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Abstract: Learning causal relationships among a set of variables, as encoded by a directed

acyclic graph, from observational data is complicated by the presence of unobserved con-

founders. Instrumental variables (IVs) are a popular remedy for this issue, but most

existing methods either assume the validity of all IVs or postulate a specific form of rela-

tionship, such as a linear model, between the primary variables and the IVs. To overcome

these limitations, we introduce a partially linear model for causal discovery and infer-

ence that accommodates potentially invalid IVs and allows for general dependence of

the primary variables on the IVs. We establish identification under this semiparametric

model by constructing surrogate valid IVs, and develop a finite-sample procedure for

estimating the causal structures and effects. Theoretically, we show that our procedure

consistently learns the causal structures, yields asymptotically normal estimates, and

effectively controls the false discovery rate in edge recovery. Simulation studies demon-

strate the superiority of our method over existing competitors, and an application to

inferring gene regulatory networks in Alzheimer’s disease illustrates its usefulness.

Key words and phrases: causal inference; directed acyclic graph; identification; instru-

mental variable; unobserved confounding.
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1. Introduction

Inferring causal relationships among a set of variables, as represented by a directed

acyclic graph (DAG), is a fundamental problem in statistics and finds applications

in various fields such as systems biology (Triantafillou et al., 2017) and medical

imaging (Castro et al., 2020). As a result, learning causal relationships from ob-

servational data, known as causal discovery, has gained popularity and become an

active area of research; see Heinze-Deml et al. (2018) for comprehensive reviews.

The potential existence of unobserved confounders, however, may cause violations

of the Markov property in the DAG and lead to biased estimates of causal effects

(Pearl, 2009), posing challenges to robust causal discovery. The existing litera-

ture offers some approaches to tackling this challenge. One way is to generate

less informative discoveries, such as constructing a partial ancestor graph instead

of a DAG (Colombo et al., 2012). Another way is to develop effective algorithms

for deconfounding, often under additional assumptions about the confounding

mechanism. For example, Li et al. (2024) proposed a deconfounded estimation

procedure for nonlinear causal discovery under a sublinear growth condition that

separates linear confounding effects from nonlinear causal relationships. To avoid

such restrictions while obtaining an accurate estimate of the DAG, here we re-

sort to the use of instrumental variables (IVs), which provides a convenient and

powerful method for resolving the issue of unobserved confounding.
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In the classical context of inferring a treatment–outcome relationship, there

has been a rich body of work on estimating causal effects using valid IVs (e.g.,

Angrist et al., 1996; Newey and Powell, 2003). However, owing to the untestable

independence and exclusion restriction assumptions, candidate IVs may be in-

valid, rendering the estimates biased or inconsistent. In the presence of invalid

IVs, Bowden et al. (2015) and Kolesár et al. (2015) identified causal effects by

assuming that the direct effects of the IVs on the outcome are asymptotically

orthogonal to their effects on the treatment. Alternatively, some studies made

assumptions regarding the proportion of valid IVs among the candidate set. In

particular, Kang et al. (2016) and Windmeijer et al. (2019) developed Lasso-based

methods for selecting valid IVs and estimating causal effects under the majority

rule, which requires more than half of the candidate IVs to be valid. Guo et al.

(2018) proposed two-stage hard thresholding with voting for constructing confi-

dence intervals under the more general plurality rule. Recently, Sun et al. (2023)

introduced a new class of G-estimators for a semiparametric structural equation

model (SEM), allowing for a flexible number of valid IVs and bypassing the IV

selection step.

Despite extensive developments on IV methods in causal inference, their ap-

plication to causal discovery remains underexplored. Notably, with knowing a

priori a unique valid IV for each primary variable, Oates et al. (2016) formalized

Statistica Sinica: Newly accepted Paper 



4

the notion of conditional DAGs and developed a score-based estimation method

via integer linear programming. Among the few attempts to learn a causal graph

with invalid IVs (Chen et al., 2023; Li et al., 2023; Chen et al., 2024; Li et al.,

2024), Chen et al. (2023) proposed a stepwise IV selection procedure followed by

two-stage least squares and Wald tests for inference, while Li et al. (2023) and

Chen et al. (2024) developed peeling algorithms to estimate ancestral relation

graphs and candidate IV sets, along with likelihood-based edge inference. Still,

all these methods rely on the assumption of a linear SEM and do not account

for candidate IVs whose effects on the primary variables may be nonlinear. As

widely recognized in the literature, failing to exploit such nonlinearities may re-

sult in weak IVs, deteriorate the estimation performance, or distort the causal

interpretation (Newey, 1990; Sun et al., 2023).

In this paper, we consider causal discovery and inference in the presence of

unobserved confounders using potentially invalid IVs. Unlike existing studies

that postulate linear relationships between the primary variables and the IVs, we

adopt a partially linear SEM that leaves the functional form of these relationships

unspecified. Within this semiparametric framework, we establish identification of

causal structures and effects under relatively mild assumptions. Specifically, we

first identify the ancestral relationships and candidate IV sets by extending the

peeling algorithm of Chen et al. (2024) to our more general setting. Building on
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these results, we then construct surrogate valid IVs and derive moment condi-

tions to identify the causal effects recursively, which generalizes the identification

strategy of Sun et al. (2023) to causal graphs. We further develop a finite-sample

procedure for causal discovery and inference by using distance-correlation-based

independence tests and the generalized method of moments. We call our method

the Partially Linear Approach to Causal Instrument-based Discovery (PLACID).

Theoretically, we show that PLACID consistently learns the causal structures,

yields asymptotically normal estimates, and effectively controls the false discov-

ery rate in edge recovery.

The remainder of this paper is organized as follows. Section 2 introduces our

causal graph terminology and the partially linear SEM. Section 3 establishes the

identification results for the causal graph and causal effects. Section 4 presents

the PLACID methodology along with its theoretical guarantees. Sections 5 and

6 illustrate the numerical performance of our method through simulation studies

and an application to an Alzheimer’s disease dataset, respectively. Section 7

concludes the paper with some discussion.

