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1. Introduction

Let Xn,n ≥ Xn−1,n ≥ · · · ≥ X1,n be the order statistics from the sample

X1, X2, . . . , Xn of i.i.d. random variables with common (unknown) distribution

function F . Let xF denote the right endpoint of F . We assume that the distri-

bution function F has a finite right endpoint, xF := sup{x : F (x) < 1} ∈ R.
The fundamental result for extreme value theory is due in various degrees of

generality to Fisher and Tippett (1928), Gnedenko (1943), de Haan (1970) and

Balkema and de Haan (1974). The extreme value theorem (or extremal types

theorem) restricts the class of all possible limiting distribution functions to only

three types. Thus, if there exist constants an > 0, bn ∈ R such that

lim
n→∞

Fn(an x+ bn) = G(x), (1.1)

for all x, G non-degenerate, then G must be one of

Ψα(x) = exp{−(−x)α}, x < 0, α > 0,

Λ(x) = exp{− exp(−x)}, x ∈ R,
Φα(x) = exp{−x−α}, x > 0, α > 0.

Redefining the constants an > 0 and bn ∈ R, these can be nested in a one-

parameter family of distributions, the Generalized Extreme Value (GEV) distri-

bution with distribution function

Gγ(x) := exp{−(1 + γx)−1/γ}, 1 + γx > 0, γ ∈ R.
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We consider F in the (max-)domain of attraction of Gγ and use the notation

F ∈ DM (Gγ). For γ < 0, γ = 0, and γ > 0, the GEV distribution function

reduces to the Weibull, Gumbel, and Fréchet distribution functions, respectively.

An equivalent extreme value condition allows the limit relation in (1.1) to run

over the real line (cf., Theorem 1.1.6 de Haan and Ferreira (2006)): F ∈ DM (Gγ)

if and only if

lim
t→∞

t
(
1− F (a(t)x+ b(t)

)
= (1 + γ x)−1/γ , (1.2)

for all x such that 1 + γx > 0, a(t) := a[t] and b(t) := b[t], with [t] denoting

the integer part of t. The extreme value index γ determines various degrees of

tail heaviness. If F ∈ DM (Gγ) with γ > 0, the distribution function F has a

power-law decaying tail with infinite right endpoint, while γ < 0 refers to short

tails with a finite right endpoint. The Gumbel domain of attraction DM (G0)

encloses a great variety of distributions, ranging from light-tailed distributions,

such as the Normal, the exponential, to moderately heavy distributions, such

as the Lognormal. All the named distributions have an infinite right endpoint,

but a finite endpoint is also possible in the Gumbel domain. We give several

examples in Section 2. Light-tailed distributions with finite endpoint, but not

so light that they are included in the Gumbel domain, have been in demand as

feasible distributions underlying real life phenomena. An example is the extreme

value analysis by Einmahl and Magnus (2008) of the best marks in Athletics,

aimed at assessing the ultimate records for several events. For instance, Table

3 in Einmahl and Magnus (2008) has several missing values for the estimates of

the endpoint which are due to an estimated extreme value index γ near zero. An

attempt to fill these blank spaces with an appropriate framework for inference

in the Gumbel domain has been provided by Fraga Alves, de Haan, and Neves

(2013), although from the view point of application to the Long Jump data set

used in Einmahl and Magnus (2008). The tentative estimator proposed by Fraga

Alves, de Haan, and Neves (2013) is virtually the same as the one we introduce.

The novelty here is in the development of a simple closed-from expression for the

estimator.

The problem of estimating the right endpoint xF of a distribution func-

tion lying in the Gumbel extremal domain of attraction is tackled by the semi-

parametric statistic

Xn,n +Xn−k,n − 1

log 2

k−1∑
i=0

log
(k + i+ 1

k + i

)
Xn−k−i,n

or, in a more compact form, by

x̂F := Xn,n +

k−1∑
i=0

ai,k

(
Xn−k,n −Xn−k−i,n

)
, (1.3)
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where ai,k := −(log 2)−1
(
log(k+ i)− log(k+ i+1)

)
> 0, such that

∑k−1
i=0 ai,k = 1.

Here and throughout k is in fact a sequence of positive integers going to infinity as

n → ∞ but at a much slower rate than n. Thus, we are defining x̂F as a functional

of the top observations of the original sample, relying on an intermediate sequence

k = kn, with kn → ∞, kn = o(n), as n → ∞. From the non-negativeness of the

weighted spacings in (1.3), we see that x̂F is greater than the maximum Xn,n

with probability one. This is an advantage in comparison with the usual semi-

parametric estimators for the right endpoint of a distribution function in the

Weibull domain of attraction. We refer to Hall (1982), Falk (1995), Hall and

Wang (1999), and to de Haan and Ferreira (2006) and references therein. To the

best of our knowledge, none of these estimators have ensured the extrapolation

beyond the sample range. There have been, however, some developments of

endpoint estimators connected with γ < 0 in the sense of bias reduction and/or

correction. Li and Peng (2009), Li, Peng, and Xu (2011) and Cai, de Haan,

and Zhou (2013) are a few of the works. Recently, Girard, Guillou, and Stupfler

(2012) devised an endpoint estimator from the high-order moments pertaining

to a distribution with γ < 0; Li and Peng (2012) proposed a bootstrap estimator

for the endpoint evolving from the one of Hall (1982) in case γ ∈ (−1/2, 0).

The present paper addresses the class of distribution functions belonging to the

Gumbel domain of attraction, for which no corresponding has yet been provided.

The appropriate framework is developed in Section 2.

The remainder of the paper is as follows. The rationale behind the proposal of

the new estimator for the right endpoint is expounded in Section 3. Consistency

and the asymptotic distribution of the estimator, are worked out in Section 4,

taking advantage of a form of separability between the maximum and the sum of

higher order statistics. In order to perform asymptotics, we require some basic

conditions in the context of the theory of regular variation. These are laid out in

Section 2. In Section 5 we gather some simulation results. Section 6 is devoted

to some applications and conclusions.

2. Framework

Let F be a distribution function (d.f.) with right endpoint xF := sup{x :

F (x) < 1}. For now we assume xF ≤ ∞.

Suppose F satisfies the extreme value condition

lim
x↑xF

1− F (t+ x f(t))

1− F (t)
= (1 + γ x)−1/γ , (2.1)

for all x ∈ R such that 1 + γ x > 0, with a suitable positive function f (this

is equivalent to (1.2), see Theorem 1.1.6 of de Haan and Ferreira (2006)). For

γ = 0 the limit in (2.1) reads as e−x.
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Let U be the (generalized) inverse function of 1/(1− F ). If F satisfies (2.1)

with γ = 0 then we can assume there exists a positive function a0 such that, for

all x > 0,

lim
t→∞

U(tx)− U(t)

a0(t)
= log x. (2.2)

Hence U belongs to the class Π (see Definition B.2.4 of de Haan and Ferreira

(2006)) and a0 is a measurable function such that lim
t→∞

a0(tx)/a0(t) = 1 for all

x > 0. Then a0 is a slowly varying function and we write a0 ∈ RV0 (see Theorem

B.2.7 of de Haan and Ferreira (2006)). The functions a0 and f ( of (2.2) and

(2.1)) are related to each other by a0 = f ◦ U (see Theorem B.2.21 of de Haan

and Ferreira (2006)). We use the notation U ∈ Π(a0) to emphasize the auxiliary

function a0. We assume the following:

(A1) U ∈ Π(a0).

