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Abstract: Economic and financial time series can feature locally explosive behav-

ior when a bubble is formed. The economic or financial bubble, especially its

dynamics, is an intriguing topic that has been attracting longstanding attention.

To illustrate the dynamics of the local explosion itself, the paper presents a novel

time series model, called the stochastic nonlinear autoregressive model, which is

always strictly stationary and geometrically ergodic and can create long swings

or persistence observed in many macroeconomic variables. When a nonlinear

autoregressive coefficient is outside of a certain range, the model has periodi-

cally explosive behaviors and can then be used to portray the bubble dynam-

ics. Further, the quasi-maximum likelihood estimation (QMLE) of our model is

considered, and its strong consistency and asymptotic normality are established

under minimal assumptions on innovation. A new model diagnostic checking

statistic is developed for model fitting adequacy. In addition, two methods for

bubble tagging are proposed, one from the residual perspective and the other

from the null-state perspective. Monte Carlo simulation studies are conducted
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to assess the performances of the QMLE and the two bubble tagging methods in

finite samples. Finally, the usefulness of the model is illustrated by an empirical

application to the monthly Hang Seng Index.

Key words and phrases: Causal process, Financial bubble, Rational expectation,

SNAR model, Speculative bubble.

1. Introduction

Financial speculative bubbles have been attracting longstanding attention

of economists and financial practitioners as an economic crisis often orig-

inates along with a burst of a bubble. In reality, however, economic or

financial bubbles cannot be avoided. The presence of bubbles is partially

evidenced by that many economic or financial time series possess locally ex-

plosive behavior and a subsequent burst, with such a phenomenon appearing

periodically. Studying the dynamics of bubble thus becomes important and

intriguing.

One classical definition of the bubble is the deviation of the market

price from its fundamental value (a sum of discounted future dividends)

in rational expectation price models. An important model of the rational

bubble is initiated by Blanchard and Watson (1982), where the bubble pro-

cess is captured via a simple stochastic autoregression (AR) with a fixed
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explosive rate and an absorbing state zero. Their model is then extended

by Evans (1991) via adopting a stochastic rate of explosion. Primarily,

the bubble is regarded as an explosive nonstationary process, which moti-

vates to test its presence via unit root and cointegration tests (Diba and

Grossman, 1988a,b). Recently, this idea is further developed by Phillips

and Yu (2011), Phillips et al. (2011, 2015a,b), Harvey et al. (2019, 2020),

Tao et al. (2019), Kurozumi et al. (2023), Esteve and Prats (2023) and

references therein. On the other hand, Evans (1991) also notes that pe-

riodical collapse of bubbles makes the bubble paths look more like a sta-

tionary process. Within a stationary framework, Gouriéroux and Zaköıan

(2017) find that noncausal AR(1) models can characterize multiple local

explosions in time series. Then this noncausal approach to bubble mod-

elling has been extended to high-order mixed causal-noncausal time series

models, see, for example, Gouriéroux and Jasiak (2016), Fries and Zaköıan

(2019), Cavaliere et al. (2020), Davis and Song (2020), and Fries (2022).

However, one shortcoming of the noncausal approach invites computational

challenge and many resampling methods are needed. To bypass this short-

coming, Blasques et al. (2022) propose a new observation driven model with

time-varying parameters and study its probabilistic properties and statisti-

cal inference. Nevertheless, their estimation heavily depends on the choice
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of the survival function and the asymptotics can be obtained only for a part

of parameters. Motivated by all above facts, we here present a new simple

time series model to describe the dynamics of bubbles.

In this paper, a first-order stochastic nonlinear autoregressive (SNAR)

model {yt} is defined as

yt = stϕ0|yt−1|+ εt, t ∈ Z := {0,±1,±2, ...}, (1.1)

where ϕ0 ∈ R, {εt : t ∈ Z} is a sequence of independent and identi-

cally distributed (i.i.d.) random variables on some basic probability space

(Ω,F ,P), and independent of i.i.d. binary variables {st : t ∈ Z} with

P(st = 1) = p0 = 1− P(st = 0), p0 ∈ [0, 1).

Clearly, when ϕ0 > 1, yt is explosive in the periods where st = 1

and creates an excursion which stops once st = 0. Fig. 1 illustrates two

simulated paths of the SNAR model (1.1) with εt
i.i.d∼ N (0, 62). We can

observe periodically local explosions followed by bursts. And the ‘shape’ of

a bubble before its burst is similar to a quadratic curve, which conforms

to some practitioners’ pointview that the accumulation of a bubble before

bursting resembles a parabola. Further, when P(st = 1) = 1, the SNAR

model (1.1) reduces to an absolute AR model or a special threshold AR

model with threshold parameter zero, which is studied in Tong (1990), Li

and Tong (2020) and references therein.
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Figure 1: Simulated paths of model (1.1) with εt ∼ N (0, 62), p0 = 0.977,

and (a) ϕ0 = 1.025 and (b) ϕ0 = 1.05.

Major contributions of our paper are as follows.

First, we introduce a simple yet useful time series model, the SNAR

model, for modeling the dynamics of the bubble process. In particular, it is

simple in its first-order autoregressive form as in (1.1) while being useful in

addressing certain limitations of existing results on bubble modeling. We

then prove that the model is always strictly stationary and geometrically

ergodic under minimal assumptions on innovation and the probability p0.

Within a causal and stationary framework, when the parameter ϕ0 > 1,

our SNAR model still displays local explosions and collapses periodically.
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It can create long swings or persistence and can then be used to portray

the bubble dynamics. More importantly, our model is always causal in the

classical sense of time series. Compared with the noncausal bubble models

in the literature, our model facilitates the understanding of the dynamics of

bubble and is simpler and more convenient in applications. In particular,

our model avoids the computational burden of the noncausal approach and

keeps away from the choice of the survival function as in the time-varying

parameter model of Blasques et al. (2022).

