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Editorials

On the Marriage of Multiscale Analysis and Statistics

Not so long ago, I had the opportunity to attend a Public Lecture sponsored

by the Clay Mathematics Insitute. Ingrid Daubechies spoke to a general audience

about Wavelets. I wasn’t the only ‘professional statistician’ in the audience;

Harvard Statistics Chair Xiao-Li Meng sat nearby.

At this lecture, Professor Daubechies presented an overview of the many

ways in which wavelets and multiscale ideas are finding applications in science

and technology. As an historical aside, she took us back to the previous century

− her famous paper on orthonormal wavelet bases is now more than 20 years old

− and used last century’s presentation tool (the overhead projector) to present a

transparency she has been holding onto for some over 20 years. The transparency

shows her first picture of what we today call the Daubechies D4 wavelet.

Daubechies’ talk set me thinking about the ways the world has changed

since the days of D4. We no longer use transparencies, and today we use fancier

wavelets, without the visible ‘fractal’ texture that makes D4 so distinctive. Bell

Labs, where Daubechies did her work, is no longer the technologically dominant

force it once was, when it produced inventions, software, and ideas (transistor,

unix, ‘bit’) that reshaped our life. But some new developments occurred, and

some are welcome. The fact that Professor Meng and I were in attendance at

Daubechies’ lecture, along with other statisticians (we all arrived in an uncoor-

dinated ‘random’ way), is the one I want to focus on here: a significant number

of statisticians today are interested in and conversant with multiscale analysis,

as this special issue demonstrates.

Twenty years ago, it would have been extremely unusual for statisticians to

interact with harmonic analysts − I can think of only a few people who did so

regularly. Moreover, it would have been extremely unusual for either species of

mathematical scientist (i.e., mathematical analyst or mathematical statistician)

to spend much time thinking about how to help engineers who gather and analyse

signals. Today, there are many conferences of mathematical scientists in which

signal-processing inspired research is presented and discussed. In fact, one such

meeting, the Graybill Conference in June 2006, provided the spark for the present

issue of Statistica Sinica.
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This special issue points to a cross-fertilization of statistics by applied analy-

sis. This interaction is young and we really don’t know what effects it will have. I

expect that the researchers whose work is presented here will, over time, produce

global, socially-discernible benefits that we will all be proud of one day.

There’s a high standard to live up to. But remember that an earlier genera-

tion of applied mathematicians focused on fluid dynamics-related issues, and an

earlier generation of statisticians focused on agricultural research. The efforts of

earlier generations really paid off: in the last 100 years airplanes have advanced

tremendously far. Applied mathematicians can proudly point to high quality

numerical airflow simulations validating better wing and engine designs. Agri-

culture has made similar dramatic advances. Statisticians can proudly point to

efficient experimental designs and statistical inference tools leading to discovery

of high-yield crops. These are major societal impacts.

There’s really no telling what important applications will emerge from the

marriage of applied analysis with statistics. I have worked for years combining

the two in my own work, and have seen how applications came about. Things

progress in unpredictable ways; the spread of ideas is often difficult to track.

It seems that unexpected combinations of ideas have had the biggest impact.

My own work features such an unexpected combination between ideas in applied

analysis and ideas from statistics. I will first discuss the two sets of ideas or

themes I am thinking about and then their combination.

Theme 1. Wavelet Denoising. When I first learned about orthonormal

bases of wavelets in the late 1980s, I dove into harmonic analysis headfirst; I

remember being utterly fascinated by all the great work in harmonic analysis

in the ‘60s, ‘70s, and ‘80s, for example, papers of Jaak Peetre on the Besov-

Triebel spaces and on ℓp spaces for p < 1, work of Raphy Coifman on atomic

decomposition of H1, and work of Ron Devore on approximations spaces Ap,

p < 1. While such topics were not discussed in applied mathematics at the time,

those abstract ideas inspired thoughts of applications. The key point was to

recognize that, where these spaces offered something different from traditional

spaces like L2 Sobolev spaces, much of the math analysis was about showing

that wavelet coefficients of objects in certain cases were somehow sparse − had

relatively few big coefficients.

I soon decided that there was something here for statisticians. At the time

the literature of ‘smoothing’ considered estimation of functions in ‘nice spaces’

like L2 Sobolev spaces. It was known that many different orthogonal systems

could do an excellent job in such estimation problems. It became clear that

wavelets didn’t really make essential contributions in those settings; where they
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could really contribute would be apparent if more ‘exotic’ spaces were assumed.

Iain Johnstone, Dominique Picard, Gerard Kerkyacharian and I worked out some

implications of this view for removing noise from signals, estimating densities and

spectra; see for example our Royal Statistical Society (RSS) read paper. This

work was addressed explicitly to a statistical audience, proposing to perform sta-

tistical estimation of densities, signals, and images in Besov and Triebel classes.