(A2) U(t) = U(t0) +

∫ t

t0

a(s)
ds

s
+ o
(
a(t)

)
, for some t0 ≥ 1, with a positive func-

tion a ∈ RV0 satisfying a(t) ∼ a0(t) as t → ∞.

(B) xF := U(∞) = lim
t→∞

U(t) exists finite.

Under (A1), Proposition B.2.15(3) of de Haan and Ferreira (2006) guarantees

the existence of a twice differentiable function f , with −f
′′ ∈ RV−2, such that

U(t) = f(t) + o
(
a0(t)

)
. Let f(t) = f(t0) +

∫ t
t0
f
′
(s) ds be this function. Hence,

U(t) = U(t0) + f(t) − f(t0) + o
(
a(t)

)
, with a(t) ∼ a0(t), and where we set

f
′
(t) = a(t)/t. This is (A2). Conversely, (A2) implies (A1) by Proposition

B.2.15(5) of de Haan and Ferreira (2006) with g(s) = a(s)/s ∈ RV−1 therein.

Under conditions (A1) and (B), we have

U(∞)− U(t) =

∫ ∞
t

a(s)

s
ds+ o

(
a(t)

)
, t → ∞, (2.3)

lim
t→∞

∫∞
tx U(s)/sds−

∫∞
t U(s)/sds∫∞

t a(s)/sds
= log x, (2.4)

for all x > 0. Hence
∫∞
t U(s) ds/s is also Π-varying with the auxiliary function

q(t) :=

∫ ∞
t

a(s)
ds

s
=

∫ ∞
1

a(st)
ds

s
=

∫ 1

0
a
( t
s

) ds
s
. (2.5)

In the usual notation, the above is
∫∞
t U(s) ds/s ∈ Π(q). Then q is slowly varying

while (2.3) entails that q(t) → 0 as t → ∞ (cf., Lemma C.1 from Appendix C).

Some examples of distributions belonging to the Gumbel domain of attrac-

tion with finite right endpoint, where (2.3) holds, are listed below.
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Example 1. A random variable X is Negative Fréchet with parameter β > 0

if it has distribution function F (x) = 1 − exp{−(xF − x)−β}, x ≤ xF , β > 0.

The associated tail quantile function is U(t) = F←(1 − 1/t) = xF − (log t)−1/β,

t ≥ 1 (the arrow stands for the generalized inverse). Then U ∈ Π(a0) with

a0(t) = (1/β)(log t)−1/β−1 → 0, as t → ∞. The auxiliary function in (2.4) is

q(t) = (log t)−1/β, β > 0.

Example 2. Let F (x) = 1 − exp{− tan(x/β)}, 0 ≤ x < βπ/2, β > 0. Then

U(t) = β arctan(log t), t ≥ 1. Hence U satisfies (2.3) with a(t) = 1/
(
log2 t+β−2

)
and U ∈ Π(a) where U(∞) = βπ/2 = xF .

Example 3. Let F (x) = 1 − exp{(π/2)−β −
(
arcsin(1 − x/β)

)−β}, 0 ≤ x < β,

β > 0. Then U(t) = β
{
1− sin

([
(2/π)β+log t

]−1/β)}, t ≥ 1, and (2.3) holds with

a(t) = (log t)−(1/β+1) cos((log t)−1/β), U ∈ Π(a) and U(∞) = β = xF .

3. Statistics

Let X1, X2, . . . , Xn be a random sample of size n from the underlying distri-

bution function F with finite right endpoint xF . Let X1,n ≤ X2,n ≤ . . . ≤ Xn,n

be the corresponding order statistics. We introduce the estimator q̂(n/k) for the

auxiliary function q as in (2.5), evaluated at t = n/k. This estimator has the

property that, as n → ∞, k = k(n) → ∞, and k(n)/n → 0 (provided some

suitable, mild restrictions on the second order refinement of
∫∞
t U(s)/s ds hold),

q
(
n/k

)
a
(
n/k

)( q̂
(
n/k

)
q
(
n/k

) − 1

)
d−→

n→∞
N,

where N is a non-degenerate random variable. Several estimators for the right

endpoint xF = U(∞) < ∞ can be devised from (2.3), in the sense that these

might evolve from a suitable estimator q̂(n/k) for q(n/k), as

x̂F = Û
(n
k

)
+ q̂
(n
k

)
= Xn−k,n + q̂

(n
k

)
. (3.1)

Here x̂F carries analogous large sample properties to q̂(n/k). In particular, the

consistency of x̂F is essentially ensured by the consistency of q̂(n/k). Theorem

1 in Section 4 accounts for this.

We evaluate relation (2.4) at x = 1/2, together with q(t) at t = n/k (see last

equality in (2.5)), and write, for large enough n,∫ 1

0

(
U
( n

2ks

)
− U

( n
ks

)) ds

s
≈ q
(n
k

)
(− log 2).

Estimation of q(n/k) arises naturally from the empirical counterparts Û
(
n/(θks)

)
=

Xn−[θks],n, s ∈ (0, 1], θ = 1, 2, so
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q̂
(n
k

)
:= − 1

log 2

∫ 1

0

(
Xn−[2ks],n −Xn−[ks],n

) ds
s
. (3.2)

Simple calculations yield the alternative expression

q̂
(n
k

)
= Xn,n +

1

log 2

k−1∑
i=0

log
( k + i

k + i+ 1

)
Xn−k−i,n. (3.3)

Combining (3.1) with (3.3) leads to the right endpoint estimator

x̂F := Xn−k,n +Xn,n +
1

log 2

k−1∑
i=0

log
( k + i

k + i+ 1

)
Xn−k−i,n. (3.4)

After rearranging components, it is possible to express x̂F as the maximum Xn,n

added to some weighted mean of non-negative summands as

x̂F = Xn,n +
k−1∑
i=0

ai,k

(
Xn−k,n −Xn−k−i,n

)
,

with ai,k := −(log 2)−1
(
log(k+ i)− log(k+ i+1)

)
> 0, i = 1, 2, . . . , k ∈ N, such

that
∑k−1

i=0 ai,k = 1.

Remark 1. The proposed estimator for the right endpoint returns values al-

ways larger than xn,n. This constitutes a major advantage in comparison to

the available semi-parametric estimators for the endpoint in the case of Weibull

domain of attraction, for which the extrapolation beyond the sample range is

not guaranteed. This inadequacy of the existing estimators often leads to some

disappointing results in practical applications, with estimates-yields that may be

lower than the observed maximum from the data.

4. Asymptotic Results

Our reasoning here is that the large sample properties of the estimator x̂F

are essentially governed by the asymptotic properties of the estimator q̂(n/k).

