Statistica Sinica: Supplement

Sequential Analysis of Cox Model under Response Dependent Allocation

Xiaolong Luo, Gongjun Xu and Zhiliang Ying

Celgene Corporation, Columbia University and Columbia University

Supplementary Material

S1 Proof of Lemma 6

To simplify notation, we let $f_n(t, s, u) = \overline{Z}_n(\beta_0; t, s - u)$ and

$$g(t,s,u) = \frac{\bar{E}_1(t-(s-u),s-u)}{\bar{E}_0(t-(s-u),s-u)}$$

For a subject who enrolled into the study at time u, define, for $s \in [u, \tau]$, counting measure

$$p_{n,u}(ds) = I(u + T_u = s).$$

Under the σ -filtration $\mathcal{F}_{n,t}$, it is easy to see the compensator for $p_{n,u}(ds)$ is

$$q_{n,u}(ds) = I_{(\tilde{T}_u \ge s-u)} \exp\{\beta' Z_u\} \lambda_0(s-u) ds$$

Thus,

$$M_{n,u}(ds) = I_{(u < s)}[p_{n,u}(ds) - q_{n,u}(ds)]$$

is a martingale measure. Comparing this with (4), it follows that $M_i(t, s)$ is a martingale as a process in s, since for the *i*th subject with entry time $u = U_i$, $M_{n,U_i}(ds) = I(U_i + \tilde{T}_i \in ds) - q_{n,U_i}(ds) = M_i(t, d(s - U_i))$ for $s > U_i$. Define martingale integral

$$M_{n,u}(t) = \int_{u}^{t} M_{n,u}(ds),$$

which is the total measure on interval [u, t]. Let

$$M_n(t, du) = \left[\int_u^t M_{n,u}(ds)\right] dR(u) = M_{n,u}(t) dR(u),$$

which defines a random measure along entry time for subjects who enrolled into the study before time t.

Under the above notation, for $M_n(t, \vartheta)$ defined as in (9), we have the following identity

$$M_n(t,\vartheta) = \int_0^t \int_0^\vartheta M_n(ds\,du) = \int_0^\vartheta M_n(t,du).$$

Note that from Lemma 1, $M_n(t, \vartheta)$ is a martingale along both calendar and entry times, i.e., $M_n(t, \vartheta)$ is a martingale in t for any fixed ϑ and a martingale in ϑ for any t. When $\vartheta = t$, we have $M_n(t,t) = \int_0^t \int_0^t M_n(ds \, du)$, which is $M_n(t)$. Similarly, define random integral $\tilde{M}_n(w, \vartheta)$ with respect to survival time w and entry time ϑ by

$$\tilde{M}_n(w,\vartheta) = \int_0^\vartheta M_n(w+u,du) \left(= \int_0^\vartheta M_{n,u}(w+u)dR(u) \right).$$
(S1.1)

Note that $\tilde{M}_n(w, \vartheta)$ is defined on the information observed before entry time ϑ and survival time w.

To prove Lemma 6, we need the following two propositions, whose proofs are given in Sections S2 and S2, respectively. Proposition 1 shows that $M_n(t,\vartheta)/\sqrt{n}$ is tight along calendar and entry times while Proposition 2 shows the tightness property for $\tilde{M}_n(w,\vartheta)/\sqrt{n}$ along survival and entry times.

Proposition 1 Under Conditions C1 and C2, for any $\epsilon > 0$, there exist constant $n_0 < \infty$ and partition $0 = u_{n,0} \le u_{n,1} \le \cdots \le u_{n,n_0} = \tau$ such that for all large n,

$$P\left(\max_{\substack{0\leq j< n_0} \sup_{\substack{\vartheta\in [u_{n,j}, u_{n,j+1}];\\0\leq t\leq \tau}}} |W_{n,t,\vartheta} - W_{n,t,u_{n,j}}| \geq \epsilon\right) \leq \epsilon,$$

where $W_{n,t,\vartheta} = M_n(t,\vartheta)/\sqrt{n}$.

