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S1 Proof of Lemma 6

To simplify notation, we let fn(t, s, u) = Z̄n(β0; t, s− u) and

g(t, s, u) =
Ē1(t− (s− u), s− u)

Ē0(t− (s− u), s− u)
.

For a subject who enrolled into the study at time u, define, for s ∈ [u, τ ], counting
measure

pn,u(ds) = I(u+ T̃u = s).

Under the σ-filtration Fn,t, it is easy to see the compensator for pn,u(ds) is

qn,u(ds) = I(T̃u≥s−u) exp{β′Zu}λ0(s− u)ds.

Thus,

Mn,u(ds) = I(u<s)[pn,u(ds)− qn,u(ds)]

is a martingale measure. Comparing this with (4), it follows that Mi(t, s) is a martingale
as a process in s, since for the ith subject with entry time u = Ui, Mn,Ui(ds) = I(Ui+T̃i ∈
ds)− qn,Ui(ds) = Mi(t, d(s− Ui)) for s > Ui. Define martingale integral

Mn,u(t) =

∫ t

u

Mn,u(ds),

which is the total measure on interval [u, t]. Let

Mn(t, du) =

[∫ t

u

Mn,u(ds)

]
dR(u) = Mn,u(t)dR(u),

which defines a random measure along entry time for subjects who enrolled into the
study before time t.
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Under the above notation, for Mn(t, ϑ) defined as in (9), we have the following
identity

Mn(t, ϑ) =

∫ t

0

∫ ϑ

0

Mn(ds du) =

∫ ϑ

0

Mn(t, du).

Note that from Lemma 1, Mn(t, ϑ) is a martingale along both calendar and entry times,
i.e., Mn(t, ϑ) is a martingale in t for any fixed ϑ and a martingale in ϑ for any t. When

ϑ = t, we have Mn(t, t) =
∫ t
0

∫ t
0
Mn(ds du), which is Mn(t). Similarly, define random

integral M̃n(w, ϑ) with respect to survival time w and entry time ϑ by

M̃n(w, ϑ) =

∫ ϑ

0

Mn(w + u, du)

(
=

∫ ϑ

0

Mn,u(w + u)dR(u)

)
. (S1.1)

Note that M̃n(w, ϑ) is defined on the information observed before entry time ϑ and
survival time w.

To prove Lemma 6, we need the following two propositions, whose proofs are given
in Sections S2 and S2, respectively. Proposition 1 shows that Mn(t, ϑ)/

√
n is tight

along calendar and entry times while Proposition 2 shows the tightness property for
M̃n(w, ϑ)/

√
n along survival and entry times.

Proposition 1 Under Conditions C1 and C2, for any ε > 0, there exist constant n0 <
∞ and partition 0 = un,0 ≤ un,1 ≤ · · · ≤ un,n0

= τ such that for all large n,

P

 max
0≤j<n0

sup
ϑ∈[un,j,un,j+1];

0≤t≤τ

|Wn,t,ϑ −Wn,t,un,j | ≥ ε

 ≤ ε,
where Wn,t,ϑ = Mn(t, ϑ)/

√
n.

Proposition 2 Under Conditions C1 and C2, for any ε > 0, there exist partitions
0 = w0 < w1 < · · · < wN0

= τ and 0 = un,0 ≤ un,1 ≤ · · · ≤ un,n0
= τ such that for all

large n,

P

 max
0≤j<n0
0≤k<N0

sup
ϑ∈[un,j,un,j+1]

w∈[wk,wk+1]

|W̃n,w,ϑ − W̃n,wk,un,j | ≥ ε

 ≤ ε,
where W̃n,w,ϑ = M̃n(w, ϑ)/

√
n.

Proof of Lemma 6. For any (ϑ, t) such that 0 ≤ ϑ ≤ t ≤ τ , by changing the
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integration order, we have that

1√
n

∫ t

0

∫ ϑ

0

(fn(t, s, u)− g(t, s, u))Mn(ds du)

=
1√
n

∫ t

0

∫ s∧ϑ

0

(fn(t, s, u)− g(t, s, u))(pn(ds du)− qn(ds du))

=
1√
n

∫ ϑ

0

∫ t

u

(fn(t, s, u)− g(t, s, u))(pn(du ds)− qn(du ds))

=
1√
n

∫ ϑ

0

[∫ t

u

(fn(t, s, u)− g(t, s, u))Mn,u(ds)

]
dR(u)

=
1√
n

∫ ϑ

0

[
Mn,u(t)(fn(t, t, u)− g(t, t, u))−Mn,u(u)(fn(t, u, u)− g(t, u, u))

−
∫ t

u

Mn,u(s)(fn(t, ds, u)− g(t, ds, u))

]
dR(u) + op(1), (S1.2)

where the last equation follows from the integration-by-parts formula. Inclusion of op(1)
is due to the discontinuity of both the integrand and the integrator functions when the
integration-by-parts formula is used. Therefore, by the definition of Mn(t, du) and the
fact that Mn,u(u) = 0, we get

(S1.2) =
1√
n

∫ ϑ

0

(fn(t, t, u)− g(t, t, u))Mn(t, du)

− 1√
n

∫ ϑ

0

[∫ t

u

Mn,u(s)(fn(t, ds, u)− g(t, ds, u))

]
dR(u) + op(1).