This shows up in Theorem 1 with respect to consistency. The consistency of

q̂(n/k) is tackled in Appendix A, with q̂(n/k) defined in (3.2) (see also (3.3)), for

an intermediate sequence k = kn. Similarly, the limiting distribution of q̂(n/k)

in Theorem 2 renders the asymptotic distribution of x̂F via Proposition 1. These

proofs regarding q̂(n/k) are postponed to Appendix A.

Theorem 1. Let X1, X2, . . . be i.i.d. random variables with tail quantile function

U satisfying (A1) and (B). Suppose k = kn is a sequence of positive integers

such that kn → ∞, kn/n → 0, as n → ∞, and q̂(n/k)/q(n/k)
p−→1. Then

x̂F := Xn−k,n + q̂(n/k) is a consistent estimator for xF < ∞, x̂F
p−→

n→∞
xF .
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Proof. Let Uk+1,n be the (k + 1)-th ascending order statistic from the random
sample (U1, U2, . . . , Un) of n uniformly distributed random variables on the unit

interval. Then Xn−k,n
d
=U

(
1/Uk+1,n

)
, where U(·) is the underlying tail quantile

function and
d
= stands for equality in distribution. Write

xF−x̂F
d
=
(
U(∞)− U(

n

k
)−q(

n

k
)
)
−
(
U
( 1

Uk+1,n

)
−U(

n

k
)
)
−q(

n

k
)
( q̂(n/k)
q(n/k)

−1
)

= I − II − III,

where I := U(∞)− U(n/k)− q(n/k) = o
(
a(n/k)

)
, from (2.3). We have

II := U
( 1

Uk+1,n

)
− U(

n

k
) = op

(
a(

n

k
)
)

because U ∈ Π(a) and Smirnov’s Lemma ensures k/(nUk+1,n)
P−→

n→∞
1 (see Lemma

2.2.3 in de Haan and Ferreira (2006)). Moreover,

III := q(n/k)
( q̂(n/k)
q
(
n/k

) − 1
)
= op(1)

by Proposition 2 and the fact that (2.3) implies q(n/k) = o(1).

The limiting distribution of q̂(n/k) (and, later on, the asymptotic distribu-
tion of x̂F ) is attained under a suitable second order refinement of (2.2): suppose
there exist functions a, positive, and A tending to zero as t → ∞, such that for
all x > 0,

lim
t→∞

(U(tx)− U(t))/a(t)− log x

A(t)
=

1

2
(log x)2 . (4.1)

Remark 2. (4.1) follows directly from Theorem B.3.6, Remark B.3.7, and Corol-
lary 2.3.5 of de Haan and Ferreira (2006) because the former states that, in our
setup of γ = 0 and xF < ∞, the only case allowed is the case of the sec-
ond order parameter ρ equal to zero. The second order auxiliary function A
converges to zero, not changing sign for t near infinity, and for every x > 0,
A(tx)/A(t) → 1, t → ∞ (notation: |A| ∈ RV0).

Example 4. Consider the Negative Fréchet distribution function F (x) = 1 −
exp{−(xF − x)−β}, x ≤ xF , β > 0. The auxiliary function here is q(t) =
(log t)−1/β, β > 0, while straightforward calculations yield A0(t) = −(1 + 1/β)
(log t)−1, which implies that −a0(t)/q(t) = A0(t)/(1 + β), for t near infinity.

Theorem 2. Assume (A1), (B) and (4.1) hold. Let k = kn be such that, as
n → ∞, kn → ∞, kn/n → 0, a(n)/a(n/kn) → 1, and

√
knA(n/kn) = O(1). If

lim
n→∞

1

A(n/k)

(∫ 1

1
2k

U
(
n/ks

)
− U

(
n/2ks

)
q(n/k)

ds

s
− log 2

)
= λ ∈ R , (4.2)
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then
q(n/k)

a(n/k)

( q̂(n/k)
q(n/k)

− 1
)

d−→
n→∞

Λ− log 2

2
− λ

log 2
, (4.3)

where Λ has the Gumbel distribution exp{−e−x} for all x ∈ R.

Here (4.2) concerns a second order refinement of (2.4),

lim
t→∞

(∫∞
tx U(s)/sds−

∫∞
t U(s)/sds

)
/q(t)− log x

Q(t)
=

1

2
(log x)2, (4.4)

taken in the point x = 2 for large enough t = n/k. Thus (4.2) stems from the

theory of extended regular variation. We refer to Appendix B of de Haan and

Ferreira (2006) for a good catalog of results in the theory of extended regular

variation.

The assumption that a(n/k)/a(n) → 1 as n → ∞ is more restrictive in

terms of screening for an adequate value k to determine the number of top order

statistics on which to base our inference. For example, for the Negative Fréchet

with kn = np, p ∈ (0, 1),

a(n)

a(n/kn)
=
(
1− log kn

log n

)1/β+1
= (1− p)1/β+1,

which is approximately 1 if and only if p approaches zero. A more appropriate

choice is kn = (log n)r, r ∈ (0, 2], for which

a(n)

a(n/kn)
=
(
1− log kn

log n

)1/β+1
=
(
1− r

log n
+

log log n

log n

)1/β+1
−→
n→∞

1.

The upper bound r ≤ 2 is imposed in order to comply with the assumption√
knA(n/kn) = O(1).

We believe that such a choice for k = kn, with log(kn) = o(log n), is a feasible

one for most models satisfying (2.3). We bring forward the fact here that a

mis-specification of kn, in the sense that a(n/kn)/a(n) converges to a constant

different than 1, has a direct impact on the asymptotic variance of the normalized

relative error presented in Theorem 2 rather than upon the asymptotic bias.

Remark 3. The assumption log k = o(log n) is a common one in the theoretical

analysis of estimators for Weibull-type tails, which form a rich subclass of the

Gumbel max-domain of attraction, albeit with xF = ∞, see Goegebeur, Beirlant,

and De Wet (2010) and Gardes, Girard, and Guillou (2011).

Example 5. The Negative Fréchet distribution has a tail quantile function given

by U(t) = xF − (log t)−1/β, t ≥ 1, 0 < β < 1, satisfying (4.4), with Q(t) =

−(β log t)−1.
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Proposition 1. Under the conditions of Theorem 2,∣∣∣∣ 1

a(n/k)

(
x̂F − xF

)
− q(n/k)

a(n/k)

( q̂(n/k)
q(n/k)

− 1
)∣∣∣∣ P−→

n→∞
0.

Proof. We write

x̂F−xF

a(n/k)
− q(n/k)

a(n/k)

( q̂(n/k)
q(n/k)

− 1
)
=

x̂F − q̂(n/k)

a(n/k)
− xF − q(n/k)

a(n/k)

=
Xn−k,n−U(n/k)

a(n/k)
−U(∞)−U(n/k)−q(n/k)

a(n/k)
.