We introduce some notation that will be used throughout the paper. For

a K-dimensional random variable Z and an index set α ⊆ {1, . . . , K}, define

Zα = (Zs : s ∈ α) and Z−α = (Zs : s /∈ α). Let Z denote the data realizations

of Z. Let H(Z) denote the Hilbert space of one-dimensional functions of Z with

Statistica Sinica: Newly accepted Paper 



6

mean zero and finite variance, equipped with the covariance inner product. Let

|J | denote the cardinality of a set J . For a matrix A = (Aij), let Ai,· denote

its ith row and A·,j its jth column. For a vector v, let vT denote its transpose

and ‖v‖0 its L0-norm. Let 1(·) denote the indicator function and Ip the p × p

identity matrix. Finally, let Ên denote the empirical mean operator with respect

to a sample of size n.

2. Causal graphical model

Consider a causal graph G with p endogenous primary variables Y = (Y1, . . . , Yp)
T

and q exogenous secondary variables X = (X1, . . . , Xq)
T , both having finite vari-

ance. Specifically, we denote

G = (X,Y; E , I), (2.1)

where E = {(i, j) : Yi → Yj} is the set of directed edges among Y, and I = {(`, j) :

X` → Yj} is the set of directed edges from X to Y. Note that there is no directed

edge from Y to X, and thus X can be viewed as external interventions. Based

on G, we adopt the following terminology: (i) the parent set of Yj, paG(j) =

{k : Yk → Yj}; (ii) if there exists a directed path from Yk to Yj, then Yj is a

descendant of Yk, Yk is an ancestor of Yj, and the ancestor set of Yj is anG(j) =

{k : Yk → · · · → Yj}; (iii) the intervention set of Yj, inG(j) = {` : X` → Yj};
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(iv) the mediator set of Yk and Yj, meG(k, j) = {i : Yk → · · · → Yi → · · · → Yj};

(v) the non-mediator set of Yk and Yj, nmG(k, j) = anG(j) \ (meG(k, j) ∪ {k});

(vi) Yk is an unmediated parent of Yj if (k, j) ∈ E and meG(k, j) = ∅; (vii) the

leaf nodes of G, leaf(G) = {j : Yj has no descendant in G}; (viii) the ancestral

relation graph (ARG), G+ := (X,Y; E+, I+), where E+ = {(k, j) : k ∈ anG(j)},

I+ =
{

(`, j) : ` ∈
⋃
k∈anG(j)∪{j} inG(k)

}
. The ARG G+ describes the ancestral

relationships among the nodes in G. Specifically, if there exists a directed path

from Yi to Yj in G, then (i, j) ∈ E+. Similarly, if there exists a directed path

from X` to Yj in G, then (`, j) ∈ I+. To further illustrate these definitions, we

consider a simple case in Example ?? of the Supplementary Material.

Following the idea of conditional DAGs (Oates et al., 2016), we wish to use

X as candidate IVs to infer the causal relationships and effects among Y. The

variables X are exogenous, implying that these variables satisfy the independence

assumption of valid IVs. There are directed edges from X to Y, but none in the

opposite direction, providing the basis for the relevance assumption. Therefore,

it is possible to use X as IVs. We further introduce our definitions of valid and

candidate IVs based on causal graphs.

Definition 1 (Valid IV). A secondary variable X` is said to be a valid IV for Yj

in the causal graph G, if it intervenes on Yj, i.e., (`, j) ∈ I and does not intervene

on any other primary variable Yi, i.e., (`, i) /∈ I for all i 6= j.
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Definition 2 (Candidate IV). A secondary variable X` is said to be a candidate

IV for Yj in the causal graph G, if it intervenes on Yj, i.e., (`, j) ∈ I and does not

intervene on any non-descendant of Yj.

Accordingly, denote the set of valid IVs for Yj in G by ivG(j) = {` : X` →

Yj, X` 9 Yi, i 6= j} and the set of candidate IVs for Yj in G by caG(j) = {` : X` →

Yj, X` → Yk only if j ∈ anG(k)}. It is obvious that ivG(j) ⊆ caG(j). However, a

candidate IV may not be valid, because it may intervene on a descendant of Yj,

which contradicts Definition 1.

Since the variables Y are of primary interest, it is often reasonable to assume

simple relationships among Y while leaving unrestricted the functional forms

of interactions between X and Y, as shown useful in semiparametric modeling

in econometrics (Engle et al., 1986) and environmental science (Dominici et al.,

2004). Among such semiparametric models, of particular importance is the par-

tially linear model (PLM) (Robinson, 1988). For the causal graph G in (2.1), we

consider the partially linear SEM

Yj =

p∑
i=1

β∗ijYi + gj(XinG(j)) + εj, E(εj) = 0, X ⊥⊥ εj, j = 1, . . . , p. (2.2)

Here β∗ij represents the direct causal effect of Yi on Yj, and β∗ij 6= 0 implies that

Yi is a cause of Yj, i.e., i ∈ paG(j). The function gj(·) captures the causal

effect of XinG(j) on Yj, the form of which is unknown and not restricted to linear
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functions. Our interest lies in estimating the causal structures and effects among

Y, as characterized by the edge set E and the coefficient matrix B∗ = (β∗ij)p×p.

Compared to the standard linear model, the inclusion of a nonparametric term

in (2.2) enhances robustness against model misspecification (Florens et al., 2012).

Previous research has extensively examined the use of PLMs in causal inference,

including estimation with missing data (Liang et al., 2004) and identifiability

of partially linear SEMs (Rothenhäusler et al., 2018). However, since potential

unobserved confounders have been absorbed in ε = (ε1, . . . , εp)
T , Cov(Y−{j}, εj)

may not be 0 in model (2.2). As a result, existing estimation methods for PLMs

are unsuitable in our context, even when the causal relationships are known.

Assuming that gj(·) takes a linear form, Chen et al. (2024) proposed an insightful

peeling algorithm to infer the causal relationships and effects among the primary

variables Y using IVs. Their method, while effective in linear settings, may not

be applicable to the more general semiparametric model (2.2), because an IV

deemed valid under Definition 1 might not satisfy the criteria for a valid IV in

Chen et al. (2024). Without valid IVs, the causal parameters in their model will

become unidentifiable. Specifically, Chen et al. (2024) defined X` as a valid IV for

Yk if W`k 6= 0 and W`k′ = 0 for all k′ 6= k, where W = (W`k)q×p = V(Ip−B∗) and

V is the linear regression coefficient of Y on X, i.e., V = {Var(X)}−1 Cov(X,Y).

