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Foreword

DATA PRIVACY: OVERVIEW

Data privacy is a key concern of our increasingly digital world, where vast

amounts of personal information are collected, stored, and analyzed daily. As

organizations and researchers seek to extract valuable insights from data, the

need to protect individual privacy has never been more pressing. Differential

privacy (DP), a powerful mathematical framework for quantifying and limiting

privacy loss, has emerged as a leading approach to addressing these challenges.

The concept of differential privacy, introduced in Dwork et al. (2006a,b),

provides a rigorous foundation for privacy-preserving data analysis. It offers

strong privacy guarantees by adding carefully calibrated noise to data or query

results, ensuring that the presence or absence of any individual’s data has a

negligible impact on the statistical output. This approach allows for meaningful

statistical analysis while protecting individual privacy, striking a balance between

data utility and confidentiality. Since its inception, DP has revolutionized the

field of privacy-preserving data analysis and more broadly the area of statistical

data privacy (Slavković and Seeman, 2023), opening up new avenues for research

and practical applications. It has been adopted by major technology companies

(Ding, Kulkarni and Yekhanin, 2017; Kenthapadi and Tran, 2018; Gadotti et al.,

2022; Cormode et al., 2018) and government agencies, most visibly by the U.S.

Census Bureau for the 2020 census (Abowd et al., 2022), demonstrating its real-

world impact and importance.

This special issue celebrates the significant advancements in DP and broader

data privacy research over the past two decades. The eight featured articles from

authors around the world represent the rich spectrum of current work in data

privacy, showcasing both theoretical developments and practical applications.

They cover privacy-preserving synthetic data generation, statistical estimation,

inference, and statistical disclosure risk assessment based on privacy-preserving

synthetic data, privacy-preserving confidence interval construction and hypothe-

sis testing, and differentially private optimization.

Synthetic data is important in protecting individual privacy while allowing

for useful research and policy analysis, however, Awan and Cai find that existing

methods, particularly the parametric bootstrap approach, lead to inconsistent

synthetic data with inefficient estimators. To address this problem, they pro-

pose a new method called “one-step synthetic data”, which adds an extra step
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to the parametric bootstrap. This approach is designed to be widely applicable

to various parametric models, easily implemented, and computationally efficient.

It allows for both partially synthetic datasets (preserving summary statistics

without formal privacy methods) and fully synthetic data satisfying differential

privacy. The authors demonstrate that their method preserves efficient estima-

tors with asymptotically negligible error and allows for distribution convergence

even with slight parameter differences. This new approach aims to overcome the

limitations of previous synthetic data generation techniques by offering a more

versatile, easily implemented, and computationally efficient solution while main-

taining a balance between data utility and privacy protection.

Hu, Williams, and Savitsky introduce a new method that embeds any Bayesian

model used for synthetic data generation into a DP mechanism. The authors pro-

pose a censored likelihood approach that induces upper and lower bounds based

on the desired level of ε-DP guarantee, and show that this innovative approach

is superior to traditional methods, such as the perturbed histogram mechanism,

in balancing data utility and privacy protection. The method incorporates a

vector-weighted pseudo posterior mechanism within the censoring mechanism to

minimize distortion in the posterior distribution. This combined approach allows

for the generation of synthetic data with either a weaker asymptotic DP guaran-

tee and higher utility, or a stronger, non-asymptotic DP guarantee with slightly

reduced utility.

Nombo and Charest tackle the problem of how to properly perform statisti-

cal inference with differentially private synthetic (DIPS) datasets by investigating

the applicability of combining rules, originally designed for standard synthetic

datasets, to DIPS datasets. They propose to empirically test whether these com-

bining rules can provide valid inference for various differentially private synthe-

sizers, including those based on statistical ideas (Bayesian networks, copulas) and

deep learning models (e.g., GANs). They show empirically that this approach

can offer accurate inference under certain conditions, such as when a method

produces unbiased or minimally biased point estimates and the between-variance

sufficiently captures variability due to DP. The authors note that this method-

ology works well for DPGAN and COPULA-SHIRLEY methods, and sometimes

for PATE-GAN method, making it applicable to a wider range of models than

previously thought.