Under (4.1), Theorem 2.4.1 of de Haan and Ferreira (2006) ensures that
(
Xn−k,n−

U(n/k)
)
/a(n/k) = Op

(
1/

√
k
)
= op(1), and the rest follows from (2.3).

The next result gives an alternative formulation of the results of Theorem 2

and Proposition 1 aimed at providing confidence bands for x̂F .

Theorem 3. Let X1, X2, . . . be i.i.d. random variables with tail quantile function

U satisfying (4.1). Let â(n/k) be a consistent estimator for a(n/k). Suppose k =

kn is a sequence of positive integers such that, as n → ∞, kn → ∞, kn/n → 0,

a(n)/a(n/kn) → 1, and
√
knA(n/kn) = O(1). If

lim
n→∞

1

A(n/k)

(∫ 1

1
2k

U
(
n/ks

)
− U

(
n/2ks

)
q(n/k)

ds

s
− log 2

)
= λ ∈ R,

then
1

â(n/k)

(
x̂F − xF

) d−→
n→∞

Λ− log 2

2
− λ

log 2
.

Proof. The result follows from Theorem 2 and Proposition 1, applying Slutsky’s

theorem.

There are several possibilities for estimating the auxiliary function a(n/k).

An obvious choice is the Maximum Likelihood Estimator (MLE), pretending that

the exceedances over a certain high (random) threshold follow a Generalized

Pareto distribution (cf., Section 3.4 of de Haan and Ferreira (2006):

â(n/k) = σ̂MLE :=
1

k

k−1∑
i=0

(
Xn−i,n −Xn−k,n

)
.
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Figure 1. 1st row: Right tails for probability density functions of Negative
Fréchet Model with right endpoint xF = 1 and β = 1 (solid line), β = 0.7
(dashed line), β = 0.5 (dotted line), β = 0.3 (dotdash line). 2nd row:
Mean estimate (left) and empirical Mean Squared Error (right) of x̂F defined
in (3.4), for the referred models with sample size n = 1, 000. All plots
are depicted against the number k∗ = 2k of top observations used in the
estimator. The naive maximum estimator, x̃F := Xn,n, is also depicted
(horizontal lines).

5. Simulations

The Negative Fréchet distribution function F (x) = 1 − exp{−(xF − x)−β},
x ≤ xF , β > 0, has the tail quantile function U(t) = xF − (log t)−1/β, t ≥ 1,

with a(t) = β−1(log t)−1/β−1, β > 0. The range of β offers various tail shapes,

as shown in the graphics drawn in Figure 1 (1st row).

We simulated 1,000 samples of size n = 100, 1,000, 10,000, from the Negative

Fréchet with right endpoint xF = 1 for β = 0.3, 0.5, 0.7, 1. The results for

n = 1, 000 are depicted in Figure 1 (2nd row).

The common approach to selecting the number k of top order statistics used
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in the estimation (or k∗ = 2k in the present case) is to look for a region where

the plots are relatively stable. Given the consistency property of the adopted

estimator, one should in principle be away from small values of k that are usually

associated with a large variance, and not so far off in the tail as to induce bias

due to large k. An appropriate choice for an intermediate k = kn is kn = (log n)r,

with r ∈ (0, 2]. If we are using n = 1000, and set r = 2, the maximum allowed for

r, we obtain k ≈ 48 and thus k∗ ≈ 96. With k∗ around 100, the plots in Figure

1 look quite stable in a vicinity of the target value xF = 1 represented by the

solid horizontal black line. Hence, the slow convergence imposed by kn = (log n)2

seems to have little effect on the finite sample behavior of the estimator x̂F . This

is particular true in case 0 < β < 1.

The graphs in Figure 1 (2nd row) suggest better estimation under the Nega-

tive Fréchet model if the parameter β is less than 1, which corresponds to the case

where the inherent second order conditions are satisfied. If β ≥ 1, the Negative

Fréchet distribution satisfies the first order condition but not the second order.

Moreover, the general pattern for the mean estimate of x̂F involves a moderated

bias with k∗ in the upper part of the sample, and a quickly increasing bias with

k∗ around 40% of the sample size.

Similar simulations have been carried out for the other two models in Ex-

amples 2 and 3, leading also to favorable results. For any model with finite right

endpoint, the sample path of x̂F departs from the sample maximum, always

returning values beyond the sample.

We should highlight that our estimator x̂F yields better results than the

maximum estimator x̃F := Xn,n, which always underestimates the true value

xF . The relative performance of both x̃F and x̂F can also be easily observed

if we compare the MSE graphics in Figure 1 (2nd row, right): for the top part

the sample, depending on the β value, the estimator x̂F always outperforms the

maximum x̃F , presenting the new estimator a lower mean squared error than the

naive maximum estimator.

6. Case Study and Conclusion

This section is dedicated to the estimation of the finite right endpoint in the

Gumbel maximum domain of attraction, which embraces light-tailed distribu-

tions with finite endpoint. Here extreme value analysis demands the estimation

of the right endpoint, although the underlying distribution tail is not so light as

to be included in Weibull domain of attraction. Fraga Alves, de Haan, and Neves

(2013), working with athletics records data, filled the gap, highlighted in Einmahl

and Magnus (2008), on assessing the ultimate records for several athletic events.

We here consider an application to statistical extreme value analysis of Anchor-

age International Airport (ANC) Taxiway Centerline Deviations for Boeing 747
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Figure 2. ANCrt data: EVI estimation with Moment estimator and 95% confidence
bandwidths, plotted against k.

Aircraft, see Scholz (2003). The goal was to provide a basis for understanding

the extreme behavior of centerline deviations of the Boeing-747.

That report addressed the risk of an aircraft deviating at a fixed location

along the taxiway beyond a certain threshold distance from the taxiway cen-

terline. The B-747 taxiway deviation data were collected from 9/24/2000 to

9/27/2001 at ANC; during this period, 9,767 deviations were recorded at ANC

with a range of [-8.225, 8.863] feet, in both directions of the taxiways. Based

on the extreme value limiting assumption, positive deviations (ANCrt data with

sample size n = 4, 900) were extrapolated using the k = 385 most extreme devia-

tions at ANC, the chosen k value of top observations to EVI estimation, namely

γ̂ = 0.03925, Scholz (2003).

Figure 2 depicts the sample path of γ̂, the EVI estimate, using the Moment

estimator of Dekkers, Einmahl, and de Haan (1989), along with the 95% con-

fidence bandwidths, for the ANCrt data. It is easily checked that the straight

line corresponding γ = 0 is inside the confidence bandwidths for a very large

upper part of the sample, (in the graphic k ≤ 2, 000). Consequently, the Gumbel

domain of attraction cannot be discarded. Moreover, the testing procedures for

detecting a finite right endpoint (cf., Neves and Pereira (2010)) suggest the pres-

ence of a distribution with finite right endpoint underlying the ANC deviation

data.

Figure 3 depicts the sample path of our endpoint estimator x̂F against k∗.

In the range of 650 ≤ k∗ ≤ 2, 300 the graph is quite stable. If we rely on that
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Figure 3. endpoint estimation.

region we suggest for an endpoint estimate a value of approximately 9.21 ft, this

for the period 9/24/2000 to 9/27/2001.