Proposition 2 Under Conditions C1 and C2, for any $\epsilon > 0$, there exist partitions $0 = w_0 < w_1 < \cdots < w_{N_0} = \tau$ and $0 = u_{n,0} \le u_{n,1} \le \cdots \le u_{n,n_0} = \tau$ such that for all large n,

$$P\left(\max_{\substack{0 \le j < n_0 \\ 0 \le k < N_0}} \sup_{\substack{\vartheta \in [u_{n,j}, u_{n,j+1}] \\ w \in [w_k, w_{k+1}]}} |\tilde{W}_{n,w,\vartheta} - \tilde{W}_{n,w_k, u_{n,j}}| \ge \epsilon\right) \le \epsilon$$

where $\tilde{W}_{n,w,\vartheta} = \tilde{M}_n(w,\vartheta)/\sqrt{n}$.

Proof of Lemma 6. For any (ϑ, t) such that $0 \le \vartheta \le t \le \tau$, by changing the

integration order, we have that

$$\frac{1}{\sqrt{n}} \int_{0}^{t} \int_{0}^{\vartheta} (f_{n}(t,s,u) - g(t,s,u)) M_{n}(ds \, du)$$

$$= \frac{1}{\sqrt{n}} \int_{0}^{t} \int_{0}^{s \wedge \vartheta} (f_{n}(t,s,u) - g(t,s,u)) (p_{n}(ds \, du) - q_{n}(ds \, du))$$

$$= \frac{1}{\sqrt{n}} \int_{0}^{\vartheta} \int_{u}^{t} (f_{n}(t,s,u) - g(t,s,u)) (p_{n}(du \, ds) - q_{n}(du \, ds))$$

$$= \frac{1}{\sqrt{n}} \int_{0}^{\vartheta} \left[\int_{u}^{t} (f_{n}(t,s,u) - g(t,s,u)) M_{n,u}(ds) \right] dR(u)$$

$$= \frac{1}{\sqrt{n}} \int_{0}^{\vartheta} \left[M_{n,u}(t) (f_{n}(t,t,u) - g(t,t,u)) - M_{n,u}(u) (f_{n}(t,u,u) - g(t,u,u)) - \int_{u}^{t} M_{n,u}(s) (f_{n}(t,ds,u) - g(t,ds,u)) \right] dR(u) + o_{p}(1), \quad (S1.2)$$

where the last equation follows from the integration-by-parts formula. Inclusion of $o_p(1)$ is due to the discontinuity of both the integrand and the integrator functions when the integration-by-parts formula is used. Therefore, by the definition of $M_n(t, du)$ and the fact that $M_{n,u}(u) = 0$, we get

$$(S1.2) = \frac{1}{\sqrt{n}} \int_{0}^{\vartheta} (f_{n}(t,t,u) - g(t,t,u)) M_{n}(t,du) - \frac{1}{\sqrt{n}} \int_{0}^{\vartheta} \left[\int_{u}^{t} M_{n,u}(s) (f_{n}(t,ds,u) - g(t,ds,u)) \right] dR(u) + o_{p}(1).$$
(S1.3)

In view of (S1.3), it remains to show that the two leading terms in (S1.3) are negligible.

For the first term, taking integration by parts, we have that

$$\begin{aligned} \left| \frac{1}{\sqrt{n}} \int_{0}^{\vartheta} (f_{n}(t,t,u) - g(t,t,u)) M_{n}(t,du) \right| \\ &= \left| \frac{1}{\sqrt{n}} (f_{n}(t,t,\vartheta) - g(t,t,\vartheta)) M_{n}(t,\vartheta) - \frac{1}{\sqrt{n}} (f_{n}(t,t,0) - g(t,t,0)) M_{n}(t,0) - \frac{1}{\sqrt{n}} \int_{0}^{\vartheta} M_{n}(t,u) (f_{n}(t,t,du) - g(t,t,du)) \right| + o_{p}(1) \\ &\leq \left| \frac{1}{\sqrt{n}} (f_{n}(t,t,\vartheta) - g(t,t,\vartheta)) M_{n}(t,\vartheta) \right| \\ &+ \frac{1}{\sqrt{n}} \left| \int_{0}^{\vartheta} M_{n}(t,u) (f_{n}(t,t,du) - g(t,t,du)) \right| + o_{p}(1). \end{aligned}$$
(S1.4)

