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Abstract: This paper addresses the challenge of detecting the change point in the covariance matrix of
a high-dimensional random vector sequence. A novel reweighted CUSUM-type statistic is introduced,
incorporating a data-adaptive parameter selection method to optimize weight determination. Building
on this statistic, we develop a comprehensive framework for change point detection. Additionally,
a hypothesis testing procedure is proposed to assess the existence of the change point based on
our methodology. The study provides rigorous theoretical foundations for the proposed method,
demonstrating the validity of parameter selection and the consistency of change point estimation. The
effectiveness of the method is substantiated through extensive simulation studies and real-world data

analysis, confirming its practical applicability and statistical reliability.
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1. Introduction

The change point problem is a prominent topic in statistics, originating in the domain of
quality inspection and control, with its modeling and analysis pioneered by [Page (1954).
Nowadays, the change point problem extends far beyond its initial applications in industrial
quality control and has been studied across various branches of science and engineering. It
encompasses numerous application scenarios, including climate monitoring (Fischer et al.|
2012)), econometrics and finance (Lai and Xing, [2013), and biomedical time series (Lee et al.,
2012), among others. In general, the study of change points involves detecting structural
breaks in a sequence of observed data, where the locations of these breaks are termed change
points.

Over recent decades, the change point problem has expanded far beyond industrial
quality control to diverse applications in climate, finance, and genomics (Liu et al.| 2022).
The cumulative sum (CUSUM) statistic is a classical and widely used tool for detecting mean
changes. In low-dimensional settings, CUSUM-based methods have been thoroughly investi-
gated and successfully applied (Hawkins| |1977; [Horvath et al |1999)). While high-dimensional
mean change point detection has matured, with established L..-norm paradigms for sparse
signals (Jirakl, 2015, 'Yu and Chen| 2021), Ly-norm approaches for dense signals (Zhang
et al., 2010; |Wang et al., [2022), the double CUSUM method for reducing data to univariate
processes (Cho, 2016), and projection-based techniques (Wang and Samworth, 2018). Beyond
parametric approaches, nonparametric and data-driven methods have also emerged, for
example, see Shu et al.| (2022)) and |Li et al.| (2024). Collectively, these contributions have led

to a mature body of work on mean change point detection in high dimensions.



Subsequent research has broadened the scope of change point analysis to diverse appli-
cations, including structural breaks in factor loadings (Ma and Sul 2018; |Bai et al., 2020)),
regression coefficients in linear models (Lee et al., 2015; |Cui et al., [2024)), and network struc-
tures (Wang et al., 2021a; (Chen et al.; 2024). Among these, detecting changes in covariance
matrices stands out as a particularly challenging and increasingly important problem in
high-dimensional settings, owing to the intrinsic structural properties of covariances, and
forms the primary focus of this paper. Early research on covariance change point detection
focused primarily on fixed-dimensional settings or linear processes. For instance, [Berkes et al.
(2009) studied changes in the mean or covariance structure of linear processes using weighted
CUSUM statistics. In fixed-dimensional settings, |Aue et al.| (2009)) applied CUSUM-based
methods to test for covariance changes in multivariate time series, and [Kao et al| (2018)
further proposed a normalized CUSUM-type statistic for testing the stability of covariance
matrices and related eigensystems.

Recent advances have extended these efforts to high-dimensional regimes. For instance,
Steland| (2020]) proposed maximally selected weighted CUSUM statistics for detecting changes
in high-dimensional linear time series. Wang et al.| (2021b)) addressed the problem of multiple
covariance change points in sequences of high-dimensional sub-Gaussian vectors, employing
binary and wild binary segmentation procedures. A significant advance was made by Dette
et al.| (2022), who built upon the framework of |Aue et al.| (2009) by introducing a two-step
nonparametric procedure that enhances estimation accuracy without imposing normality or
sparsity assumptions. Similarly, |[Kaul et al.|(2023) developed an approach for estimating

a single covariance change point by minimizing an aggregated squared loss. Additional



contributions include the work of [Li and Li (2023]), who investigated online detection in
high-dimensional M-dependent sequences; |Pilliat et al. (2023), who proposed a general
multi-scale bottom-up aggregation framework applicable to both mean and covariance change
point problems; and Dornemann and Dette| (2024)), who introduced a likelihood-ratio-based
min-type statistic for covariance change point detection. Collectively, these contributions
have substantially broadened the toolkit for high-dimensional covariance analysis.

However, a prevalent strategy in existing literature involves simply vectorizing the
covariance matrices and applying vector-based change point methods. This transformation
strategy tends to lose the key structural information of the covariance matrix, resulting
in reduced performance; moreover, it also faces challenges in constructing appropriate
statistics when the change pattern is unknown a priori. Motivated by these challenges
and opportunities, we develop an integrated and fully data-adaptive framework for offline
localization and inference of a single high-dimensional covariance change point. The key
innovation lies in a reweighted CUSUM-type statistic adaptively tuning weights to the
observed data, thereby avoiding naive vectorization and fixed-weight constructions.

Our main contributions are as follows. First, we propose a generalized reweighted
statistic for precise change point localization. This statistic exploits a flexible decomposition
that seamlessly accommodates both sparse and dense changes. Second, we develop fully
data-driven procedures for parameter selection, including threshold-based scale tuning and
rank-based sign alignment, that automatically focus statistical power on informative entries.
Building on these advances, we introduce a companion hypothesis testing procedure to assess

the existence of a change point, resulting in a unified framework for both estimation and



inference. Extensive simulation studies and real-data applications demonstrate the superior
performance of our approach across a wide range of change patterns.

The article is structured as follows. Section [2| presents the model and methodology.
Section [3| states the assumptions and main theoretical results. Sections 4| and [5] detail
simulation studies and real data applications, respectively, including testing performance
and comparisons. Section [0] concludes. All proofs are in the supplement.