We conclude that the proposed estimator x̂F performs reasonably well for

parent distributions in the Gumbel domain with finite right endpoint xF .

The robustness of the endpoint estimator (1.3), under Weibull domain of

attraction, is a topic of further research, but beyond the present scope.
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Appendix A: Consistency of q̂(n/k)

Let U1, . . . , Un be independent and identically distributed uniform random

variables on the unit interval and let U1,n ≤ U2,n ≤ . . . ≤ Un,n be their order

statistics. Since k = kn is an intermediate sequence kn = o(n) as n → ∞, we can
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define a sequence of Brownian motions
{
Wn(s)

}
s≥0 such that, for each ε > 0,

sup
1
θk
≤s≤1

s
3
2
+ε

∣∣∣∣√θk

(
θk

nU[θks]+1,n
− 1

s

)
− 1

s2
Wn(s)

∣∣∣∣ = op(1), (A.1)

for all θ ≥ 1 (cf., Lemma 2.4.10 of de Haan and Ferreira (2006), with γ = 1).

Let X1, X2, . . . be i.i.d random variables with distribution function F ∈
D(G0), with finite right endpoint xF , such that (2.3) holds. Note that U(1/Ui)
d
=Xi, i = 1, 2, . . .. In view of relation (2.3), the following holds:

U(tx)− U(t)

a(t)
=

∫ 1

1/x

a
(
t
s

)
a(t)

ds

s
+

a(tx)

a(t)
o(1) + o(1), (t → ∞)

for all x > 0. Given that a ∈ RV0, we obtain for sufficiently large n that

Xn−[θks],n − U
(

n
θk

)
a
(

n
θk

) d
=

U
(

n
θk

θk
nU[θks]+1,n

)
− U

(
n
θk

)
a
(

n
θk

) ≈
∫ 1

nU[θks]+1,n
θk

a
(

n
θk

1
x

)
a
(

n
θk

) dx

x
.

The uniform inequalities in Lemma C.1.1(ii) tell us that, for any ε > 0,

a
(
(n/θk)(1/s)

)
a
(
n/θk

) = 1± εs−ε, 0 < s ≤ 1.

Since U[θks]+1,n ∈ [0, 1] and for every s ∈ (0, 1],

nU[θks]+1,n

θk
≤

nU[θk]+1,n

θk

P−→
n→∞

1,

we get the upper bound

Xn−[θks],n − U
(
n/θk

)
a
(
n/θk

)
≤ − log s− log

(
1 +

(nU[θks]+1,n

θks
− 1
))

+

((nU[θks]+1,n

θk

)−ε
− 1

)
= − log s− 1

s

(nU[θks]+1,n

θk
− s
)(

1 + op(1)
)
+ (s−ε − 1)

(
1 + op(1)

)
,

with the op(1)-term tending to zero uniformly for s ∈ [(θk)−1, 1]. A similar lower

bound is also possible. We can apply Cramér’s δ-method to relation (A.1) to

obtain

Xn−[θks],n−U
(

n
θk

)
a
(

n
θk

) = − log s+
1√
θk

(
s−1Wn(s)+op(s

−1/2−ε)
)
±(s−ε−1)

(
1+op(1)

)
,

(A.2)
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as n → ∞, uniformly for (θk)−1 ≤ s ≤ 1, θ ≥ 1. We consider the normalized

difference between a sample intermediate quantile and corresponding theoretical

quantile

Rθ(s) :=
Xn−[θks],n − U

(
n
θks

)
a
(

n
θks

) (A.3)

=
Xn−[θks],n − U

(
n
θk

)
a
(

n
θk

) +

(
a
(

n
θk

)
a
(

n
θks

) − 1

)
Xn−[θks],n − U

(
n
θk

)
a
(

n
θk

) +
U
(

n
θk

)
− U

(
n
θks

)
a
(

n
θks

) .

Bearing on (A.2) combined with the uniform inequalities in Lemma C.1(1), we

thus get for any ε > 0,

Rθ(s) = − log s+
1√
θk

(Wn(s)

s
+ s−1/2−εop(1)

)
±(s−ε − 1)

(
1 + op(1)

)
± εs−ε(− log s) + log s± εs−ε

=
1√
θk

Wn(s)

s
± (s−ε − 1)

(
1 + op(1)

)
∓ εs−ε log s, (A.4)

for s ∈ [(θk)−1, 1], all θ ≥ 1. Thus the distribution of deviations between high

(large) sample quantiles and their theoretical counterparts is attainable, with a

vanishing bias, by means of a different normalization than on the left hand-side

of (A.2). The weak convergence of q̂(n/k) is supported on the latter.

Proposition 2. Let X1, X2, . . . be i.i.d. random variables with tail quantile

function U satisfying (2.3). Suppose k = kn is a sequence of positive integers

such that kn → ∞, kn/n → 0, as n → ∞. Then

q̂
(
n/k

)
q
(
n/k

) p−→
n→∞

1.

Proof. We begin by noting that

q̂
(
n/k

)
q
(
n/k

) = − 1

log 2

∫ 1

0

Û
(
n/2ks

)
− Û

(
n/ks

)
q
(
n/k

) ds

s

= − 1

log 2

{∫ 1

1
2k

Xn−[2ks],n − U
(

n
2ks

)
q
(
n
k

) ds

s
−
∫ 1

1
k

Xn−[ks],n − U
(
n
ks

)
q
(
n
k

) ds

s
(A.5)

−
∫ 1

k

1
2k

Xn,n − U
(
n
ks

)
q
(
n
k

) ds

s
+

∫ 1

1
2k

U
(

n
2ks

)
− U

(
n
ks

)
q
(
n
k

) ds

s

}
.(A.6)

We write (see Eq. (A.3) with θ = 2)∫ 1

1
2k

Xn−[2ks],n − U
(

n
2ks

)
q
(
n
k

) ds

s
−
∫ 1

1
k

Xn−[ks],n−U
(

n
ks

)
q
(

n
k

) ds

s
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=

∫ 1

1
2

Xn−[2ks],n−U
(

n
2ks

)
q
(

n
k

) ds

s
=: I1(k, n), (A.7)

where

I1(k, n) =
a(n/k)

q
(
n
k

) {∫ 1

1
2

R2(s)
ds

s
+

∫ 1

1
2

( a( n
2ks

)
a(n/k)

− 1
)
R2(s)

ds

s

}
. (A.8)

From Lemma C.2.,

I1(k, n) =

∫ 1

1
2

Xn−[2ks],n − U
(

n
2ks

)
q
(
n
k

) ds

s

≤ a(n/k)

q
(
n
k

) ∣∣∣∫ 1

1
2

R2(s)
ds

s

∣∣∣+ (a(n/k)
q(n/k)

)2∣∣∣∫ 1

1
2

R2(s) log(2s)
ds

s

∣∣∣
≤ a(n/k)

q
(
n
k

) (1 + a(n/k)

q(n/k)
log 2

)∣∣∣∫ 1

1
2

R2(s)
ds

s

∣∣∣, (A.9)

with high probability, for sufficiently large n. We can provide a similar lower
bound.
Owing to (A.4), for any positive ε,∣∣∣∫ 1

1
2

R2(s)
ds

s

∣∣∣ ≤ ∣∣∣ 1√
2k

∫ 1

1
2

s−2Wn(s)ds
∣∣∣+ ∫ 1

1
2

(
s−ε−1

)ds
s

(
1+op(1)

)
−ε

∫ 1

1
2

s−ε log s
ds

s
.