From Proposition 1, we have, for any $\epsilon > 0$, there exists a partition $0 = u_{n,0} \le u_{n,1} \le$

 $\cdots \leq u_{n,n_0} = \tau$ such that for all large n,

$$P\left(\sup_{i:u\in(u_{n,i},u_{n,i+1}]}\frac{1}{\sqrt{n}}|M_n(t,u_{n,i+1}) - M_n(t,u)| < \epsilon\right) \ge 1 - \epsilon.$$

Combining this with (S1.4), for all large n, the following result holds uniformly on $0 \le \vartheta \le t \le \tau$ with probability at least $1 - 2\epsilon$:

$$(S1.4) \leq \left| \frac{1}{\sqrt{n}} (f_n(t,t,\vartheta) - g(t,t,\vartheta)) M_n(t,\vartheta) \right| \\ + \frac{1}{\sqrt{n}} \sum_{i=1}^{n_0} \left| \int_{u_{n,i-1}}^{u_{n,i}} M_n(t,u_{n,i}) (f_n(t,t,du) - g(t,t,du)) \right| + 2\epsilon K \\ \leq 3\epsilon K,$$

$$(S1.5)$$

where K is the total variation bound for $f_n(t, s, u) (= f_n(t, s - u, 0))$, and the last inequality follows from Lenglart's inequality (Lemma 3). Since ϵ can be arbitrarily small, the first term is negligible.

For the second term, by the definitions of f_n and g, we have $f_n(t, s, u) = f_n(t, s-u, 0)$ and g(t, s, u) = g(t, s - u, 0). Therefore,

$$\frac{1}{\sqrt{n}} \int_{0}^{\vartheta} \int_{u}^{t} M_{n,u}(s) (f_{n}(t, ds, u) - g(t, ds, u)) dR(u)$$

$$= \frac{1}{\sqrt{n}} \int_{0}^{\vartheta} \int_{u}^{t} M_{n,u}(s) (f_{n}(t, d(s - u), 0) - g(t, d(s - u), 0)) dR(u)$$

$$= \frac{1}{\sqrt{n}} \int_{0}^{t} \left[\int_{0}^{(t-w)\wedge\vartheta} M_{n,u}(w+u) dR(u) \right] (f_{n}(t, dw, 0) - g(t, dw, 0))$$

$$= \frac{1}{\sqrt{n}} \int_{0}^{t} \tilde{M}_{n}(w, (t-w)\wedge\vartheta) \cdot (f_{n}(t, dw, 0) - g(t, dw, 0)), \quad (S1.6)$$

where the last equality follows from the definition of $\tilde{M}_n(w, \vartheta)$ in (S1.1). Then, by Proposition 2, there exist partitions $0 = w_0 < w_1 < \cdots < w_{N_0} = \tau$ and $0 = u_{n,0} \leq u_{n,1} \leq \cdots \leq u_{n,n_0} = \tau$ such that for all large n,

$$P\left(\sup_{\substack{i,j;w\in[w_{i},w_{i+1}),\\u\in[u_{n,j},u_{n,j+1})}}\frac{1}{\sqrt{n}}|\tilde{M}_{n}(w,u)-\tilde{M}_{n}(w_{i},u_{n,j})|<\epsilon\right)>1-\epsilon.$$