Notations. For a symmetric matrix H = (Hgp)ap=1....p € RP*P, vech(H) denotes the
half-vectorization, a p(p + 1)/2 vector formed by vectorizing the lower triangular part of
H. We denote by diag(A, B) a block-diagonal matrix composed of matrices A and B
of appropriate dimension. For a vector a € RP, |lalls = vaTa represents the f,-norm of
a. The Hadamard product of vectors a and b is denoted by a o b, while diag(a) denotes
the diagonal matrix with a as its diagonal entries. Additionally, /a = (\/a,. .., \/@)T
represents the element-wise square root of a. For a real number ¢, |¢| denotes its integer
part, and (c¢)2 = ¢(c — 1). The p x p identity matrix is denoted by I,, while 0,,, 0,, and 1,
denote the p X p zero matrix, p-dimensional zero vector, and p-dimensional all-ones vector,

respectively.

2. Methodology

This paper focuses on detecting a single change point in the covariance structure of a
sequence of high-dimensional random vectors, occurring at an unknown time point. We
model the observations as independent p-dimensional random vectors with distinct covariance

matrices before and after the change point. Specifically, let X, ..., Xy, Xgo+1,- .., X, be



2.1 Change point detection

independent p-dimensional random vectors, where the i-th observation follows

I'L+Z1i7 i:17"'7k0
X, =

[J,—I—Zgi, Z':k?[)—l—l,...,n

i.4.d.

with {Z,,}52, "% Zy and {Zo )7y 0 X Zy satisfying EZ, = EZ, = 0,

Var(Zy) = %1 = (L) ERPP, Var(Zy) = £ = (o) € RP*P,

a,b=1,....p a,b=1,....p

and ¥, # 3. Here, ¥, 4 denotes the (a, b)-entry of 3, for v = 1,2. The unknown location
ko is the true change point in the covariance matrices. Our primary objective is to estimate
ko in high-dimensional settings. In the asymptotic analysis, we assume ko = [ron] for some
fixed ry € (0, 1), where |-] is the floor function. In the following, we propose a data-adaptive

methodology for detecting the covariance change point ky based on the observed data.

2.1 Change point detection

Building on the model introduced above, we now describe our data-adaptive methodology for
detecting the covariance change point ky. To isolate the covariance structure, we center the
observations using the global sample mean Xi =X, - X , where X = % * 1 X,. For each
observation, define the vectorized centered second-moment estimator ;) = vech(X;X,"),
where vech(X;X,") denotes the half-vectorization that stacks the lower triangular elements
(including the diagonal) of a symmetric matrix into a vector of length p(p + 1)/2. The
indexing mapping h = (b — 1)(p — b/2) + a establishes a bijection between pairs (a,b) with

1<b<a<pandindicesh=1,...,p(p+1)/2.



2.1 Change point detection

To estimate the change point kg, we propose the reweighted CUSUM-type statistic

Tw (k) = WZZ ' > (66 —60) W(ow—6ou). (2.1)

where (k)y = k(k—1). The weight matrix W € RP(PHD/2xp(p+1)/2 356i0mg different importance
to individual covariance entries. The exclusion of diagonal terms (i = ¢t and j = [) in the
summation removes the bias introduced by the squared noise terms, ensuring that the
statistic centers on the signal difference. Intuitively, placing larger weights on entries where
the pre- and post-change covariances 3; and 3, differ most substantially increases detection
sensitivity. In what follows, we develop a data-adaptive procedure for selecting W to optimize
performance. This enables Ty (k) to effectively capture structural changes, allowing for
precise identification of the change point in the covariance matrices.

The effectiveness of Ty (k) hinges on the choice of W. In high-dimensional settings, a
common modeling strategy represents structured matrices as the sum of a low-rank component
and a diagonal component (Johnstone, 2001} Cai et al., 2015 Wu et al., 2020)). Following

this idea, we parameterize

p(p+1) , p(p+1)
2

W = <W1/2>TW1/2 =T+ 55T cER =2 Xij

where I' = diag(7y) is a nonnegative diagonal matrix with entries v = (73),., - pe+1 and
=7

1<h
0= ((5h)1 <pep@ty) 1S @ @—dimensional vector. This decomposition allows the statistic to
=N=""

be expressed as the sum of two interpretable components:

Tw (k) =Ti(k) + Ta(k) =

i (k)2(n—_k)222 anzn: {51—(&(1) - d'(j))} {5T (d'(t) — d’(z))}.

(2.2)



2.1 Change point detection

We observe that the statistic 73 (k) is a diagonally weighted CUSUM statistic commonly used
in change point analysis (Aue et al.| [2009)), and the statistic T5(k) resembles a burden-type
statistic frequently employed in sparse settings (Lee et al., [2014).

The statistic Tw (k) quantifies the weighted discrepancy between the empirical covariance
structures of the observations before and after the candidate location k. The change point
estimation problem thus reduces to finding the position k& that maximizes this discrepancy.
With the true change point at kg = [ron| for some fixed ¢ € (0, 1), we define the estimator
as

ko = argmax Ty (k). (2.3)

cin<k<can

The boundary trimming constants ¢; and ¢y are fixed prespecified values satisfying 0 < ¢; <
co < 1, chosen to ensure sufficient observations in both pre- and post-candidate segments
(in our simulations and real data analysis, we set ¢; = 0.1 and ¢ = 0.9). As established in
Theorem 1, under suitable regularity conditions and appropriate parameter choices, ko is

consistent for ky as the sample size n and dimension p tend to infinity.