It is worth mentioning that a related model to ours is a stochastic

AR initiated by Blanchard and Watson (1982), which is defined as yt =

stϕ0yt−1 + εt, t ∈ Z, where {st} and {εt} are defined in (1.1). It can

also create long swings or persistence (Johansen and Lange, 2013). Un-

fortunately, it can usually generate many negative local explosions even if

ϕ0 > 1 and εt
i.i.d∼ N (0, σ2) since within a long swing E(∆yt|yt−1, st = 1) =

(ϕ0− 1)yt−1 < 0 if yt−1 < 0, where ∆yt = yt− yt−1. In the same setting, for

our SNAR model, we always have E(∆yt|yt−1, st = 1) ≥ (ϕ0 − 1)|yt−1| ≥ 0,

which implies that there always exists a positive accumulation tendency

until bubble burst. This is one of the advantages of introducing a nonlinear

mechanism |yt−1|.

Second, we consider the quasi-maximum likelihood estimation (QMLE)
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of the SNAR model and establish its strong consistency and asymptotic nor-

mality under minimal assumptions on innovation and probability parameter

p0, regardless of infinite variance or heavy-tailedness of the model.

Third, we develop a new model diagnostic checking statistic since the

classical portmanteau test is invalid for our model in view of the absence of

the residuals.

Fourth, we consider two methods for tagging the bubbles, one from

the residual point of view and the other from the null-state perspective.

The problem of bubble detection has been studied in the literature; see

for example Phillips and Yu (2011), Phillips et al. (2015a), Phillips et al.

(2015b), Blasques et al. (2022), Kurozumi and Skrobotov (2023), and refer-

ences therein. Existing results in this direction, however, have been mainly

developed by viewing the bubble as a separate process occurring on an un-

known but deterministic time interval within the observation period. The

current paper, on the other hand, aims to consider bubble tagging in the

context of a single stationary model that describes the bubble and non-

bubble periods along with the generation and burst of bubbles. As a result,

unlike existing results that typically assume the bubbles to persist for an

adequate duration to achieve their consistent detection, the bubbles in the

current model can be transient and thus the problem of bubble tagging
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can be more challenging in the current setting. For this, we consider two

approaches, where the first one utilizes the nonlinear autoregressive resid-

ual from the proposed model and the second one is constructed from a

hypothesis testing point of view. For both methods, we provide theoreti-

cal quantification on the finite-sample probability of correct tagging under

reasonably mild conditions. Monte Carlo simulation results are provided

to assess the finite-sample performance of the proposed QMLE and bubble

tagging methods.

The remainder of the paper is organized as follows. Section 2 investi-

gates strict stationarity and geometric ergodicity of model (1.1). Section 3

considers the QMLE with its asymptotics. Section 4 studies model diag-

nostic checking. Section 5 considers the problem of bubble tagging, where

two approaches are considered with their finite-sample probability bounds

studied. Section 6 carries out Monte Carlo simulation studies to assess the

finite-sample performances of the QMLE and the two bubble tagging meth-

ods. Section 7 gives an empirical application to illustrate the usefulness of

the model. Section 8 concludes. Part of simulation results and all technical

proofs are provided in the Supplementary Material.
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2. Probabilistic Properties of the SNAR Model

The aim of this section is to prove the strict stationarity and geometric

ergodicity of model (1.1) under a very mild condition. We will prove the

following result, using the approach developed by Meyn and Tweedie (2009)

for establishing the geometric ergodicity of Markov chains. This result is

important and is a theoretical foundation of inference for model (1.1).

Theorem 1. Suppose that (i) {εt} is i.i.d. and independent of i.i.d. binary

variables {st} with 0 ≤ p0 < 1, and (ii) ε1 has a positive density on R with

E(log+ |ε1|) < ∞. Then there exists a strictly stationary, nonanticipative

solution to {yt} in model (1.1) and the solution is unique and geometrically

ergodic.

We remark that, although Theorem 1 is developed for any choice of ϕ0

for the purpose of generality, it is typically desired to use model (1.1) with

ϕ0 > 1 for proper bubble formation. In particular, the choice of ϕ0 ≤ 1

generally does not lead to positive local explosions with accelerated speed

and is thus not considered as suitable for bubble modeling. Also, Theorem

1 is developed under the relatively mild condition E(log+ |ε1|) < ∞, and

as a result it covers the situation when E(|ε1|) < ∞ but E(ε21) = ∞. In

such special cases with stronger moment conditions, the proposed model
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can still continue to generate positive local explosions when ϕ0 > 1.

We next consider the existence conditions on moments of yt. Clearly,

when E(εt) = 0, E(ε2t ) < ∞, and both εt and st are independent, then

E(y2t ) = E(ε2t )/(1−p0ϕ2
0) <∞ if p0ϕ

2
0 < 1. Fig. 2 plots the strict stationarity

region of yt with E(y2t ) <∞. Further, if E(ε3t ) = 0, then a simple algebraic

calculation gives the kurtosis of yt:

kurtosis(yt) =
{6p0ϕ2

0 + kurtosis(εt)(1− p0ϕ
2
0)} (1− p0ϕ

2
0)

1− p0ϕ4
0

, if p0ϕ
4
0 < 1.

In particular, when εt ∼ N (0, 1), then

kurtosis(yt) =
3(1− p20ϕ

4
0)

1− p0ϕ4
0

> 3, if 0 < p0ϕ
4
0 < 1,

which implies that {yt} is heavy-tailed.