At the time, such assumptions in statistics papers were unusual; such spaces were

known really only in analysis. Such assumptions have become more conventional.

And much literature has sprung up using them.

However, although the formal assumptions (Besov and Triebel classes) are

crucial to the scholarly angle, working out the consequence of the formal assump-

tions is not the real reason, in my view, for the growth of publication in this area.

It is the larger insights and the algorithmic deliverables that have mattered more

than the accuracy of the formal assumptions.

The larger insight: wavelets are useful because they sparsify objects being

studied − taking completely dense signals and transforming them invertibly into

sparse vectors with relatively few significant entries.

The algorithmic deliverable: many of these papers propose simple threshold-

ing of noisy coefficient sequences. This is computationally practical and seems to

be psychologically natural for many people working in signal processing, where

numerous applications of wavelet thresholding have been published.

Theme 2. Recovery of Sparse Signals. In the early 1980s, I became

fascinated by some empirical phenomena known in geophysical signal processing:

one could take fewer than N measurements of an N element signal vector, and

yet still exactly reconstruct the signal, provided the signal was sparse, the mea-

surements were specially chosen linear combinations, and the reconstruction was

by a specific kind of linear programming. I was inspired by a simple model: a

sequence is sparse and its Fourier transform is undersampled.

I decided this was in some way connected with work on non-harmonic Fourier

analysis and to analytic methods in number theory, and I dove into that litera-

ture. I immersed myself in the collected works of Beurling, Wiener, Littlewood

and Polya. I eventually wrote papers in the late 1980s about this model with Phil

Stark (of UC Berkeley) and Ben Logan (of Bell Labs). Although the model was

not primarily statistical, my coauthors Iain Johnstone and NMR spectroscopists

Jeff Hoch and Alan Stern (Rowland Institute) and I presented it to a statistical

audience in an RSS read paper at about that time. Today there are many papers

being published which consider extensions or outgrowths of models like this; the

most well-known is the paper by Candes, Romberg and Tao (2006).
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In those days, looking at sparse and/or random sets of Fourier coefficients

of sparse and/or random objects was unusual, such situations were definitely a

narrow specialty even in analysis, but they have since become more common.

Sparsity of the object to be recovered now seems more natural, as spectroscopy

and other technology have proliferated. Undersampling of the Fourier transform

has also been discussed in spectroscopy at least since Jeff Hoch and Alan Stern’s

explicit proposal in 1994.

This literature has, in my view, not proliferated because of the strict appli-

cability of the formal assumptions, but instead because of the larger insight and

the algorithmic deliverable. The larger insight is that sparsity is a very valuable

piece of side information, and can be exploited to allow undersampling. The al-

gorithmic deliverable is the use of ℓ1-penalized methods (later called Lasso) that

allow reconstruction of sparse sequences from undersampled data. The compu-

tations seemed extravagant in the 1980s, where simple filtering ideas dominated

signal processing. But now, heavy computations seem increasingly practical and

natural in the signal processing community.

Cross-Fertilization. Our two themes each developed extensive literatures

and many published applications. But the most memorable impact may not be

the originally intended ones. Consider a combination of these themes, sometimes

called Compressed Sensing. We represent an image or signal in a wavelet basis,

where it is sparse; then we undersample some transform of the signal − for

example, undersample the Fourier transform of the object − and reconstruct

the wavelet coefficients an iterative application of wavelet thresholding. This

approach, which is really a combination of the two themes just mentioned, is

today stimulating lots of application work.

I recently attended a conference hosted by the International Society for

Magnetic Resonance in Medicine at which novel schemes for Magnetic Reso-

nance Imaging were presented and discussed. I witnessed a number of impressive

demonstrations of speed-ups in MRI − factors of eight, for example; or even ap-

plications previously thought impossible, made possible by such speedups – 3D-

spectroscopic imaging and dynamic cardiac imaging. The driving force allowing

such speedups is very definitely the marriage of Themes 1 and 2 mentioned above,

but these may be somewhat hidden in the actual implementation. For example,

wavelets may not be explicitly in evidence; denoising of sparse sequences may

also not be explicitly in evidence; but one can definitely show that such ideas,

correctly combined, are the driving force in the applications being presented.

It is extremely hard to trace the complex chain of ideas and inspirations

that lead from ideas in ‘pure’ mathematical statistics or harmonic analysis all the
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way to impacts in technological fields like signal processing and medical imaging.

Ideas get into the intellectual atmosphere, jump disciplines in untraceable ways

and reshape discussion far away from their original source.

In reading the papers in this special issue, please reflect on this. While

multiscale analysis in statistics is an established area of its own, and is here

accorded a special issue of Statistica Sinica, the most important or broadest

impacts of the work you will read between these covers is likely to come in

unexpected ways.
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