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Bubble Modeling and Tagging: A Stochastic

Nonlinear Autoregression Approach
Xuanling Yang!, Dong Li%, and Ting Zhang?
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2Tsinghua University, and ° University of Georgia

Abstract: Economic and financial time series can feature locally explosive behav-
ior when a bubble is formed. The economic or financial bubble, especially its
dynamics, is an intriguing topic that has been attracting longstanding attention.
To illustrate the dynamics of the local explosion itself, the paper presents a novel
time series model, called the stochastic nonlinear autoregressive model, which is
always strictly stationary and geometrically ergodic and can create long swings
or persistence observed in many macroeconomic variables. When a nonlinear
autoregressive coefficient is outside of a certain range, the model has periodi-
cally explosive behaviors and can then be used to portray the bubble dynam-
ics. Further, the quasi-maximum likelihood estimation (QMLE) of our model is
considered, and its strong consistency and asymptotic normality are established
under minimal assumptions on innovation. A new model diagnostic checking
statistic is developed for model fitting adequacy. In addition, two methods for
bubble tagging are proposed, one from the residual perspective and the other

from the null-state perspective. Monte Carlo simulation studies are conducted



to assess the performances of the QMLE and the two bubble tagging methods in
finite samples. Finally, the usefulness of the model is illustrated by an empirical

application to the monthly Hang Seng Index.

Key words and phrases: Causal process, Financial bubble, Rational expectation,

SNAR model, Speculative bubble.

1. Introduction

Financial speculative bubbles have been attracting longstanding attention
of economists and financial practitioners as an economic crisis often orig-
inates along with a burst of a bubble. In reality, however, economic or
financial bubbles cannot be avoided. The presence of bubbles is partially
evidenced by that many economic or financial time series possess locally ex-
plosive behavior and a subsequent burst, with such a phenomenon appearing
periodically. Studying the dynamics of bubble thus becomes important and
intriguing.

One classical definition of the bubble is the deviation of the market
price from its fundamental value (a sum of discounted future dividends)
in rational expectation price models. An important model of the rational
bubble is initiated by Blanchard and Watson (1982), where the bubble pro-

cess is captured via a simple stochastic autoregression (AR) with a fixed



explosive rate and an absorbing state zero. Their model is then extended
by Evans (1991) via adopting a stochastic rate of explosion. Primarily,
the bubble is regarded as an explosive nonstationary process, which moti-
vates to test its presence via unit root and cointegration tests (Diba and
Grossman, 1988a,b). Recently, this idea is further developed by Phillips
and Yu (2011), Phillips et al. (2011, 2015a,b), Harvey et al. (2019, 2020),
Tao et al. (2019), Kurozumi et al. (2023), Esteve and Prats (2023) and
references therein. On the other hand, Evans (1991) also notes that pe-
riodical collapse of bubbles makes the bubble paths look more like a sta-
tionary process. Within a stationary framework, Gouriéroux and Zakoian
(2017) find that noncausal AR(1) models can characterize multiple local
explosions in time series. Then this noncausal approach to bubble mod-
elling has been extended to high-order mixed causal-noncausal time series
models, see, for example, Gouriéroux and Jasiak (2016), Fries and Zakoian
(2019), Cavaliere et al. (2020), Davis and Song (2020), and Fries (2022).
However, one shortcoming of the noncausal approach invites computational
challenge and many resampling methods are needed. To bypass this short-
coming, Blasques et al. (2022) propose a new observation driven model with
time-varying parameters and study its probabilistic properties and statisti-

cal inference. Nevertheless, their estimation heavily depends on the choice



of the survival function and the asymptotics can be obtained only for a part
of parameters. Motivated by all above facts, we here present a new simple
time series model to describe the dynamics of bubbles.

In this paper, a first-order stochastic nonlinear autoregressive (SNAR)

model {y;} is defined as
Y = Sedolye—1| + &, t€Z:={0,£1,£2, ..}, (1.1)

where ¢g € R, {¢; : t € Z} is a sequence of independent and identi-
cally distributed (i.i.d.) random variables on some basic probability space
(Q, F,P), and independent of i.i.d. binary variables {s; : ¢t € Z} with
P(s;=1)=py=1—P(s, =0), po € [0,1).

Clearly, when ¢y > 1, y; is explosive in the periods where s, = 1
and creates an excursion which stops once s, = 0. Fig. 1 illustrates two
simulated paths of the SNAR model (1.1) with & %" A(0,6%). We can
observe periodically local explosions followed by bursts. And the ‘shape’ of
a bubble before its burst is similar to a quadratic curve, which conforms
to some practitioners’ pointview that the accumulation of a bubble before
bursting resembles a parabola. Further, when P(s; = 1) = 1, the SNAR
model (1.1) reduces to an absolute AR model or a special threshold AR
model with threshold parameter zero, which is studied in Tong (1990), Li

and Tong (2020) and references therein.
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Figure 1: Simulated paths of model (1.1) with &, ~ N(0,6%), py = 0.977,

and (a) ¢ = 1.025 and (b) ¢y = 1.05.

Major contributions of our paper are as follows.

First, we introduce a simple yet useful time series model, the SNAR
model, for modeling the dynamics of the bubble process. In particular, it is
simple in its first-order autoregressive form as in (1.1) while being useful in
addressing certain limitations of existing results on bubble modeling. We
then prove that the model is always strictly stationary and geometrically
ergodic under minimal assumptions on innovation and the probability py.
Within a causal and stationary framework, when the parameter ¢g > 1,

our SNAR model still displays local explosions and collapses periodically.