3. Quasi-Maximum Likelihood Estimation

Let θ0 = (ϕ0, p0, σ
2
0)

′ be the true parameter with σ2
0 = E(ε2t ). Denote by

θ = (ϕ, p, σ2)′ be the parameter and by Θ be the parameter space. Assume

that the observations {y0, y1, ..., yn} are from model (1.1) with the true value

θ0. Clearly, under Assumption 1 below, it follows that E(yt|yt−1) = pϕ|yt−1|

and Var(yt|yt−1) = p(1 − p)ϕ2y2t−1 + σ2. Then the (conditional) log-quasi-

likelihood function (omitting a constant) is

Ln(θ) =
n∑

t=1

ℓt(θ) :=
n∑

t=1

{
log

[
p(1− p)ϕ2y2t−1 + σ2

]
+

(yt − pϕ|yt−1|)2

p(1− p)ϕ2y2t−1 + σ2

}
.
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Figure 2: The strict stationarity region {(p, ϕ) : ϕ ∈ R, pϕ2 < 1, 0 ≤ p < 1}

of yt with finite second moment.

The QMLE of θ0 is defined as

θ̂n = argmin
θ∈Θ

Ln(θ).

To study the asymptotics of θ̂n, the following assumptions are needed.

Assumption 1. {εt} is i.i.d. and independent of i.i.d. binary variables

{st} with p0 < 1. Further, ε1 has a positive density on R with zero mean

and finite variance.

Assumption 2. The parameter space Θ is a compact subset of {θ =

(ϕ, p, σ2)′ : ϕ ̸= 0, 0 < p < 1, 0 < σ2 <∞}.

The following two theorems state the strong consistency and the asymp-

totic normality of θ̂n, respectively.
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Theorem 2. If Assumptions 1-2 hold, then θ̂n → θ0 a.s. as n→ ∞.

Theorem 3. If Assumptions 1-2 hold, E(ε4t ) < ∞, and θ0 is an interior

point of Θ, then

√
n
(
θ̂n − θ0

) d−→ N
(
0, J −1IJ −1

)
, as n→ ∞,

where ‘
d−→’ stands for convergence in distribution,

J = E
{
∂2ℓt(θ0)

∂θ∂θ′

}
and I = E

{
∂ℓt(θ0)

∂θ

∂ℓt(θ0)

∂θ′

}
.

Remark 1. The explicit expressions of I and J are provided in the

Supplementary Material. From their expressions we can see that each el-

ement of random matrices within the expectation is bounded and thus it

is unnecessary to require moment conditions on yt for the asymptotics of

θ̂n. In addition, it is expected that the moment condition E(ε4t ) < ∞ can

be relaxed via, for example, the quasi-maximum exponential likelihood es-

timation as considered in Zhu and Ling (2011), for which we shall leave as

a future research topic.

Remark 2. In practice, to make statistical inference on θ0, we must

estimate the matrices I and J . From the proof of Theorem 3, they can be

consistently estimated by

În =
1

n

n∑
t=1

∂ℓt(θ̂n)

∂θ

∂ℓt(θ̂n)

∂θ′
and Ĵn =

1

n

n∑
t=1

∂2ℓt(θ̂n)

∂θ∂θ′
,
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respectively. Note that the plug-in method is here invalid since both κ3 =

E(ε3t ) and κ4 = E(ε4t ) in matrix I cannot be estimated from the residuals.

Additionally, due to the constraint p0 ∈ (0, 1), the Delta method may be

needed to construct confidence intervals of p0. If necessary, for example, we

can consider the transformation g(p) = log[(1 − p)/p] for p ∈ (0, 1). Note

that

√
n
(
g(p̂n)− g(p0)

) d−→ λp
p0(1− p0)

N (0, 1),

if
√
n(p̂n − p0)

d−→ N (0, λ2p). Then, for any fixed α ∈ (0, 1), a 100(1− α)%

confidence interval of p0 is

[{
1 + exp[g(p̂n)− z̃]

}−1

,
{
1 + exp[g(p̂n) + z̃]

}−1
]
,

where z̃ = λp zα/2/{
√
np̂n(1− p̂n)} with zα/2 the lower α/2-quantile of the

standard normal.

4. Model Diagnostic Checking

Diagnostic checking is important for time series modeling. The most com-

monly used tool is the portmanteau test, which depends on the autocor-

relation of the residuals or the squared residuals, see, e.g., McLeod and Li

(1983), Li and Mak (1994), Li (2004), and Chen and Zhu (2015). However,

such the portmanteau test fails for the adequacy of model (1.1) since the

residuals cannot be obtained. In fact, the residuals should be theoretically

calculated by ε̂t = yt − stϕ̂n|yt−1| with the initial value y0 for i = 1, ..., n.

13
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Unfortunately, the latent variables {st : 1 ≤ t ≤ n} are unknown and

prevent us from getting {ε̂t}.

To check the adequacy of model (1.1), we introduce a new portmanteau

test, which is constructed via a transformation of an uncorrelated sequence.

Note that the sequence {yt − p0ϕ0|yt−1| : t ∈ Z} is still uncorrelated when

E(y2t ) <∞ after replacing st by its mean p0 in (1.1). However, substituting

this sequence for residual sequence in classic portmanteau test requires an

additional assumption E(y4t ) <∞ to obtain its asymptotic distribution. To

reduce the dependence on the moments of yt, similar to Ling (2005, 2007),

we adopt a self-weight method and then define a new sequence {ηt} by

ηt :=ηt,a = (yt − p0ϕ0|yt−1|)I(|yt−1| ≤ a)

=ϕ0(st − p0)|yt−1|I(|yt−1| ≤ a) + εtI(|yt−1| ≤ a), t ∈ Z,
(4.2)

where the constant a is positive and is called a tuning parameter, and I(·)

is an indicator function. Clearly, {ηt} is strictly stationary and ergodic

since it is a measurable function of strictly stationary and ergodic sequence

(yt−1, st, εt)
′. Further, by the mutually independence among st, εt, and yt−1,

a simple calculation yields that

E(ηt) = 0, E(ηtηt−k) = 0,

σ2
η := E(η2t ) = p0(1− p0)ϕ

2
0E

{
y21I(|y1| ≤ a)

}
+ σ2

0P(|y1| ≤ a),

(4.3)

14
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for k ≥ 1. That is, {ηt} is always a white noise under Assumption 1.