Remark 1. The statistic Ty (k) shares conceptual similarities with those proposed by [Shu
et al. (2022)) and |Jiang et al.| (2024), which use random integration for two-sample mean
testing and mean change point detection, respectively. Prior works suggest various fixed
choices for § and I" when constructing the weight matrix W for Ty (k) (e.g., § =0 with I" a
positive definite diagonal matrix), but they do not provide explicit data-adaptive selection
procedures. In the next section, we introduce such a scheme and establish its theoretical

properties.

Remark 2. Boundary trimming is a standard practice in the change point literature to



2.2 Data-adaptive weight selection

ensure adequate sample sizes on both sides of each candidate location, thereby mitigating
edge effects and potential boundary bias. Choosing (c1, ¢o) entails trading off maximal data
utilization against robustness near the sample endpoints. For example, |Wang and Feng| (2023)
set (c1,c2) = (0.2,0.8). In a related high-dimensional setting, Dornemann and Dette| (2024)
employs a symmetric search region with co = 1 —¢;, recommending ¢; > max{p/n+0.05,0.2}
for hypothesis testing to ensure stable finite-sample behavior, while choosing ¢; closer to the
critical boundary p/n when the primary goal is change point localization. We adopt the
setting (¢1,¢2) = (0.1,0.9), a design that imposes no additional constraints on n and p and

preserves more observations while effectively controlling boundary interference.

2.2 Data-adaptive weight selection

The performance of the statistic Ty (k) in depends critically on the choice of parameters
I’ and 8. Appropriate selection of these weights enhances detection power by emphasizing
informative covariance entries while suppressing noise and weak signals.

Since ¥y # X, there exist entries where X 4, 7# X3 4. To formalize this, define the
index sets for the lower triangular elements (including the diagonal): N = {(a, b) : 1<
b<a<p; X1 = E2,ab} as the positions with no change, and G = {(a,b) 1<b<a<

D Liab F# 22@1)}7 as those with a change. Additionally, let

P={(ab):1<b<a<p [Sim—Som

= ey/7/n}

denote the subset of G where the change magnitude exceeds c¢y/7/n for some constant ¢ > 0,
with 7 a threshold that separates detectable signals from noise (specified in Section m,

for context, thresholds of order y/(logp)/n are common in high-dimensional covariance



2.2 Data-adaptive weight selection

estimation, as discussed in Bickel and Levina; (2008)). Here, 7 depends on the sample size n
and dimension p, as the signal magnitude varies with both.

Focusing on entries in P is advantageous for two reasons. First, positions in A/ contribute
no signal and only increase effective dimensionality, reducing power and raising computational
burden. Second, changes in G but not in P are too weak to be reliably distinguished from
sampling variability, potentially degrading detection. Even within P, signal strengths vary,
so differential weighting can further improve performance by prioritizing greater changes. To

measure entry-wise change magnitudes, we introduce the statistic

. 1 5 (2.4)
=2 200000t T, L 200000 ~ v 2 2 50 ° 00,

2 i<k 2 ik k:(n - k‘) i<k j>k
This is a simplified version of a related quantity oy discussed in Remark [3| omitting higher-

order terms to reduce estimation bias.

Remark 3. The statistic v is deliberately constructed by excluding the diagonal terms
(i.e., cases where ¢ = j) from a natural alternative formulation, thereby avoiding bias arising

from higher-order moment contributions. To illustrate this choice, consider the alternative

statistic
& 1 & (I L
By = (Z%) - > %’)) o (Z"@ - 2 U“’)
k= n—k, 5% ki= n—Fk .53
1 Zk: e i . 2 Zk: Z”: o
== O@H oo+ — oo — O (i) O O (i)
K2 = () ©I3) (n — k)2 it @ = Z0) k(n — k) 21 ok ©=70)

This v;, represents the element-wise squared difference between the pre-k and post-k sample
second-moment estimators. However, the inclusion of ¢ = j terms renders vy a biased

estimator of a quantity proportional to (31 a4 — 227(117)2, with the bias originating from the



2.2 Data-adaptive weight selection

variance of these diagonal terms. By omitting the ¢ = j contributions, v, eliminates this

higher-order bias. Furthermore, the expectation of vy, is

(1 - 2)2(21@1) - ZQ,ab)27 k= k}o7

n

Evk7h - ((kko)); (1 - %>2<El,ab - Z32,ab)27 k> kOv

((ZL_—]ZO)); (1 - %)Q(El,ab - E2,(11))27 k< k?().

Thus, for any fixed k # kg, larger absolute differences |2 ;5 — X9 4| yield larger expected

values of vy j.

Since the true kg is unknown, we aggregate over candidate locations k:

2 kn — k
= () = 5 5 D =

The weights k(n — k)/n are introduced to mitigate the effect of large variances near the

boundaries, thereby enhancing the robustness of the statistic.

2.2.1 Selection of T' and §

Each entry dj of d provides an aggregated estimate of the squared change magnitude in
the corresponding covariance element. Larger values of dj; thus indicate stronger differences
between ¥, 4, and Xy 4. The vector d therefore captures essential information about the
magnitude of entry-wise changes between the pre- and post-change covariances. Under
sufficient signal strength in the set G, a suitably chosen threshold 7 can distinguish the
strongly changed entries in P (as formalized in Section . This thresholding strategy for

dimensionality reduction aligns with ideas in Dette et al.| (2022]).