Then, similarly to the derivation of (S1.5), we have that for all large n, the following holds with probability bigger than $1 - 2\epsilon$:

$$(S1.6) \leq \frac{1}{\sqrt{n}} \sum_{i=1}^{N_0} \sum_{j=1}^{n_0} \left| \tilde{M}_n(w_i, u_{n,j}) \int_{w_{i-1}}^{w_i} (f_n(t, dw, 0) - g(t, dw, 0)) \right| + 2\epsilon K$$

$$\leq 3\epsilon K.$$
(S1.7)

Therefore the second term is also negligible. \blacksquare

S4

S2 Proof of Proposition 1

For the proof of Proposition 1, we shall make use of certain martingale inequalities as given in the following lemma, which is due to Lenglart, Lepingle, and Pratelli (1980).

Lemma 3 Let $\{W(s), 0 \le s \le \tau\}$ be a square integrable martingale process whose sample paths are right continuous with left limits. Then, for any q > 1, there exists a constant C_q depending only on q, such that

$$E\left(\sup_{s\leq\tau}|W(s)|^q\right)\leq C_q\left(E[\langle W\rangle(\tau)]^{q/2}+E(\sup_{s\leq\tau}|\bigtriangleup W(s)|^q)\right),\qquad(S2.8)$$

where $\langle W \rangle(s)$ denotes the predictable variation process of the martingale $\{W(s)\}$ and $\Delta W(s) = W(s) - W(s-)$.

Moreover, if $\sup_{s < \tau} | \bigtriangleup W(s) | \le c$, then for any a, b > 0

$$P\left(\sup_{s \le \tau} |W(s)| \ge a, \langle W \rangle(\tau) \le b\right) \le 2 \exp\left(-\frac{a^2}{2b}\psi(ac/b)\right),$$

where $\psi(x) = 2x^{-2}\{(1+x)[\log(1+x)-1]+1\}.$

Proof of Proposition 1. Choose positive numbers p, q > 1 such that pq/2 - p - q > 1. Let $u_0 = 0$ and define $u_{n,j}$ recursively by

$$u_{n,j+1} = \inf\{\vartheta : \vartheta > u_{n,j}, 2\tau \tilde{K}_{\tau}(R(\vartheta) - R(u_{n,j})) \ge \epsilon^p n\} \land (u_{n,j} + \epsilon^p) \land \tau,$$

where \tilde{K}_{τ} is a constant satisfying

$$\int_{A} \int_{I} q_n(ds \, du) < \tilde{K}_{\tau} \int_{A} \int_{I} ds \, dR(u), \quad \text{ for any } A, I \subset [0, \tau].$$

It is easy to see from the above partition that there are at most $O(\epsilon^{-p})$ many, say n_0 , distinct points in $[0, \tau]$. From Lemma 1, $\{W_{n,t,\vartheta}, \mathcal{F}_{n,t}, t \ge 0\}$ is a martingale, and we know that $u_{n,j}, j = 1, \cdots, n_0$, are $\{\mathcal{F}_{n,t}, 0 < t \le \tau\}$ predictable. Thus, $\{\sup_{\vartheta \in [u_{n,j}, u_{n,j+1}]} | W_{n,t,\vartheta} - W_{n,t,u_{n,j}} |, \mathcal{F}_{n,t}, t \ge 0\}$ is a nonnegative submartingale. By the Morkov inequality and Doob's maximal inequality (Doob, 1953),

$$P\left(\max_{\substack{0\leq j< n_0}}\sup_{\substack{\vartheta\in[u_{n,j},u_{n,j+1}];\\0\leq t\leq \tau}}|W_{n,t,\vartheta} - W_{n,t,u_{n,j}}| \geq \epsilon\right)$$

$$\leq \frac{1}{\epsilon^q}\sum_{j=0}^{n_0-1}E\left(\sup_{\substack{\vartheta\in[u_{n,j},u_{n,j+1}];\\0\leq t\leq \tau}}|W_{n,t,\vartheta} - W_{n,t,u_{n,j}}|^q\right)$$

$$\leq \frac{1}{\epsilon^q}\sum_{j=0}^{n_0-1}\left(\frac{q}{q-1}\right)^q E\left(\sup_{\substack{\vartheta\in[u_{n,j},u_{n,j+1}]}}|W_{n,\tau,\vartheta} - W_{n,\tau,u_{n,j}}|^q\right).$$