Moreover, it is also a martingale difference sequence.

Let η̂t = (yt − p̂nϕ̂n|yt−1|)I(|yt−1| ≤ a), 1 ≤ t ≤ n. Intuitively, its

sample autocorrelation ρ̂nk should be close to zero if model specification is

correct, where

ρ̂nk =

∑n
t=k+1(η̂t − η̄)(η̂t−k − η̄)∑n

t=1(η̂t − η̄)2
with η̄ = n−1

n∑
t=1

η̂t.

Denote ρ̂n = (ρ̂n1, . . . , ρ̂nM)′, where M ≥ 1 is a fixed positive integer. The

following theorem gives the limiting distribution of ρ̂n.

Theorem 4. Suppose the conditions in Theorem 3 hold. If model (1.1) is

correctly specified, then
√
nρ̂n

d−→ N (0, UGU′), where G = E{vtv′t} with

vt =

[
ηtηt−1

σ2
η

, . . . ,
ηtηt−M

σ2
η

,

(
−J −1∂ℓt(θ0)

∂θ

)′ ]′
,

and U = [IM , σ
−2
η (u1, . . . , uM)′(p0, ϕ0, 0)] with uk = −E{ηt−k|yt−1|I(|yt−1| ≤

a)} and σ2
η being defined in (4.3).

Based on Theorem 4, our portmanteau test statistic is defined as

QM = nρ̂
′

n

(
ÛnĜnÛ

′
n

)−1
ρ̂n,

where Ûn and Ĝn are consistently sample counterparts of U and G, re-

spectively. Under conditions of Theorem 4, we have that QM
d−→ χ2

M .
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Remark 3. In application, we must choose the tuning parameter a

when our test statistic QM is used. According to the suggestion in the

literature, see, for example, Ling (2005, 2007), we can let a be the 90%

or 95% quantile of data {|y1|, ..., |yn|}. Many practical experience shows

that this self weight performs well, although it may not be optimal and

there exist some other choices. Further, from Section 2, we can see that

E(y4t ) < ∞ if p0ϕ
4
0 < 1. In this case, the truncation in (4.2) is not needed

and one can simply use the untruncated version with a = +∞.

5. Bubble and Crash Tagging

An important problem in economic or financial data analysis is to tag bub-

bles and their collapses, which can help the government or financial insti-

tutions to alert the abnormal-growth risk or respond timely to resolve a

potential financial crisis after a burst. Meanwhile, being able to success-

fully tag a bubble can also create lucrative trading opportunities. On the

other hand, many economic studies can benefit from meaningful tagging of

history bubbles and crashes to help understand the economic status and ex-

plain the reasoning behind certain economic behaviors in the history. The

problem of bubble or crash tagging, however, is often not easy and requires

sophisticated statistical modeling and treatment. For this, Phillips and Yu

16
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(2011) considered decomposing the asset price process into a fundamental

component determined by expected future dividends and an explosive bub-

ble component, and proposed a recursive testing procedure. Phillips et al.

(2015b) modeled the null hypothesis as a random walk with asymptotically

negligible drift and studied the limit theory of a dating algorithm for bubble

detection; see also Phillips et al. (2015a). We also refer to recent papers by

Blasques et al. (2022) and Kurozumi and Skrobotov (2023), and references

therein, for additional literature. Existing results on bubble detection, nev-

ertheless, were mainly developed in a nonstationary framework for which

the bubble mechanism is not incorporated into the underlying stationary

process and treated as a separated period on the timeline.

Compared with the aforementioned results that often concatenate dif-

ferent models at deterministic times to make a nonstationary process, a

distinguishable feature of the current paper is to consider bubble tagging

using a single stationary model that is able to describe both the bubble

and non-bubble periods along with the generation and burst of bubbles.

Unlike existing results where bubbles are assumed to persist for an ade-

quate duration to achieve consistent detection, the task of bubble or crash

tagging in the current stationary framework can be more challenging as

bubbles, especially transient bubbles or bubbles that only last for a very

17
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5.1 A Residual-Based Method for Crash Tagging

short time, can be easily mixed with large white noise observations. We in

the following provide two different tagging methods in the current station-

ary framework, the first one mainly focuses on the collapse of bubbles and

is therefore named crash tagging, while the other aims to detect bubbles as

anomalies and is thus named bubble tagging.

5.1 A Residual-Based Method for Crash Tagging

Given model (1.1), we consider the difference

rt := yt − ϕ0|yt−1| =


εt, if st = 1,

εt − ϕ0|yt−1|, if st = 0.

(5.4)

Since ϕ0 > 1 is generally assumed in applications with bubbles, intuitively

rt is expected to be smaller at time points when there is no bubble with

st = 0 by a shift from that of the bubble period when st = 1. Therefore,

a natural approach is to tag a crash or more generally st = 0 if rt ≤ cr for

some threshold cr.