2.2 Data-adaptive weight selection

We accordingly define the weights as

\/d_h]l(dh >7')
IVdol(d > )|l

I' = diag(vy), v =1I(d,>7) and 4, = s - (2.6)

where sy, is the sign of the estimated change in the h-th entry (detailed below). Note that the
threshold 7 is chosen to be positive (as described in Section [2.2.3), ensuring the validity of the
square root operation. The diagonal form of I' is standard for capturing dense changes across
many entries. For §, the element-wise magnitudes of vech(3; — ¥,) are naturally estimated
by v/d (inspired by Wang and Samworth! (2018)). Normalization ensures ||8]| = 1, rendering
Tw (k) scale-invariant and preventing one component from dominating the other. Covariance
changes may increase or decrease individual entries, leading to positive or negative differences
1,ab — 2a,qp across positions. Ignoring signs when constructing & risks cancellation in terms
like 6" (6(;) — ;). The factor s;, therefore aligns ¢, with the dominant directional trend of

the change, as determined by the rank-based procedure described next.

2.2.2 Rank-based sign selection

To capture the directional trend of covariance changes, i.e., whether individual entries
increase or decrease after the change point, while enhancing practical robustness to outliers,

we propose a rank-based statistic. For each entry h =1,...,p(p + 1)/2, define

shfz ( ZRank - Z Rank(& z)h)

i=k+1
where Rank(¢;) ;) assigns ranks to the values {G (1), ..., 0@} separately for each h: the
smallest value receives rank 1, the next rank 2, and the largest rank n. In the rare event of

ties, we assign the average rank to all tied values, following standard statistical practice. The



2.2 Data-adaptive weight selection

weights \/k(n — k)/n stabilize contributions from candidates k near the boundaries, where

fewer observations increase variability.

The final sign vector is s = <3h)1§h§@7 where
1 it s >0
sp=sgn(sy) =< 0 it s =0 -
-1, ifs; <0

This rank-based approach focuses on relative ordering rather than absolute magnitudes,
making sign estimation less sensitive to outliers or extreme observations. By applying signs
only to entries that receive non-zero weights (those in the strongly changed set P), the
procedure further mitigates noise from weak or negligible changes. Overall, this strategy
reduces effective dimensionality, improves estimation accuracy, and enhances computational

efficiency.

2.2.3 Threshold selection

To determine a data-driven threshold 7 in that effectively separates unchanged entries
(NV) from those with substantial changes (P), we employ a nonparametric bootstrap procedure.
The threshold is chosen based on the distribution of the statistic d in under a null-like
scenario where no systematic covariance change is present. For an entry h corresponding
to a position in A, the expected value of v, (and thus dj,) is small across candidates k,
reflecting only random variation.

We generate bootstrap resamples by sampling the centered observations X; = X; — X

(for i = 1,...,n) with replacement. Let X (@) = (Xl(q), ..., X\9) denote the g-th resample,



2.3 Existence of the change point

for ¢ =1,...,Q where @ is sufficiently large (e.g., @ = 500 in our implementations). This
resampling destroys the original change point structure, producing a “mixed” sample akin to
the null hypothesis of no change. Under thorough mixing, the pre- and post-k segments for
any candidate k exhibit no systematic covariance difference, resulting in small values of d;lq)
across all entries h.

The procedure is as follows:

1. For each resample ¢, compute the bootstrap analogs v,iq) and d9 using the definitions

in Egs. (2.4) and (£2.5)).

2. Set 79 = max;, d;lq), the maximum entry in the ¢-th bootstrap d.
3. Define the threshold as 7 = min,—; ¢ 7@,

This conservative choice (the minimum over bootstrap maxima) ensures that 7 captures the
upper tail of the null-like distribution of maxy, d,, providing a data-driven cutoff to identify
strongly changed entries.

2.3 Existence of the change point

In addition to estimating the covariance change point location, it is often of interest to test

whether a covariance change is present at all:
Hy : no change point vs. H; : a change point exists.

This hypothesis testing problem has been widely studied (e.g., Aue and Horvéth| (2013); Kao

et al.| (2018)).



2.3 Existence of the change point

Recall that the weight construction in (2.6) retains only entries of d exceeding the
threshold 7, setting the others to zero. Let m denote the number of non-zero elements in
the resulting vector 8. Under Hy (no change), all true entry-wise differences are zero, so
m = 0 is expected. Under H;, at least some differences are non-zero, leading to m > 0 with
high probability when the signal is sufficiently strong. A natural test therefore rejects Hy if
m > 0. The threshold 7 = ming,—; ¢ 7@ from Section m (the minimum over bootstrap
maxima) tends to be conservative, often yielding excessively small values that may fail to
detect moderate changes. To achieve a better size-power balance, we adjust the threshold to
the a-level quantile of the bootstrap maxima.

Specifically, for a nominal level o (e.g., a = 0.05), sort the bootstrap maxima {7, ... (@1

in increasing order and set 7, = 7(?, where ¢ satisfies

#{i: @ > T(q)} = |la-Q].

The value of 7, is used to calculate m in the testing procedure. Under Hy, the resampling-
induced mixing ensures that the bootstrap maxima approximate the null distribution of
maxy, dy,, SO T, controls the probability of falsely identifying non-zero entries (yielding empirical
size close to ). Under Hj, the systematic change in the original data produces larger values

of dj, for changed entries, exceeding 7, and leading to m > 0.

Remark 4. Methods such as Yu and Chen| (2021) and Zhou et al.| (2025) employ Gaussian
multiplier bootstraps to approximate the null distribution of their test statistics and calibrate
critical values, ensuring asymptotic size control. In contrast, our nonparametric resampling
bootstrap serves dual purposes: (i) identifying informative covariance entries for data-

adaptive weighting (Section [2.2.3)), and (ii) providing an empirical quantile-based threshold



for testing (this section). Although not a formal multiplier calibration, extensive simulations
show excellent empirical size control (typically at or below the nominal «) alongside high
power. Note that we employ a ‘min-max’ criterion for weight selection to include potentially
informative signals, whereas a stricter quantile-based threshold is used in Section for

formal hypothesis testing to control the type I error rate.