Since $\{W_{n,\tau,\vartheta}, \mathcal{F}_{n,\tau,\vartheta}, \vartheta \ge 0\}$ is a martingale and

$$\sup_{\vartheta \in [u_{n,j}, u_{n,j+1}]} \triangle |W_{n,\tau,\vartheta} - W_{n,\tau, u_{n,j}}| \le \frac{1 + K_\tau \tau}{\sqrt{n}},$$

it follows from (S2.8) that

$$\frac{1}{\epsilon^{q}} \sum_{j=0}^{n_{0}-1} \left(\frac{q}{q-1}\right)^{q} E\left(\sup_{\vartheta \in [u_{n,j}, u_{n,j+1}]} |W_{n,\tau,\vartheta} - W_{n,\tau, u_{n,j}}|^{q}\right) \\
\leq \frac{1}{\epsilon^{q}} \sum_{j=0}^{n_{0}-1} \left(\frac{q}{q-1}\right)^{q} C_{q} \left(E[\langle W_{n,\tau, u_{n,j}+\cdot}\rangle(u_{n,j+1} - u_{n,j})]^{q/2} + \frac{(1+\tilde{K}_{\tau}\tau)^{q}}{n^{q/2}}\right) \\
\leq C_{q}^{*}(\epsilon)^{pq/2-p-q} \leq \epsilon,$$

where C_q^* is a constant depending only on q and the last inequality holds when ϵ is sufficiently enough. Hence the desired result follows.

S3 Proof of Proposition 2

To prove Proposition 2, we need the following lemma; see Lemma 5 in Gu and Lai (1991).

Lemma 4 Let q > 0 and r > 1. Let $\{W_n, n \ge 1\}$ be a sequence of random variables defined in the same probability space and let $\{g_n\}$ be a sequence of nonnegative integrable functions on a measure space $(\mathcal{X}, \mathcal{B}, \mu)$. Suppose that for every fixed $x \in \mathcal{X}$, g(x) is nondecreasing in $n \le N$ and that

$$E|W_i - W_j|^q \le \left(\int_{\mathcal{X}} [g_i(x) - g_j(x)] d\mu(x)\right)^r \text{ for all } 1 \le j \le i \le N.$$

Then there exists a universal constant $C_{q,r}$ depending only on q and r such that

$$E\left(\sup_{n\leq N}|W_n-W_1|\right)^q\leq C_{q,r}\left(\int_{\mathcal{X}}[g_N(x)-g_1(x)]d\mu(x)\right)^r.$$

Proof of Proposition 2. Choose positive numbers p, q > 1 such that pq/2-p-2q > 1. Let $w_0 = 0$, and define w_j recursively by $w_{j+1} = j\epsilon^p/\tilde{K}_{\tau}$, where \tilde{K}_{τ} is a constant satisfying

$$\int_{A} \int_{I} q_{n}(ds \, du) < \tilde{K}_{\tau} \int_{A} \int_{I} ds \, dR(u), \text{ for any } A, I \subset [0, \tau].$$

Denote $N_{0} = \left| \tilde{K}_{\tau} \tau / \epsilon^{p} \right| + 1$, and redefine $w_{N_{0}} = \tau$.