To provide a theoretical understanding of such a tagging approach, we

introduce an auxiliary process {zt}, where z0 = ϵ0 and

zt = ϕ0|zt−1|+ εt, t = 1, 2, . . . . (5.5)

Unlike the full model specified in (1.1) that is stationary for which a bubble

can collapse, the process {zt} defined above is a pure bubble process that

18
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5.1 A Residual-Based Method for Crash Tagging

is explosive and nonstationary. In particular, for any k ≥ 1, zk shares

the same distribution as yt+k if a bubble forms at time t + 1 and persists

through time t + k, which we call a k-th cumulative bubble. This also

relates to the excursive period with duration k in financial applications;

see for example our data analysis in Section 7. For consistent tagging of

bubbles, it is generally required that k → ∞, namely the bubble has to

persist for a growing horizon of time; see for example Phillips et al. (2015b)

and references therein. The following Proposition 1 provides a theoretical

support of the residual-based crash tagging method.

Proposition 1. For any time t, if the innovation distribution is symmetric,

then the conditional probability that the collapse of a k-th cumulative bubble

will be correctly tagged by the aforementioned method equals to P(zk ≥ −cr),

namely the marginal probability that the auxiliary explosive bubble process

will exceed the same threshold in the other direction.

We shall here provide a discussion on the result of Proposition 1. In

particular, a threshold of cr < 0 is typically chosen in practice for rt defined

in (5.4), and as a result −cr > 0 will be a positive threshold for zk. Given

the explosive nature of the bubble process {zk}, it is expected that P(zk >

−cr) → 1 as k → ∞ for any chosen threshold −cr > 0, and as a result the

probability that the collapse of a k-th cumulative bubble will be correctly
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5.1 A Residual-Based Method for Crash Tagging

tagged increases to one as k → ∞. This resonates the result of Phillips et al.

(2015b) but in very different settings. To be more specific, Phillips et al.

(2015b) assumed that the bubble period is a deterministic segment with an

increasing number of time points within the whole observation period, while

the current setting treats the bubble as an integrated part of an underlying

stationary process in (1.1).

In practice, the parameter ϕ0 in (5.4) is unknown, and we propose to

plug in the QMLE and use the residual r̂t = yt − ϕ̂n|yt−1|. In this case, one

tags st = 0 if r̂t < cr for some threshold cr. We in the following provide a

discussion on possible rule of thumb choices of the threshold cr.

• Rule 1 (hard threshold). A natural choice is to set cr as the

(1 − p̂n)-th quantile of {r̂t}, and it can be seen from the simulation

results in Section 6 that such a simple choice of cr seems to perform

well and is reasonably robust to different innovation distributions.

In applications where the innovation distribution is believed to be normal

with εt ∼ N (0, σ2
0), then additional likelihood-based methods are available

for the choice of cr. In particular, we consider the following approaches

that provide time-varying choices of the threshold so that one tags st = 0

if r̂t < cr,t for some threshold cr,t that can depend on time. Following the

notation in Section 3, we use (ϕ̂n, p̂n, σ̂
2
n) to denote the QMLE of (ϕ0, p0, σ

2
0).
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5.1 A Residual-Based Method for Crash Tagging

• Rule 2 (conditional likelihood). Motivated by (5.4) where rt takes

value εt or εt − ϕ0|yt−1| depending on whether st = 1 or st = 0, we

can compare the conditional likelihood of rt given yt−1 to distinguish

the two cases. Under the normal innovation distribution, this leads

to the data-driven choice of cr,t = −ϕ̂n|yt−1|/2.

• Rule 3 (time-varying quantile). As an alternative to the afore-

mentioned likelihood ratio approach, we may also use the conditional

distribution of rt|yt−1 ∼ p0N (0, σ2
0) + (1− p0)N (−ϕ0|yt−1|, σ2

0) to set

the threshold cr,t as the conditional (1− p̂n)-th quantile, i.e.,

cr,t = inf
{
r ∈ R : p̂nΦ (r/σ̂n) + (1− p̂n)Φ

(
(r + ϕ̂n|yt−1|)/σ̂n

)
> 1− p̂n

}
,

where Φ(·) denotes the distribution function of a standard normal.

• Rule 4 (Bayesian). We in addition offer a Bayesian approach of

choosing the threshold based on the conditional likelihood. In par-

ticular, based on the proposed model (1.1) we can tag st = 0 if

P(st = 1|rt) < P(st = 0|rt), namely when

p0ψ(rt/σ0) < (1− p0)ψ((rt + ϕ0|yt−1|)/σ0),

where ψ(·) denotes the density function of a standard normal. By
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5.2 A Null-Based Method for Bubble Tagging

plugging in the QMLE, we can then tag st = 0 if

p̂nψ (r̂t/σ̂n) < (1− p̂n)ψ
((
r̂t + ϕ̂n|yt−1|

)
/σ̂n

)
.

5.2 A Null-Based Method for Bubble Tagging

The method described in Section 5.1 relies on residuals from the one-step

ahead recursion specified by model (1.1) to tag the collapse of bubbles. In

essence, it treats the explosive bubble alternative as the default and aims

at detecting the null of no bubble as an anomaly. We shall here consider

its complement which sets the null of no bubble as the baseline and detects

the formation of a bubble as an anomaly. To be more specific, when st = 0

and there is no bubble at time t, we have yt = εt which forms a stationary

white noise sequence. When the bubble starts to form at time t, however,

an explosive drift ϕ0|yt−1| will be cumulatively added to the otherwise white

noise sequence during the whole bubble period making the observed yt to

cumulatively deviate away from the baseline. Therefore, it becomes natural

to tag time t as a bubble if yt > c for some threshold c.

