, I include a simple example. Let T vary
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and, for t ≤ T , let At = {−1,+1}, Xt = R2, Rt(a1:t) = 5at + Xt,1(at−1) + εt,

εt ∼ N (0, 1), X1,j ∼ N (0, 1), Xt+1,j(a1:t) = at +Xt,j(at−1) + ξt,j , ξt,j ∼ N (0, 1),

L(+1 | x1:t, a1:t−1) = expit(2(Xt,1 + Xt,2)At−1), and D(+1 | x1:t, a1:t−1) =

I [(Xt,1 +Xt,2)At−1 < 0]. I consider 2,000 replications of n = 800 for each

T ∈ {3, 5, 7}. To apply balanced evaluation, I let Ft be the unit ball of the

RKHS with kernel K((x1:t, a1:t), (x
′
1:t, a

′
1:t)) = δ(at−1:t − a′t−1:t)Kx(xt, x

′
t), where

Kx is either the Gaussian (KG) or Matérn (KM , ν = 5/2) kernel. I compare this

with IPW and normalized IPW. I also include the variation in JSLZ in which we

multiply
∑

t≤T Rt by density ratios up to T , referred to as IPWT .

The results appear in Table 2. The large variance of IPW renders it unusable

even with a reasonably sized data set. The variance is so large that it throws

off the bias estimated by 2,000 replications (zero in theory). NIPW mitigates

this variance, but is actually equal to the uniform weights 37%, 99%, or 100%

of the time, for T = 3, 5, 7, respectively, and has correspondingly large bias.

Balancing has both low bias (indistinguishable from that estimated for IPW)

and low variance (comparable to NIPW).

Estimating DTR value when horizons are long is a fundamentally difficult

task. Whereas IPW discards most of the data, estimating reward and transition

models requires strong modeling assumptions and precarious extrapolations. Bal-

ancing could provide a fruitful middle ground: rather than throwing away imper-

fectly matching trajectories, we imbue the problem with some structure to allow

these to be used, while ensuring that our weights achieve the same consistency

guarantees afforded by IPW asymptotically (see, e.g., Kallus (2017b, 2018a)).

5. Beyond Evaluation: Learning and Inference

I have argued the merits of using optimal balance to evaluate DTRs. An

immediate question is how to use this to learn DTRs. As before, we can optimize

the value estimate. Although computationally challenging, this is the approach

I took in Kallus (2018a) for ITRs. To apply this to DTRs requires just an

application of backward induction with roll out.

With regard to inference (JSLZ’s primary concern), this remains open for the

balanced approach, but there may be promising directions. Asymptotically, un-

der appropriate conditions on F and the class of rules being considered, optimal

sample weights will uniformly concentrate, so we may consider the distribution

when we use the optimal population weights. However, it remains unclear how the

estimated rules are distributed (even ITRs). A possible hybrid approach is to use
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JSLZ’s Eq. (2.8), but to replace
∏
s≥t+1Ds(As|X1:s, A1:s−1)/Ls(As|X1:s, A1:s−1)

with the optimal balancing weights W ∗t+1:T , while keeping Dt(At | X1:t, A1:t−1)/

Lt(At | X1:t, A1:t−1) and replacing its numerator with a smooth surrogate. This

will at least alleviate issues with longer horizons by limiting IPW to one step,

while still being an M -estimator.

While JSLZ’s advance is a breakthrough, further advances are necessary.

Currently, using IPW and its derivatives to evaluate and learn DTRs when T is

moderate and n is realistic is woefully impractical.
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REJOINDER
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1. Introduction

We thank Statistica Sinica for providing the venue for this paper and its dis-

cussion, and all discussants for their many contributions, insights, and thought-

provoking questions. The area of dynamic treatment regimes is developing

rapidly, and we hope that our paper and the subsequent discussion will add

further momentum to this exciting field. In this rejoinder, we focus on the fol-

lowing four topics: (1) the nonregularity issue, when neither treatment is more

beneficial for a nontrivial subgroup (comments by Lu; Qian and Cheng; Qiu et

al.); (2) the linear decision boundary (comments by He, Xu, and Wang; Lu; Qiu

et al.); (3) extensions that incorporate smooth weights, multiple classes, or a

nonconvex loss (comments by Wager; Kallus; Lu; Qian and Cheng; He et al.;

Qiu et al.; Zhang and Laber); (4) interpreting the p-value in a real application

(comment by Wager).

