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SEMIPARAMETRIC CAUSAL DISCOVERY AND
INFERENCE WITH INVALID INSTRUMENTS

Jing Zou!, Wei Li*? and Wei Lin*!

L Peking University and ® Renmin University of China

Abstract: Learning causal relationships among a set of variables, as encoded by a directed
acyclic graph, from observational data is complicated by the presence of unobserved con-
founders. Instrumental variables (IVs) are a popular remedy for this issue, but most
existing methods either assume the validity of all IVs or postulate a specific form of rela-
tionship, such as a linear model, between the primary variables and the IVs. To overcome
these limitations, we introduce a partially linear model for causal discovery and infer-
ence that accommodates potentially invalid IVs and allows for general dependence of
the primary variables on the IVs. We establish identification under this semiparametric
model by constructing surrogate valid IVs, and develop a finite-sample procedure for
estimating the causal structures and effects. Theoretically, we show that our procedure
consistently learns the causal structures, yields asymptotically normal estimates, and
effectively controls the false discovery rate in edge recovery. Simulation studies demon-
strate the superiority of our method over existing competitors, and an application to

inferring gene regulatory networks in Alzheimer’s disease illustrates its usefulness.
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1. Introduction

Inferring causal relationships among a set of variables, as represented by a directed
acyclic graph (DAG), is a fundamental problem in statistics and finds applications
in various fields such as systems biology (Triantafillou et al., 2017) and medical
imaging (Castro et al., 2020). As a result, learning causal relationships from ob-
servational data, known as causal discovery, has gained popularity and become an
active area of research; see Heinze-Deml et al. (2018) for comprehensive reviews.
The potential existence of unobserved confounders, however, may cause violations
of the Markov property in the DAG and lead to biased estimates of causal effects
(Pearl, 2009), posing challenges to robust causal discovery. The existing litera-
ture offers some approaches to tackling this challenge. One way is to generate
less informative discoveries, such as constructing a partial ancestor graph instead
of a DAG (Colombo et al., 2012). Another way is to develop effective algorithms
for deconfounding, often under additional assumptions about the confounding
mechanism. For example, Li et al. (2024) proposed a deconfounded estimation
procedure for nonlinear causal discovery under a sublinear growth condition that
separates linear confounding effects from nonlinear causal relationships. To avoid
such restrictions while obtaining an accurate estimate of the DAG, here we re-
sort to the use of instrumental variables (IVs), which provides a convenient and

powerful method for resolving the issue of unobserved confounding.



In the classical context of inferring a treatment—outcome relationship, there
has been a rich body of work on estimating causal effects using valid IVs (e.g.,
Angrist et al., 1996; Newey and Powell, 2003). However, owing to the untestable
independence and exclusion restriction assumptions, candidate IVs may be in-
valid, rendering the estimates biased or inconsistent. In the presence of invalid
IVs, Bowden et al. (2015) and Kolesdr et al. (2015) identified causal effects by
assuming that the direct effects of the IVs on the outcome are asymptotically
orthogonal to their effects on the treatment. Alternatively, some studies made
assumptions regarding the proportion of valid IVs among the candidate set. In
particular, Kang et al. (2016) and Windmeijer et al. (2019) developed Lasso-based
methods for selecting valid IVs and estimating causal effects under the majority
rule, which requires more than half of the candidate IVs to be valid. Guo et al.
(2018) proposed two-stage hard thresholding with voting for constructing confi-
dence intervals under the more general plurality rule. Recently, Sun et al. (2023)
introduced a new class of G-estimators for a semiparametric structural equation
model (SEM), allowing for a flexible number of valid IVs and bypassing the IV
selection step.

Despite extensive developments on IV methods in causal inference, their ap-
plication to causal discovery remains underexplored. Notably, with knowing a

priori a unique valid IV for each primary variable, Oates et al. (2016) formalized



the notion of conditional DAGs and developed a score-based estimation method
via integer linear programming. Among the few attempts to learn a causal graph
with invalid IVs (Chen et al., 2023; Li et al., 2023; Chen et al., 2024; Li et al.,
2024), Chen et al. (2023) proposed a stepwise IV selection procedure followed by
two-stage least squares and Wald tests for inference, while Li et al. (2023) and
Chen et al. (2024) developed peeling algorithms to estimate ancestral relation
graphs and candidate IV sets, along with likelihood-based edge inference. Still,
all these methods rely on the assumption of a linear SEM and do not account
for candidate IVs whose effects on the primary variables may be nonlinear. As
widely recognized in the literature, failing to exploit such nonlinearities may re-
sult in weak IVs, deteriorate the estimation performance, or distort the causal
interpretation (Newey, 1990; Sun et al., 2023).

In this paper, we consider causal discovery and inference in the presence of
unobserved confounders using potentially invalid IVs. Unlike existing studies
that postulate linear relationships between the primary variables and the IVs, we
adopt a partially linear SEM that leaves the functional form of these relationships
unspecified. Within this semiparametric framework, we establish identification of
causal structures and effects under relatively mild assumptions. Specifically, we
first identify the ancestral relationships and candidate IV sets by extending the

peeling algorithm of Chen et al. (2024) to our more general setting. Building on



these results, we then construct surrogate valid IVs and derive moment condi-
tions to identify the causal effects recursively, which generalizes the identification
strategy of Sun et al. (2023) to causal graphs. We further develop a finite-sample
procedure for causal discovery and inference by using distance-correlation-based
independence tests and the generalized method of moments. We call our method
the Partially Linear Approach to Causal Instrument-based Discovery (PLACID).
Theoretically, we show that PLACID consistently learns the causal structures,
yields asymptotically normal estimates, and effectively controls the false discov-
ery rate in edge recovery.

The remainder of this paper is organized as follows. Section 2 introduces our
causal graph terminology and the partially linear SEM. Section 3 establishes the
identification results for the causal graph and causal effects. Section 4 presents
the PLACID methodology along with its theoretical guarantees. Sections 5 and
6 illustrate the numerical performance of our method through simulation studies
and an application to an Alzheimer’s disease dataset, respectively. Section 7
concludes the paper with some discussion.

