Back To Index Previous Article Next Article Full Text

Statistica Sinica 35 (2025), 1671-1687

EFFICIENT ESTIMATION AND INFERENCE FOR THE
SIGNED β-MODEL IN DIRECTED SIGNED NETWORKS

Haoran Zhang and Junhui Wang*

Southern University of Science and Technology and
The Chinese University of Hong Kong

Abstract: This paper proposes a novel signed β-model for directed signed network, which is frequently encountered in application domains but largely neglected in literature. The proposed signed β-model decomposes a directed signed network as the difference of two unsigned networks and embeds each node with two latent factors for in-status and out-status. The presence of negative edges leads to a nonconcave log-likelihood, and a one-step estimation algorithm is developed to facilitate parameter estimation, which is efficient both theoretically and computationally. We also develop an inferential procedure for pairwise and multiple node comparisons under the signed β-model, which fills the void of lacking uncertainty quantification for node ranking. Theoretical results are established for the coverage probability of confidence interval, as well as the false discovery rate (FDR) control for multiple node comparison. The finite sample performance of the signed β-model is also examined through extensive numerical experiments on both synthetic and real-life networks.

Key words and phrases: Directed network, estimating equation, false discovery rate, node ranking, one-step estimation, status theory.

Back To Index Previous Article Next Article Full Text