The following example clearly demonstrates this point.
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X2 X4

X1 Y1 Y2 Y3 X3

U

Figure 1: An example of the causal graph G.

Example 1. Consider the causal graph G shown in Figure 1, where U denotes

unobserved confounders, Y1 = X2
1 + ε1, Yj follows model (2.2) with unspecified

gj(·) for j = 2, 3, and X ∼ N(0, I4). It is easy to verify that cov(X1,Y) = 0, and

hence V1,· = 0 and W1,· = 0. This shows that, although X1 is indeed a valid IV

for Y1 in G, it is not a valid IV for any primary variable in Y under Chen et al.

(2024). Consequently, Y1 is considered to lack valid IVs, and thus the approach

in Chen et al. (2024) fails to identify the causal parameters in the model for Y1.

In light of Example 1, the method of Chen et al. (2024) fails to identify the

causal parameters in model (2.2). In contrast, our approach introduced in the

next section still ensures identification of these parameters. Furthermore, when

gj(·) is unknown and possibly highly nonlinear, the use of linear methods can

introduce substantial estimation bias. This issue may be particularly critical for

the purpose of causal discovery since it can easily lead to incorrect determination

of causal directions among the primary variables. To address this problem, we

next consider the discovery and estimation of DAGs using invalid IVs under model
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(2.2), which has not been discussed in the existing literature.

3. Identification of the causal graph and effects

In this section, we show how to identify the causal structures and effects among

the primary variables Y using the secondary variables X. We first make the

following assumptions.

Assumption 1. The secondary variables are independent of each other, i.e.,

Xi ⊥⊥ (Xj)j 6=i for all i = 1, . . . , q.

Assumption 1 is reasonable and common in Mendelian randomization studies,

where genetic variants from different gene regions are often used as IVs. To meet

this assumption, one can employ well-established tools for linkage disequilibrium

clumping such as PLINK (Purcell et al., 2007) to select independent genetic vari-

ants. This practice is prevalent and generally accepted within the field (e.g., Zhao

et al., 2020; Ye et al., 2021). The independence assumption has also been made

in existing methods for causal discovery. For instance, Neto et al. (2010) and On-

gen et al. (2017) treated expression quantitative trait loci (eQTLs) as secondary

variables and exploited their independence when evaluating genetic causality.

Assumption 2. Whenever X` intervenes on an unmediated parent of Yj, X` 6⊥⊥

Yj.
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Assumption 2 is the faithfulness assumption in causal discovery (Spirtes et al.,

2001). It requires that when X` intervenes on both Yj and its unmediated parent,

the dependency between X` and Yj should not be canceled out.

Assumption 3. For each primary variable Yj, there are at least γ ≥ 1 valid IVs,

i.e., | ivG(j)| ≥ γ for all j = 1, . . . , p.

When there are only two primary variables with known causal direction, As-

sumption 3 is the same as the one imposed in Sun et al. (2023). The value of γ

can be specified based on prior knowledge. In general, it is possible to set γ = 1

by assuming only the existence of a valid IV for each Yj, as done by Li et al.

(2023) and Zilinskas et al. (2024). However, these studies did not account for

unobserved confounders. In the presence of unobserved confounding, Chen et al.

(2024) assumed the majority rule as in Kang et al. (2016), which is stronger than

Assumption 3 since it requires at least half of the candidate IVs to be valid for

each primary variable.

For causal inference between an exposure and an outcome of interest under a

semiparametric model similar to (2.2), Sun et al. (2023) introduced a system of

moment conditions for identification in a union of causal models where at least γ

of the candidate IVs are valid but their identities are unknown. They then pro-

posed a class of G-estimators (Robins et al., 1992) and developed semiparametric

efficiency theory. To extend this idea to our causal graph setting, we first give the
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following definition. Let d(XcaG(j)) denote a generic one-dimensional function of

XcaG(j) with mean zero and finite variance, i.e., d(XcaG(j)) ∈ H(XcaG(j)).

Definition 3. For each primary variable Yj and an index set αj ⊆ caG(j) with

|αj| ≥ γ, define the subspace

D(αj) =
{
d(XcaG(j)) ∈ H(XcaG(j)) : E{d(XcaG(j)) | XcaG(j)\αj

} = 0
}
.

Further, define the intersection of all possible D(αj) by

Zγ(j) =
⋂

αj⊆caG(j),|αj |≥γ

D(αj).

In particular, since Π`∈caG(j){X` − E(X`)} belongs to Zγ(j) under Assump-

tions 1 and 3, Zγ(j) is non-empty. For discrete XcaG(j), the space H(XcaG(j)) can

be spanned by a finite number of orthogonal functions. Since Zγ(j) ⊆ H(XcaG(j)),

we can stack all basis functions of Zγ(j) into a vector denoted by Zγ(XcaG(j)). For

example, consider the case where there is only one binary variable X` that is both

the candidate and valid IV for Yj, i.e., suppose that γ = 1, caG(j) = ivG(j) = {`},

and X` ∈ {0, 1}. Since X` is binary, H(X`) = span({X` − E(X`)}). Thus, by

Definition 3, Zγ(XcaG(j)) is exactly the centered valid instrument X` −E(X`) for

Yj. Cases with multiple IVs are illustrated in Example ?? of the Supplementary

Material. For continuous XcaG(j), however, Zγ(j) becomes an infinite-dimensional

Hilbert space. This difficulty arises even in the simplest scenario with one candi-

date IV X` for Yj, where Zγ(j) =
{
d(X`) ∈ H(X`) : E

(
d(X`)

)
= 0

}
remains
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infinite-dimensional. To address this issue, we follow the general strategy in

Newey (1993) and Tchetgen Tchetgen et al. (2010) by selecting a basis set of

functions {φs(XcaG(j))}∞s=1 that are dense in Zγ(j), such as tensor products of

trigonometric, wavelet, or polynomial bases. We can then construct Zγ(XcaG(j))

from a finite subset of these basis functions.