3. Asymptotic Properties

To analyze the theoretical properties of our proposed approach, we first outline the necessary
assumptions regarding the distribution of the random vectors X; and the structure of the
covariance matrices. These assumptions are critical to ensure the validity and consistency of

our method.

Assumption 1. (a) Sub-Gaussianity and Bounded Covariance: Let X; = (X1, ..., Xip) i =
1,...,n. Forany 1 < j <p, X;; is a sub-Gaussian random variable, meaning there exist

positive constants Cy,Cy (independent of indices i and j) such that, for anyt > 0,
P(|XZ]’ > t) < 0167021%2.

Additionally, the covariance matrices before and after the change point satisfy max ’Zmb <
p

1<a,b

M,v =1,2 for some positive constant M.
(b) Magnitude of Covariance Matriz Difference: The smallest nonzero element of the

matriz Xy — 2o satisfies |X1.ap — Xoan| > cy/T/n for some positive constant c.

Assumption [Ia) imposes sub-Gaussian tails, which is crucial for deriving concentration
inequalities and ensuring stability in high-dimensional settings. It is standard in high-

dimensional statistics to guarantee finite-sample performance, as seen in works like Vershynin



(2018)). This condition also bounds individual covariance entries, stabilizing the estimation
process. Assumption (b) imposes a minimal signal strength on the difference between 3
and 3, ensuring that the change in covariance structure is sufficiently pronounced to be
detectable in high-dimensional settings, thus enabling reliable identification of the change

point. Under these assumptions, we establish the following Proposition |1l and Theorem

Proposition 1. (a) No Covariance Change: For any position (a,b) where 31 g = 2o qp, the

following conclusion holds under Assumption (a):
]P{dh > 7'} < Cln[e—CQ\ﬁ =+ e—%ﬁ + e—c;mﬁ}’

where c;(i = 1,...,4) are positive constants. In particular, if p*n = o(e®VT) for some constant
c, then

p*-P{d, > 7} — 0. (3.7)

> c\/T/n for

(b) Significant Covariance Change: For any position (a,b) where ‘Emb — Xoab

some constant c, the following holds under Assumption (a):
P{dh < 7'} < cln[e_C” +e7BVIT L pemeaVT 4 ne_%”‘ﬁ],

where ¢;(i = 1,...,5) are positive constants. In particular, if p>n* = o(eVT) for some
constant c, then

P2 P{d, <7} — 0. (3.8)

Proposition [If(a) implies that, when the true covariances are equal at position (a,b), the
probability that dj, exceeds the threshold is negligible. Consequently, such entries contribute

little to the aggregated statistic Ty, thereby reducing the influence of random fluctuations. In



contrast, Proposition [Ifb) shows that, when a genuine covariance difference exists at position
(a,b), the probability that dj, fails to exceed the threshold is negligible. This ensures that
truly informative entries are reliably retained in Ty . Note that the condition p*n? = o(e®V7)
implies p*n = o(e®VT) suggesting that these asymptotic results and hold under

the condition p?n? = o(e®V7).

Theorem 1. Suppose Assumptz'on holds, and the statistic (2.1) satisfies v, > 0 for a
nonempty subset J; C P and v, = 0 otherwise, while 0, matches the sign of X1 4 — X2.4p

for a nonempty subset Jo C P and 6, = 0 otherwise, where P = {(a, b): 1 <b<a<

D | X1ab — L2.ab| > c\/T/n}. Then, the estimator (2.3)) satisfies
]%0 2 —CoT —c3+/nT —ca/T —c5na/T
P‘k——l‘ZG gclpn{e T e +ne V' 4+ ne s ],
0
where c;(i = 1,...,5) are some constants. In particular, if pn® = o(eVT) for some constant
c, then
ki
20
ko

Theorem (1] establishes the consistency of change point estimation under stringent
regularity conditions imposed on the weight matrix W = T" + §8". Notably, Proposition
demonstrates that the equality J; = Jo = P is statistically guaranteed in the asymptotic
setting. The data-adaptive parameter selection framework introduced in Section [2.2]inherently
satisfies these conditions, ensuring that the consistency guarantees are not only theoretical

but also practically achievable.



4. Simulations

In this section, we present simulation studies to evaluate the numerical performance of the
proposed estimator in finite samples. We begin by defining the notation. Unless otherwise
specified, all simulation results are based on 1000 independent replications per scenario. For
each replication ¢ = 1,..., B (with B = 1000), we obtain an estimate k; of the true change
point kg and compute the absolute error A; = |l%Z — ko|. To evaluate change point localization
performance in the subsequent analysis, we report the mean absolute error (MAE) and

standard deviation (SD) of the {A;}2, as follows:

B B
MAE= )4, SD:J (& - MABR
=1 =1

4.1 Data generation settings

For each Monte Carlo replication, we first generate a mean vector = (g, ..., i,), where
each component p; is drawn independently from Unif(1,2). Conditional on this fixed mean
vector u, we then generate n observations from a multivariate normal distribution with mean
w1 and the specified covariance matrix. Specifically, we consider four distinct matrices ¥ as

follows:

2) 2 = (), where SF = 1,5 = 04 for 5(k — 1) +1 < i # j < 5k,

k=1,...,|p/5], and 21(32-) = 0 otherwise;

3) = = (2)ij21,.p, where £ =1 and 22 = (—1)mntid}+10, 417,

)



4.1 Data generation settings

4) 2&4) =QD,Q", where Q is an orthogonal matrix and D; = diag(u;) with u; being a

p-dimensional vector whose elements are i.i.d. from Unif(0.5, 1.5).