In contrast to the approach in Section 5.1 which relies exclusively on

model (1.1) to compute the residuals {r̂t}, this null-based method directly

works on the original observations {yt} and is expected to have a more

robust performance when model (1.1) is misspecified. In addition, since yt
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5.2 A Null-Based Method for Bubble Tagging

is distributed as a white noise sequence under the null of no bubble, the

threshold c can be taken as a uniform constant, which can be a convenient

feature that facilitates the decision rule visualization. It can also be more

advantageous in situations when bubbles are not prevailing in the obser-

vation period. In practical application, the threshold c can be set to the

sample quantile of {yt} corresponding to some given quantile level.

Let {zt} be the auxiliary process defined in (5.5), and we in the following

provide some theoretical understanding of such a null-based bubble tagging

method under the fixed horizon domain.

Proposition 2. For any time t, the conditional probability that a k-th

cumulative bubble will be correctly tagged by the null-based method equals

P(zk > c), namely the marginal probability that the auxiliary explosive bub-

ble process will exceed the same threshold.

For bubbles that persist for a growing horizon of time, by the explosive

nature of the auxiliary bubble process it is expected that P(zk > c) → 1

as k → ∞ for any given threshold c, and as a result the aforementioned

null-based bubble tagging method can identify such a persistent bubble

with probability tending to one. Phillips et al. (2015b) treated the bubble

period as a fixed but unknown deterministic section of the whole obser-

vation time, and provided the consistency when the length of the bubble

23

Statistica Sinica: Newly accepted Paper 



5.2 A Null-Based Method for Bubble Tagging

section grows proportionally with the sample size. In contrast, the current

paper treats the bubble as an intrinsic feature of a stationary data generat-

ing mechanism, which serves as an important step to provide a statistical

model to understand the mechanism of an economic phenomenon. We also

remark that, unlike the QMLE discussed in Section 3, the aforementioned

null-based bubble tagging method and Proposition 2 will continue to hold

for situations when the hidden state process {st} exhibits dependence and

forms a stationary or nonstationary process by itself. For example, it can

be a stationary Markov chain or a nonstationary Markov chain with time-

varying transition matrices. In addition, the proof of Proposition 2 can be

readily generalized to handle bubble mechanisms other than the one-step

autoregressive recursion specified in (1.1).

We remark that the bubble tagging methods described in Sections 5.1

and 5.2 involve the estimation of certain parameters to determine the tag-

ging region, and as a result they are developed mainly for tagging bubbles

and their collapses of a given time series from a retrospective aspect. It

is possible, however, to consider an extension to real-time monitoring of

bubble formations and collapses, where one can use a set of history data

to estimate the underlying model parameters and then perform real-time

tagging when new data points arrive. The optimal threshold, however, can
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be different in the online setting, and we shall leave it as a future research

topic.

6. Simulation Studies

To assess the performance of the QMLE of θ0 and tagging methods in finite

samples, we use the sample size n = 200, 400, and 800, each with 1000

replications for model (1.1). The error εt follows the standard normal,

the Laplace, and the standardized Student’s t5 distributions, respectively.

Three different true values of θ0 = (ϕ0, p0, σ
2
0)

′ are used, respectively, i.e.,

• Case I: θ0 = (1, 0.9, 1)′;

• Case II: θ0 = (
√

10/9, 0.9, 1)′;

• Case III: θ0 = (1.2, 0.9, 1)′.

For Case I, since p0ϕ
2
0 < 1 we have E(y2t ) < ∞. In comparison, yt has

an infinite variance in Case III since p0ϕ
2
0 > 1. For Case II, θ0 is on the

boundary, i.e., p0ϕ
2
0 = 1, which is never considered in the literature.

Table S.1 in the Supplementary Material reports the bias, empirical

standard deviation (ESD), and asymptotic standard deviation (ASD) of

the QMLE θ̂n for Cases I-III. From the table, we can see that the QMLE

performs well irrespective of infinite variance or heavy-tailedness issues.
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The biases are small and all the ESDs are close to the corresponding ASDs.

To see the overall approximation of the QMLE ϕ̂n, Fig. S.1 in the Supple-

mentary Material displays the histogram of
√
n
(
ϕ̂n − ϕ0

)
when the sample

size n = 400. From the figure, we can see that
√
n
(
ϕ̂n − ϕ0

)
is always

asymptotically normal irrespective of infinite variance or heavy-tailedness

of yt.

We shall here examine the finite-sample performance of the two tagging

methods described in Section 5. For the residual-based tagging method in

Section 5.1 with reference rules 1–4 we denote them by RBT1–RBT4 re-

spectively in our numerical study, and we abbreviate the null-based tag-

ging method in Section 5.2 as NBT hereafter. For each generated process,

let {ŝt : 1 ≤ t ≤ n} be the estimated bubble tags and # denote the set

cardinality. We consider the following evaluation metrics:

• P: the overall proportion of correct tagging #{t : ŝt = st}/n;

• P0: the proportion of correctly tagged null states #{t : ŝt = 0, st =

0}/#{t : st = 0};

• P1: the proportion of correctly tagged bubbles #{t : ŝt = 1, st =

1}/#{t : st = 1}.

The results under normal errors are presented in Table 1 and that for other
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Table 1: The values (in percentage) of P, P0, and P1 for RBT1-RBT4 and

NBT with εt ∼ N (0, 1) when n = 200.