(S1.3)

In view of (S1.3), it remains to show that the two leading terms in (S1.3) are negligible.

For the first term, taking integration by parts, we have that∣∣∣∣∣ 1√
n

∫ ϑ

0

(fn(t, t, u)− g(t, t, u))Mn(t, du)

∣∣∣∣∣
=

∣∣∣∣ 1√
n

(fn(t, t, ϑ)− g(t, t, ϑ))Mn(t, ϑ)− 1√
n

(fn(t, t, 0)− g(t, t, 0))Mn(t, 0)

− 1√
n

∫ ϑ

0

Mn(t, u)(fn(t, t, du)− g(t, t, du))

∣∣∣∣+ op(1)

≤
∣∣∣∣ 1√
n

(fn(t, t, ϑ)− g(t, t, ϑ))Mn(t, ϑ)

∣∣∣∣
+

1√
n

∣∣∣∣∣
∫ ϑ

0

Mn(t, u)(fn(t, t, du)− g(t, t, du))

∣∣∣∣∣+ op(1). (S1.4)

From Proposition 1, we have, for any ε > 0, there exists a partition 0 = un,0 ≤ un,1 ≤
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· · · ≤ un,n0
= τ such that for all large n,

P

(
sup

i;u∈(un,i,un,i+1]

1√
n
|Mn(t, un,i+1)−Mn(t, u)| < ε

)
≥ 1− ε.

Combining this with (S1.4), for all large n, the following result holds uniformly on
0 ≤ ϑ ≤ t ≤ τ with probability at least 1− 2ε:

(S1.4) ≤
∣∣∣∣ 1√
n

(fn(t, t, ϑ)− g(t, t, ϑ))Mn(t, ϑ)

∣∣∣∣
+

1√
n

n0∑
i=1

∣∣∣∣∣
∫ un,i

un,i−1

Mn(t, un,i)(fn(t, t, du)− g(t, t, du))

∣∣∣∣∣+ 2εK

≤ 3εK, (S1.5)

where K is the total variation bound for fn(t, s, u)(= fn(t, s − u, 0)), and the last in-
equality follows from Lenglart’s inequality (Lemma 3). Since ε can be arbitrarily small,
the first term is negligible.

For the second term, by the definitions of fn and g, we have fn(t, s, u) = fn(t, s−u, 0)
and g(t, s, u) = g(t, s− u, 0). Therefore,

1√
n

∫ ϑ

0

∫ t

u

Mn,u(s)(fn(t, ds, u)− g(t, ds, u))dR(u)

=
1√
n

∫ ϑ

0

∫ t

u

Mn,u(s)(fn(t, d(s− u), 0)− g(t, d(s− u), 0))dR(u)

=
1√
n

∫ t

0

[∫ (t−w)∧ϑ

0

Mn,u(w + u)dR(u)

]
(fn(t, dw, 0)− g(t, dw, 0))

=
1√
n

∫ t

0

M̃n(w, (t− w) ∧ ϑ) · (fn(t, dw, 0)− g(t, dw, 0)), (S1.6)

where the last equality follows from the definition of M̃n(w, ϑ) in (S1.1). Then, by
Proposition 2, there exist partitions 0 = w0 < w1 < · · · < wN0 = τ and 0 = un,0 ≤
un,1 ≤ · · · ≤ un,n0 = τ such that for all large n,

P

 sup
i,j;w∈[wi,wi+1),

u∈[un,j,un,j+1)

1√
n
|M̃n(w, u)− M̃n(wi, un,j)| < ε

 > 1− ε.

Then, similarly to the derivation of (S1.5), we have that for all large n, the following
holds with probability bigger than 1− 2ε:

(S1.6) ≤ 1√
n

N0∑
i=1

n0∑
j=1

∣∣∣∣∣M̃n(wi, un,j)

∫ wi

wi−1

(fn(t, dw, 0)− g(t, dw, 0))

∣∣∣∣∣+ 2εK

≤ 3εK. (S1.7)

Therefore the second term is also negligible.
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S2 Proof of Proposition 1

For the proof of Proposition 1, we shall make use of certain martingale inequalities as
given in the following lemma, which is due to Lenglart, Lepingle, and Pratelli (1980).