Below we briefly explain how Zγ(XcaG(j)) can serve as surrogate IVs for iden-

tification. Consider the simple case where meG(k, j) = ∅, meaning that the total

causal effect of Yk on Yj is the direct effect β∗kj. The causal relationships among

the relevant variables for this case are illustrated in Figure 2, with dashed lines

indicating that the relationships may exist. When Assumption 1 holds, it is easy

to see that YnmG(k,j) ⊥⊥ XcaG(k) and XinG(j) ⊥⊥ XcaG(k) | XcaG(k)\ivG(k). Then, for

any d(XcaG(k)) ∈ D(ivG(k)), we have

E{d(XcaG(k))(Yj − β∗kjYk)} = 0. (3.3)

See (??) in the Supplementary Material for the full derivation of (3.3). Notably,

the nonparametric term gj(XinG(j)) in the PLM model (2.2) is not contained in

(3.3). The proposed approach differs from conventional PLM methods such as

smoothing spline regression (Härdle et al., 2000), which approximate nonparamet-

ric terms via linear basis expansions. By leveraging the orthogonality between

gj(XinG(j)) and D(ivG(k)), the moment condition (3.3) is derived without approx-
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U YnmG(k,j)

XivG(k) Yk Yj XinG(j)

XcaG(k)\ivG(k)

Figure 2: Causal relationships in the case where meG(k, j) = ∅.

imating gj(·), thereby preventing the approximation errors. Although ivG(k) is

unknown, there must exist a subset αk ⊆ caG(k) as described in Definition 3 such

that αk = ivG(k). By the definition of Zγ(k), we have Zγ(k) ⊆ D(ivG(k)). Conse-

quently, all random variables in Zγ(k) must satisfy the moment condition (3.3), or

equivalently E{Zγ(XcaG(k))(Yj − β∗kjYk)} = 0 for the basis functions Zγ(XcaG(k))

of Zγ(k). In other words, we can construct surrogate IVs Zγ(XcaG(k)) based on

XcaG(k) without the need to know the valid IVs.

The above discussion relies primarily on Assumption 1. Violations of this as-

sumption may break the orthogonality between the nonparametric term gj(XinG(j))

and the subspace D(ivG(k)), which can render the surrogate IVs invalid. A con-

crete example illustrating this scenario is provided in Example ?? of the Supple-

mentary Material.

Assumption 4. For each primary variable Yk with descendants,

‖E{Zγ(XcaG(k))Yk}‖0 > 0.
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Since E{Zγ(XcaG(k))} = 0 by Definition 3, Assumption 4 stems from the

necessity for the surrogate IVs Zγ(XcaG(k)) to satisfy the relevance assumption.

Additionally, because Zγ(XcaG(k)) characterizes the function space Zγ(k), As-

sumption 4 entails the existence of a random variable in Zγ(k) that is correlated

with Yk. This requirement is not stringent, in view of the fact that all the candi-

date IVs of Yk are correlated with Yk. Moreover, as γ increases, this assumption

becomes milder. As an illustration, consider the case where all candidate IVs take

values 0 or 1. If we believe that m = | caG(k)| candidate IVs of Yk are all valid,

then there are 2m − 1 basis functions in Zγ(XcaG(k)), and Assumption 4 requires

at least one of these basis functions to be correlated with Yk. We are now ready

to state our main identification result.

Theorem 1. Suppose that Assumptions 1–4 hold. For the causal graph G =

(X,Y; E , I), the edge set E and the causal parameters {β∗ij}i∈paG(j) in model (2.2)

are identifiable.

The proof of Theorem 1 exploits a two-stage identification strategy. We begin

by identifying the ARG to roughly capture the causal directions among Y and

obtain candidate IV sets. Specifically, Assumptions 1 and 2 imply that only valid

IVs for leaf nodes depend exclusively on one primary variable while remaining

independent of all others. This property enables the identification of leaf nodes

and their IVs in G. Removing these nodes yields a subgraph whose leaf nodes
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and the corresponding IVs remain identifiable via the same approach. Iteratively

repeating this process enables the recovery of the entire ARG along with the

candidate IV sets. Building on these results, we proceed to construct surrogate

IVs to identify the causal effects and graph. Since the causal effect βkj can be

nonzero only when (k, j) ∈ E+, it suffices to identify β∗ := (β∗kj)(k,j)∈E+ . By

extending the aforementioned surrogate IV framework to the entire graph, we

establish that under Assumptions 1–4, β∗ can be identified as the unique solution

to

E{M(β∗)} = 0, (3.4)

where M(β∗) is the concatenation of all Mkj(β
∗) for (k, j) ∈ E+ and

Mkj(β
∗) = Zγ(XcaG(k))

(
Yj −

∑
i∈meG(k,j)

β∗ijYi − β∗kjYk

)
.

The detailed proof is given in Section ?? of the Supplementary Material.

4. Methodology and theory

In this section, we introduce PLACID, a finite-sample method for estimating

the causal graph and causal effects in model (2.2). The method consists of an

algorithm for estimating the ARG and candidate IV sets (Section 4.1) and a

procedure for inferring the causal effects and directions (Section 4.2). Theoretical

guarantees are provided in Section 4.3.
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4.1 Estimation of the ARG and candidate IV sets

To estimate the ARG, it is essential to establish the dependence between X and Y

based on finite samples, which can be achieved using distance correlation (Székely

et al., 2007). The distance correlation (DC) measures the dependence between two

random vectors using the distance between their characteristic functions. Unlike

Pearson’s correlation coefficient, the DC is zero only if the random vectors are

independent. Moreover, in the bivariate normal case, it is strictly increasing with

the absolute value of Pearson’s correlation coefficient. The notion of DC has been

effectively used in feature screening (Li et al., 2012) and causal discovery from

time series (Runge et al., 2019). Here we employ the empirical DC to test and

measure the dependence of any pair Xi and Yj. Calculation details and a full

description of DC are provided in Section ?? of the Supplementary Material.