Method P P0 P1 P P0 P1 P P0 P1

ϕ0 = 1, p0 = 0.9 ϕ0 =
√
10/9, p0 = 0.9 ϕ0 = 1.2, p0 = 0.9

RBT1 90.93 53.15 94.73 92.15 59.34 95.37 93.44 65.62 96.12

RBT2 84.64 21.33 91.25 85.45 25.99 91.67 87.81 38.80 93.01

RBT3 90.47 51.22 94.48 91.68 57.51 95.11 93.75 67.68 96.25

RBT4 91.49 56.11 95.04 92.81 62.85 95.73 95.02 74.09 96.99

NBT 87.01 33.20 92.56 87.63 36.48 92.87 89.16 44.62 93.75

ϕ0 = 1, p0 = 0.5 ϕ0 =
√
10/9, p0 = 0.5 ϕ0 = 1.2, p0 = 0.5

RBT1 66.70 66.79 66.69 67.77 67.87 67.75 69.93 70.05 69.92

RBT2 68.13 68.24 68.11 69.45 69.56 69.43 72.16 72.32 72.15

RBT3 68.09 68.20 68.08 69.37 69.48 69.35 71.93 72.09 71.92

RBT4 68.32 68.43 68.31 69.55 69.66 69.53 72.42 72.58 72.41

NBT 66.85 66.95 66.83 67.97 68.07 67.95 70.00 70.16 69.99

type errors are provided in the Supplementary Material. Each configuration

is based on 1000 replications. To provide a fair comparison, we set the

thresholds of different tagging methods so their estimated bubble ratios

#{t : ŝt = 1}/n are controlled at the same level.

From the results, we can observe the followings.

(i) For both the RBT and NBT methods, the results are reasonably close

across different error types. This indicates that the bubble tagging

methods considered in Sections 5.1 and 5.2 possess a certain degree of
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robustness with respect to the error distribution.

(ii) For each of the method considered, the performance in general im-

proves when the nonlinear autoregressive coefficient ϕ0 increases. This

is mainly because a larger value of the parameter ϕ0 in general leads

to a stronger degree of explosiveness during the bubble period, mak-

ing it relatively easier to distinguish between bubbles and null-states.

When p0 = 0.9 as in Tables 1 and S.2, the performance of the RBT

method can vary depending on which reference rule is used to obtain

the threshold. The NBT method, on the other hand, seems to deliver

a performance that is between the best and worst performed RBT

methods. Note that the RBT method is deigned using the residuals

that are more related to the bubble alternative, it meets with our intu-

ition that the RBT method in general outperforms the NBT for most

of the threshold choices when the bubble state probability p0 = 0.9 is

relatively high.

(iii) When the true underlying bubble state probability p0 decreases to 0.5

as in Tables 1 and S.3, the bubble state no longer dominates and as

a result the difference between the RBT and NBT methods becomes

less noticeable and all the methods considered delivered quite similar
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performance.

7. An empirical example

In this section, we analyze the monthly Hang Seng Index (HSI) from Decem-

ber 1986 to December 2017 with a total of 373 observations. To eliminate

the effect of inflation on price, we transform nominal prices into real prices

by the consumer price index, which can be obtained from the Federal Re-

serve Bank of St Louis. Fig. 3 (a) displays the real HSI prices, from which

one can see an ascendant linear trend in the time series. Thus, we first

subtract such a linear trend from the series. That is, we assume that the

HSI real price xt is decomposed into

xt = b0 + b1t+ yt,

where b0+ b1t denotes the linear trend and yt follows a SNAR model. Note

that bi, i = 0, 1 can be seen as unknown parameters and can be estimated

jointly. Their estimates are b̂0 = 23.661 and b̂1 = 0.372, respectively. The

linear time trend is plotted in Fig. 3 (a) by the dotted line and {yt} in Fig. 3

(b). The estimates with standard deviations (SDs) of the SNAR model {yt}

are reported in Table 2. All estimates are statistically significant since their

corresponding p-values are extremely small which are thus not reported in

the table. The estimate of ϕ0 is larger than one, and its 95% confidence

29

Statistica Sinica: Newly accepted Paper 



H
S

I

1990 1995 2000 2005 2010 2015

50

100

150

200

250

300

(a)

y

1990 1995 2000 2005 2010 2015

0

50

100

150

200

(b)

Figure 3: (a) Real HSI prices with the fitted linear trend (the dotted line);

(b) {yt} series.

Table 2: The estimate with SDs of the fitted SNAR model.

ϕ0 p0 σ2
0

Estimate 1.026 0.977 36.314

SD 0.011 0.005 8.649

interval is (1.005, 1.047), conforming to the locally explosive behavior of the

series {yt}. For the fitting adequacy, we calculate the p-values of the test

statistic QM with M = 6, 12, 18, and 24 when the tuning parameter a is

the 90% or 95% quantile of {|yt|, t = 1 . . . , n}, respectively. The results are
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summarized in Table 3, which implies that the fitting is adequate.

Table 3: The p-values of QM .

a\M 6 12 18 24

90% 0.7099 0.2427 0.3087 0.1549

95% 0.8588 0.7489 0.4898 0.1876

We then apply the tagging methods described in Section 5 to label each

time point as either being in a bubble state or being in the null. Since the

estimated bubble probability p̂0 = 0.977 from Table 2 which is very high,

in view of the simulation results in Section 6, we shall here consider using

the residual-based method in Section 5.1 to tag the collapses of bubbles for

the series {yt}. In particular, Fig. 4 displays the selected dates of ŝt = 0

under Rules 1–4. It can be seen from Fig. 4 that the tagging times can

vary based on which rule is used, but several important dates are identified

simultaneously by at least two rules. Table 4 summarizes such these dates,

which coinside with historical financial crises, i.e., the depression started

from the Black Monday in 1987, the Asian financial crises in 1997, the

global financial turmoil caused by the subprime crisis over 2007-2009, and

the Hong Kong stock market plummeting in 2016.

Although the collapse of a bubble can be dated by ŝt = 0, the emergence

and exuberance of a bubble can not be asserted by ŝt = 1 immediately. Af-
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Figure 4: Selected dates of ŝt = 0 by Rules 1 – 4.