We introduce some notation that will be used throughout the paper. For
a K-dimensional random variable Z and an index set a C {1,..., K}, define
Z,=(Zs:se€a)and Z_, = (Zs : s ¢ ). Let Z denote the data realizations

of Z. Let H(Z) denote the Hilbert space of one-dimensional functions of Z with



mean zero and finite variance, equipped with the covariance inner product. Let
|J| denote the cardinality of a set J. For a matrix A = (4;;), let A;. denote
its ith row and A.; its jth column. For a vector v, let v’ denote its transpose
and ||vl]jp its Lo-norm. Let 1(-) denote the indicator function and I, the p x p
identity matrix. Finally, let E, denote the empirical mean operator with respect

to a sample of size n.

2. Causal graphical model

Consider a causal graph G with p endogenous primary variables Y = (Y7,...,Y,)"
and ¢ exogenous secondary variables X = (X7,..., X,)T, both having finite vari-

ance. Specifically, we denote
G = (X,Y;€,T), (2.1)

where & = {(7,7) : Y; — Y;} is the set of directed edges among Y, and Z = {(/, j) :
Xy — Y} is the set of directed edges from X to Y. Note that there is no directed
edge from Y to X, and thus X can be viewed as external interventions. Based
on G, we adopt the following terminology: (i) the parent set of Y;, pa,(j) =
{k : Y, — Y;}; (ii) if there exists a directed path from Y} to Yj, then Y; is a
descendant of Y}, Y} is an ancestor of Y;, and the ancestor set of Y; is ang(j) =

{k Yy — -+ = Yj}; (iii) the intervention set of Y}, ing(j) = {¢ : Xy — Y;};



(iv) the mediator set of Y, and Y}, meq(k,j) ={i: YV, = - - =Y, — - = Y,};
(v) the non-mediator set of Yj, and Y;, nmg(k,j) = ang(j) \ (meq(k, j) U {k});
(vi) Yy is an unmediated parent of Y; if (k,j) € € and meg(k,j) = 0; (vil) the
leaf nodes of G, leaf(G) = {j : Y; has no descendant in G}; (viii) the ancestral
relation graph (ARG), G := (X,Y;E1,ZT), where ET = {(k,j) : k € ang(j)},
It ={(j): L € Ukeanc (o ing(k)}. The ARG G* describes the ancestral
relationships among the nodes in G. Specifically, if there exists a directed path
from Y; to Y; in G, then (i,7) € £". Similarly, if there exists a directed path
from X, to Y; in G, then (¢,j) € Z*. To further illustrate these definitions, we
consider a simple case in Example 7?7 of the Supplementary Material.

Following the idea of conditional DAGs (Oates et al., 2016), we wish to use
X as candidate IVs to infer the causal relationships and effects among Y. The
variables X are exogenous, implying that these variables satisfy the independence
assumption of valid IVs. There are directed edges from X to Y, but none in the
opposite direction, providing the basis for the relevance assumption. Therefore,
it is possible to use X as [Vs. We further introduce our definitions of valid and

candidate IVs based on causal graphs.

Definition 1 (Valid IV). A secondary variable X} is said to be a valid IV for Y;
in the causal graph G, if it intervenes on Y}, i.e., (¢, j) € Z and does not intervene

on any other primary variable Y;, i.e., (¢,7) ¢ T for all i # j.



Definition 2 (Candidate IV). A secondary variable X is said to be a candidate
IV for Y; in the causal graph G, if it intervenes on Y}, i.e., (¢, j) € Z and does not

intervene on any non-descendant of Y.

Accordingly, denote the set of valid IVs for Y} in G by ivg(j) = {¢ : X, —
Y;, X+ Y;, i # j} and the set of candidate IVs for Y; in G by cag(j) = {¢: X; —
Y;, Xy — Yj, only if j € ang(k)}. It is obvious that ivg(j) C cag(j). However, a
candidate IV may not be valid, because it may intervene on a descendant of Y,
which contradicts Definition 1.

Since the variables Y are of primary interest, it is often reasonable to assume
simple relationships among Y while leaving unrestricted the functional forms
of interactions between X and Y, as shown useful in semiparametric modeling
in econometrics (Engle et al., 1986) and environmental science (Dominici et al.,
2004). Among such semiparametric models, of particular importance is the par-
tially linear model (PLM) (Robinson, 1988). For the causal graph G in (2.1), we

consider the partially linear SEM

p
Y=Y B5Yi+g;(Xino) +555 Ele)) =0, X g, j=1,...,p. (22)

=1

Here f3;; represents the direct causal effect of Y¥; on Y}, and 3}; # 0 implies that
Y; is a cause of Y}, ie., i € pag(j). The function g;(-) captures the causal

effect of X, (;) on Y}, the form of which is unknown and not restricted to linear



functions. Our interest lies in estimating the causal structures and effects among
Y, as characterized by the edge set £ and the coefficient matrix B* = (5};),xp-
Compared to the standard linear model, the inclusion of a nonparametric term
in (2.2) enhances robustness against model misspecification (Florens et al., 2012).
Previous research has extensively examined the use of PLMs in causal inference,
including estimation with missing data (Liang et al., 2004) and identifiability
of partially linear SEMs (Rothenh&usler et al., 2018). However, since potential
unobserved confounders have been absorbed in & = (g1,...,¢,)", Cov(Y_g;1,¢;)
may not be 0 in model (2.2). As a result, existing estimation methods for PLMs
are unsuitable in our context, even when the causal relationships are known.
Assuming that g;(-) takes a linear form, Chen et al. (2024) proposed an insightful
peeling algorithm to infer the causal relationships and effects among the primary
variables Y using IVs. Their method, while effective in linear settings, may not
be applicable to the more general semiparametric model (2.2), because an IV
deemed valid under Definition 1 might not satisfy the criteria for a valid IV in
Chen et al. (2024). Without valid IVs, the causal parameters in their model will
become unidentifiable. Specifically, Chen et al. (2024) defined X as a valid IV for
Yy, if Wi, # 0 and Wy = 0 for all &' # k, where W = (Wi )gxp, = V(I, —B*) and
V is the linear regression coefficient of Y on X, i.e., V = {Var(X)}~! Cov(X,Y).