Algorithm 1 implements the identification strategy developed earlier in a

finite-sample setting. Under Assumptions 1 and 2, each leaf node admits valid

IVs that depend exclusively on that node and are independent of all others. This

property allows us to iteratively identify and remove leaf nodes, along with recov-

ering their relationships to the primary variables removed in earlier steps, thereby

reconstructing the ARG. Algorithm 1 operationalizes this logic by using the em-

pirical DC to estimate the dependence structure between X and Y, as described

by the iterative steps in lines 4–14. At each iteration, it selects a secondary vari-
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Algorithm 1 DC-based estimation of the ARG and candidate IV sets

Input: Data (Xn×q,Yn×p), significance level α > 0
Output: Estimates of E+, I+, and candidate IV sets
1: Compute the empirical DC matrix C = (Rn(Xi, Yj))q×p via (??) in the Sup-

plementary Material
2: Compute the rejection matrix R = (Rij)q×p via (??) in the Supplementary

Material
3: Initialize Ê+ ← ∅, Î+ ← {(i, j) : Rij 6= 0}, Y ← {1, . . . , p}, X ← {1, . . . , q},

Y− ← Y, X− ← X, E− ← Ê+, I− ← Î+, R− ← R
4: while Y− 6= ∅ do
5: Initialize leaf(G−)← ∅, ivG−(j)← ∅ for all j ∈ Y−

6: for ` ∈ arg minj:‖R−j,·‖0>0 ‖R
−
j,·‖0 do

7: k ← arg maxj:j∈Y− C`j
8: leaf(G−)← leaf(G−) ∪ {k}
9: ivG−(k)← ivG−(k) ∪ {`}

10: end for
11: Ê+ ← Ê+

⋃
{(k, j) : k ∈ leaf(G−), j ∈ Y \ Y−, R`j 6= 0 for all ` ∈

ivG−(k)}
12: Y− ← Y− \ leaf(G−), X− ← X− \

⋃
k∈leaf(G−) ivG−(k)

13: Update R− by keeping the rows in X− and columns in Y−

14: end while
15: Ê+ ← {(k, j) : Yk → · · · → Yj in Ê+}
16: Î+ ← {(`, j) : (`, k) ∈ Î+ and (k, j) ∈ Ê+}
17: ĉaG(k) ← {` : (`, k) ∈ Î+ and (`, j) ∈ Î+, k 6= j only if (k, j) ∈ Ê+} for

k = 1, . . . , p
18: Return: Ê+, Î+, {ĉaG(k)}pk=1

able that empirically depends on the fewest variables in Y− as an IV for the

working subgraph G− (line 6), and then chooses the variable in Y− that is most

strongly correlated with this secondary variable as a leaf node to remove (line 7).

The estimated dependence structure is subsequently used to recover the relation-

ships between Yleaf(G−) and Y \Y− (line 11). A rigorous theoretical foundation
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for these steps is established in Propositions ?? and ?? of the Supplementary

Material. By updating the subgraph G− and repeating the iterative process, the

algorithm ultimately reconstructs the ARG and all candidate IV sets.

4.2 Estimation of causal effects

The estimated ARG obtained from Algorithm 1 provides an initial understanding

of the causal structures among the variables in Y. We now show how to estimate

the causal effects and hence recover the edges Ê using the candidate IV sets.

On the basis of the moment condition (3.4), we propose to estimate β∗ using

the generalized method of moments (GMM) (Hansen, 1982). The first step is to

construct estimates of the unknown functions Zγ(XcaG(k)) in M(β∗). This can

be done in different ways according to the types of candidate IVs. In the case

where all variables in XcaG(k) take values in {0, 1}, we follow the idea of Sun

et al. (2023) to construct Zγ(XcaG(k)). Let α(1), . . . , α(tk) be an enumeration of

all subsets α ⊆ caG(k) of cardinality |α| ≥ | caG(k)| − γ+ 1. Clearly, for any such

α and any subset αk ⊆ caG(k) with |αk| ≥ γ, we have α ∩ αk 6= ∅. This implies

that E{Πs∈α(Xs − αs) | XcaG(k)\αk
} = 0, where µs = E(Xs), and hence

Zγ(XcaG(k)) =
(
Πs∈α(1)(Xs − µs), . . . ,Πs∈α(tk)(Xs − µs)

)T
.

A specific example is given in Example ?? of the Supplementary Material. To

estimate Zγ(XcaG(k)), one simply substitutes the empirical means Ên(Xs) for µs
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in the above expression. If XcaG(k) includes polytomous variables, we break them

into dummy variables and compute Zγ(XcaG(k)) similarly. For the continuous

case, we use the strategy discussed after Definition 3 to obtain Zγ(XcaG(k)).

Algorithm 2 GMM estimation of β∗ and E
Input: Data (Xn×q,Yn×p), ancestral edge set Ê+, candidate IV sets {ĉaG(k)}pk=1,

weighting matrix Ω, FDR level q∗ > 0
Output: Estimates of β∗ and E
1: N ← |Ê+|
2: For each Yk with descendants in Ê+, obtain an empirical expression

Ẑγ(XĉaG(k)) of Zγ(XcaG(k))

3: For each (k, j) ∈ Ê+, m̂eG(k, j)← {i : (k, i) ∈ Ê+, (i, j) ∈ Ê+}
4: For each (k, j) ∈ Ê+ and β = (βkj) ∈ RN , obtain an empirical expression of

Mkj(β): M̂kj(β)← Ẑγ(XĉaG(k))(Yj −
∑

i∈m̂eG(k,j) βijYi − βkjYk)
5: Concatenate M̂kj(β) into M̂(β) and solve the following problem:

β̂ ← arg min
β
Ên{M̂(β)}TΩÊn{M̂(β)} (4.5)

6: Obtain the standard errors σ̂kj of β̂kj for all (k, j) ∈ E+ by Theorem 3

7: Calculate the p-values Pkj ← 2{1− Φ(|β̂kj|/σ̂kj)} for all (k, j) ∈ E+
8: Order the p-values as P(1) ≤ · · · ≤ P(N) with P(i) corresponding to (ki, ji) ∈
E+

9: `← max{i : P(i) ≤ iq∗/(N
∑N

j=1 j
−1)}

10: Ê ← {(ki, ji)}`i=1

11: Return: β̂, Ê

After obtaining estimates of Zγ(XcaG(k)), we proceed with the GMM esti-

mation of β∗ and recovery of E , as summarized in Algorithm 2. Note that the

weighting matrix Ω in (4.5) may affect the asymptotic variance of the GMM esti-

mator. In practice, Ω can be either specified as the identity matrix or computed

from the data as suggested by Hansen (1982). In the next subsection, we derive
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the asymptotic normality of β̂ (Theorem 3). The result is used in Algorithm 2 to

test whether the individual entries of β∗ are zero, thereby allowing us to recover

the edges in E . To adjust for multiple comparisons, we apply the Benjamini–

Yekutieli method (Benjamini and Yekutieli, 2001) in Algorithm 2 to control the

false discovery rate (FDR) at level q∗; see Theorem 4.