Lemma 3 Let {W (s), 0 ≤ s ≤ τ} be a square integrable martingale process whose sample
paths are right continuous with left limits. Then, for any q > 1, there exists a constant
Cq depending only on q, such that

E

(
sup
s≤τ
|W (s)|q

)
≤ Cq

(
E[〈W 〉(τ)]q/2 + E(sup

s≤τ
| 4W (s)|q)

)
, (S2.8)

where 〈W 〉(s) denotes the predictable variation process of the martingale {W (s)} and
∆W (s) = W (s)−W (s−).

Moreover, if sups≤τ | 4W (s)| ≤ c, then for any a, b > 0

P

(
sup
s≤τ
|W (s)| ≥ a, 〈W 〉(τ) ≤ b

)
≤ 2 exp

(
−a

2

2b
ψ(ac/b)

)
,

where ψ(x) = 2x−2{(1 + x)[log(1 + x)− 1] + 1}.

Proof of Proposition 1. Choose positive numbers p, q > 1 such that pq/2−p−q > 1.
Let u0 = 0 and define un,j recursively by

un,j+1 = inf{ϑ : ϑ > un,j , 2τK̃τ (R(ϑ)−R(un,j)) ≥ εpn} ∧ (un,j + εp) ∧ τ,

where K̃τ is a constant satisfying∫
A

∫
I

qn(ds du) < K̃τ

∫
A

∫
I

ds dR(u), for any A, I ⊂ [0, τ ].

It is easy to see from the above partition that there are at most O(ε−p) many, say
n0, distinct points in [0, τ ]. From Lemma 1, {Wn,t,ϑ, Fn,t, t ≥ 0} is a martingale,
and we know that un,j , j = 1, · · · , n0, are {Fn,t, 0 < t ≤ τ} predictable. Thus,
{supϑ∈[un,j ,un,j+1] |Wn,t,ϑ −Wn,t,un,j |,Fn,t, t ≥ 0} is a nonnegative submartingale. By
the Morkov inequality and Doob’s maximal inequality (Doob, 1953),

P

 max
0≤j<n0

sup
ϑ∈[un,j,un,j+1];

0≤t≤τ

|Wn,t,ϑ −Wn,t,un,j | ≥ ε


≤ 1

εq

n0−1∑
j=0

E

 sup
ϑ∈[un,j,un,j+1];

0≤t≤τ

|Wn,t,ϑ −Wn,t,un,j |q


≤ 1

εq

n0−1∑
j=0

(
q

q − 1

)q
E

(
sup

ϑ∈[un,j ,un,j+1]

|Wn,τ,ϑ −Wn,τ,un,j |q
)
.
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Since {Wn,τ,ϑ,Fn,τ,ϑ, ϑ ≥ 0} is a martingale and

sup
ϑ∈[un,j ,un,j+1]

4|Wn,τ,ϑ −Wn,τ,un,j | ≤
1 + K̃ττ√

n
,

it follows from (S2.8) that

1

εq

n0−1∑
j=0

(
q

q − 1

)q
E

(
sup

ϑ∈[un,j ,un,j+1]

|Wn,τ,ϑ −Wn,τ,un,j |q
)

≤ 1

εq

n0−1∑
j=0

(
q

q − 1

)q
Cq

(
E[〈Wn,τ,un,j+·〉(un,j+1 − un,j)]q/2 +

(1 + K̃ττ)q

nq/2

)
≤ C∗q (ε)pq/2−p−q ≤ ε,

where C∗q is a constant depending only on q and the last inequality holds when ε is
sufficiently enough. Hence the desired result follows.

S3 Proof of Proposition 2

To prove Proposition 2, we need the following lemma; see Lemma 5 in Gu and Lai (1991).

Lemma 4 Let q > 0 and r > 1. Let {Wn, n ≥ 1} be a sequence of random variables
defined in the same probability space and let {gn} be a sequence of nonnegative integrable
functions on a measure space (X ,B, µ). Suppose that for every fixed x ∈ X , g(x) is
nondecreasing in n ≤ N and that

E|Wi −Wj |q ≤
(∫
X

[gi(x)− gj(x)]dµ(x)

)r
for all 1 ≤ j ≤ i ≤ N.

Then there exists a universal constant Cq,r depending only on q and r such that

E

(
sup
n≤N
|Wn −W1|

)q
≤ Cq,r

(∫
X

[gN (x)− g1(x)]dµ(x)

)r
.

Proof of Proposition 2. Choose positive numbers p, q > 1 such that pq/2−p−2q > 1.
Let w0 = 0, and define wj recursively by wj+1 = jεp/K̃τ , where K̃τ is a constant
satisfying ∫

A

∫
I

qn(ds du) < K̃τ

∫
A

∫
I

ds dR(u), for any A, I ⊂ [0, τ ].