The following example clearly demonstrates this point.
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X, > Y] > Yo > Y3 < X3

Figure 1: An example of the causal graph G.

Example 1. Consider the causal graph GG shown in Figure 1, where U denotes
unobserved confounders, Y1 = X7 + ¢, Y; follows model (2.2) with unspecified
g;j(+) for j =2,3, and X ~ N(0,14). It is easy to verify that cov(X;,Y) = 0, and
hence V. =0 and W;. = 0. This shows that, although X is indeed a valid IV
for Y] in G, it is not a valid IV for any primary variable in Y under Chen et al.
(2024). Consequently, Y; is considered to lack valid IVs, and thus the approach

in Chen et al. (2024) fails to identify the causal parameters in the model for Y;.

In light of Example 1, the method of Chen et al. (2024) fails to identify the
causal parameters in model (2.2). In contrast, our approach introduced in the
next section still ensures identification of these parameters. Furthermore, when
gj(+) is unknown and possibly highly nonlinear, the use of linear methods can
introduce substantial estimation bias. This issue may be particularly critical for
the purpose of causal discovery since it can easily lead to incorrect determination
of causal directions among the primary variables. To address this problem, we

next consider the discovery and estimation of DAGs using invalid IVs under model
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(2.2), which has not been discussed in the existing literature.

3. Identification of the causal graph and effects

In this section, we show how to identify the causal structures and effects among
the primary variables Y using the secondary variables X. We first make the

following assumptions.

Assumption 1. The secondary variables are independent of each other, i.e.,

Assumption 1 is reasonable and common in Mendelian randomization studies,
where genetic variants from different gene regions are often used as IVs. To meet
this assumption, one can employ well-established tools for linkage disequilibrium
clumping such as PLINK (Purcell et al., 2007) to select independent genetic vari-
ants. This practice is prevalent and generally accepted within the field (e.g., Zhao
et al., 2020; Ye et al., 2021). The independence assumption has also been made
in existing methods for causal discovery. For instance, Neto et al. (2010) and On-
gen et al. (2017) treated expression quantitative trait loci (eQTLs) as secondary

variables and exploited their independence when evaluating genetic causality.

Assumption 2. Whenever X, intervenes on an unmediated parent of Y;, X, JL

Y.

J
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Assumption 2 is the faithfulness assumption in causal discovery (Spirtes et al.,
2001). It requires that when X intervenes on both Y; and its unmediated parent,

the dependency between X, and Y; should not be canceled out.

Assumption 3. For each primary variable Y}, there are at least v > 1 valid IVs,

ie, |ivg(j)| >~ forall j=1,...,p.

When there are only two primary variables with known causal direction, As-
sumption 3 is the same as the one imposed in Sun et al. (2023). The value of
can be specified based on prior knowledge. In general, it is possible to set v =1
by assuming only the existence of a valid IV for each Yj, as done by Li et al.
(2023) and Zilinskas et al. (2024). However, these studies did not account for
unobserved confounders. In the presence of unobserved confounding, Chen et al.
(2024) assumed the majority rule as in Kang et al. (2016), which is stronger than
Assumption 3 since it requires at least half of the candidate IVs to be valid for
each primary variable.

For causal inference between an exposure and an outcome of interest under a
semiparametric model similar to (2.2), Sun et al. (2023) introduced a system of
moment conditions for identification in a union of causal models where at least
of the candidate IVs are valid but their identities are unknown. They then pro-
posed a class of G-estimators (Robins et al., 1992) and developed semiparametric

efficiency theory. To extend this idea to our causal graph setting, we first give the



13

following definition. Let d(Xca,(;)) denote a generic one-dimensional function of

Xeag(j) With mean zero and finite variance, i.e., d(Xcag(j)) € H(Xea(j))-

Definition 3. For each primary variable Y; and an index set «; C cag(j) with

|a;| > 7, define the subspace

= {dXeas(s) € H(Xeac(y) : E{d(Xeag(i) | Xeaginas} = 0}

Further, define the intersection of all possible D(«;) by

2,(4) = N Dlay.

a;Ccag(j),la;>y

In particular, since Hyeca,,(j){Xe — E(X¢)} belongs to Z,(j) under Assump-
tions 1 and 3, Z,(j) is non-empty. For discrete X, (j), the space H(Xcay(;)) can
be spanned by a finite number of orthogonal functions. Since Z,(j) € H(Xcag(j)):
we can stack all basis functions of Z,(j) into a vector denoted by Z (Xca(j)). For
example, consider the case where there is only one binary variable X, that is both
the candidate and valid IV for Y}, i.e., suppose that v = 1, cag(j) = ive(j) = {¢},
and X, € {0,1}. Since X, is binary, H(X,) = span({X, — E(X,)}). Thus, by
Definition 3, Z-(Xca(j)) is exactly the centered valid instrument X, — E(X,) for
Y;. Cases with multiple IVs are illustrated in Example 77 of the Supplementary
Material. For continuous X, (;), however, Z. (J) becomes an infinite-dimensional
Hilbert space. This difficulty arises even in the simplest scenario with one candi-

date IV X, for Y}, where Z.,(j) = {d(X,) € H(X,) : E(d(X,)) = 0} remains
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infinite-dimensional. To address this issue, we follow the general strategy in
Newey (1993) and Tchetgen Tchetgen et al. (2010) by selecting a basis set of
functions {¢s(Xcar(j))}o2; that are dense in Z,(j), such as tensor products of
trigonometric, wavelet, or polynomial bases. We can then construct Z. (X, (7))
from a finite subset of these basis functions.