Table 4: The selected important dates of st = 0.

Date 1987-10 1997-10 2008-01 2008-10 2011-09 2016-01

Rule {1,2,3,4} {1,2,3,4} {1, 3} {1,2,3,4} {1,2} {2,3,4}

ter all, a short-period deviation of the price is reasonable due to the market

fluctuations. Of course, a short-period deviation might be regarded as a

small bubble in some sense, which bursts quickly by the market adjust-

ment, thus we could pay little attention and ignore them afterwards. What
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we really need to worry about is the bubble that can trigger tremendous

harm, which emerges as the accumulation of long-lasting excursions. Specif-

ically, if st = 0, st+1 = st+2 = · · · = st+k−1 = 1, st+k = 0, then we call it

an excursive period that starts from t+ 1 and ends at t+ k, and define its

duration as k. Within an excursive period, the presence of a bubble should

be suspected if the duration exceeds some time span, for example, one or

two years. For our application, the time span is set to be 18 months. Table

5 summarizes the periods whose durations exceed 18 months, as well as

their start and end dates. Fig. 5 plots those periods by gray shadows. We

Table 5: Excursive period with duration exceeding 18 months.

start end duration

1987-11 1989-06 20

1990-10 1997-10 85

1998-10 2002-09 48

2003-04 2007-11 56

2010-02 2011-09 20

2011-10 2015-08 47

2016-03 2017-12 22

can see explosive behaviors in most of the periods, indicating the presence

and accumulation of bubbles. Note that such periods represent a subset

of the bubbles tagged by the method proposed in Section 5 that have per-

sisted for at least 18 months. By Proposition 2 in Section 5.1, the RBT
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Figure 5: Excursive periods identified by gray shadows; bubbles last over

24 months plotted by the shadow with red backslash.

method is capable of detecting the collapse of an accumulated bubble when

its duration k → ∞; see also the same proposition for a probabilistic bound

with a finite duration. Another finding is that the magnitude of a bubble

is larger as the period lasts longer possibly, for example, the one reaches a

value of 210 in October 2007, corresponding to the period from April 2003

to November 2007 with the duration of 56 months. Investors should be

alert to such a long-time excursion along with the potential of disastrous

bubbles. In the periods where the bubble lasts over 24 months (plotted by

the shadow with red backslash in Fig. 5), one should be aware of the false

boom in financial markets, and adjust asset allocation to hedge the risk of

a potential bubble burst.
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Note that certain regions marked in Fig. 5 may exhibit price declines

during the bubble period, for which we provide the following discussions. By

model (1.1), even when st = 1 and ϕ0 > 1 as in an explosive bubble, it does

not exclude the possibility of yt < yt−1 due to the randomness inherited from

the innovation. In particular, a price decline of yt < yt−1 with yt−1 > 0 can

be observed during the bubble period within which st = 1 if the innovation

at the time satisfies εt < −(ϕ0 − 1)|yt−1|. This may occur more often

during the beginning of the bubble accumulation when yt−1 is still within

a reasonable range or when the coefficient ϕ0 is close to one. On the other

hand, a natural direction to extend model (1.1) is to allow a nonconstant

coefficient so that ϕ0 may change over time to better capture the dynamic

behavior of the HSI. For example, during the bubble period when st = 1, it

is possible that the coefficient ϕ0 may not constantly stay above one in the

marked regions in Fig. 5, which results in certain fluctuations and multiple

price declines during the bubble periods of the HSI. Although there can be

directions to further extend model (1.1) to capture more complicated data-

generating mechanisms, the aim of the current paper is to provide a simple

model that can better model time series with bubbles than some of the

existing models; see also the discussions in Section 1. It can be interesting

future research directions to explore possible generalizations of the simple
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SNAR model as proposed in the current paper.

8. Conclusions

The paper has introduced a novel stochastic nonlinear autoregressive (SNAR)

model to describe the dynamics of economic or financial bubbles within a

causal and stationary framework, and discussed its strict stationarity and

geometric ergodicity. The paper has further studied the quasi-maximum

likelihood estimation of the model and established the asymptotics under

minimal assumptions on innovation. Due to the unobservability of the

latent variable st and the resulting unavailability of the residuals, a new

model diagnostic checking tool has been proposed for the adequacy of the

fitting. Finally, the paper considers two approaches, one from the residual

perspective and the other from the null perspective, for bubble tagging.

Although our new model is useful, the model assumption on the inde-

pendence between {εt} and {st} seems a little bit stronger from the per-

spective of empirical pragmatism. To obtain more reasonable interpretation

or approximation of the bubble, such an independence assumption can be

relaxed. For instance, we can assume that st depends on the history of

the observed process. Specifically, we can let P(st = 1|Ft−1) = g(β′yt−1),

where Ft−1 = σ(yt−j : j ≥ 1) be a sigma-field, yt−1 = (1, yt−1, ..., yt−q)
′,
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and g is a measurable function (e.g. a logistic function). Furthermore,

we can also restrict the form of st in macroeconomic time series analysis

and let st = I(β′xt > c), where xt may contain many exogenous macroe-

conomic variables or indexes and c is a threshold parameter. In addition,

it is possible to consider the situation when the hidden state process {st}

exhibits temporal dependence and forms a Markov chain. In this case, the

null-based bubble tagging method in Section 5.2 can be more advantageous

when bubbles occur in separated but persistent clusters. Moreover, from

the empirical study, we find that the extended model with time-varying pa-

rameters may enhance practical utility. Another potential topic is to study

multivariate SNAR models. We leave these topics for future research.

Supplementary Material

The Supplementary Material contains part of simulation results and all

technical proofs of theorems and propositions in the article.
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