It can create long swings or persistence and can then be used to portray
the bubble dynamics. More importantly, our model is always causal in the
classical sense of time series. Compared with the noncausal bubble models
in the literature, our model facilitates the understanding of the dynamics of
bubble and is simpler and more convenient in applications. In particular,
our model avoids the computational burden of the noncausal approach and
keeps away from the choice of the survival function as in the time-varying
parameter model of Blasques et al. (2022).

It is worth mentioning that a related model to ours is a stochastic
AR initiated by Blanchard and Watson (1982), which is defined as y; =
SthoYi—1 + €, t € Z, where {s;} and {e;} are defined in (1.1). It can
also create long swings or persistence (Johansen and Lange, 2013). Un-
fortunately, it can usually generate many negative local explosions even if
¢ > 1 and & %' N(0, 02) since within a long swing E(Ay|ye_1, s, = 1) =
(po— Dys—1 < 0if g1 < 0, where Ay, = y; — y;—1. In the same setting, for
our SNAR model, we always have E(Ay|y;—1,5 = 1) > (o — 1)|ys—1| > 0,
which implies that there always exists a positive accumulation tendency
until bubble burst. This is one of the advantages of introducing a nonlinear
mechanism |y;_1].

Second, we consider the quasi-maximum likelihood estimation (QMLE)



of the SNAR model and establish its strong consistency and asymptotic nor-
mality under minimal assumptions on innovation and probability parameter
Po, regardless of infinite variance or heavy-tailedness of the model.

Third, we develop a new model diagnostic checking statistic since the
classical portmanteau test is invalid for our model in view of the absence of
the residuals.

Fourth, we consider two methods for tagging the bubbles, one from
the residual point of view and the other from the null-state perspective.
The problem of bubble detection has been studied in the literature; see
for example Phillips and Yu (2011), Phillips et al. (2015a), Phillips et al.
(2015b), Blasques et al. (2022), Kurozumi and Skrobotov (2023), and refer-
ences therein. Existing results in this direction, however, have been mainly
developed by viewing the bubble as a separate process occurring on an un-
known but deterministic time interval within the observation period. The
current paper, on the other hand, aims to consider bubble tagging in the
context of a single stationary model that describes the bubble and non-
bubble periods along with the generation and burst of bubbles. As a result,
unlike existing results that typically assume the bubbles to persist for an
adequate duration to achieve their consistent detection, the bubbles in the

current model can be transient and thus the problem of bubble tagging



can be more challenging in the current setting. For this, we consider two
approaches, where the first one utilizes the nonlinear autoregressive resid-
ual from the proposed model and the second one is constructed from a
hypothesis testing point of view. For both methods, we provide theoreti-
cal quantification on the finite-sample probability of correct tagging under
reasonably mild conditions. Monte Carlo simulation results are provided
to assess the finite-sample performance of the proposed QMLE and bubble
tagging methods.

The remainder of the paper is organized as follows. Section 2 investi-
gates strict stationarity and geometric ergodicity of model (1.1). Section 3
considers the QMLE with its asymptotics. Section 4 studies model diag-
nostic checking. Section 5 considers the problem of bubble tagging, where
two approaches are considered with their finite-sample probability bounds
studied. Section 6 carries out Monte Carlo simulation studies to assess the
finite-sample performances of the QMLE and the two bubble tagging meth-
ods. Section 7 gives an empirical application to illustrate the usefulness of
the model. Section 8 concludes. Part of simulation results and all technical

proofs are provided in the Supplementary Material.



2. Probabilistic Properties of the SNAR Model

The aim of this section is to prove the strict stationarity and geometric
ergodicity of model (1.1) under a very mild condition. We will prove the
following result, using the approach developed by Meyn and Tweedie (2009)
for establishing the geometric ergodicity of Markov chains. This result is

important and is a theoretical foundation of inference for model (1.1).

Theorem 1. Suppose that (i) {e;} is i.i.d. and independent of i.i.d. binary
variables {s;} with 0 < py < 1, and (ii) €1 has a positive density on R with
E(log* |e1]) < oo. Then there exists a strictly stationary, nonanticipative
solution to {y,} in model (1.1) and the solution is unique and geometrically

ergodic.

We remark that, although Theorem 1 is developed for any choice of ¢q
for the purpose of generality, it is typically desired to use model (1.1) with
¢o > 1 for proper bubble formation. In particular, the choice of ¢y < 1
generally does not lead to positive local explosions with accelerated speed
and is thus not considered as suitable for bubble modeling. Also, Theorem
1 is developed under the relatively mild condition E(log* |¢;]) < oo, and
as a result it covers the situation when E(|e;|) < oo but E(e}) = oo. In

such special cases with stronger moment conditions, the proposed model



can still continue to generate positive local explosions when ¢y > 1.

We next consider the existence conditions on moments of ;. Clearly,
when E(g;) = 0, E(e?) < oo, and both &; and s; are independent, then
E(y?) = E(e?)/(1—pog?) < oo if py¢? < 1. Fig. 2 plots the strict stationarity
region of y, with E(y?) < oo. Further, if E(¢}) = 0, then a simple algebraic
calculation gives the kurtosis of y;:

2 . _ 2 _ 2
kurtosis(y;) = {0podg + kurtosis(e) (1 — poo) } (1 po%), if p0¢g < 1.

