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S1 Proof of Lemma 6

To simplify notation, we let f,,(¢,s,u) = Z,(Bo;t, s — u) and

E:jl(t — (S — U),
Eo(t — (s —u),

u)

gt s,u) = —.
s —u)

For a subject who enrolled into the study at time u, define, for s € [u, 7], counting
measure

Pru(ds) = I(u+ T, = s).
Under the o-filtration F,, , it is easy to see the compensator for p,, ,(ds) is
Gn,u(ds) = 17,54y eXPLB Zu}Mo(s — u)ds.

Thus,
Mn’u(ds) = I(u<s) [pn,u(d5> - qn,u(ds)]

is a martingale measure. Comparing this with (4), it follows that M;(t, s) is a martingale
as a process in s, since for the ith subject with entry time u = U;, My, v, (ds) = I(U;+7T; €
ds) — qn.u,(ds) = M;(t,d(s — U;)) for s > U;. Define martingale integral

¢
Mn,u(t) = / Mn,u(d5)7
which is the total measure on interval [u,t]. Let

M (t, du) = { / t Mn,u(ds)] AR(w) = My o (£)dR(w),

which defines a random measure along entry time for subjects who enrolled into the
study before time ¢.
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Under the above notation, for M, (t,1) defined as in (9), we have the following
identity

M, (t,9) = /Ot /019 M, (dsdu) = /019 M, (t,du).

Note that from Lemma 1, M, (¢,9) is a martingale along both calendar and entry times,
ie., M, (t,v) is a martingale in ¢ for any fixed ¥ and a martingale in ¥ for any ¢. When
Y = t, we have M, (t,t) = fot fg M,,(ds du), which is M, (t). Similarly, define random
integral Mn(w, ) with respect to survival time w and entry time ¢ by

9 9
Mn(w,ﬂ):/o M, (w + u, du) <—/0 Mn7u(w+u)dR(u)>. (S1.1)

Note that Mn(w,ﬂ) is defined on the information observed before entry time 9 and
survival time w.

To prove Lemma 6, we need the following two propositions, whose proofs are given
in Sections S2 and S2, respectively. Proposition 1 shows that M,(t,9J)/\/n is tight
along calendar and entry times while Proposition 2 shows the tightness property for

M, (w,¥)/+/n along survival and entry times.

Proposition 1 Under Conditions C1 and C2, for any € > 0, there exist constant ng <
oo and partition 0 = up0 < Upy < - < Upp, = T such that for all large n,

>e| <e€

- — )

P | max sup Whto = Watoun,;
0<j<n0 9€fuy, jyun, j41l;
0<t<r

where Wi, 19 = M, (t,9)/y/n.
Proposition 2 Under Conditions C1 and C2, for any ¢ > 0, there exist partitions

O=wy<w < - <wy, =7 and 0 =upo < up1 < -+ < Upp, =T such that for all
large n,

P ,max sup Whwo = Wawun,; | = €| <6
SIST0 9€[uy jiun, j41
0<k<No we[wy w4 1]

where Wn’w)ﬁ = Mn(w,ﬁ)/\/ﬁ

Proof of Lemma 6. For any (¢,¢) such that 0 < ¢ < t < 7, by changing the
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integration order, we have that
jn/fﬁﬂqaaau»—maau»mesmo
= [ Gt — s 0) s ) s )
- =] ' / (Falt5,0) — gt 5,0) (oo (s ) — o (du )
- J(/[/ (a(to5.0) = gt 5,0)0,.0(09)| )
- VﬁA M0, = g(0,8,20) = Mo (01 00) = g(000)
_LH@A@mﬁ@&m—ﬂn@wﬂdmm+%u% (51.2)

where the last equation follows from the integration-by-parts formula. Inclusion of 0,(1)
is due to the discontinuity of both the integrand and the integrator functions when the
integration-by-parts formula is used. Therefore, by the definition of M, (¢,du) and the
fact that M, ,(u) = 0, we get

1 9
(512) — 7 |ttt = gttt 1.

-%= [ / Mo (6) b s, 20 = gt s )| aR(w) + 0,(0)
(S1.3)

In view of (S1.3), it remains to show that the two leading terms in (S1.3) are negligible.