Denote N0 =
⌊
K̃ττ/ε

p
⌋

+ 1, and redefine wN0
= τ .

Let wn,i = i
√
ε/(nM) and Nw = {wn,i : i = 0, 1, · · · , bτMn/

√
εc + 1} for some

constant M . Then

P

(∫ τ

0

∫ u+wn,i+1

u+wn,i

pn(du ds) ≥ 2

)
= O(n2) · ε/(nM)2 ≤ ε/2
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when M is large enough. By the definition of K̃τ , for W̃n,w,ϑ = M̃n(w, ϑ)/
√
n, we have

that

P

(
sup

i,wn,i≤w≤wn,i+1

|W̃n,w,τ − W̃n,wn,i,τ | ≥ 2n−1/2 + K̃τn
−1/2

)

≤ P

(
sup
i

∫ τ

0

∫ u+wn,i+1

u+wn,i

pn(du ds) ≥ 2

)

+P

(
sup
i

∫ τ

0

∫ u+wn,i+1

u+wn,i

qn(du ds) ≥ K̃τ

)
≤ ε/2. (S3.9)

Therefore, to prove Proposition 2, by (S3.9) and the martingale property for {W̃n,w,ϑ,Fn,τ,ϑ, 0 <
ϑ ≤ τ} along entry time, we only need to show that for any ε > 0,

P

 max
0≤j<N0

sup
0≤ϑ≤τ

w∈[wj,wj+1]∩Nw

|W̃n,w,ϑ − W̃n,wj ,ϑ| ≥ ε

 < ε/2,

for all large n. Then, by Doob’s inequality and (S2.8), similarly as in the proof of
Proposition 1,

P

 max
0≤j<N0

sup
0≤ϑ≤τ

w∈[wj,wj+1]∩Nw

|W̃n,w,ϑ − W̃n,wj ,ϑ| ≥ ε


≤ 1

εq

N0−1∑
j=0

E

 sup
0≤ϑ≤τ

w∈[wj,wj+1]∩Nw

|W̃n,w,ϑ − W̃n,wj ,ϑ|q


≤ 1

εq

N0−1∑
j=0

(
q

q − 1

)q
E

(
sup

w∈[wj ,wj+1]∩Nw
|W̃n,w,τ − W̃n,wj ,τ |q

)
.

For any wn,i, wn,k ∈ [wj , wj+1]∩ Nw, since W̃n,wn,k,ϑ−W̃n,wn,i,ϑ is a {Fn,τ,ϑ, ϑ ≥ 0}
martingale, from (S2.8) we have

E
(
|W̃n,wn,k,τ − W̃n,wn,i,τ |q

)
≤ Cq

(
E
[
〈W̃n,wn,k,· − W̃n,wn,i,·〉(τ)

]q/2
+

(
1 + K̃τ (wn,k − wn,i)

n1/2

)q)

≤ Cε−q/4
(∫ τ

0

[
K̃τ · 1(x ≤ wn,k)− K̃τ · 1(x ≤ wn,i)

]
dx

)q/2
,
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where C is a constant. Then from Lemma 4, there exists constant C∗ > 0 such that for
all large n,

1

εq

N0−1∑
j=0

(
q

q − 1

)q
E

(
sup

w∈[wj ,wj+1]∩Nw
|W̃n,w,τ − W̃n,wj ,τ |q

)

≤ 1

εq

N0−1∑
j=0

(
q

q − 1

)q
Cε−q/4

(∫ τ

0

K̃τ · 1(wn,iwj < x ≤ wn,iwj+1+1
) dx

)q/2
≤ C∗(2ε)pq/2−p−5q/4, (S3.10)

where iwj = max{i : wn,i ≤ wj}. By choosing ε sufficiently small, we have that the last
term in (S3.10) must be smaller than ε. Hence the desired conclusion follows.

S4 Lemma 5

Lemma 5 is used in the proof of Theorem 8. It is a restatement of Lemma A.5 in Bilias
et al. (1997).

Lemma 5 Consider a set of functions {fn,α : n ≥ 1, α ∈ A} from Rd to Rd. Suppose
that (i) ∂

∂θfn,α(θ) are nonnegative definite for all n, α, θ; (ii) supα |fn,α(θ0)| → 0 as
n→∞; (iii) there exists a neighborhood of θ0, denoted by N (θ0), such that

lim inf
n→∞

inf
θ∈N (θ0)

inf
a∈A

λmin

(
∂fn,α(θ)

∂θ

)
> 0,

where λmin is the minimum eigenvalue as defined in C4. Then there exists n0 such that
for every n > n0 and α ∈ A, fn,α has a unique root θn,α and supα∈A |θn,α − θ0| → 0.
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