1 — poddy

In particular, when &, ~ N(0, 1), then

3 1 244
kurtosis(y;) = % >3, if 0<pegy <1,
e

which implies that {y;} is heavy-tailed.

3. Quasi-Maximum Likelihood Estimation

Let 6y = (¢, po,0:)" be the true parameter with o2 = E(e?). Denote by
0 = (¢,p,0?) be the parameter and by © be the parameter space. Assume
that the observations {yo, 41, ..., Y } are from model (1.1) with the true value
0p. Clearly, under Assumption 1 below, it follows that E(y:|y:—1) = pd|ys—1|
and Var(y|y;—1) = p(1 — p)¢*y? | + 0. Then the (conditional) log-quasi-

likelihood function (omitting a constant) is

n

Lo(0) = ;gt(e) = ; {log [p(1 = p)o*yiy +0°] + p(iyt_;f;%_fg 02} '
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Figure 2: The strict stationarity region {(p,¢) : ¢ € R, p¢*> < 1,0 <p < 1}

of y; with finite second moment.

The QMLE of 6 is defined as

0, = arg min L.(0).

To study the asymptotics of 9\”, the following assumptions are needed.

Assumption 1. {&;} is i.i.d. and independent of i.i.d. binary variables
{s;} with py < 1. Further, ; has a positive density on R with zero mean

and finite variance.

Assumption 2. The parameter space © is a compact subset of {6 =

(6,p,0%) :0#0,0<p<1,0<0®< o0}

The following two theorems state the strong consistency and the asymp-

totic normality of (/9\”, respectively.
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Theorem 2. If Assumptions 1-2 hold, then é\n — 6y a.s. asn — 0.

Theorem 3. If Assumptions 1-2 hold, E(e}) < oo, and 0y is an interior

point of ©, then
\/ﬁ(@\n —bp) AN (0, 77'Z77"), asn— oo,

d o
where ‘— 7 stands for convergence in distribution,

[ 0%4(60) [ 04,(00) Dy(60)
j_]E{ aeaef} and I_E{ 20 o0 }

Remark 1. The explicit expressions of Z and J are provided in the
Supplementary Material. From their expressions we can see that each el-
ement of random matrices within the expectation is bounded and thus it
is unnecessary to require moment conditions on y; for the asymptotics of
f,. In addition, it is expected that the moment condition E(e}) < oo can
be relaxed via, for example, the quasi-maximum exponential likelihood es-
timation as considered in Zhu and Ling (2011), for which we shall leave as
a future research topic.

Remark 2. In practice, to make statistical inference on 6y, we must

estimate the matrices Z and J. From the proof of Theorem 3, they can be

consistently estimated by

~ 1N 00(6,) 00,(6,) S 1N 0%,(6,)
T = — — - RN
" 00 o0 o =g 9000’

t=1 t=1

12



respectively. Note that the plug-in method is here invalid since both k3 =
E(e?) and x4 = E(g}) in matrix Z cannot be estimated from the residuals.
Additionally, due to the constraint p, € (0, 1), the Delta method may be
needed to construct confidence intervals of py. If necessary, for example, we
can consider the transformation g(p) = log[(1 — p)/p| for p € (0,1). Note
that

Ap

\/ﬁ(g(ﬁn) - Q(Po)) — m

N(0,1),

if \/n(Pn — po) —= N0, A2). Then, for any fixed o € (0,1), a 100(1 — @)%
—1 -1

confidence interval of py is [{1 + explg(pn) — Z]} : {1 + explg(pn) + 2]} ] :

where Z = A, 2o/2/{v/nDn(1 — Pn)} with 2,5 the lower a/2-quantile of the

standard normal.

4. Model Diagnostic Checking

Diagnostic checking is important for time series modeling. The most com-
monly used tool is the portmanteau test, which depends on the autocor-
relation of the residuals or the squared residuals, see, e.g., MclLeod and Li
(1983), Li and Mak (1994), Li (2004), and Chen and Zhu (2015). However,
such the portmanteau test fails for the adequacy of model (1.1) since the
residuals cannot be obtained. In fact, the residuals should be theoretically

calculated by & = vy, — stan]yt,l\ with the initial value yq for i = 1, ..., n.

13



Unfortunately, the latent variables {s; : 1 < t < n} are unknown and
prevent us from getting {&;}.

To check the adequacy of model (1.1), we introduce a new portmanteau
test, which is constructed via a transformation of an uncorrelated sequence.
Note that the sequence {y; — pogo|yi—1| : t € Z} is still uncorrelated when
E(y?) < oo after replacing s; by its mean py in (1.1). However, substituting
this sequence for residual sequence in classic portmanteau test requires an
additional assumption E(y}) < oo to obtain its asymptotic distribution. To
reduce the dependence on the moments of y;, similar to Ling (2005, 2007),

we adopt a self-weight method and then define a new sequence {n;} by

M =Ma = (Y — pogolye—11) I (|y1—1] < a)
(4.2)
=¢o(st — po)ly—1lL(|ye-1] < @) + el ([y—1| < a), t€Z,
where the constant a is positive and is called a tuning parameter, and I(-)
is an indicator function. Clearly, {n,} is strictly stationary and ergodic
since it is a measurable function of strictly stationary and ergodic sequence

(Y¢—1, St,€¢)". Further, by the mutually independence among sy, &;, and y;_1,

a simple calculation yields that

E(n:) =0, E(nme—r) = 0,
(4.3)

oy = E@}) = po(1 = po)SE {yi I (1| < @)} + o3P(|yi| < a),

14



for & > 1. That is, {n;} is always a white noise under Assumption 1.
Moreover, it is also a martingale difference sequence.