4.3 Theoretical guarantees

In this subsection, we provide theoretical guarantees for our PLACID method

in terms of causal discovery and inference. We begin with the following result,

showing that Algorithm 1 consistently learns the ARG and candidate IV sets.

Theorem 2 (Consistency of ancestral structure recovery). Suppose that Assump-

tions 1–3 hold and α = O(n−2) in Algorithm 1. Then the estimated ARG Ĝ+ and

candidate IV sets {ĉaG(k)}pk=1 from Algorithm 1 satisfy

lim
n→∞

P (Ĝ+ = G+) = 1 and lim
n→∞

P{ĉaG(k) = caG(k)} = 1, k = 1, . . . , p.

Theorem 2 relies on the fact that Algorithm 1 with our choice of α can asymp-

totically detect any dependence between X and Y as n → ∞. This property is

a consequence of the asymptotic results for DC-based tests (Székely et al., 2007),

which are summarized in Section ?? of the Supplementary Material. The signif-

icance level α is a hyperparameter similar to that in the PC algorithm (Spirtes

et al., 2001). As suggested by Spirtes et al. (2001), we choose α = O(n−2) decay-
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ing with n to ensure the convergence to the correct decision with probability one.

Assuming consistency of the estimates from Algorithm 1, we have the following

result concerning the inference of causal effects and directions by Algorithm 2.

Theorem 3 (Asymptotic normality of β̂). Suppose that Assumptions 1–4 hold.

Then the estimated causal effects β̂ from Algorithm 2 satisfy

√
n(β̂ − β∗)

d−→ N(0,V),

where the asymptotic variance

V = (0q×q, I|E+|)(G
TWΩG)−1GTWΩFWΩG(GTWΩG)−1(0q×q, I|E+|)

T ,

and the specific forms of WΩ, G, and F are given in Section ?? of the Supple-

mentary Material.

Theorem 3 accounts for the uncertainty due to the unknown mean µ = E(X)

in the construction of surrogate IVs. To this end, we augment the estimating

equations for β∗ with those for µ. The asymptotic variance of β̂ is then the

corresponding submatrix of the usual sandwich estimator for the full asymp-

totic variance. Additionally, although (2.2) contains nonparametric terms, our

estimates still achieve
√
n-consistency. This is not surprising because our surro-

gate IVs are constructed without approximating the nonparametric terms, thus

eliminating the approximation errors inherent in conventional PLM methods. In

fact, our estimator is directly derived from the estimating equation (4.5), which
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contains only parametric components. As a result,
√
n-consistency follows from

standard GMM theory.

For an estimated edge set Ê , let TP, RE, and FP denote the numbers of

estimated edges with correct directions, those with reverse directions, and those

not in the true DAG, respectively. Define the false discovery proportion of Ê

by FDP(Ê) = (RE + FP)/(TP + RE + FP), and the false discovery rate of Ê by

FDR(Ê) = E{FDP(Ê)}. The following result ensures that Algorithm 2 controls

the FDR in edge recovery at the nominal level.

Theorem 4 (FDR control in edge recovery). Suppose that Assumptions 1–4 hold

and E 6= ∅. Then for any q∗ ∈ (0, 1), the estimated edge set Ê from Algorithm 2

satisfies

lim
n→∞

FDR(Ê) ≤ q∗.

Both Theorems 3 and 4 require the consistency of the estimated ARG, which

is guaranteed by Theorem 2. When the consistency fails to hold, one may con-

sider a post-selection inference framework that projects the true data-generating

process onto the selected model (Kuchibhotla et al., 2022; Gradu et al., 2025).

However, inference under this framework must be interpreted with caution, as the

resulting parameters generally lack a causal interpretation (Berk et al., 2013). In

contrast, by leveraging the model selection consistency established in Theorem 2,

PLACID provides valid inferences for large samples, while retaining a clear causal
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interpretation of the parameters.

5. Simulation studies

This section examines the finite-sample performance of our PLACID method. For

causal discovery, we compare our method with GrIVET (Chen et al., 2024), RFCI

(Colombo et al., 2012), and LRpS-GES (Frot et al., 2019). Since the last two are

unable to estimate causal effects, we compare our method only with GrIVET for

parameter estimation, where the effects of X on Y are specified in a linear form.

We consider two types of DAGs with unobserved confounders: random graphs

and hub graphs. Let A ∈ Rp×p denote the adjacency matrix for the DAG. For

random graphs, the upper off-diagonal entries of A are independently sampled

from Bernoulli(1/(2p)), while the other entries are set to 0. For hub graphs, the

entries A1j, j = 2, . . . , p, are set to 1, with the remaining set to 0. For the SEM

in (2.2), we consider both continuous and discrete cases of secondary variables

X. To examine our method for DAGs of different sizes, we fix the sample size

at n = 1000 while varying the dimensions as (p, q) = (10, 25) and (20, 50). More

implementation details are provided in Section ?? of the Supplementary Material.

For causal discovery, RFCI outputs a partial ancestral graph and LRpS-GES

outputs a completed partially DAG, both of which may include undirected edges.

We evaluate both methods favorably by assuming that the correct directions were
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Table 1: Means and standard deviations (in parentheses) of different causal dis-
covery performance metrics for four methods with continuous secondary variables.