On a theoretical side, Györfi and Kroll address the challenge of estimating

regression functions from synthetic data within the context of local DP. The

authors present a new partitioning estimate for regression functions, and provide

a thorough theoretical analysis, including the derivation of a convergence rate for

the excess prediction risk over Hölder classes and a matching lower bound. A

key contribution of this work is that it eliminates the need for the strong density
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assumption on the design distribution, which has been a requirement in previous

research on this topic.

Kazan and Reiter introduce Bayesian methods for assessing statistical dis-

closure risks in differentially private data with a hierarchical structure, under

zero-concentrated DP. These methods compute posterior probabilities of disclo-

sure based on released counts and assumptions about adversaries’ knowledge.

The authors apply their approach to differentially private data releases from the

2020 U.S. decennial census and perform empirical studies using public, individual-

level data from the 1940 U.S. decennial census. They explore how disclosure risks

vary with privacy parameters and released counts, aiming to provide insights into

potential privacy risks.

Covington, He, Honaker, and Kamath discuss a challenge in the applica-

tion of DP– DP algorithms typically require the user to, without looking at the

data, specify a domain to which the data will be clipped. The paper introduces a

novel framework: a general-purpose meta-algorithm that converts non-private es-

timators into DP estimators while maintaining unbiasedness and producing valid

confidence intervals. This framework combines the Bag of Little Bootstraps algo-

rithm (Kleiner et al., 2014) and a modified version of the CoinPress private mean

estimation algorithm (Biswas et al., 2020) by precision weighting techniques. This

approach addresses the difficulty of specifying data bounds without introducing

substantial error. This work is positioned as a step towards making DP more

practical for applied research, offering a method that allows for conducting sta-

tistical inference without introducing bias and is potentially applicable to a wide

range of estimators.

Peña and Barrientos propose a novel method combining the subsample and

aggregate technique with randomized response to create differentially private ver-

sions of existing hypothesis tests. This approach is shown to be conceptually

simple, widely applicable, and capable of achieving high privacy levels and low

type-I error rates simultaneously. The method is particularly effective for tests

with low significance levels, addressing concerns related to the replication crisis in

scientific research. The authors demonstrate that their approach, which outputs

a binary decision rather than p-values or Bayes factors, can be more practical

and potentially more powerful in certain scenarios. Through extensive simula-

tion studies, they illustrate the performance of their method in implementing

differentially private versions of various statistical tests, including goodness-of-fit

tests, the one-sample Wilcoxon test, and the Kruskal-Wallis test.

Xie, Pietrosanu, Liu, Tu, Jiang, and Kong discuss challenges in privacy-

preserving convex optimization, particularly for regularized problems with heavy-

tailed data. They propose three novel differentially private algorithms for regu-

larized stochastic convex optimization problems with heavy-tailed responses. The
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first algorithm is a vanilla (ε, δ)-DP approach applicable to a wide range of data

distributions. The second algorithm utilizes a robust mean estimator to achieve

an improved upper bound on the population excess risk under certain assump-

tions. The third algorithm incorporates a different robust mean estimator, further

improving the upper bound with weaker assumptions. These methods are shown

to be theoretically and empirically superior to existing approaches, especially in

handling non-smooth regularizers and heavy-tailed data distributions. The au-

thors demonstrate that their algorithms address limitations in current literature,

which often assumes Lipschitz continuity of the loss function, and provide ro-

bust solutions for privacy-preserving regularized convex optimization in various

real-world scenarios.

As we continue to grapple with the complexities of protecting individual pri-

vacy in the age of big data and machine learning, the work presented in this

special issue contributes to our understanding and ability to develop robust,

privacy-preserving data analysis methods. These advancements are crucial for

maintaining public trust, complying with evolving privacy regulations, and un-

locking the full potential of data-driven innovations while respecting fundamental

privacy rights.

We hope that this collection of articles will inspire further research, foster

interdisciplinary collaboration, and contribute to the ongoing development of

privacy-preserving technologies that will shape the future of data analysis and

privacy protection.
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