Let m; = (y —ﬁnan]yt,l\)fﬂyt,l\ < a), 1 <t < n. Intuitively, its
sample autocorrelation p,; should be close to zero if model specification is

correct, where

D > A [N
' > — )

with 7 =n"" Zﬁt
t=1

Denote p, = (Pn1, - Pum), where M > 1 is a fixed positive integer. The

following theorem gives the limiting distribution of p,.

Theorem 4. Suppose the conditions in Theorem 3 hold. If model (1.1) is

correctly specified, then \/np, N N (0, UGU'), where G = E{vyv;} with

_ M 77t77t7M7 <_‘7_18€t(90))/}/7

U= o; Y o, 00
and U = [Inr, ;7% (un, - s unr) (po; @0, 0)] with up = —B{negye1[I(|y:1| <

a)} and o) being defined in (4.3).

Based on Theorem 4, our portmanteau test statistic is defined as

~ o~

Qu = np, (U,G,U.) ' b,

where IAJn and én are consistently sample counterparts of U and G, re-

spectively. Under conditions of Theorem 4, we have that Q) N X3

15



Remark 3. In application, we must choose the tuning parameter a
when our test statistic @), is used. According to the suggestion in the
literature, see, for example, Ling (2005, 2007), we can let a be the 90%
or 95% quantile of data {|y1],...,|yn|}. Many practical experience shows
that this self weight performs well, although it may not be optimal and
there exist some other choices. Further, from Section 2, we can see that
E(y}) < oo if pogg < 1. In this case, the truncation in (4.2) is not needed

and one can simply use the untruncated version with a = 4o00.

5. Bubble and Crash Tagging

An important problem in economic or financial data analysis is to tag bub-
bles and their collapses, which can help the government or financial insti-
tutions to alert the abnormal-growth risk or respond timely to resolve a
potential financial crisis after a burst. Meanwhile, being able to success-
fully tag a bubble can also create lucrative trading opportunities. On the
other hand, many economic studies can benefit from meaningful tagging of
history bubbles and crashes to help understand the economic status and ex-
plain the reasoning behind certain economic behaviors in the history. The
problem of bubble or crash tagging, however, is often not easy and requires

sophisticated statistical modeling and treatment. For this, Phillips and Yu

16



(2011) considered decomposing the asset price process into a fundamental
component determined by expected future dividends and an explosive bub-
ble component, and proposed a recursive testing procedure. Phillips et al.
(2015b) modeled the null hypothesis as a random walk with asymptotically
negligible drift and studied the limit theory of a dating algorithm for bubble
detection; see also Phillips et al. (2015a). We also refer to recent papers by
Blasques et al. (2022) and Kurozumi and Skrobotov (2023), and references
therein, for additional literature. Existing results on bubble detection, nev-
ertheless, were mainly developed in a nonstationary framework for which
the bubble mechanism is not incorporated into the underlying stationary
process and treated as a separated period on the timeline.

Compared with the aforementioned results that often concatenate dif-
ferent models at deterministic times to make a nonstationary process, a
distinguishable feature of the current paper is to consider bubble tagging
using a single stationary model that is able to describe both the bubble
and non-bubble periods along with the generation and burst of bubbles.
Unlike existing results where bubbles are assumed to persist for an ade-
quate duration to achieve consistent detection, the task of bubble or crash
tagging in the current stationary framework can be more challenging as

bubbles, especially transient bubbles or bubbles that only last for a very
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5.1 A Residual-Based Method for Crash Tagging

short time, can be easily mixed with large white noise observations. We in
the following provide two different tagging methods in the current station-
ary framework, the first one mainly focuses on the collapse of bubbles and
is therefore named crash tagging, while the other aims to detect bubbles as

anomalies and is thus named bubble tagging.

5.1 A Residual-Based Method for Crash Tagging

Given model (1.1), we consider the difference

Et, if St = 1,
Ty ==Yt — ¢0’yt—1| = (5-4>
&t — ¢0’yt71‘> if s, = 0.

Since ¢g > 1 is generally assumed in applications with bubbles, intuitively
r; is expected to be smaller at time points when there is no bubble with
s¢ = 0 by a shift from that of the bubble period when s; = 1. Therefore,
a natural approach is to tag a crash or more generally s, = 0 if r, < ¢, for
some threshold c¢,.

To provide a theoretical understanding of such a tagging approach, we

introduce an auxiliary process {z;}, where zy = ¢y and
Zt:¢0‘zt71|+5t; t= 1,2,.... (55)

Unlike the full model specified in (1.1) that is stationary for which a bubble

can collapse, the process {z;} defined above is a pure bubble process that
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5.1 A Residual-Based Method for Crash Tagging

is explosive and nonstationary. In particular, for any £ > 1, z; shares
the same distribution as vy, if a bubble forms at time ¢ + 1 and persists
through time ¢ + k£, which we call a k-th cumulative bubble. This also
relates to the excursive period with duration £ in financial applications;
see for example our data analysis in Section 7. For consistent tagging of
bubbles, it is generally required that k& — oo, namely the bubble has to
persist for a growing horizon of time; see for example Phillips et al. (2015b)
and references therein. The following Proposition 1 provides a theoretical

support of the residual-based crash tagging method.