For the first term, taking integration by parts, we have that

9
‘jﬁ / (Fultstu) = g(t,t,u) Mo (¢, du)

1
‘\f \/ﬁ(fn(t,t,o)— g(t,t,0)) M, (¢,0)

—7/ M, (¢, uw)(fn(t, t, du) — g(t,t,du))’ + 0,(1)

fn t tv'ﬂ) - (t t 19)) (t 19)

IA

‘\anttﬁ) glt,t,9)) M, (m)‘

(t,u)(fn(t,t,du) — g(t,t,du))| + op(1). (S1.4)

From Proposition 1, we have, for any € > 0, there exists a partition 0 = u,,0 < up,1 <

S3
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- < Up,p, = 7 such that for all large n,

1
P < sup %|Mn(t,un7i+1) — M, (t,u)| < e) >1—e

GUE (Un,isUn,it1)

Combining this with (S1.4), for all large n, the following result holds uniformly on
0 <9 <t < 7 with probability at least 1 — 2e:

(S1.4) ‘ffnttﬁ) (6,4, 9))M (w)‘
o] pun
+ﬁ ; /unn—l Mn(t7un,i)(fn(t,t,du) - g(t,t,du)) + 2eK
= ek (S1.5)

where K is the total variation bound for f,(¢,s,u)(= fn(t,s — u,0)), and the last in-
equality follows from Lenglart’s inequality (Lemma 3). Since € can be arbitrarily small,
the first term is negligible.

For the second term, by the definitions of f,, and g, we have f, (¢, s,u) = f,(t,s—u,0)
and g(t,s,u) = g(t,s — u,0). Therefore,

Yt
%/O /Mn,u(s)(fn(t,ds,u)—g(t,ds,u))dR(u)
9 et
- %/0 / Miu(8)(fu(t; d(s = 1), 0) = g(t; d(s — u),0)dR(u)
(t—w)AY
- %/0 UO My, o (w + w)dR(u) | (fa(t, dw,0) — g(t, dw,0))

1 [t
- = / Ny (w, (¢ — w) A D) - (fult, dw,0) — g(t, dw, 0), (S1.6)

where the last equality follows from the definition of M, (w,?) in (S1.1). Then, by
Proposition 2, there exist partitions 0 = wg < w; < --- < wn, =7 and 0 = u, o <
Up1 < oo < Uy p, = 7 such that for all large n,

P sup

ijiwElwi,wiyq), \f

u€[un,j, Un,j41)

| M, (w, u) — My, (wi, tn ;)| < €| >1—e

Then, similarly to the derivation of (S1.5), we have that for all large n, the following
holds with probability bigger than 1 — 2e:

No no w;
(s16) < —3 % |n wl,un]/ (Fult, dw, 0) — g(¢, dw,0))| + 2¢K
f =1 j=1 Wi—1
< 3eK. (SL1.7)

Therefore the second term is also negligible. m
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S2 Proof of Proposition 1

For the proof of Proposition 1, we shall make use of certain martingale inequalities as
given in the following lemma, which is due to Lenglart, Lepingle, and Pratelli (1980).

Lemma 3 Let {W(s),0 < s < 7} be a square integrable martingale process whose sample
paths are right continuous with left limits. Then, for any q > 1, there exists a constant
C, depending only on gq, such that

B (sup W) < € (B + Bl W) . (528)

s<T s<T

where (W)(s) denotes the predictable variation process of the martingale {W(s)} and
AW (s) =W (s) — W(s—).

Moreover, if sup,<, | AW(s)| < ¢, then for any a,b>0
P (sup W (o) 2 . (W)(r) <) < 2exp (S v0ac/)).
s<Tt
where ¢¥(z) = 227 2{(1 4+ z)[log(1 + =) — 1] + 1}.

Proof of Proposition 1. Choose positive numbers p, ¢ > 1 such that pq/2—p—q > 1.
Let up = 0 and define u,, ; recursively by

Up i1 = {0 : 0 > w4, 27K (R(O) — R(tn ) > €€n} A (upj + ) AT,

where K, is a constant satisfying

//qn(dsdu) <I§'T/ /dst(u), for any A, T C [0, 7].
AlJr aJr

It is easy to see from the above partition that there are at most O(e™P) many, say
ng, distinct points in [0,7]. From Lemma 1, {W, 9, Fnt, t > 0} is a martingale,
and we know that w,;, j = 1,--- ,ng, are {F,;,0 < t < 7} predictable. Thus,
{SUPyeru, s unyea] IWito — Wit ;| Fne, t > 0} is a nonnegative submartingale. By
the Morkov inequality and Doob’s maximal inequality (Doob, 1953),

P | max sup Whto = Wit ;| > €
0<j<ng VE[Up jrun, j4+11;
0<t< T
1 ’I’Lofl
1 _ q
< = E sup Whto = Wit |

VE[up jrun jy1l;
o<t<t

no—1 q
1 q W, 1
- 71 E sup |Wn,7',19 - ”7Tvun,j| :
€ N q— ﬁe[un,j’unsj+1]

IN
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Since {W,, .9, Fn,r0,0 > 0} is a martingale and

1+ K7
sup A|‘/Vn,'r,19 - Wn,T,un,j| < B P
VE[Un,j,Un, jt1] \/ﬁ

it follows from (S2.8) that

no—1 q
1 q q
3 71 E sup |Wn,'r,19 - an"'v”n,j'
€ jIO q - 196[”7L,j7un,j+1]

1 ’nofl q q
< a2 (7)o [ Bl dmsir = w2+
j=

(1+ IN(TT)‘I>

nQ/2
< C;(E)pq/%p—q <e,

where C is a constant depending only on ¢ and the last inequality holds when € is

sufficiently enough. Hence the desired result follows. m

S3 Proof of Proposition 2

To prove Proposition 2, we need the following lemma; see Lemma 5 in Gu and Lai (1991).