Graph p Method FDP TPR SHD JI

Random 10 PLACID 0.02(0.08) 0.92(0.21) 0.30(0.67) 0.90(0.22)
GrIVET 0.57(0.36) 0.49(0.39) 4.06(2.90) 0.27(0.27)
RFCI 0.07(0.24) 0.48(0.39) 1.31(1.29) 0.47(0.39)
LRpS-GES 0.70(0.12) 0.97(0.13) 5.04(0.88) 0.30(0.12)

20 PLACID 0.02(0.07) 0.91(0.15) 0.58(0.98) 0.90(0.16)
GrIVET 0.83(0.15) 0.43(0.26) 16.38(9.70) 0.14(0.11)
RFCI 0.03(0.13) 0.59(0.28) 2.07(1.60) 0.59(0.28)
LRpS-GES 0.70(0.08) 0.99(0.04) 10.55(1.40) 0.30(0.08)

Hub 10 PLACID 0.00(0.00) 1.00(0.00) 0.00(0.00) 1.00(0.00)
GrIVET 0.40(0.36) 0.48(0.38) 7.55(5.51) 0.41(0.36)
RFCI 0.01(0.04) 0.58(0.21) 3.78(1.89) 0.58(0.21)
LRpS-GES 0.39(0.05) 0.83(0.10) 6.30(1.40) 0.55(0.09)

20 PLACID 0.00(0.00) 1.00(0.00) 0.00(0.00) 1.00(0.00)
GrIVET 0.65(0.31) 0.41(0.36) 25.82(13.41) 0.28(0.28)
RFCI 0.07(0.09) 0.45(0.15) 11.04(3.00) 0.44(0.15)
LRpS-GES 0.43(0.04) 0.80(0.08) 15.38(2.14) 0.50(0.06)

obtained for undirected edges, as in Li et al. (2024). Four performance metrics

for causal discovery are used: false discovery proportion (FDP), true positive rate

(TPR), structural Hamming distance (SHD), and Jaccard index (JI). Let TP, RE,

and FP be defined as in Section 4.3, and FN the number of missing edges from the

true DAG. Then FDP = (RE + FP)/(TP + RE + FP), TPR = TP /(TP + FN),

SHD = FP + FN + RE, and JI = TP /(TP + SHD). The results for the continuous

and discrete cases are summarized in Tables 1 and 2, respectively.

Tables 1 and 2 indicate that PLACID performs best in causal discovery across

all scenarios. In particular, it effectively controls the FDP below the nominal level
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Table 2: Means and standard deviations (in parentheses) of different causal dis-
covery performance metrics for four methods with discrete secondary variables.

Graph p Method FDP TPR SHD JI

Random 10 PLACID 0.01(0.04) 0.92(0.07) 0.07(0.30) 0.91(0.08)
GrIVET 0.14(0.24) 0.63(0.35) 1.08(1.15) 0.57(0.34)
RFCI 0.00(0.00) 0.82(0.26) 0.25(0.57) 0.82(0.26)
LRpS-GES 0.62(0.16) 0.92(0.04) 3.39(1.14) 0.38(0.16)

20 PLACID 0.03(0.07) 0.98(0.05) 0.33(0.73) 0.95(0.09)
GrIVET 0.28(0.24) 0.65(0.25) 3.26(2.42) 0.50(0.23)
RFCI 0.00(0.02) 0.94(0.11) 0.34(0.80) 0.94(0.11)
LRpS-GES 0.64(0.12) 0.97(0.06) 7.91(1.86) 0.36(0.12)

Hub 10 PLACID 0.00(0.00) 0.96(0.07) 0.39(0.63) 0.96(0.07)
GrIVET 0.00(0.03) 0.50(0.17) 4.55(1.56) 0.50(0.17)
RFCI 0.00(0.00) 0.44(0.21) 5.06(1.86) 0.44(0.21)
LRpS-GES 0.44(0.05) 0.78(0.05) 7.52(1.11) 0.49(0.05)

20 PLACID 0.00(0.00) 0.97(0.04) 0.54(0.82) 0.97(0.04)
GrIVET 0.01(0.10) 0.49(0.13) 9.92(3.59) 0.49(0.13)
RFCI 0.00(0.00) 0.38(0.13) 11.87(2.48) 0.38(0.13)
LRpS-GES 0.50(0.05) 0.80(0.09) 18.96(3.07) 0.45(0.06)

q∗ = 0.05, while maintaining a TPR higher than 0.9 for powerful edge detection.

As expected, GrIVET struggles with nonlinear relationships between the primary

and secondary variables, whereas RFCI and LRpS-GES are less effective in han-

dling large effects of unobserved confounders. In the continuous case, PLACID

shows remarkable accuracy for hub graphs, likely because the dependence between

X and Y is well captured by the empirical DC in these settings. In the discrete

case, the performance of RFCI is comparable to that of PLACID for random

graphs; however, these metrics are calculated by assuming correct directions for

undirected edges in RFCI, giving it an unfair advantage. Moreover, RFCI tends
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Table 3: Means and standard deviations (in parentheses) of different estimation
losses for two methods with continuous and discrete secondary variables.

Setting Graph p Method L∞ L1 L2

Continuous Random 10 PLACID 0.23(0.38) 0.35(0.67) 0.26(0.46)
GrIVET 0.78(0.39) 1.91(1.45) 1.05(0.62)

20 PLACID 0.37(0.44) 0.68(0.99) 0.45(0.57)
GrIVET 1.07(0.17) 5.03(1.87) 1.84(0.49)

Hub 10 PLACID 0.11(0.03) 0.39(0.06) 0.17(0.03)
GrIVET 0.99(0.29) 7.10(4.03) 2.27(1.00)

20 PLACID 0.09(0.02) 0.63(0.11) 0.17(0.03)
GrIVET 1.14(0.13) 18.81(9.02) 3.82(1.27)

Discrete Random 10 PLACID 0.12(0.21) 0.20(0.45) 0.14(0.28)
GrIVET 0.76(0.38) 1.47(1.08) 0.95(0.55)

20 PLACID 0.21(0.36) 0.40(0.71) 0.26(0.45)
GrIVET 0.98(0.20) 3.26(1.60) 1.56(0.50)

Hub 10 PLACID 0.38(0.35) 0.93(0.57) 0.48(0.37)
GrIVET 1.16(0.03) 9.00(0.34) 3.02(0.11)

20 PLACID 0.36(0.22) 2.31(1.35) 0.95(0.60)
GrIVET 1.18(0.02) 19.99(0.53) 4.50(0.12)

to be less powerful for hub graphs, while PLACID consistently exhibits superior

and stable performance across different graph structures and sizes.