Below we briefly explain how Z, (X, (j)) can serve as surrogate IVs for iden-
tification. Consider the simple case where meg(k, j) = (), meaning that the total
causal effect of Yy on Yj is the direct effect 5;;. The causal relationships among
the relevant variables for this case are illustrated in Figure 2, with dashed lines
indicating that the relationships may exist. When Assumption 1 holds, it is easy
to see that Yomgk,j) 1L Xeag) and Xing ) 1L Xeag k) | Xeagk)\ive (k). Then, for

any d(Xcag (k) € D(ivg(k)), we have
E{d(XcaG(k))(Y; - 5;;]}/19)} =0. (33)

See (?77?) in the Supplementary Material for the full derivation of (3.3). Notably,
the nonparametric term g;(Xin,(;)) in the PLM model (2.2) is not contained in
(3.3). The proposed approach differs from conventional PLM methods such as
smoothing spline regression (Hérdle et al., 2000), which approximate nonparamet-
ric terms via linear basis expansions. By leveraging the orthogonality between

9;(Xing(j)) and D(ivg(k)), the moment condition (3.3) is derived without approx-
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U
Xive (k) > Yy

Xecag (h)\ive (k)
Figure 2: Causal relationships in the case where meg(k, j) = 0.

imating g¢;(-), thereby preventing the approximation errors. Although iveg(k) is
unknown, there must exist a subset ay C cag(k) as described in Definition 3 such
that oy, = ivg (k). By the definition of Z.,(k), we have Z. (k) C D(ivg(k)). Conse-
quently, all random variables in Z, (k) must satisfy the moment condition (3.3), or
equivalently EF{Z,(Xcaqk))(Y; — B5;Yx)} = 0 for the basis functions Z(Xcas k)
of Z,(k). In other words, we can construct surrogate IVs Z,(Xca,(x)) based on
Xeag (k) Without the need to know the valid IVs.

The above discussion relies primarily on Assumption 1. Violations of this as-
sumption may break the orthogonality between the nonparametric term g;(Xin, (;))
and the subspace D(ivg(k)), which can render the surrogate IVs invalid. A con-
crete example illustrating this scenario is provided in Example ?? of the Supple-

mentary Material.

Assumption 4. For each primary variable Y, with descendants,

I E{Z(Xcagr)Ye}Ho > 0.



16

Since E{Z+(Xcagx))} = 0 by Definition 3, Assumption 4 stems from the
necessity for the surrogate IVs Z.(Xca, k) to satisfy the relevance assumption.
Additionally, because Z.(Xca,k)) characterizes the function space Z,(k), As-
sumption 4 entails the existence of a random variable in Z, (k) that is correlated
with Y. This requirement is not stringent, in view of the fact that all the candi-
date IVs of Y} are correlated with Y,. Moreover, as 7 increases, this assumption
becomes milder. As an illustration, consider the case where all candidate I'Vs take
values 0 or 1. If we believe that m = | cag(k)| candidate IVs of Y}, are all valid,
then there are 2™ — 1 basis functions in Z,(Xcag(x)), and Assumption 4 requires
at least one of these basis functions to be correlated with Y;,. We are now ready

to state our main identification result.

Theorem 1. Suppose that Assumptions 1—4 hold. For the causal graph G =
(X,Y;E,1), the edge set € and the causal parameters {3} }icpag(j) in model (2.2)
are identifiable.

The proof of Theorem 1 exploits a two-stage identification strategy. We begin
by identifying the ARG to roughly capture the causal directions among Y and
obtain candidate IV sets. Specifically, Assumptions 1 and 2 imply that only valid
IVs for leaf nodes depend exclusively on one primary variable while remaining

independent of all others. This property enables the identification of leaf nodes

and their IVs in G. Removing these nodes yields a subgraph whose leaf nodes
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and the corresponding I'Vs remain identifiable via the same approach. Iteratively
repeating this process enables the recovery of the entire ARG along with the
candidate IV sets. Building on these results, we proceed to construct surrogate
IVs to identify the causal effects and graph. Since the causal effect §;; can be
nonzero only when (k,j) € £7, it suffices to identify B* := (8;)jeet By
extending the aforementioned surrogate IV framework to the entire graph, we
establish that under Assumptions 1-4, 3* can be identified as the unique solution

to

E{M(B")} =0, (3.4)
where M(3*) is the concatenation of all My;(3*) for (k,j) € £ and

Mk](ﬁ*) = Zv(XcaG(k)) (YJ B Z BZY; B BZij)'

i€meg (k,j)

The detailed proof is given in Section ??7 of the Supplementary Material.

4. Methodology and theory

In this section, we introduce PLACID, a finite-sample method for estimating
the causal graph and causal effects in model (2.2). The method consists of an
algorithm for estimating the ARG and candidate IV sets (Section 4.1) and a
procedure for inferring the causal effects and directions (Section 4.2). Theoretical

guarantees are provided in Section 4.3.
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4.1 Estimation of the ARG and candidate IV sets

To estimate the ARG, it is essential to establish the dependence between X and Y
based on finite samples, which can be achieved using distance correlation (Székely
et al., 2007). The distance correlation (DC) measures the dependence between two
random vectors using the distance between their characteristic functions. Unlike
Pearson’s correlation coefficient, the DC is zero only if the random vectors are
independent. Moreover, in the bivariate normal case, it is strictly increasing with
the absolute value of Pearson’s correlation coefficient. The notion of DC has been
effectively used in feature screening (Li et al., 2012) and causal discovery from
time series (Runge et al., 2019). Here we employ the empirical DC to test and
measure the dependence of any pair X; and Y;. Calculation details and a full
description of DC are provided in Section ?? of the Supplementary Material.
Algorithm 1 implements the identification strategy developed earlier in a
finite-sample setting. Under Assumptions 1 and 2, each leaf node admits valid
[Vs that depend exclusively on that node and are independent of all others. This
property allows us to iteratively identify and remove leaf nodes, along with recov-
ering their relationships to the primary variables removed in earlier steps, thereby
reconstructing the ARG. Algorithm 1 operationalizes this logic by using the em-
pirical DC to estimate the dependence structure between X and Y, as described

by the iterative steps in lines 4-14. At each iteration, it selects a secondary vari-
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Algorithm 1 DC-based estimation of the ARG and candidate IV sets