Since ε > 0 is arbitrary,

0 <

∫ 1

1
2

(
s−ε − 1

)ds
s

=
2ε − 1

ε
− log 2−→

ε↓0
0,

meaning that ∫ 1

1
2

(
s−ε − 1

) ds
s

can be discarded. A similar line of reasoning applies to

ε

∫ 1

1
2

s−ε log
(1
s

)ds
s

= 2ε log 2− 2ε − 1

ε
−→
ε↓0

0.

Let

Yn :=
1√
2k

∫ 1

1
2

Wn(s)
ds

s2
,

be a sequence of normal random variables with zero mean, and

V ar(Yn) =
1− log 2

k
−→
n→∞

0.
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Thus {Yn}n≥1 is a sequence of degenerate random variables, eventually, and the

two integrals in (A.5) vanish with probability tending to one as n → ∞. As

a(n/k)/q(n/k) = o(1), one has

I1(k, n) = op(1)

(
= op

(a(n/k)
q(n/k)

)
= Op

( a(n/k)√
kq(n/k)

))
.

For the first integral in (A.6),

I2(k, n) :=

∫ 1
k

1
2k

Xn,n − U
(
n
ks

)
q
(
n
k

) ds

s

=

∫ 1

1/2

Xn,n − U
(
n
s

)
q
(
n
k

) ds

s

d
=

a(n)

q(n/k)

{U
(

1
U1,n

)
− U(n)

a(n)
log 2−

∫ 1

1
2

U
(
n
s

)
− U(n)

a(n)

ds

s

}
=

a(n)

q(n/k)

{
− log(nU1,n) log 2 +

∫ 1

1
2

log s
ds

s

}(
1 + op(1)

)
=

a(n)

q(n/k)
log 2

(
− log(nU1,n)−

1

2
log 2

)(
1 + op(1)

)
.

Then the probability integral transformation yields

− log(nU1,n)
d
=En,n − log n, (A.10)

where En,n is the maximum of n i.i.d. standard exponential random variables.

Hence, the random variable (A.10) converges in distribution to a Gumbel random

variable with distribution function exp{−e−x}, x ∈ R. Moreover, a(n)/q(n/k) →
0, as n → ∞, because a(n/k)/q(n/k) = o(1) (see Lemma C.1(2) in Appendix

C), where the auxiliary positive function a satisfies a(t) → 0, as t → ∞, by

assumption. Therefore

I2(k, n) = op(1)
(
= Op

( a(n)

q(n/k)

))
. (A.11)

We show that the last integral in (A.6) is bounded. We establish the upper

bound, ∫ 1

1
2k

U
(
n
ks

)
− U

(
n
2ks

)
q(n/k)

ds

s
≤
∫ 1

0

U
(
n
ks

)
− U

(
n
2ks

)
q(n/k)

ds

s
, (A.12)

and the lower bound,∫ 1

1
2k

U
(
n/ks

)
− U

(
n/2ks

)
q(n/k)

ds

s
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=

∫ 1− 1
2k

0

U
(
n/(ks+ 1/2)

)
− U

(
n/(2ks+ 1)

)
q
(
n/k

) ds

s+ 1/2k

≥
∫ 1

0

U
(

n
ks+1/2

)
− U

(
n

2ks+1

)
q
(
n
k

) ds

s+ 1
2k

− 2

∫ 1

1− 1
2k

U
(

n
ks+1/2

)
− U

(
n

2ks+1

)
q
(
n
k

) ds

s+ 1
2k

.

Making t = n/k run on the real line towards infinity, then Π−variation (2.4)

follows

lim
t→∞

∫ 1
0 U

(
tx
s

)
ds
s −

∫ 1
0 U

(
t
s

)
ds
s

q(t)
= log x, x > 0, (A.13)

and clearly entails the limit for the upper bound in (A.12):∫ 1
0 U

(
n
ks

)
ds
s −

∫ 1
0 U

(
n
2ks

)
ds
s

q(n/k)
= −

∫ 1
0 U

(
n
2ks

)
ds
s −

∫ 1
0 U

(
n
ks

)
ds
s

q(n/k)
−→
n→∞

log 2.

Regarding the lower bound, we write

∫ 1

1
2k

U
(
n
ks

)
− U

(
n
2ks

)
q(n/k)

ds

s
≥
∫ 1

0

U
(

n

k
(
s+ 1

2k

))− U
(

n

2k
(
s+ 1

2k

))
q
(
n
k

) ds

s+ 1
2k

(A.14)

− 2
q
(

n
2k

)
q
(
n
k

) ∫ 1

1− 1
2k

U
(

n

k
(
s+ 1

2k

))− U
(

n

2k
(
s+ 1

2k

))
ds

s+ 1
2k

, (A.15)

and note that, for every ε > 0, there exists n0 ∈ N such that for n ≥ n0,∣∣∣ 1

s+ 1/(2k)
− 1

s

∣∣∣ < ε. (A.16)

In turn,

∫ 1

0

U
(

n

k
(
s+ 1

2k

))−U
(

n

2k
(
s+ 1

2k

))
q
(
n
k

) ds

s+ 1
2k

>

∫ 1

0

U
(

n

k
(
s+ 1

2k

))−U
(

n

2k
(
s+ 1

2k

))
q
(
n
k

) (1
s
−ε
)
ds.

For the first part of the right-hand side here we use (A.13), while the second part

is dealt by Theorem B.2.19 of de Haan and Ferreira (2006) involving the fact

that U ∈ Π(a):

∫ 1

0

U
(

n

k
(
s+ 1

2k

))−U
(

n

2k
(
s+ 1

2k

))
q
(
n
k

) ds

s
+ ε

a
(
n
k

)
q
(
n
k

) ∫ 1

0

U
(

n

2k
(
s+ 1

2k

))− U
(

n

k
(
s+ 1

2k

))
a
(
n
k

) ds

= log 2
(
1 + o(1)

)
− ε

a
(
n/k

)
q
(
n/k

) log 2(1 + o(1)
)
−→
n→∞

log 2.
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For the latter, we recall that a(n/k) = o
(
q(n/k)

)
. Now we write δ = 1/(2k) > 0

everywhere in (A.15). Furthermore, we assume that there exists n0 ∈ N such

that, for n ≥ n0, the term nδ is large enough and the integral in (A.15) can

rephrased as

I∗δ :=

∫ 1
1−δ

(
U
(

2
s+δnδ

)
− U

(
1

s+δnδ
))

ds
s+δ∫ 1

nδ a(s)
ds
s

. (A.17)

For every fixed δ > 0, from the Π-variation of U with for the numerator of I∗δ
properly rescaled by a(nδ) (cf., Theorem B.2.19 in de Haan and Ferreira (2006)):∫ 1

1−δ

(
U
(

2
s+δnδ

)
− U

(
1

s+δnδ
))

ds
s+δ

a(nδ)
−→
n→∞

∫ 1

1−δ
log 2

ds

s+ δ
= log(1 + δ) log 2.