2. Nonregularity

The nonregularity issue P (X∗Tt β0t = 0) > 0 is a long-standing and challeng-

ing inference problem in estimations of dynamic treatment regimes. Our assump-

mailto:kallus@cornell.edu
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tion A3 rules out this situation; in particular, we allow a relatively weak condition

on the distribution decay near this boundary. Recent attempts to address this

issue include finding a probability upper bound, regardless of this nonregularity

(Laber et al. (2014)), the m-out-of-n bootstrap method (Chakraborty, Laber and

Zhao (2013)), data-adaptive hard-thresholding (Zhu, Zeng and Song (2018)), pe-

nalized Q-learning (Song et al. (2014)), and adaptive Q-learning (Goldberg, Song

and Kosorok (2012)). However, inferences may be either conservative or unre-

liable in the case of small sample sizes. Thus, there remains much scope for

research on improving inferences with nonregularity.

Although such inferences are theoretically interesting, the impact of nonreg-

ularity on practical evaluations of optimal treatment regimes may not be that

significant. Essentially, the treatments work very similarly near the boundary.

Even if some patients near the decision boundary are allocated to less benefi-

cial treatments, owing to an incorrect inference, the changes to the estimated

value function and its inference are practically negligible. This is observed in

our numerical studies that demonstrate the robustness of our methods. On the

other hand, as suggested by Qiu et al., a more realistic consideration is to test

whether the treatment effect exceeds a certain level (i.e., X∗t
Tβ0t ≤ γ, for some

γ > 0). Theoretically, we can always choose some γ close to a clinically mean-

ingful threshold such that P (X∗Tt γ = 0) = 0 to void the nonregularity issue.

3. Linear Decision Boundary

Some discussants suggested there may be restrictions on the applicability

of the linear form of the treatment decision. Specifically, He et al. suggested

nonparametric treatment rules for entropy learning under the RKHS framework,

and Qiu et al. obtained nonparametric decision rules using the highly adaptive

LASSO approach. Many extensions to our rule are possible, following these sug-

gestions. For example, a simple extension to our linear rule is to incorporate

quadratic terms in our estimation to capture possible interactions between the

feature covariates. Such ideas emerged recently in the discrimination and re-

gression analysis literature (Jiang, Wang and Leng (2018); Wang, Jiang and Zhu

(2019)), and have enjoyed consistency for interaction detection. Furthermore,

we may consider smoothing splines to obtain fully nonparametric rules, although

the current inference results need to be adapted to reflect the nature of a sieve

estimation.

We argue that linear decision rules themselves are still of considerable value



E-LEARNING 1707

in practice, owing to their simplicity and better interpretability. Several discus-

sants noted that the computational demand could become prohibitively heavy

when big data such as electronic transaction records or medical images are

present. In this case, the simple form of linear rules coupled with a convex

objective function, such as the entropy learning loss in our work, becomes most

appealing (Shi et al. (2018)). Finally, partly because of the dichotomous nature

of the treatment rule, applying linear rules to derive the value function may not

be disadvantageous compared with using rules that are more complex. However,

further empirical and theoretical investigation is necessary.

4. Extensions to Incorporate Smooth Weights, Multiclass, or Noncon-

vex Loss

While many discussants provided helpful suggestions, in this section, we

provide brief replies to selected issues; certainly, many deserve a much longer

explanation.