Input: Data (X4, Y,x,), significance level a > 0
Output: Estimates of £, Z7, and candidate IV sets
1: Compute the empirical DC matrix C = (R,(X;,Y)))gxp via (??7) in the Sup-
plementary Material
2: Compute the rejection matrix R = (R;j)4xp via (??) in the Supplementary
Material
3: Initialize £ < 0, ZT < {(i,7) : Ri; #0}, Y « {1,...,p}, X « {1,...,q},
Y «Y, X «X,E«ET «+I7,R «R
while Y~ # () do
Initialize leaf(G™) < 0, ivg-(j) < 0 for all j € Y~
for / € argmin,, IR o0 IR; [[o do
k < arg max;.;cy- Cy;
leaf(G™) « leaf(G~) U{k}
ivg- (k) < ivg- (k) U {¢}
10: end for
1: &Y« ETU{(k,j) - k € leaf(G7),j € Y\ Y ,Ry # Oforalll ¢
ivg-(k)}
12: Y™ < Y \leaf(G7), X7 < X7\ Ucrear(a-) iva- (k)
13: Update R~ by keeping the rows in X~ and columns in Y~
14: end while
15: EY <« {(k,5) : Y = --- = Y, in 1}
16: It {(€,§) : (L, k) € I+ and (k,j) € £¥}
17: Gag(k) « {0 : (0,k) € It and (¢,§) € Itk # jonlyif (k,j) € £} for
k=1,....p
18: Return: £+, 7%, {@a(k)}_,

able that empirically depends on the fewest variables in Y~ as an IV for the
working subgraph GG~ (line 6), and then chooses the variable in Y~ that is most
strongly correlated with this secondary variable as a leaf node to remove (line 7).
The estimated dependence structure is subsequently used to recover the relation-

ships between Yierc-y and Y \ Y~ (line 11). A rigorous theoretical foundation
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for these steps is established in Propositions ?? and ?? of the Supplementary
Material. By updating the subgraph G~ and repeating the iterative process, the

algorithm ultimately reconstructs the ARG and all candidate IV sets.

4.2 Estimation of causal effects

The estimated ARG obtained from Algorithm 1 provides an initial understanding
of the causal structures among the variables in Y. We now show how to estimate
the causal effects and hence recover the edges £ using the candidate IV sets.

On the basis of the moment condition (3.4), we propose to estimate 8* using
the generalized method of moments (GMM) (Hansen, 1982). The first step is to
construct estimates of the unknown functions Z.(Xca,x)) in M(8*). This can
be done in different ways according to the types of candidate IVs. In the case
where all variables in X, take values in {0,1}, we follow the idea of Sun
et al. (2023) to construct Z.(Xeag k) Let a(l),...,a(ty) be an enumeration of
all subsets o C cag(k) of cardinality || > |cag(k)| — v+ 1. Clearly, for any such
« and any subset ay C cag(k) with |ag| > 7, we have a N ay # (). This implies

that E{ILca(Xs — o) | Xeag(k)\or } = 0, where p1; = E(Xj), and hence

T
Zv(XcaG(k)) = (Hsea(l)(Xs - ,uS)v oo aHsea(tk)(Xs - MS)) .

A specific example is given in Example 7?7 of the Supplementary Material. To

~

estimate Z,(Xeag(k)), one simply substitutes the empirical means £, (X,) for i
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in the above expression. If X, ) includes polytomous variables, we break them
into dummy variables and compute Zv(XcaG(k)) similarly. For the continuous

case, we use the strategy discussed after Definition 3 to obtain Z.(Xcagx))-

Algorithm 2 GMM estimation of 8* and £

Input: Data (X,xq, Yoxp), ancestral edge set £1, candidate TV sets {Gag(k)}2_,,
weighting matrix €2, FDR level ¢* > 0
Output: Estimates of 8* and £
1: N+ ‘c‘j+|
2: For each Yj with descendants in <‘f+, obtain an empirical expression
Z,(Xaa) of Zy(Xeagr)
3: For each (k,j) € £, meg(k,j) < {i: (k,i) € £F,(i,5) € £1}
4: For each (k,j) € £ and B = (Bi;) € RY, obtain an empirical expression of
Mij(B): Mij(B) < Z7(Xaow)(Y; — Diemeoany) BiiYi — BriYe)
5: Concatenate Mj;(3) into M(3) and solve the following problem:

B < argmin £, {M(8)} QE,{M(8)} (45)

6: Obtain the standard errors &4, of [y for all (k,j) € £+ by Theorem 3

7: Calculate the p-values Py;  2{1 — ®(|Bx;]/6%;)} for all (k,j) € EF

8: Order the p-values as Py < -+ < Py with P corresponding to (i, j;) €
s+

9: € < max{i: Py <i¢* /(N Z§V:1j—1)}

10: & (ki)Yo

11: Return: 3, £

After obtaining estimates of Z.(Xcas(k)), We proceed with the GMM esti-
mation of B* and recovery of £, as summarized in Algorithm 2. Note that the
weighting matrix € in (4.5) may affect the asymptotic variance of the GMM esti-
mator. In practice, €2 can be either specified as the identity matrix or computed

from the data as suggested by Hansen (1982). In the next subsection, we derive
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the asymptotic normality of 3 (Theorem 3). The result is used in Algorithm 2 to
test whether the individual entries of 3* are zero, thereby allowing us to recover
the edges in £. To adjust for multiple comparisons, we apply the Benjamini—
Yekutieli method (Benjamini and Yekutieli, 2001) in Algorithm 2 to control the

false discovery rate (FDR) at level ¢*; see Theorem 4.