In these settings, 25” is a diagonal matrix, while E§2), 2%3) and 254) introduce weak
correlations. Specifically, 2(12) is a block diagonal matrix with 5 x 5 blocks, as used in |Cai
et al. (2013)); 2§3) is Toeplitz-type matrix incorporating positive and negative correlations
via (—1)mindi} 41 and Y represents a general covariance matrix, as employed in Ding et al.
(2025)). The structure of each X is illustrated in Figure [1| with p = 20. To examine variations
in covariance, we consider different relationships between p and n, which determine the
signal strength. For n = 200 and p € {50, 100}, given a specific ¥;, we study three distinct

covariance matrices Yo as follows:

1) 251) =¥, + Ay, where A, = diag((uioﬁp,u;o@)T), with w03, and w7, being
0.3p- and 0.7p-dimensional vectors whose elements are i.i.d. from Unif(2, 3) and Unif(0,

1), respectively;

2) 252) = 21 +A2, Where AQ = <6ij)i,j=1,...,p7 Wlth 5“ = 27 52']‘ = (_1)min{i,j}+1 fOI' ‘Z—j| =1

and ¢;; = 0 otherwise;

3) 2&3) — D2%,D?, where D = diag(u) with u being a p-dimensional vector whose

elements are i.i.d. from Unif(2, 4).

In these settings for X, Egl) introduces changes on the diagonal with varying magnitudes;

252) indicates a band structure change, introducing increasing and decreasing variations
through (—1)™{i}+1 and 3 represents a covariance matrix where each element undergoes

multiplicative changes of varying magnitudes, a configuration similarly explored in |Cai et al.
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5 50

Figure 1: Four distinct structures of 33; examined in the simulation with p = 20.

(2013). The primary objective of this simulation setup is to compare various covariance
matrix structures and assess how differences in these matrices influence the performance of
change point detection methods. For n = 200 and p € {200,300}, preliminary simulations
indicate that a strong difference signal, as described above, is not necessary to achieve
satisfactory change point detection results. Therefore, we weaken the signal by considering,

for a given 3, three new covariance matrices ¥, as follows:

1) = =% + A7, where A} = diag((uIQO, uj 39, O;_5O)T), with w90 and ug 30 being
20- and 30-dimensional vectors whose elements are i.i.d. from Unif(1.5, 3.5) and Unif(0,

1);

2) 2;2*) = 21 + A;, Where A; = diag(Ag,Op,g)oprg)o), Wlth AQ = (5ij)50><507 511 =2

6ij = (—=1)mted+1 for i — j| = 1 and 6;; = 0 otherwise;

3) 253*) — D*:%,D*3, where D* = diag(w*) with u* being a p-dimensional vector whose

elements are i.i.d. from Unif(1, 3).
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4.2 Testing for the existence of a change point

To evaluate the finite-sample performance of our proposed test for the existence of a change
point, we conduct a simulation study. Under the null hypothesis Hy, we consider four distinct
covariance matrices 3, as described in Section [4.1] with 3y = 3;. Under the alternative
hypothesis H;, for each X, we pair it with three corresponding post-change covariance
matrices Eél), 2%2), 2%3), as specified in Section . We set the sample size to n = 200, the
change point to kg = [0.3n], the number of resampling iterations to @ = 500, and vary the
dimension p from 50 to 200. For each configuration, we report the empirical frequency of
rejecting Hy. The simulation results under Hy and H; are summarized in Table [, The
proportions of rejecting Hy when 3, = 3, are consistently close to 0, while the proportions
of rejecting Hy when 3, # 35 are consistently close to 1. These results demonstrate the

effectiveness of our method in detecting the existence of a change point.

Table 1: Rejection frequencies for the existence of a change point over 1000 simulation
replications: rows labeled H report rejections when 35 = 331, while rows labeled H; report

the average rejections across three distinct 35 configurations.

Zgl) 252) 253) ZYL) Zgl) 252) Eg?)) Egél)

Hy 33 45 38 32 27 39 25 35
H; 999.7 1000 999.3 1000 1000 1000 1000 1000

p =150 p =200

Hy 26 19 26 21 21 22 20 20
H; 1000 1000 1000 1000 1000 1000 1000 1000
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4.3 Accuracy of change point localization

Before presenting the simulation setup, we introduce two alternative statistics corresponding
to different choices of §. The first statistic, Tw,, sets 6; = 0. The second statistic, Ty,,
employs

g = sp - L(dp, > 7) /|| I(d > 7)|]2,

which assigns equal normalized weights to the selected entries. For the data-generating
process, we consider multiple configurations of 3; and X, as described in Section [£.1 The
sample size is fixed at n = 200, with parameters ¢; = 0.1 and ¢, = 0.9; the dimension p
varies from 50 to 300, and the change point is set at kg = [0.3n]. For each configuration,
both the method introduced by Dette et al.| (2022) and our method were used to estimate
the change point kg, performing 1000 repetitions to compute the mean absolute error (MAE)
and standard deviation (SD) of the estimates. The numerical results are summarized in
Table [2| for strong signal scenarios and Table |3| for weak signal scenarios.

By comparing the estimators, we identify several key insights that highlight the advan-
tages of our approach. First, across all scenarios, the first three estimates introduced in
this paper exhibit an MAE closer to zero compared to those of Dette et al.| (2022), along
with a smaller SD in most cases, indicating more effective covariance change point detection.
Second, while the first three estimators perform similarly in most cases, they exhibit notable
differences in specific scenarios. For instance, when ¥, = Eg) with 3, = 2&1), 252), 253)
for p = 50, 3y = B with £, = B for p = 200, and By = = with &, = B for
p = 300, the SD of Ty, is significantly larger. This is attributed to the emergence of bounded

estimates, whereas Ty performs robustly, suggesting that incorporating 7T5(k) enhances the
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Table 2: MAE (SD) of estimators for different cases with p = 50 and 100.