Proposition 1. For any time t, if the innovation distribution is symmetric,
then the conditional probability that the collapse of a k-th cumulative bubble
will be correctly tagged by the aforementioned method equals to P(z, > —c¢,),
namely the marginal probability that the auxiliary explosive bubble process

will exceed the same threshold in the other direction.

We shall here provide a discussion on the result of Proposition 1. In
particular, a threshold of ¢, < 0 is typically chosen in practice for r; defined
in (5.4), and as a result —¢, > 0 will be a positive threshold for z;. Given
the explosive nature of the bubble process {z;}, it is expected that P(z; >
—c¢,.) = 1 as k — oo for any chosen threshold —c, > 0, and as a result the

probability that the collapse of a k-th cumulative bubble will be correctly
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5.1 A Residual-Based Method for Crash Tagging

tagged increases to one as k — oo. This resonates the result of Phillips et al.
(2015b) but in very different settings. To be more specific, Phillips et al.
(2015b) assumed that the bubble period is a deterministic segment with an
increasing number of time points within the whole observation period, while
the current setting treats the bubble as an integrated part of an underlying
stationary process in (1.1).

In practice, the parameter ¢, in (5.4) is unknown, and we propose to
plug in the QMLE and use the residual 7, = y; — QAﬁn|yt,1]. In this case, one
tags s; = 0 if ; < ¢, for some threshold ¢,. We in the following provide a

discussion on possible rule of thumb choices of the threshold c,.

e Rule 1 (hard threshold). A natural choice is to set ¢, as the
(1 — pn)-th quantile of {7}, and it can be seen from the simulation
results in Section 6 that such a simple choice of ¢, seems to perform

well and is reasonably robust to different innovation distributions.

In applications where the innovation distribution is believed to be normal
with e; ~ N (0,02), then additional likelihood-based methods are available
for the choice of ¢,. In particular, we consider the following approaches
that provide time-varying choices of the threshold so that one tags s; = 0
if 7, < ¢, for some threshold ¢, that can depend on time. Following the

notation in Section 3, we use (an,ﬁn, 72) to denote the QMLE of (¢, po, 07)-

20



5.1 A Residual-Based Method for Crash Tagging

e Rule 2 (conditional likelihood). Motivated by (5.4) where r; takes
value ¢; or &, — ¢o|y;—1| depending on whether s, = 1 or s, = 0, we
can compare the conditional likelihood of r; given 1, 1 to distinguish
the two cases. Under the normal innovation distribution, this leads

to the data-driven choice of ¢, ; = — bnlyi1]/2.

e Rule 3 (time-varying quantile). As an alternative to the afore-
mentioned likelihood ratio approach, we may also use the conditional
distribution of r¢|y;_1 ~ poN(0,03) + (1 — po) N (—do|yi_1|, 02) to set

the threshold ¢, as the conditional (1 — p,)-th quantile, i.e.,
ra =it {7 € R Pu® (r/50) + (1= B)@((r + Gulyi11)/) > 1= u }
where ®(-) denotes the distribution function of a standard normal.

e Rule 4 (Bayesian). We in addition offer a Bayesian approach of
choosing the threshold based on the conditional likelihood. In par-
ticular, based on the proposed model (1.1) we can tag s, = 0 if

P(s; = 1|r) < P(s; = 0]r;), namely when

pot(re/o9) < (1= po)¥((re + dolye-1])/00),

where () denotes the density function of a standard normal. By
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5.2 A Null-Based Method for Bubble Tagging

plugging in the QMLE, we can then tag s; = 0 if
Pt (7)) < (1= D) (7 + bulye]) /5n)-

5.2 A Null-Based Method for Bubble Tagging

The method described in Section 5.1 relies on residuals from the one-step
ahead recursion specified by model (1.1) to tag the collapse of bubbles. In
essence, it treats the explosive bubble alternative as the default and aims
at detecting the null of no bubble as an anomaly. We shall here consider
its complement which sets the null of no bubble as the baseline and detects
the formation of a bubble as an anomaly. To be more specific, when s, = 0
and there is no bubble at time ¢, we have y; = ¢, which forms a stationary
white noise sequence. When the bubble starts to form at time ¢, however,
an explosive drift ¢g|y;—1| will be cumulatively added to the otherwise white
noise sequence during the whole bubble period making the observed ; to
cumulatively deviate away from the baseline. Therefore, it becomes natural
to tag time t as a bubble if 3, > ¢ for some threshold c.

In contrast to the approach in Section 5.1 which relies exclusively on
model (1.1) to compute the residuals {7;}, this null-based method directly
works on the original observations {y;} and is expected to have a more

robust performance when model (1.1) is misspecified. In addition, since y,
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5.2 A Null-Based Method for Bubble Tagging

is distributed as a white noise sequence under the null of no bubble, the
threshold ¢ can be taken as a uniform constant, which can be a convenient
feature that facilitates the decision rule visualization. It can also be more
advantageous in situations when bubbles are not prevailing in the obser-
vation period. In practical application, the threshold ¢ can be set to the
sample quantile of {y,} corresponding to some given quantile level.