4.3 Theoretical guarantees

In this subsection, we provide theoretical guarantees for our PLACID method
in terms of causal discovery and inference. We begin with the following result,

showing that Algorithm 1 consistently learns the ARG and candidate IV sets.

Theorem 2 (Consistency of ancestral structure recovery). Suppose that Assump-
tions 1-3 hold and oo = O(n~2) in Algorithm 1. Then the estimated ARG G* and

candidate IV sets {cag(k)},_, from Algorithm 1 satisfy

lim P(Gt = G*) =1 and lim P{Gg(k) =cag(k)} =1, k=1,...,p.

n—o0 n—oo

Theorem 2 relies on the fact that Algorithm 1 with our choice of o can asymp-
totically detect any dependence between X and Y as n — oo. This property is
a consequence of the asymptotic results for DC-based tests (Székely et al., 2007),
which are summarized in Section ?? of the Supplementary Material. The signif-
icance level « is a hyperparameter similar to that in the PC algorithm (Spirtes

et al., 2001). As suggested by Spirtes et al. (2001), we choose o = O(n™?) decay-
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ing with n to ensure the convergence to the correct decision with probability one.
Assuming consistency of the estimates from Algorithm 1, we have the following

result concerning the inference of causal effects and directions by Algorithm 2.

Theorem 3 (Asymptotic normality of ﬁ) Suppose that Assumptions 1-4 hold.

Then the estimated causal effects B from Algorithm 2 satisfy
o d
V(B —pB%) = N(0,V),
where the asymptotic variance
_ T —1T T —il T
V = (0gug; Lie 1 )(G"WaG) "G WoFWqG(G" WqG) ™ (0gxg, Lis+))"

and the specific forms of Wq, G, and F are given in Section 77 of the Supple-

mentary Material.

Theorem 3 accounts for the uncertainty due to the unknown mean p = F(X)
in the construction of surrogate IVs. To this end, we augment the estimating
equations for B* with those for p. The asymptotic variance of B is then the
corresponding submatrix of the usual sandwich estimator for the full asymp-
totic variance. Additionally, although (2.2) contains nonparametric terms, our
estimates still achieve y/n-consistency. This is not surprising because our surro-
gate IVs are constructed without approximating the nonparametric terms, thus
eliminating the approximation errors inherent in conventional PLM methods. In

fact, our estimator is directly derived from the estimating equation (4.5), which
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contains only parametric components. As a result, y/n-consistency follows from
standard GMM theory.

For an estimated edge set (‘f, let TP, RE, and FP denote the numbers of
estimated edges with correct directions, those with reverse directions, and those
not in the true DAG, respectively. Define the false discovery proportion of £
by FDP() = (RE+FP)/(TP +RE +FP), and the false discovery rate of € by
FDR(E) = E{FDP(£)}. The following result ensures that Algorithm 2 controls

the FDR in edge recovery at the nominal level.

Theorem 4 (FDR control in edge recovery). Suppose that Assumptions 1—4 hold
and € # (). Then for any ¢* € (0,1), the estimated edge set E from Algorithm 2

satisfies

lim FDR(E) < ¢*.

n—oo

Both Theorems 3 and 4 require the consistency of the estimated ARG, which
is guaranteed by Theorem 2. When the consistency fails to hold, one may con-
sider a post-selection inference framework that projects the true data-generating
process onto the selected model (Kuchibhotla et al., 2022; Gradu et al., 2025).
However, inference under this framework must be interpreted with caution, as the
resulting parameters generally lack a causal interpretation (Berk et al., 2013). In
contrast, by leveraging the model selection consistency established in Theorem 2,

PLACID provides valid inferences for large samples, while retaining a clear causal
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interpretation of the parameters.

5. Simulation studies

This section examines the finite-sample performance of our PLACID method. For
causal discovery, we compare our method with GrIVET (Chen et al., 2024), RFCI
(Colombo et al., 2012), and LRpS-GES (Frot et al., 2019). Since the last two are
unable to estimate causal effects, we compare our method only with GrIVET for
parameter estimation, where the effects of X on Y are specified in a linear form.

We consider two types of DAGs with unobserved confounders: random graphs
and hub graphs. Let A € RP*P denote the adjacency matrix for the DAG. For
random graphs, the upper off-diagonal entries of A are independently sampled
from Bernoulli(1/(2p)), while the other entries are set to 0. For hub graphs, the
entries Ay;, 7 = 2,...,p, are set to 1, with the remaining set to 0. For the SEM
in (2.2), we consider both continuous and discrete cases of secondary variables
X. To examine our method for DAGs of different sizes, we fix the sample size
at n = 1000 while varying the dimensions as (p,q) = (10,25) and (20, 50). More
implementation details are provided in Section 7?7 of the Supplementary Material.

For causal discovery, RFCI outputs a partial ancestral graph and LRpS-GES
outputs a completed partially DAG, both of which may include undirected edges.

We evaluate both methods favorably by assuming that the correct directions were
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Table 1: Means and standard deviations (in parentheses) of different causal dis-
covery performance metrics for four methods with continuous secondary variables.