Let $w_{n,i} = i\sqrt{\epsilon}/(nM)$ and $\mathcal{N}_w = \{w_{n,i} : i = 0, 1, \cdots, \lfloor \tau Mn/\sqrt{\epsilon} \rfloor + 1\}$ for some constant M. Then

$$P\left(\int_0^\tau \int_{u+w_{n,i}}^{u+w_{n,i+1}} p_n(du\,ds) \ge 2\right) = O(n^2) \cdot \epsilon/(nM)^2 \le \epsilon/2$$

S6

when M is large enough. By the definition of \tilde{K}_{τ} , for $\tilde{W}_{n,w,\vartheta} = \tilde{M}_n(w,\vartheta)/\sqrt{n}$, we have that

$$P\left(\sup_{i,w_{n,i} \le w \le w_{n,i+1}} |\tilde{W}_{n,w,\tau} - \tilde{W}_{n,w_{n,i},\tau}| \ge 2n^{-1/2} + \tilde{K}_{\tau}n^{-1/2}\right)$$

$$\le P\left(\sup_{i} \int_{0}^{\tau} \int_{u+w_{n,i}}^{u+w_{n,i+1}} p_{n}(du\,ds) \ge 2\right)$$

$$+P\left(\sup_{i} \int_{0}^{\tau} \int_{u+w_{n,i}}^{u+w_{n,i+1}} q_{n}(du\,ds) \ge \tilde{K}_{\tau}\right)$$

$$\le \epsilon/2.$$
(S3.9)

Therefore, to prove Proposition 2, by (S3.9) and the martingale property for $\{\tilde{W}_{n,w,\vartheta}, \mathcal{F}_{n,\tau,\vartheta}, 0 < \vartheta \leq \tau\}$ along entry time, we only need to show that for any $\epsilon > 0$,

$$P\left(\max_{\substack{0\leq j< N_0}}\sup_{\substack{0\leq \vartheta\leq \tau\\w\in [w_j,w_{j+1}]\cap \mathcal{N}_w}} |\tilde{W}_{n,w,\vartheta} - \tilde{W}_{n,w_j,\vartheta}| \geq \epsilon\right) < \epsilon/2,$$

for all large n. Then, by Doob's inequality and (S2.8), similarly as in the proof of Proposition 1,

$$P\left(\max_{0\leq j< N_0} \sup_{\substack{0\leq\vartheta\leq\tau\\w\in[w_j,w_{j+1}]\cap\mathcal{N}_w}} |\tilde{W}_{n,w,\vartheta} - \tilde{W}_{n,w_j,\vartheta}| \geq \epsilon\right)$$

$$\leq \frac{1}{\epsilon^q} \sum_{j=0}^{N_0-1} E\left(\sup_{\substack{0\leq\vartheta\leq\tau\\w\in[w_j,w_{j+1}]\cap\mathcal{N}_w}} |\tilde{W}_{n,w,\vartheta} - \tilde{W}_{n,w_j,\vartheta}|^q\right)$$

$$\leq \frac{1}{\epsilon^q} \sum_{j=0}^{N_0-1} \left(\frac{q}{q-1}\right)^q E\left(\sup_{w\in[w_j,w_{j+1}]\cap\mathcal{N}_w} |\tilde{W}_{n,w,\tau} - \tilde{W}_{n,w_j,\tau}|^q\right).$$

For any $w_{n,i}, w_{n,k} \in [w_j, w_{j+1}] \cap \mathcal{N}_w$, since $\tilde{W}_{n,w_{n,k},\vartheta} - \tilde{W}_{n,w_{n,i},\vartheta}$ is a $\{\mathcal{F}_{n,\tau,\vartheta}, \vartheta \ge 0\}$ martingale, from (S2.8) we have

$$E\left(|\tilde{W}_{n,w_{n,k},\tau} - \tilde{W}_{n,w_{n,i},\tau}|^{q}\right)$$

$$\leq C_{q}\left(E\left[\langle \tilde{W}_{n,w_{n,k},\cdot} - \tilde{W}_{n,w_{n,i},\cdot}\rangle(\tau)\right]^{q/2} + \left(\frac{1 + \tilde{K}_{\tau}(w_{n,k} - w_{n,i})}{n^{1/2}}\right)^{q}\right)$$

$$\leq C\epsilon^{-q/4}\left(\int_{0}^{\tau}\left[\tilde{K}_{\tau} \cdot 1(x \leq w_{n,k}) - \tilde{K}_{\tau} \cdot 1(x \leq w_{n,i})\right]dx\right)^{q/2},$$