Let {z:} be the auxiliary process defined in (5.5), and we in the following
provide some theoretical understanding of such a null-based bubble tagging

method under the fixed horizon domain.

Proposition 2. For any time t, the conditional probability that a k-th
cumulative bubble will be correctly tagged by the null-based method equals
P(z > ¢), namely the marginal probability that the auxiliary explosive bub-

ble process will exceed the same threshold.

For bubbles that persist for a growing horizon of time, by the explosive
nature of the auxiliary bubble process it is expected that P(z, > ¢) — 1
as k — oo for any given threshold ¢, and as a result the aforementioned
null-based bubble tagging method can identify such a persistent bubble
with probability tending to one. Phillips et al. (2015b) treated the bubble
period as a fixed but unknown deterministic section of the whole obser-

vation time, and provided the consistency when the length of the bubble
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5.2 A Null-Based Method for Bubble Tagging

section grows proportionally with the sample size. In contrast, the current
paper treats the bubble as an intrinsic feature of a stationary data generat-
ing mechanism, which serves as an important step to provide a statistical
model to understand the mechanism of an economic phenomenon. We also
remark that, unlike the QMLE discussed in Section 3, the aforementioned
null-based bubble tagging method and Proposition 2 will continue to hold
for situations when the hidden state process {s;} exhibits dependence and
forms a stationary or nonstationary process by itself. For example, it can
be a stationary Markov chain or a nonstationary Markov chain with time-
varying transition matrices. In addition, the proof of Proposition 2 can be
readily generalized to handle bubble mechanisms other than the one-step
autoregressive recursion specified in (1.1).

We remark that the bubble tagging methods described in Sections 5.1
and 5.2 involve the estimation of certain parameters to determine the tag-
ging region, and as a result they are developed mainly for tagging bubbles
and their collapses of a given time series from a retrospective aspect. It
is possible, however, to consider an extension to real-time monitoring of
bubble formations and collapses, where one can use a set of history data
to estimate the underlying model parameters and then perform real-time

tagging when new data points arrive. The optimal threshold, however, can
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be different in the online setting, and we shall leave it as a future research

topic.

6. Simulation Studies

To assess the performance of the QMLE of 6, and tagging methods in finite
samples, we use the sample size n = 200, 400, and 800, each with 1000
replications for model (1.1). The error g; follows the standard normal,
the Laplace, and the standardized Student’s t5 distributions, respectively.

Three different true values of 6y = (¢, po, 05)" are used, respectively, i.e.,
e Casel: 6y = (1,0.9,1);
e Case II: 0y = (1/10/9,0.9,1)";
e Case III: 6, = (1.2,0.9,1)".

For Case I, since pyd3 < 1 we have E(y?) < oo. In comparison, y; has
an infinite variance in Case III since pyp2 > 1. For Case II, 6, is on the
boundary, i.e., po¢s = 1, which is never considered in the literature.

Table 5.1 in the Supplementary Material reports the bias, empirical
standard deviation (ESD), and asymptotic standard deviation (ASD) of
the QMLE é\n for Cases I-III. From the table, we can see that the QMLE

performs well irrespective of infinite variance or heavy-tailedness issues.
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The biases are small and all the ESDs are close to the corresponding ASDs.
To see the overall approximation of the QMLE (En, Fig. S.1 in the Supple-
mentary Material displays the histogram of \/n (&En - ¢0) when the sample
size n = 400. From the figure, we can see that \/ﬁ(ggn — gbo) is always
asymptotically normal irrespective of infinite variance or heavy-tailedness
of y;.

We shall here examine the finite-sample performance of the two tagging
methods described in Section 5. For the residual-based tagging method in
Section 5.1 with reference rules 1-4 we denote them by RBT;—RBTy re-
spectively in our numerical study, and we abbreviate the null-based tag-
ging method in Section 5.2 as NBT hereafter. For each generated process,
let {s; : 1 <t < n} be the estimated bubble tags and # denote the set

cardinality. We consider the following evaluation metrics:
e P: the overall proportion of correct tagging #{t : s; = s;}/n;

e P0: the proportion of correctly tagged null states #{t : 5, = 0,5, =

0}/#{t : s = 0};

e P1: the proportion of correctly tagged bubbles #{t : 5, = 1,5, =

1}/#{t: sy = 1}.
The results under normal errors are presented in Table 1 and that for other
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Table 1: The values (in percentage) of P, PO, and P1 for RBT;-RBT, and

NBT with &, ~ A(0,1) when n = 200.

Method P PO P1 P PO P1 P PO P1
¢o=1,p0=0.9 $o = +/10/9,po = 0.9 ¢o =1.2,pp =0.9
RBT; 9093 53.15 94.73 92.15 59.34 95.37 93.44 65.62 96.12
RBT, 84.64 21.33 91.25 85.45 25.99 91.67 87.81 38.80 93.01
RBTs 90.47 51.22 94.48 91.68 57.51 95.11 93.75 67.68 96.25
RBT; 9149 56.11 95.04 92.81 62.85 95.73 95.02  74.09 96.99
NBT 87.01 33.20 92.56 87.63 36.48 92.87 89.16 44.62 93.75
¢0:17p0:0.5 (]5(): \/10/97;00:0.5 (250:1.2,]70 =0.5
RBT; 66.70 66.79 66.69 67.77 67.87 67.75 69.93 70.056 69.92
RBT2, 68.13 68.24 68.11 69.45 69.56 69.43 72.16 7232 72.15
RBT; 68.09 6820 68.08 69.37 69.48 69.35 71.93 72.09 71.92
RBT,; 68.32 68.43 68.31 69.55 69.66 69.53 72.42  72.58 7241
NBT 66.85 66.95 66.83 67.97 68.07 67.95 70.00 70.16 69.99

type errors are provided in the Supplementary Material. Each configuration
is based on 1000 replications. To provide a fair comparison, we set the
thresholds of different tagging methods so their estimated bubble ratios

#{t : 5, = 1} /n are controlled at the same level.