Zgl) 222 253) Egl) 252) Egﬁi)
p=50 x »?
Tw 0.157(0.457)  0.023(0.150) 0.025(0.156) 0.216(0.544) 0.025(0.156) 0.103(0.350)
Tw, 0.273(3.754)  0.021(0.143) 0.026(0.159) 0.345(3.828) 0.025(0.156) 0.098(0.347)
Tw, 0.220(0.569) 0.034(0.187) 0.028(0.182) 3.197(17.99) 0.026(0.159) 0.636(7.551)
H.Dette 1.608(2.845) 0.794(1.493) 0.677(1.378) 1.786(3.029) 0.891(1.722) 1.469(2.643)
i =
Tw 0.196(0.512) 0.055(0.249) 0.045(0.226) 0.157(0.457) 0.030(0.176) 0.015(0.122)
Tw, 0.321(3.822) 0.054(0.247) 0.045(0.230) 0.137(0.393) 0.028(0.171) 0.017(0.129)
Tw, 0.615(6.494) 0.069(0.280) 0.058(0.250) 0.321(3.823) 0.041(0.203) 0.019(0.144)
H.Dette 1.664(2.932) 1.077(1.963) 1.002(1.940) 1.611(2.850) 0.939(1.741) 0.753(1.388)
p=100 XV »{
Tw 0.035(0.189)  0.001(0.032) 0.001(0.032) 0.059(0.252) 0.002(0.045) 0.014(0.118)
Tw, 0.031(0.179) 0.001(0.032) 0.001(0.032) 0.063(0.259) 0.002(0.045) 0.012(0.109)
Tw, 0.033(0.190)  0.001(0.032) 0.002(0.045) 0.065(0.266) 0.003(0.055) 0.027(0.168)
H.Dette 0.695(1.471) 0.371(0.881) 0.357(0.844) 0.705(1.493) 0.387(0.901) 0.621(1.271)
i =
. 0.040(0.201)  0.006(0.077) 0.003(0.055) 0.037(0.199) 0.001(0.032) 0.002(0.045)
Tw, 0.039(0.199)  0.005(0.071) 0.003(0.055) 0.038(0.201) 0.002(0.045) 0.002(0.045)
Tw, 0.051(0.246)  0.006(0.077) 0.004(0.063) 0.052(0.239) 0.002(0.045) 0.002(0.045)
H.Dette 0.728(1.505) 0.530(1.141) 0.541(1.109) 0.750(1.514) 0.375(0.904) 0.377(0.917)

original statistic T} (k).

However, this improvement relies on a well-chosen §. Similarly, in

certain cases, particularly those involving 3o = Zgl) with 3, = X (2) 253 ,E

for p = 50 and
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Table 3: MAE (SD) of estimators for different cases with p = 200 and 300.

Zgl*) 222*) 253*) Egl*) 252*) 223*)
p=200 XV »
Tw 0.082(0.312)  0.024(0.160) 0.017(0.129) 0.133(0.462) 0.036(0.197) 0.047(0.221)
Tw, 0.202(3.774)  0.027(0.168) 0.017(0.129) 0.141(0.479) 0.037(0.194) 0.041(0.203)
Tw, 0.820(8.948) 0.027(0.168) 0.020(0.140) 1.579(12.86) 0.041(0.203) 0.052(0.235)
H.Dette 1.323(2.602) 0.789(1.511) 0.738(1.390) 1.277(2.372) 0.830(1.619) 1.287(2.178)
i =
Tw 0.125(0.440) 0.066(0.282) 0.032(0.176) 0.093(0.329) 0.021(0.150) 0.031(0.173)
Tw, 0.122(0.389) 0.061(0.267) 0.032(0.176) 0.089(0.327) 0.022(0.153) 0.032(0.176)
Tw, 0.262(3.788) 0.195(3.804) 0.040(0.196) 1.070(10.39) 0.023(0.157) 0.035(0.189)
H.Dette 1.305(2.313) 1.048(2.045) 1.155(1.996) 1.215(2.150) 0.729(1.493) 1.085(1.963)
p=300 XV »
Tw 0.090(0.319)  0.029(0.168) 0.018(0.133) 0.163(0.520) 0.041(0.208) 0.019(0.137)
Tw, 0.086(0.308) 0.028(0.171) 0.018(0.133) 0.278(3.764) 0.038(0.201) 0.018(0.133)
Tw, 0.468(6.371)  0.030(0.171) 0.021(0.143) 0.317(3.832) 0.033(0.184) 0.018(0.133)
H.Dette 1.234(2.333) 0.844(1.670) 0.887(1.780) 1.193(2.184) 0.826(1.616) 1.034(1.829)
i =
. 0.140(0.430)  0.070(0.309) 0.014(0.118) 0.111(0.378) 0.022(0.153) 0.007(0.095)
Tw, 0.143(0.437)  0.065(0.277) 0.016(0.148) 0.096(0.321) 0.024(0.160) 0.008(0.100)
Tw, 0.144(0.438)  0.069(0.304) 0.020(0.140) 0.742(8.371) 0.034(0.207) 0.008(0.100)
H.Dette 1.201(2.224) 1.012(1.882) 1.059(1.816) 1.245(2.178) 0.857(1.707) 0.693(1.379)

o = Eg*) with 3, = Egl), 2(12), 253), 254) for p = 200, 300, the SD of Ty, is notably larger,

reinforcing the appropriateness of our & selection. Third, comparing the data generation



process settings and results in Tables [2| and |3| we observe that as the dimension p increases
from less than n to greater than n, our proposed statistic does not require the strength of the
change to scale with p. Instead, a fixed-scale signal strength, independent of p, is sufficient
to achieve superior detection results, highlighting the effectiveness of the reweighting method
in high-dimensional settings. Finally, our estimator consistently delivers robust performance
across all scenarios, demonstrating its capability to accurately estimate change point locations
under diverse covariance structures and varying degrees of covariance changes.