For arbitrary small δ, the latter approaches zero. We then apply Cauchy’s rule

to obtain limδ→0 I
∗
δ (we recall that δ → 0 implies n → ∞). Apply Eq. (2.11) of

Chiang (2000) to the numerator of I∗δ to get

lim
δ→0

I∗δ = lim
δ→0

∫ 1
1−δ

(
U ′
(

2
s+δnδ

)
2s

(s+δ)3
− U ′

(
1

s+δnδ
)

s
(s+δ)3

)
ds

−a(nδ)
nδ

+ lim
δ→0

{
δ

∫ 1

1−δ

U
(
2nδ
s+δ

)
− U

(
nδ
s+δ

)
a(nδ)

ds

(s+ δ)2
− δ

U(2nδ)− U(nδ)

a(nδ)

}
.

Since U ′(t) = a(t)/t, the limit becomes equal to the the limit of

−
∫ 1

1−δ

(a(2nδ/(s+ δ)
)

a(nδ)
−

a
(
nδ/(s+ δ)

)
a(nδ)

) s ds

(s+ δ)2

+δ
(∫ 1

1−δ

U
(
2nδ/(s+ δ)

)
−U

(
nδ/(s+ δ)

)
a(nδ)

ds

(s+ δ)2
− U(2nδ)− U(nδ)

a(nδ)

)
.

We can now take any arbitrary small δ (making n → ∞) in order to apply

the uniform convergence of a ∈ RV0 and U ∈ Π(a) so that the above integrals

are ensured finite and then equal to zero by definition. Hence, all the terms are

negligible as δ converges to zero meaning that limδ→0 I
∗
δ becomes null. Therefore,∫ 1

1
2k

U
(
n/2ks

)
− U

(
n/ks

)
q
(
n/k

) ds

s
−→
n→∞

− log 2.

Consistency of q̂(n/k) follows by noting that q(n/k) ∼ q
(
n/(2k)

)
.

Appendix B: Asymptotic distribution of q̂(n/k)

In order to establish the asymptotic distribution of the proposed estimator

for q(n/k) we need insight about the distributional representation obtained from
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(A.2). Specifically, if the tail quantile function satisfies (4.1), then Theorem 2.4.2

of de Haan and Ferreira (2006) ascertains that, for each ε > 0,

sup
1
θk
≤s≤1

s1/2+ε

∣∣∣∣√θk

(
Xn−[θks],n−U

(
n
θk

)
a0
(

n
θk

) + log s

)
−Wn(s)

s
−

√
θkA0

( n
θk

)1
2
(log s)2

∣∣∣∣
p−→

n→∞
0, (B.1)

provided k = kn → ∞, kn/n = o(n) and
√
knA0(n/kn) = O(1).

We have the following result (cf., (2.4.7) of de Haan and Ferreira (2006)).

Proposition B.1. Given (2.3), suppose (4.1) holds. Let k = kn → ∞, kn/n =

o(n) and
√
knA(n/kn) → λ ∈ R, as n → ∞. Then, for θ ≥ 1 and for each ε > 0

sufficiently small,

sup
1
θk
≤s≤1

s1/2+ε

∣∣∣∣√θk
Xn−[θks],n − U

(
n/θks

)
a
(
n/θks

) − Wn(s)

s

∣∣∣∣ = op(1).

Proof. As with the equality right after (A.3), we have that

Rθ(s) :=
Xn−[θks],n−U

(
n
θks

)
a
(

n
θks

) =
a0
(

n
θk

)
a
(

n
θks

){Xn−[θks],n−U
(

n
θk

)
a0
(

n
θk

) −
U
(

n
θks

)
−U

(
n
θk

)
a0
(

n
θk

) }
.

Noting that
a0(t)

a
(
t/s
) =

a0(t)

a(t)

a
(
t
)

a
(
t/s
) ,

for all s > 0, Lemma C.2 combined with Remark C.1. yields the expansion

a0(t)

a
(
t
s

) =
a0(t)

a(t)

(
1− a(t)

q(t)
log s+ o

(a(t)
q(t)

))
=

a0(t)

a(t)

(
1 +A(t) log s+ o

(
A(t)

))
,

(B.2)

for all s > 0. Here |A| ∈ RV0 and a0(t)/a(t) = 1 + o
(
A(t)

)
.

Having set 1/(θk) ≤ s ≤ 1, we thus have from (B.1), the uniform bounds in

(C.2), and the second equality in (B.2), that

√
θk Rθ(s) =

Wn(s)

s
+A

( n
θk

) log s
s

Wn(s)∓ εs−ε
√
θk A

( n
θk

)
±εs−ε log s

√
θk A2

( n
θk

)
+ op(s

− 1
2
−ε) + op

(
s−

1
2
−ε log sA

( n
θk

))
,

uniformly in s. Hence, the assumption that
√
kA(n/k) = O(1) entails that

log(1/s)A
(
n/(θk)

)
→0, whereas εs−ε

√
θkA

(
n/(θk)

)
virtually becomes o(s−1/2−ε)

for each ε > 0 arbitrarily small and uniformly in s ∈ [(θk)−1, 1]. The op-terms
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are uniform in s ∈ [1/(θk), 1]. Hence the following representation is valid for
ε ∈ (0, 1),

√
θk Rθ(s) =

Wn(s)

s
+ op(s

−1/2−ε).

Proof of the Theorem 2. We have

q(n/k)

a(n/k)

( q̂(n/k)
q(n/k)

− 1
)

= − 1

a(n/k)

1

log 2

{∫ 1

1
2

(
Xn−[2ks],n − U

( n

2ks

)) ds

s
−
∫ 1

k

1
2k

(
Xn,n − U

( n
ks

)) ds

s

−q
(n
k

)(∫ 1

1
2k

U
(
n/ks

)
− U

(
n/2ks

)
q
(
n
k

) ds

s
− log 2

)}
= − 1

log 2

{
J1(k, n)− J2(k, n)

}
+

q
(
n/k

)
a
(
n/k

) 1

log 2
J3(k, n). (B.3)

By mimicking the steps from (A.7) to (A.8), we obtain for the first integral above
that

√
2k J1(k, n) :=

√
2k

∫ 1

1
2

Xn−[2ks],n − U
(
n/2ks

)
a
(
n/k

) ds

s

=

∫ 1

1
2

√
2k R2(s)

ds

s
+

∫ 1

1
2

(a(n/2ks)
a
(
n/k

) − 1
)√

2k R2(s)
ds

s
.