Graph p  Method FDP TPR SHD JI
Random 10 PLACID 0.02(0.08) 0.92(0.21) 0.30(0.67)  0.90(0.22)
GrIVET 0.57(0.36) 0.49(0.39) 4.06(2.90)  0.27(0.27)
RFCI 0.07(0.24)  0.48(0.39) 1.31(1.29)  0.47(0.39)
LRpS-GES 0.70(0.12) 0.97(0.13) 5.04(0.88)  0.30(0.12)
20 PLACID 0.02(0.07) 0.91(0.15) 0.58(0.98)  0.90(0.16)
GrIVET 0.83(0.15) 0.43(0.26)  16.38(9.70)  0.14(0.11)
RFCI 0.03(0.13)  0.59(0.28) 2.07(1.60)  0.59(0.28)
LRpS-GES 0.70(0.08) 0.99(0.04)  10.55(1.40)  0.30(0.08)
Hub 10 PLACID 0.00(0.00) 1.00(0.00) 0.00(0.00)  1.00(0.00)
GrIVET 0.40(0.36) 0.48(0.38) 7.55(5.51)  0.41(0.36)
RFCI 0.01(0.04) 0.58(0.21) 3.78(1.89)  0.58(0.21)
LRpS-GES 0.39(0.05) 0.83(0.10) 6.30(1.40)  0.55(0.09)
20 PLACID 0.00(0.00)  1.00(0.00) 0.00(0.00)  1.00(0.00)
GrIVET  0.65(0.31) 0.41(0.36) 25.82(13.41)  0.28(0.28)
RFCI 0.07(0.09) 0.45(0.15)  11.04(3.00)  0.44(0.15)
LRpS-GES 0.43(0.04) 0.80(0.08)  15.38(2.14)  0.50(0.06)

obtained for undirected edges, as in Li et al. (2024). Four performance metrics
for causal discovery are used: false discovery proportion (FDP), true positive rate
(TPR), structural Hamming distance (SHD), and Jaccard index (JI). Let TP, RE,
and FP be defined as in Section 4.3, and FN the number of missing edges from the
true DAG. Then FDP = (RE+FP)/(TP+RE+FP), TPR = TP /(TP + FN),
SHD = FP+FN +RE, and JI = TP /(TP + SHD). The results for the continuous
and discrete cases are summarized in Tables 1 and 2, respectively.

Tables 1 and 2 indicate that PLACID performs best in causal discovery across

all scenarios. In particular, it effectively controls the FDP below the nominal level
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Table 2: Means and standard deviations (in parentheses) of different causal dis-
covery performance metrics for four methods with discrete secondary variables.

Graph P Method FDP TPR SHD JI
Random 10 PLACID 0.01(0.04)  0.92(0.07) 0.07(0.30)  0.91(0.08)
GrIVET 0.14(0.24)  0.63(0.35) 1.08(1.15)  0.57(0.34)
RFCI 0.00(0.00)  0.82(0.26) 0.25(0.57)  0.82(0.26)
LRpS-GES  0.62(0.16)  0.92(0.04) 3.39(1.14)  0.38(0.16)
20 PLACID 0.03(0.07)  0.98(0.05) 0.33(0.73)  0.95(0.09)
GrIVET 0.28(0.24)  0.65(0.25) 3.26(2.42)  0.50(0.23)
RFCI 0.00(0.02)  0.94(0.11) 0.34(0.80)  0.94(0.11)
LRpS-GES  0.64(0.12)  0.97(0.06) 7.91(1.86) 0.36(0.12)
Hub 10 PLACID 0.00(0.00)  0.96(0.07) 0.39(0.63)  0.96(0.07)
GrIVET 0.00(0.03)  0.50(0.17) 4.55(1.56)  0.50(0.17)
RFCI 0.00(0.00)  0.44(0.21) 5.06(1.86)  0.44(0.21)
LRpS-GES  0.44(0.05)  0.78(0.05) 7.52(1.11)  0.49(0.05)
20 PLACID 0.00(0.00)  0.97(0.04) 0.54(0.82)  0.97(0.04)
GrIVET 0.01(0.10)  0.49(0.13) 9.92(3.59) 0.49(0.13)
RFCI 0.00(0.00) 0.38(0.13) 11.87(2.48) 0.38(0.13)
LRpS-GES  0.50(0.05) 0.80(0.09) 18.96(3.07) 0.45(0.06)

q¢* = 0.05, while maintaining a TPR higher than 0.9 for powerful edge detection.

As expected, GrIVET struggles with nonlinear relationships between the primary

and secondary variables, whereas RFCI and LRpS-GES are less effective in han-

dling large effects of unobserved confounders. In the continuous case, PLACID

shows remarkable accuracy for hub graphs, likely because the dependence between

X and Y is well captured by the empirical DC in these settings. In the discrete

case, the performance of RFCI is comparable to that of PLACID for random

graphs; however, these metrics are calculated by assuming correct directions for

undirected edges in RFCI, giving it an unfair advantage. Moreover, RFCI tends
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Table 3: Means and standard deviations (in parentheses) of different estimation
losses for two methods with continuous and discrete secondary variables.

Setting Graph P Method L Ly L,
Continuous Random 10 PLACID  0.23(0.38)  0.35(0.67) 0.26(0.46)
GIIVET  0.78(0.39)  1.91(1.45) 1.05(0.62)
20 PLACID 0.37(0.44)  0.68(0.99)  0.45(0.57)
GIIVET  1.07(0.17)  5.03(1.87)  1.84(0.49)
Hub 10 PLACID 0.11(0.03)  0.39(0.06) 0.17(0.03)
GrIVET  0.99(0.29)  7.10(4.03)  2.27(1.00)
20 PLACID 0.09(0.02)  0.63(0.11)  0.17(0.03)
GrIVET  1.14(0.13) 18.81(9.02)  3.82(1.27)
Discrete Random 10 PLACID 0.12(0.21)  0.20(0.45) 0.14(0.28)
GrIVET  0.76(0.38)  1.47(1.08)  0.95(0.55)
20 PLACID 0.21(0.36)  0.40(0.71)  0.26(0.45)
GrIVET  0.98(0.20)  3.26(1.60)  1.56(0.50)
Hub 10 PLACID 0.38(0.35)  0.93(0.57) 0.48(0.37)
GrIVET  1.16(0.03)  9.00(0.34)  3.02(0.11)
20 PLACID 0.36(0.22)  2.31(1.35)  0.95(0.60)
GrIVET  1.18(0.02) 19.99(0.53)  4.50(0.12)

to be less powerful for hub graphs, while PLACID consistently exhibits superior
and stable performance across different graph structures and sizes.