From the results, we can observe the followings.

(i) For both the RBT and NBT methods, the results are reasonably close
across different error types. This indicates that the bubble tagging

methods considered in Sections 5.1 and 5.2 possess a certain degree of
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(iii)

robustness with respect to the error distribution.

For each of the method considered, the performance in general im-
proves when the nonlinear autoregressive coefficient ¢ increases. This
is mainly because a larger value of the parameter ¢y in general leads
to a stronger degree of explosiveness during the bubble period, mak-
ing it relatively easier to distinguish between bubbles and null-states.
When pg = 0.9 as in Tables 1 and 5.2, the performance of the RBT
method can vary depending on which reference rule is used to obtain
the threshold. The NBT method, on the other hand, seems to deliver
a performance that is between the best and worst performed RBT
methods. Note that the RBT method is deigned using the residuals
that are more related to the bubble alternative, it meets with our intu-
ition that the RBT method in general outperforms the NBT for most
of the threshold choices when the bubble state probability pg = 0.9 is

relatively high.

When the true underlying bubble state probability py decreases to 0.5
as in Tables 1 and 5.3, the bubble state no longer dominates and as
a result the difference between the RBT and NBT methods becomes

less noticeable and all the methods considered delivered quite similar
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performance.

7. An empirical example

In this section, we analyze the monthly Hang Seng Index (HSI) from Decem-
ber 1986 to December 2017 with a total of 373 observations. To eliminate
the effect of inflation on price, we transform nominal prices into real prices
by the consumer price index, which can be obtained from the Federal Re-
serve Bank of St Louis. Fig. 3 (a) displays the real HSI prices, from which
one can see an ascendant linear trend in the time series. Thus, we first
subtract such a linear trend from the series. That is, we assume that the

HSI real price x; is decomposed into
Ty = by + bit + s,

where by + bit denotes the linear trend and y; follows a SNAR model. Note
that b;,7 = 0,1 can be seen as unknown parameters and can be estimated
jointly. Their estimates are /b\o = 23.661 and 31 = 0.372, respectively. The
linear time trend is plotted in Fig. 3 (a) by the dotted line and {y, } in Fig. 3
(b). The estimates with standard deviations (SDs) of the SNAR model {y:}
are reported in Table 2. All estimates are statistically significant since their
corresponding p-values are extremely small which are thus not reported in

the table. The estimate of ¢ is larger than one, and its 95% confidence
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Figure 3: (a) Real HSI prices with the fitted linear trend (the dotted line);
(b) {y:} series.

Table 2: The estimate with SDs of the fitted SNAR model.

oo Do o8

Estimate 1.026 0.977 36.314
SD 0.011 0.005  8.649

interval is (1.005, 1.047), conforming to the locally explosive behavior of the
series {y;}. For the fitting adequacy, we calculate the p-values of the test
statistic Qy; with M = 6,12,18, and 24 when the tuning parameter a is

the 90% or 95% quantile of {|y;|,t = 1...,n}, respectively. The results are
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summarized in Table 3, which implies that the fitting is adequate.

Table 3: The p-values of Q).
a\M 6 12 18 24

90% 0.7099 0.2427 0.3087 0.1549
95%  0.8588 0.7489 0.4898 0.1876

We then apply the tagging methods described in Section 5 to label each
time point as either being in a bubble state or being in the null. Since the
estimated bubble probability py = 0.977 from Table 2 which is very high,
in view of the simulation results in Section 6, we shall here consider using
the residual-based method in Section 5.1 to tag the collapses of bubbles for
the series {y;}. In particular, Fig. 4 displays the selected dates of 5, = 0
under Rules 1-4. It can be seen from Fig. 4 that the tagging times can
vary based on which rule is used, but several important dates are identified
simultaneously by at least two rules. Table 4 summarizes such these dates,
which coinside with historical financial crises, i.e., the depression started
from the Black Monday in 1987, the Asian financial crises in 1997, the
global financial turmoil caused by the subprime crisis over 2007-2009, and
the Hong Kong stock market plummeting in 2016.

Although the collapse of a bubble can be dated by s; = 0, the emergence

and exuberance of a bubble can not be asserted by 5; = 1 immediately. Af-

31



1)

1990 1995 2000 2005 2010 2015

Figure 4: Selected dates of 5; = 0 by Rules 1 — 4.

Table 4: The selected important dates of s, = 0.