Hence, Proposition B.1, while assuming that
√
k a(n/k)/q(n/k) = O(1) (cf.,

Remark C.1) and application of the uniform bounds in (C.3) with a0(t) :=
a(t)

(
1 + o(A(t)

)
and A0(t) := A(t), imply that for each ε > 0,

√
2k J1(k, n) =

∫ 1

1
2

Wn(s)
(
1− log(2s)

) ds
s2

+op(1)

∫ 1

1
2

log
( 1
2s

)(1
s

)3/2+ε
ds+ op

(
A0

(n
k

))
.

Since the integral
∫ 1
1/2Wn(s)(1 − log(2s))s−2 ds converges to a sum of indepen-

dent normal random variables, this allows us to conclude that the first random
component in (B.3) is negligible with high probability because

J1(k, n) = Op

( 1√
k

)
.

We now have that

J2(k, n) :=

∫ 1
k

1
2k

Xn,n − U
(
n
ks

)
a
(
n
k

) ds

s
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=
a(n)

a(n/k)

{
− log 2 log

(
nU1,n

)
+
a0(n)

a(n)

∫ 1

1
2

log s
ds

s

+A0(n)

∫ 1

1
2

((log s)2
2

±εs−ε
)ds
s

}
.

We have that a0(n)/a(n)− 1 = o
(
A(n)

)
and A0(n) = A(n); hence

a(n/k)

a(n)

1

log 2
J2(k, n)

= − log
(
nU1,n

)
− log 2

2
+

1

log 2
A(n)

∫ 1

1
2

((log s)2
2

± εs−ε
) ds

s
+ o
(
A(n)

)
= − log

(
nU1,n

)
− log 2

2
+ o(1).

Furthermore, assuming that k = k(n) is such that a(n)/a(n/k) → 1, then

a(n/k)

a(n)

1

log 2
J2(k, n)

d−→
n→∞

Λ− log 2

2
,

where Λ denotes a Gumbel random variable with distribution function exp{−e−x},
x ∈ R (cf., (A.10)). If a(n)/a(n/k) converges to a constant different than 1, then

a change in the scale is performed. The following also holds given (C.3) and that√
knA(n/kn) = O(1):

1

log 2
J2(k, n)

d−→
n→∞

Λ− log 2

2
.

We turn to the bias term J3(k, n). By assumption,

J3(k, n)

A(n/k)
=

1

A(n/k)

(∫ 1

1
2k

U
(
n/ks

)
− U

(
n/2ks

)
q
(
n/k

) ds

s
− log 2

)
−→
n→∞

λ,

as n → ∞. Therefore, since A(n/k) ∼ −a(n/k)/q(n/k) (cf., Remark C.1), the

deterministic term J3(k, n) renders a contribution to the asymptotic bias of

q(n/k)

a(n/k)

1

log 2
J3(k, n)−→

n→∞
− λ

log 2
.

Appendix C: Auxiliary Results

Lemma C.1.

1. Suppose U ∈ Π(a). Then,
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(i) there exists a positive function a satisfying a(t) ∼ a0(t), as t → ∞, such
that for any ε > 0 there exists t0 = t0(ε) such that, for t, st ≥ t0, s ∈ (0, 1],∣∣∣∣U(st)− U(t)

a(t)
− log s

∣∣∣∣ ≤ ε max(sε, s−ε);

(ii) a ∈ RV0 and for any ε > 0 there exists t0 = t0(ε) such that, for t, st ≥ t0,
s ∈ (0, 1], ∣∣∣∣a(st)a(t)

− 1

∣∣∣∣ ≤ ε max(sε, s−ε).

1. Suppose a > 0 is a slowly varying function, integrable over finite intervals of
R+ such that ∫ ∞

t
a(s)

ds

s
< ∞

for every t > 0. Then a(t) → 0 , as t → ∞, and

lim
t→∞

∫ ∞
t

a(s)

a(t)

ds

s
= ∞.

Proof. Part 1.(i) of the Lemma comes from de Haan and Ferreira (2006) (cf.,
Proposition B.2.17), while (ii) is a result from Drees (1998) (cf., Proposition
B.1.10 of de Haan and Ferreira (2006)). The second part follows from Kara-
mata’s theorem for regularly varying functions (cf., Theorem B.1.5 of de Haan
and Ferreira (2006)).

Lemma C.2. Under (A1) and (B),

lim
t→∞

a(tx)/a(t)− 1

a(t)/q(t)
= − log x, x > 0.

Proof. The underlying assumption that U ∈ Π(a) entails

q(t)

a(t)

(a(tx)
a(t)

− 1
)
=

q(t)

U(tx)− U(t)

U(tx)− U(t)

a(t)

(a(tx)
a(t)

− 1
)

=
q(t)

U(tx)− U(t)
log x

(a(tx)
a(t)

− 1
)(

1 + o(1)
)
. (t → ∞) (C.1)

Furthermore, according to (2.3),

q(t)

U(tx)− U(t)
=

∫∞
t a(s) ds

s∫ tx
t a(s) ds

s

(
1 + o(1)

) = 1 +

∫∞
tx a(s) ds

s∫ tx
t a(s) ds

s

(
1 + o(1)

)
.

By taking the limit of the latter term when t → ∞, we get from Cauchy’s rule
together with the fundamental theorem of integral calculus that

lim
t→∞

∫∞
tx a(s) ds

s∫ tx
t a(s) ds

s

= lim
t→∞

−a(tx)

a(tx)− a(t)
= − lim

t→∞

(a(tx)
a(t)

− 1
)−1

.
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After (C.1), we get

q(t)

a(t)

(
a(tx)

a(t)
− 1

)
= log x

(
1 +

∫∞
tx a(s) ds

s∫ tx
t a(s) ds

s

)(a(tx)
a(t)

− 1
)(

1 + o(1)
)

= − log x+ log x
(a(tx)
a(t)

− 1
)(

1 + o(1)
)
. (t → ∞)

In addition to the second order condition (4.1), Theorem 2.3.6 of de Haan

and Ferreira (2006) ascertains the existence of functions a0 and A0 satisfying, as

t → ∞, A0(t) ∼ A(t) and a0(t)/a(t) − 1 = o
(
A(t)

)
, with the property that for

any ε > 0, there exists t0 = t0(ε) such that for all t, tx ≥ t0,∣∣∣∣(U(tx)− U(t))/a0(t)− log x

A0(t)
− 1

2
(log x)2

∣∣∣∣ ≤ εmax(xε, x−ε), (C.2)∣∣∣∣a0(tx)/a0(t)− 1

A0(t)
− log x

∣∣∣∣ ≤ εmax(xε, x−ε). (C.3)

Remark C.1. Relation (C.3), combined with Lemma C.2, ascertains that

−a0(t)/q(t) = cA0(t), with c ̸= 0 because ρ = γ = 0 (cf., Eq. (B.3.4) and

Remark B.3.5 in de Haan and Ferreira (2006)). Hence the assumption in this

paper that the function q can be redefined in order that −a/q ∼ A is satisfied.
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