Lemma 4 Let ¢ > 0 and r > 1. Let {W,,n > 1} be a sequence of random variables
defined in the same probability space and let {g,} be a sequence of nonnegative integrable
functions on a measure space (X,B,u). Suppose that for every fized x € X, g(x) is
nondecreasing in n < N and that

E[W, — W,|? < (/X[gi(x) —gj(x)}du(x)> for all1<j <i<N.

Then there exists a universal constant Cy, depending only on q and r such that

2 (sup W = 31) < Gy ([ fawo) — (o))

n<N

Proof of Proposition 2. Choose positive numbers p, ¢ > 1 such that pg/2—p—2q > 1.
Let wg = 0, and define w; recursively by w;i1 = je?/K,, where K, is a constant

satisfying
/ /qn(dsdu) < f(T/ /dst(u), for any A, I C [0, 7].
AJr AJT

Denote Ny = Lf(TT/epJ + 1, and redefine wy, = 7.

Let wy; = ive/(nM) and Ny, = {wy; : @ = 0,1,--+ ,[TMn/\/e] + 1} for some
constant M. Then

T Ut Wn it+1
= n2 ce/(n 2 €
P(// pn<duds>z2>o< ) e/(nM)? < /2

+wn, i
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when M is large enough. By the definition of K, for meﬁ = Mn(w, 9¥)/y/n, we have
that

Vi < sup |Wn,w;r - Wn,wn,i,'l" > 271_1/2 + Xrn_1/2>

G Wi SWS Wy 41

UFWn,i+1
< P sup// pr(duds) >
U+wWn,i
UFWn i+1 ~
+P sup// gn(duds) > K,
UtWn,i
< ¢ (53.9)

Therefore, to prove Proposition 2, by (S3.9) and the martingale property for { W, .9, Fn.r9,0 <
¥ < 7} along entry time, we only need to show that for any € > 0,

P | max sup Whwo = Waw, ol > €| <e€/2,
0<j<No o<w<r
w€[wj,wj+1]ﬁ/\/‘w

for all large n. Then, by Doob’s inequality and (S2.8), similarly as in the proof of
Proposition 1,

P | max sup (Whww — Whw, 0| > €
0<j<No 0<9<T
welw,wji1]NNw
1 No—l
< — E E sup ‘Wn,w,ﬁ - Wn,wj,19|q
€l 4 0<9<r
3=0 welw; w111 Nw

IA

we[wj,ijrl]ﬂNw

1 No—1 q q
il 1 7 q
D <q_1> E( sip Wawr — W, | )

For any wy, ;, Wy 1 € [w;, w;+1)N Ny, since anwn’kﬂg *men)i’ﬁ isa {Fnr9,0>0}
martingale, from (52.8) we have

E (‘Wn,wnyk,'r - Wn,wn,i,r|q)

% q
~ ~ q/2 1+ K, Wp k — Wn,j
“ (E (W = W )] ( | )> )

IN

nl/2

T a/2
Ce1/4 </ [KT Uz S wpp) — K- Lz < wm)} dx) :
0

IN
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where C' is a constant. Then from Lemma 4, there exists constant C* > 0 such that for
all large n,

1 No—1 q q ~ 4

=2 () E sup Wiw,r = W, o |?

et = \g—1 welw;,w;4+1]NNw

1 No—1 q q T q/2

—aq/4 %
< . ZO ((1_1) Ce 9/ (/0 K- 1(wn,iwj <zr< wn,iu,j+1+1)d:g>
=

< CF(2e)Pe/27Pm0a/4 (S3.10)

where 4,,, = max{i : w,; < w;}. By choosing e sufficiently small, we have that the last
term in (S3.10) must be smaller than e. Hence the desired conclusion follows. m

S4 Lemma 5

Lemma 5 is used in the proof of Theorem 8. It is a restatement of Lemma A.5 in Bilias
et al. (1997).

Lemma 5 Consider a set of functions {fn.o :n > 1,a € A} from R? to R%. Suppose
that (i) %fn,a(ﬂ) are nonnegative definite for all n, o, 0; (i1) sup, |fn,a(60)] — 0 as
n — oo; (i) there exists a neighborhood of 6y, denoted by N'(0y), such that

9 fn,a(0)
liminf inf inf A\, | ——F 0
nsoo 9N (89) aca M ( a0 -

where A\pin 18 the minimum eigenvalue as defined in C4. Then there exists ng such that
for every n > ny and o € A, fr, o has a unique root 8, o and sup,e 4 |0n,o — o] — 0.
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