Date  1987-10  1997-10 2008-01  2008-10  2011-09 2016-01
Rule {1,2,34} {1,2,3,4} {1,3} {1,2,3,4} {1,2} {2,3,4}

ter all, a short-period deviation of the price is reasonable due to the market
fluctuations. Of course, a short-period deviation might be regarded as a
small bubble in some sense, which bursts quickly by the market adjust-

ment, thus we could pay little attention and ignore them afterwards. What
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we really need to worry about is the bubble that can trigger tremendous
harm, which emerges as the accumulation of long-lasting excursions. Specif-
ically, if s, = 0,8411 = Sg40 = -+ = Spyp-1 = 1,84, = 0, then we call it
an excursive period that starts from ¢t + 1 and ends at ¢t + k, and define its
duration as k. Within an excursive period, the presence of a bubble should
be suspected if the duration exceeds some time span, for example, one or
two years. For our application, the time span is set to be 18 months. Table
5 summarizes the periods whose durations exceed 18 months, as well as

their start and end dates. Fig. 5 plots those periods by gray shadows. We

Table 5: Excursive period with duration exceeding 18 months.

start end duration

1987-11  1989-06 20
1990-10  1997-10 85
1998-10  2002-09 48
2003-04  2007-11 56
2010-02  2011-09 20
2011-10  2015-08 47
2016-03  2017-12 22

can see explosive behaviors in most of the periods, indicating the presence
and accumulation of bubbles. Note that such periods represent a subset
of the bubbles tagged by the method proposed in Section 5 that have per-

sisted for at least 18 months. By Proposition 2 in Section 5.1, the RBT
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Figure 5: Excursive periods identified by gray shadows; bubbles last over

24 months plotted by the shadow with red backslash.

method is capable of detecting the collapse of an accumulated bubble when
its duration k — oo; see also the same proposition for a probabilistic bound
with a finite duration. Another finding is that the magnitude of a bubble
is larger as the period lasts longer possibly, for example, the one reaches a
value of 210 in October 2007, corresponding to the period from April 2003
to November 2007 with the duration of 56 months. Investors should be
alert to such a long-time excursion along with the potential of disastrous
bubbles. In the periods where the bubble lasts over 24 months (plotted by
the shadow with red backslash in Fig. 5), one should be aware of the false
boom in financial markets, and adjust asset allocation to hedge the risk of

a potential bubble burst.
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Note that certain regions marked in Fig. 5 may exhibit price declines
during the bubble period, for which we provide the following discussions. By
model (1.1), even when s; = 1 and ¢ > 1 as in an explosive bubble, it does
not exclude the possibility of y; < 3;_1 due to the randomness inherited from
the innovation. In particular, a price decline of y; < y;—; with y,_1 > 0 can
be observed during the bubble period within which s; = 1 if the innovation
at the time satisfies &, < —(¢9 — 1)|yy—1|. This may occur more often
during the beginning of the bubble accumulation when g, ; is still within
a reasonable range or when the coefficient ¢ is close to one. On the other
hand, a natural direction to extend model (1.1) is to allow a nonconstant
coefficient so that ¢y may change over time to better capture the dynamic
behavior of the HSI. For example, during the bubble period when s, = 1, it
is possible that the coefficient ¢g may not constantly stay above one in the
marked regions in Fig. 5, which results in certain fluctuations and multiple
price declines during the bubble periods of the HSI. Although there can be
directions to further extend model (1.1) to capture more complicated data-
generating mechanisms, the aim of the current paper is to provide a simple
model that can better model time series with bubbles than some of the
existing models; see also the discussions in Section 1. It can be interesting

future research directions to explore possible generalizations of the simple
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SNAR model as proposed in the current paper.

8. Conclusions

The paper has introduced a novel stochastic nonlinear autoregressive (SNAR)
model to describe the dynamics of economic or financial bubbles within a
causal and stationary framework, and discussed its strict stationarity and
geometric ergodicity. The paper has further studied the quasi-maximum
likelihood estimation of the model and established the asymptotics under
minimal assumptions on innovation. Due to the unobservability of the
latent variable s; and the resulting unavailability of the residuals, a new
model diagnostic checking tool has been proposed for the adequacy of the
fitting. Finally, the paper considers two approaches, one from the residual
perspective and the other from the null perspective, for bubble tagging.
Although our new model is useful, the model assumption on the inde-
pendence between {e;} and {s;} seems a little bit stronger from the per-
spective of empirical pragmatism. To obtain more reasonable interpretation
or approximation of the bubble, such an independence assumption can be
relaxed. For instance, we can assume that s; depends on the history of
the observed process. Specifically, we can let P(s;, = 1|F_1) = g(8'yi-1),

where Fi_1 = o(y—; : j > 1) be a sigma-field, y,-1 = (L, Yi—1, .-, Yi—q)',
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and ¢ is a measurable function (e.g. a logistic function). Furthermore,
we can also restrict the form of s; in macroeconomic time series analysis
and let s, = I(8'x; > ¢), where x; may contain many exogenous macroe-
conomic variables or indexes and c is a threshold parameter. In addition,
it is possible to consider the situation when the hidden state process {s;}
exhibits temporal dependence and forms a Markov chain. In this case, the
null-based bubble tagging method in Section 5.2 can be more advantageous
when bubbles occur in separated but persistent clusters. Moreover, from
the empirical study, we find that the extended model with time-varying pa-
rameters may enhance practical utility. Another potential topic is to study

multivariate SNAR models. We leave these topics for future research.

Supplementary Material

The Supplementary Material contains part of simulation results and all

technical proofs of theorems and propositions in the article.
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