For parameter estimation, we compare our method with GrIVET in terms of

entrywise L∞, L1, and L2 losses, as reported in Table 3. These results demonstrate

the superior performance of PLACID over GrIVET in parameter estimation across

various settings. It is also interesting to note that the performance of PLACID

in causal discovery and parameter estimation exhibits the same trend, as can be

seen from a comparison of Tables 1 and 2 with Table 3. This is reasonable since

a better estimate of the ARG enables more accurate parameter estimation, which
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in turn leads to a more precise recovery of causal structures.

To empirically assess the strength of the surrogate IVs used in PLACID, we

follow Stock et al. (2002) and adopt the first-stage F -statistic from two-stage least

squares. Specifically, for each primary variable Yk and its surrogate IVs, we com-

pute the corresponding first-stage F -statistic and then report the average across

all primary variables. The resulting average first-stage F -statistics are presented

in Table ?? of the Supplementary Material, where all values are well above the

commonly used threshold of 10 (Staiger and Stock, 1997), suggesting that the

surrogate IVs are sufficiently strong across all simulation settings. In Section ??

of the Supplementary Material, we further conduct simulations to more compre-

hensively evaluate the performance of PLACID under different settings, including

varying IV strengths and sample sizes. Section ?? also includes simulations that

empirically examine the roles of Assumptions 1 and 3.

6. Application to ADNI data

Inferring gene regulatory networks is crucial for understanding the pathophysi-

ology of complex diseases and developing effective therapeutics (Barabási et al.,

2011). In this section, we apply our method to the Alzheimer’s Disease Neu-

roimaging Initiative (ADNI) dataset (https://adni.loni.usc.edu) for estimating

gene regulatory networks. We use the preprocessed data from Chen et al. (2024),
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with gene expression levels normalized and adjusted for baseline covariates. By

selecting genes with at least one strongly associated single nucleotide polymor-

phism (SNP) and two strongest SNPs for each gene, the dataset includes p = 21

genes as primary variables and q = 42 SNPs as secondary variables. Participants

were divided into 462 cases with Alzheimer’s disease or mild cognitive impairment

(AD-MCI) and 247 cognitively normal controls (CN). Partial residual plots in Sec-

tion ?? of the Supplementary Material suggest nonlinear relationships between

some primary and secondary variables, and hence model (2.2) is appropriate. We

then apply PLACID to learn the DAGs among the genes for both groups. Chen

et al. (2024) assumed that the candidate IV set for each primary variable satisfies

the majority rule, namely that more than half of the relevant IVs are valid. Here,

we adopt a more conservative choice of γ = 1, which requires only at least one

valid IV per primary variable and is sufficient for PLACID to be applicable. To

assess whether Assumption 4 holds with this choice of γ, we empirically evaluate

the surrogate IV strength. The average first-stage F -statistics for the AD-MCI

and CN groups are 309.96 and 160.06, respectively, both well above the conven-

tional threshold of 10 for weak IVs (Staiger and Stock, 1997), confirming that the

selected surrogate IVs are sufficiently strong.

The estimated DAGs for the AD-MCI and CN groups are displayed in Figure

3, which reveal both common and distinctive features of gene regulatory inter-
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Figure 3: Estimated gene regulatory networks for (a) AD-MCI and (b) CN groups.

actions in the two groups. Compared with the CN group, the AD-MCI group

has substantially more edges originating from LRP1, suggesting a critical role

of LRP1 in the pathogenesis of Alzheimer’s disease. Indeed, it has been known

that LRP1 is a major regulator of amyloid-β and tau, the two hallmark proteins

in Alzheimer’s disease (Bloom, 2014), and contributes to their accumulation and

spread in the brain (Rauch et al., 2020). Among the outgoing edges of LRP1,

the link to APOE is shared by both groups, which is consistent with the previous

finding that LRP1 regulates brain APOE and cholesterol metabolism (Liu et al.,

2007). In fact, APOE has long been established as the strongest genetic risk factor

for late-onset Alzheimer’s disease, and has multifaceted effects on many neurobi-
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ological processes underlying Alzheimer’s disease (Serrano-Pozo et al., 2021). We

further note that APP is connected to different downstream genes between the

two groups. In particular, the AD-MCI group includes paths from APP to APOE,

GSK3B, and APBB1, whereas the first two paths are absent in the CN group.

APP is the precursor to amyloid-β, whose abnormal processing has been found

central to the development of Alzheimer’s disease (O’Brien and Wong, 2011). In-

terestingly, the paths from APP to APOE support the possibility that APOE and

cholesterol levels are modulated, directly or indirectly, by APP (Liu et al., 2007).

7. Discussion

We have proposed a novel method for identifying and inferring DAGs under un-

observed confounding using invalid IVs. Our method may suffer from certain lim-

itations and can be extended in several directions. First, Assumption 1 may be

relaxed to allow dependence among secondary variables. To block paths through

correlated secondary variables, one can apply the notion of conditional distance

correlation (Wang et al., 2015) to test the independence of Xi and Yj conditional

on the other secondary variables. For parameter estimation, one may follow Sun

et al. (2023) and adjust moment conditions with weights accounting for depen-

dence. Second, it would be valuable to extend our setting to nonlinear causal

models with unobserved confounders, as in Agrawal et al. (2023). Finally, it
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would be worthwhile to extend our method to high-dimensional settings where

p or q is large. One possible strategy for such extensions is to first estimate the

ARG via a DC-based feature screening procedure to assess the dependence be-

tween X and Y (Li et al., 2012), followed by a high-dimensional GMM estimator

(Caner, 2009) to recover the causal effects and directions. We leave these topics

for future research.

Supplementary Material

The Supplementary Material includes examples, proofs of the theoretical results,

details on simulation settings, additional simulation studies, and additional anal-

ysis results for the application.
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