Kallus suggested replacing the indicator functions in the estimation equa-

tions (e.g., equation (2.8)) with optimal balancing weights to avoid omitting too

many samples when T is large. The balanced approach is interesting, and can

produce better estimation results than those of outcome-weighted approaches.

Here, recent research has led to a greater understanding of the theoretical prop-

erties of covariate balancing in causal inferences (Zhao (2019)). However, because

the weights are data-driven, it is often difficult to conduct inferences, and the

computational complexity might be high for particularly big data. Nevertheless,

we agree that it would be meaningful to replace the indicator functions in some

early stages with optimal balancing weights. This will enable proper inferences

in the later stages, and alleviate the issue of omitting too many samples dur-

ing the backward estimation procedure. On the other hand, with appropriate

smoothness assumptions, it is also possible to obtain valid inferences, with extra

effort required to take care of the kernel approximation bias.

Dr. Lu inquired whether E-learning is adaptable to treatments with multiple

categories at each stage. Our answer is yes. Note that for the two-class case,

the minimizer of (2.4) is log(E[R|A = 1,X = x])/(E[R|A = −1,X = x]), which

attains a form similar to that of an odds ratio. Mimicking this form, we may

adopt a simple approach to, for example, set the first treatment option as the

baseline, and then estimate the pairwise contrast for the other option versus the

first option. This operation is similar to the extension of the classical binary
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logistic regression model to the multiclass logistic regression model.

In addition to E-learning, proposed in this work, many learning approaches

for individual treatment selection have been established under various objec-

tive (see the introduction for further examples). Subsequent to this work being

accepted for publication, we were informed that C-learning (Zhang and Zhang

(2018); Hager, Tsiatis and Davidian (2018)), augmented O-learning (Liu et al.

(2018)), concordance assisted learning (Fan et al. (2017); Liang et al. (2018)),

maximin projection learning (Shi et al. (2018)), and quantile optimal treatment

regimes (Wang et al. (2018)) had since been proposed, among many others. In

this discussion, discussants continued to suggest further modifications. Qian and

Cheng provided theoretical results for the excess risk and excess value of entropy

learning, based on the construction in Bartlett, Jordan and McAuliffe (2006).

Qiu et al. studied the behavior of entropy learning under model misspecification,

proposing a framework for nonparametric decision rules. Zhang and Laber devel-

oped a direct search approach, in which they replace the 0-1 loss with a nonconvex

surrogate, to estimate an authentic linear rule that ensures value optimization.

5. Interpretation of p-values

Dr. Wager raised a concern on how to interpret the p-values from the re-

gression tables. We agree that when more than one linear rule leads to the same

optimal value, as demonstrated in his numerical example, using a p-value to

conclude an important feature for a treatment decision could be misleading.

However, information contained in p-values usually cannot be recovered by

other measures. As such, we may not want to completely retire them, for the

following detailed reasons:

(a) For an estimated linear rule, such as that in our application, p-values can

be used to assess statistical evidence on whether a feature contributes to a rule.

However, identifying an important feature does not necessarily imply its utility

in the treatment decision for value improvement. This significance is useful in

practice when examining the uncertainty of a rule in a finite sample.

(b) The p-values given in the tables provide a computationally simple way to

assess the importance of features in the estimated optimal treatment rule. Thus,

it is potentially useful for screening out noisy features in the high-dimensional

data settings (for example, Zhu, Zeng and Song (2018)). In contrast, using value-

based methods to select important features may be computationally intensive or

unstable, especially when more than one rule yields the same optimal value.
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(c) The p-values given in the tables are associated with the particular surrogate

loss (entropy loss) we used. In this sense, each inference used to test a feature’s

contribution is unique and reliable, in practice. However, value-based inferences

are infeasible owing to a lack of uniqueness.

Finally, we believe that the best way to assess the importance of features is

a combination of our approach and a value-based method. The former yields an

unambiguous treatment rule and associated inference, which is useful in practice.

The latter ensures that the selected features truly lead to clinically meaningful

benefits.
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