Luo, Xu and Ying

where C is a constant. Then from Lemma 4, there exists constant $C^* > 0$ such that for all large n,

$$\frac{1}{\epsilon^{q}} \sum_{j=0}^{N_{0}-1} \left(\frac{q}{q-1}\right)^{q} E\left(\sup_{w \in [w_{j}, w_{j+1}] \cap \mathcal{N}_{w}} |\tilde{W}_{n, w, \tau} - \tilde{W}_{n, w_{j}, \tau}|^{q}\right) \\
\leq \frac{1}{\epsilon^{q}} \sum_{j=0}^{N_{0}-1} \left(\frac{q}{q-1}\right)^{q} C\epsilon^{-q/4} \left(\int_{0}^{\tau} \tilde{K}_{\tau} \cdot 1(w_{n, i_{w_{j}}} < x \le w_{n, i_{w_{j+1}+1}}) \, dx\right)^{q/2} \\
\leq C^{*}(2\epsilon)^{pq/2-p-5q/4},$$
(S3.10)

where $i_{w_j} = \max\{i : w_{n,i} \le w_j\}$. By choosing ϵ sufficiently small, we have that the last term in (S3.10) must be smaller than ϵ . Hence the desired conclusion follows.

S4 Lemma 5

Lemma 5 is used in the proof of Theorem 8. It is a restatement of Lemma A.5 in Bilias *et al.* (1997).

Lemma 5 Consider a set of functions $\{f_{n,\alpha} : n \ge 1, \alpha \in A\}$ from \mathbb{R}^d to \mathbb{R}^d . Suppose that (i) $\frac{\partial}{\partial \theta} f_{n,\alpha}(\theta)$ are nonnegative definite for all n, α, θ ; (ii) $\sup_{\alpha} |f_{n,\alpha}(\theta_0)| \to 0$ as $n \to \infty$; (iii) there exists a neighborhood of θ_0 , denoted by $\mathcal{N}(\theta_0)$, such that

$$\liminf_{n \to \infty} \inf_{\theta \in \mathcal{N}(\theta_0)} \inf_{a \in A} \lambda_{min} \left(\frac{\partial f_{n,\alpha}(\theta)}{\partial \theta} \right) > 0,$$

where λ_{\min} is the minimum eigenvalue as defined in C4. Then there exists n_0 such that for every $n > n_0$ and $\alpha \in A$, $f_{n,\alpha}$ has a unique root $\theta_{n,\alpha}$ and $\sup_{\alpha \in A} |\theta_{n,\alpha} - \theta_0| \to 0$.

Bibliography

Bilias, Y., Gu, M., and Ying, Z. (1997). Towards a general asymptotic theory for Cox model with staggered entry. Ann. Statist. 25, 662–682.

Doob, J. L. (1953). Stochastic Processes. Wiley, New York.

- Gu, M. G. and Lai, T. L. (1991). Weak convergence of time-sequential censored rank statistics with applications to sequential testing in clinical trials. Ann. Statist. 19, 1403–1433.
- Lenglart, E., Lepingle, D., and Pratelli, M. (1980). Presentation unifiee de certaines inégualités de la théorie des martingales, Séminaire de Probabilités. Lecture Notes in Math, 14, 26-48. Springer, Berlin.

Xiaolong Luo

Celgene Corporation

E-mail: xluo@celgene.com

Gongjun Xu and Zhiliang Ying

Department of Statistics, Columbia University

E-mail: gongjun, zying@stat.columbia.edu