For parameter estimation, we compare our method with GrIVET in terms of
entrywise L., L1, and L, losses, as reported in Table 3. These results demonstrate
the superior performance of PLACID over GrIVET in parameter estimation across
various settings. It is also interesting to note that the performance of PLACID
in causal discovery and parameter estimation exhibits the same trend, as can be
seen from a comparison of Tables 1 and 2 with Table 3. This is reasonable since

a better estimate of the ARG enables more accurate parameter estimation, which
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in turn leads to a more precise recovery of causal structures.

To empirically assess the strength of the surrogate IVs used in PLACID, we
follow Stock et al. (2002) and adopt the first-stage F-statistic from two-stage least
squares. Specifically, for each primary variable Y and its surrogate IVs, we com-
pute the corresponding first-stage F-statistic and then report the average across
all primary variables. The resulting average first-stage F-statistics are presented
in Table 7?7 of the Supplementary Material, where all values are well above the
commonly used threshold of 10 (Staiger and Stock, 1997), suggesting that the
surrogate IVs are sufficiently strong across all simulation settings. In Section 77
of the Supplementary Material, we further conduct simulations to more compre-
hensively evaluate the performance of PLACID under different settings, including
varying IV strengths and sample sizes. Section 7?7 also includes simulations that

empirically examine the roles of Assumptions 1 and 3.

6. Application to ADNI data

Inferring gene regulatory networks is crucial for understanding the pathophysi-
ology of complex diseases and developing effective therapeutics (Barabdsi et al.,
2011). In this section, we apply our method to the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) dataset (https://adni.loni.usc.edu) for estimating

gene regulatory networks. We use the preprocessed data from Chen et al. (2024),
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with gene expression levels normalized and adjusted for baseline covariates. By
selecting genes with at least one strongly associated single nucleotide polymor-
phism (SNP) and two strongest SNPs for each gene, the dataset includes p = 21
genes as primary variables and ¢ = 42 SNPs as secondary variables. Participants
were divided into 462 cases with Alzheimer’s disease or mild cognitive impairment
(AD-MCI) and 247 cognitively normal controls (CN). Partial residual plots in Sec-
tion 7?7 of the Supplementary Material suggest nonlinear relationships between
some primary and secondary variables, and hence model (2.2) is appropriate. We
then apply PLACID to learn the DAGs among the genes for both groups. Chen
et al. (2024) assumed that the candidate IV set for each primary variable satisfies
the majority rule, namely that more than half of the relevant IVs are valid. Here,
we adopt a more conservative choice of ¥ = 1, which requires only at least one
valid IV per primary variable and is sufficient for PLACID to be applicable. To
assess whether Assumption 4 holds with this choice of v, we empirically evaluate
the surrogate IV strength. The average first-stage F-statistics for the AD-MCI
and CN groups are 309.96 and 160.06, respectively, both well above the conven-
tional threshold of 10 for weak IVs (Staiger and Stock, 1997), confirming that the
selected surrogate IVs are sufficiently strong.

The estimated DAGs for the AD-MCI and CN groups are displayed in Figure

3, which reveal both common and distinctive features of gene regulatory inter-
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Figure 3: Estimated gene regulatory networks for (a) AD-MCI and (b) CN groups.

actions in the two groups. Compared with the CN group, the AD-MCI group
has substantially more edges originating from LRP1, suggesting a critical role
of LRP1 in the pathogenesis of Alzheimer’s disease. Indeed, it has been known
that LRP1 is a major regulator of amyloid-3 and tau, the two hallmark proteins
in Alzheimer’s disease (Bloom, 2014), and contributes to their accumulation and
spread in the brain (Rauch et al., 2020). Among the outgoing edges of LRP1,
the link to APOE is shared by both groups, which is consistent with the previous
finding that LRP1 regulates brain APOE and cholesterol metabolism (Liu et al.,
2007). In fact, APOE has long been established as the strongest genetic risk factor

for late-onset Alzheimer’s disease, and has multifaceted effects on many neurobi-
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ological processes underlying Alzheimer’s disease (Serrano-Pozo et al., 2021). We
further note that APP is connected to different downstream genes between the
two groups. In particular, the AD-MCI group includes paths from APP to APOE,
GSK3B, and APBBI, whereas the first two paths are absent in the CN group.
APP is the precursor to amyloid-3, whose abnormal processing has been found
central to the development of Alzheimer’s disease (O’Brien and Wong, 2011). In-
terestingly, the paths from APP to APOE support the possibility that APOE and

cholesterol levels are modulated, directly or indirectly, by APP (Liu et al., 2007).

7. Discussion

We have proposed a novel method for identifying and inferring DAGs under un-
observed confounding using invalid IVs. Our method may suffer from certain lim-
itations and can be extended in several directions. First, Assumption 1 may be
relaxed to allow dependence among secondary variables. To block paths through
correlated secondary variables, one can apply the notion of conditional distance
correlation (Wang et al., 2015) to test the independence of X; and Y; conditional
on the other secondary variables. For parameter estimation, one may follow Sun
et al. (2023) and adjust moment conditions with weights accounting for depen-
dence. Second, it would be valuable to extend our setting to nonlinear causal

models with unobserved confounders, as in Agrawal et al. (2023). Finally, it
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would be worthwhile to extend our method to high-dimensional settings where
p or q is large. One possible strategy for such extensions is to first estimate the
ARG via a DC-based feature screening procedure to assess the dependence be-
tween X and Y (Li et al., 2012), followed by a high-dimensional GMM estimator
(Caner, 2009) to recover the causal effects and directions. We leave these topics

for future research.

Supplementary Material

The Supplementary Material includes examples, proofs of the theoretical results,
details on simulation settings, additional simulation studies, and additional anal-

ysis results for the application.
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