In summary, the simulations demonstrate substantial improvements from our proposed
estimator, especially when the true change point lies away from the sample center. To
demonstrate the computational efficiency of our method, we measured the execution time of
each step. Specifically, using MATLAB (R2018a) on an 11th Gen Intel® Core™ i5-11320H
3.20 GHz processor with p = 100 and n = 200, detecting the existence of the change point
and computing the threshold took approximately 7.8 seconds, and estimating the change
point took only 0.17 seconds. The robustness and accuracy of our method across a wide
range of covariance structures and change scenarios underscore its potential as a reliable tool

for change point detection in diverse applications.

5. Empirical Evidence

In this section, we apply our method to a dataset of handwritten numeral features (‘0'—9’)
extracted from a collection of Dutch utility maps (misc_multiple_features_?Q]D and com-

pare its performance with other estimators described in Section [£.3] The dataset comprises

https://archive.ics.uci.edu/dataset/72/multiple+features


misc_multiple_features_72
https://archive.ics.uci.edu/dataset/72/multiple+features

2,000 handwritten numerals (‘0’—97), with 200 patterns per class, digitized into binary images.
These digits are represented using six different feature sets, and we selected the set of 76
Fourier coefficients (i.e., p = 76). We focus on the change point problem involving the
numeral ‘0’ relative to other numerals.

To investigate the existence of a change point, we construct concatenated datasets by
randomly selecting 100 patterns of the numeral ‘0’ and 100 patterns of another numeral,
resulting in a dataset with n = 200 and kg = 100. We then apply our proposed method, as
detailed in Section [2.3] to test for the existence of a change point in these newly formed
datasets. For every pair of numerals, we repeat this experiment 1000 times and report the
empirical rejection proportion of the null hypothesis Hy. Furthermore, given the rotation-
invariant nature of Fourier feature sets, we do not anticipate a change point between the
numerals ‘6> and ‘9’ (van Breukelen et al., [1998). To validate this, we similarly combine the
datasets for numerals ‘6" and ‘9" and conduct the change point detection test. The results,
summarized in Table |4 demonstrate that our method effectively identifies the existence of
the change point. Specifically, a change point is consistently detected between the numeral
‘0’ and each of the other numerals, while the results for numerals ‘6’ and ‘9’ align with the
theoretical expectation, confirming the absence of a change point between them.

Next, we address the problem of estimating the change point. Building on the above
design, we concatenate the dataset for ‘0’ with each other numeral in turn by randomly
sampling 120 patterns of ‘0’ and 180 patterns of the other numeral, resulting in n = 300 with
the true change point ky = 0.4n. We then estimate the change point using the boundary

trimming parameters ¢; = 0.1 and ¢, = 0.9, repeating the procedure 1000 times for each



Table 4: Proportion of rejecting Hy for various pairs of numbers.

‘0’and ‘1’ ‘0’ and ‘2 ‘0’ and ‘3> ‘0’ and ‘4> ‘0" and ‘5’

Prop 1.000 1.000 1.000 1.000 1.000

‘0’and ‘6> ‘0O and ‘77 ‘0’ and ‘8 ‘0’ and ‘9’ ‘6" and ‘9’

Prop 1.000 1.000 0.962 1.000 0.022

combination. We visualize the estimation results by plotting boxplots of estimated relative

change point locations k;/n (i = 1,..., B) for each combination in Figure .
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Figure 2: Boxplots of the change point estimates for each combination.



As shown in Figure [2, Tw, Tw,, Tw, are generally more accurate than the benchmark
estimator of Dette et al| (2022) across most pairings. However, for the combination of ‘0’ and
‘5", Tw, produces the boundary estimate, while Ty, and Ty perform well, which is consistent
with our simulation results. For the combination of ‘0" and ‘8’, the latter three estimators all
produce the boundary estimate, and multiple contributing factors influence this outcome.
First, the difference between the covariance matrices of ‘0’ and ‘8’ is relatively small, as seen
in the results in Table 4] which affects the performance of estimators. Second, similar to the
CUSUM statistic, a general statistic can be expressed as Ty (k) = (%*Iﬁ)z)n-TW(k;), where
n € [0,1] is a tuning parameter. Hariz et al.| (2007) considered the CUSUM statistic with
different tuning parameter settings. The tuning parameters n = 1 and n = 0.5 correspond
to the statistics used in |Fryzlewicz (2014)) and |[Enikeeva and Harchaoui (2019), respectively.
Our boundary removal procedure is reasonable given our kg = |ron| setting, and following
Jiang et al. (2024), we use the statistic with n = 0. With boundary removal, the estimate
with 7 = 0 can be more accurate, especially when the relative location of the change point rg
is not near 0.5. However, the estimate is inevitably susceptible to boundary effects. Better
results may be obtained by estimating the change point with a n # 0 for the ‘0" and ‘8’

combination. Furthermore, the boundary removal procedure may not be strictly necessary

with a sufficiently large n. The selection of 1 will be explored in future work.

6. Conclusions

This article addresses the problem of detecting the change point in covariance matrices.

First, we propose a reweighted CUSUM-type statistic for estimating the change point. Next,



we introduce a data-adaptive parameter selection method. Additionally, building on this
change point estimation approach, we develop a hypothesis testing procedure to assess the
existence of a change point. Extensive simulation studies and real-world data analyses
validate the accuracy of our change point estimation, the precision of our parameter selection,
and the effectiveness of our method for testing the existence of the change point. Finally,
our theoretical results establish the consistency of the proposed estimators. Future research
could further investigate the construction of theoretically optimal estimators, relax the tail
assumptions, and extend the proposed framework to broader settings, including online change

point detection and multiple change point scenarios.
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