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1. Introduction

The change point problem is a prominent topic in statistics, originating in the domain of

quality inspection and control, with its modeling and analysis pioneered by Page (1954).

Nowadays, the change point problem extends far beyond its initial applications in industrial

quality control and has been studied across various branches of science and engineering. It

encompasses numerous application scenarios, including climate monitoring (Fischer et al.,

2012), econometrics and finance (Lai and Xing, 2013), and biomedical time series (Lee et al.,

2012), among others. In general, the study of change points involves detecting structural

breaks in a sequence of observed data, where the locations of these breaks are termed change

points.

Over recent decades, the change point problem has expanded far beyond industrial

quality control to diverse applications in climate, finance, and genomics (Liu et al., 2022).

The cumulative sum (CUSUM) statistic is a classical and widely used tool for detecting mean

changes. In low-dimensional settings, CUSUM-based methods have been thoroughly investi-

gated and successfully applied (Hawkins, 1977; Horváth et al., 1999). While high-dimensional

mean change point detection has matured, with established L∞-norm paradigms for sparse

signals (Jirak, 2015; Yu and Chen, 2021), L2-norm approaches for dense signals (Zhang

et al., 2010; Wang et al., 2022), the double CUSUM method for reducing data to univariate

processes (Cho, 2016), and projection-based techniques (Wang and Samworth, 2018). Beyond

parametric approaches, nonparametric and data-driven methods have also emerged, for

example, see Shu et al. (2022) and Li et al. (2024). Collectively, these contributions have led

to a mature body of work on mean change point detection in high dimensions.
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Subsequent research has broadened the scope of change point analysis to diverse appli-

cations, including structural breaks in factor loadings (Ma and Su, 2018; Bai et al., 2020),

regression coefficients in linear models (Lee et al., 2015; Cui et al., 2024), and network struc-

tures (Wang et al., 2021a; Chen et al., 2024). Among these, detecting changes in covariance

matrices stands out as a particularly challenging and increasingly important problem in

high-dimensional settings, owing to the intrinsic structural properties of covariances, and

forms the primary focus of this paper. Early research on covariance change point detection

focused primarily on fixed-dimensional settings or linear processes. For instance, Berkes et al.

(2009) studied changes in the mean or covariance structure of linear processes using weighted

CUSUM statistics. In fixed-dimensional settings, Aue et al. (2009) applied CUSUM-based

methods to test for covariance changes in multivariate time series, and Kao et al. (2018)

further proposed a normalized CUSUM-type statistic for testing the stability of covariance

matrices and related eigensystems.

Recent advances have extended these efforts to high-dimensional regimes. For instance,

Steland (2020) proposed maximally selected weighted CUSUM statistics for detecting changes

in high-dimensional linear time series. Wang et al. (2021b) addressed the problem of multiple

covariance change points in sequences of high-dimensional sub-Gaussian vectors, employing

binary and wild binary segmentation procedures. A significant advance was made by Dette

et al. (2022), who built upon the framework of Aue et al. (2009) by introducing a two-step

nonparametric procedure that enhances estimation accuracy without imposing normality or

sparsity assumptions. Similarly, Kaul et al. (2023) developed an approach for estimating

a single covariance change point by minimizing an aggregated squared loss. Additional
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contributions include the work of Li and Li (2023), who investigated online detection in

high-dimensional M -dependent sequences; Pilliat et al. (2023), who proposed a general

multi-scale bottom-up aggregation framework applicable to both mean and covariance change

point problems; and Dörnemann and Dette (2024), who introduced a likelihood-ratio-based

min-type statistic for covariance change point detection. Collectively, these contributions

have substantially broadened the toolkit for high-dimensional covariance analysis.

However, a prevalent strategy in existing literature involves simply vectorizing the

covariance matrices and applying vector-based change point methods. This transformation

strategy tends to lose the key structural information of the covariance matrix, resulting

in reduced performance; moreover, it also faces challenges in constructing appropriate

statistics when the change pattern is unknown a priori. Motivated by these challenges

and opportunities, we develop an integrated and fully data-adaptive framework for offline

localization and inference of a single high-dimensional covariance change point. The key

innovation lies in a reweighted CUSUM-type statistic adaptively tuning weights to the

observed data, thereby avoiding naive vectorization and fixed-weight constructions.

Our main contributions are as follows. First, we propose a generalized reweighted

statistic for precise change point localization. This statistic exploits a flexible decomposition

that seamlessly accommodates both sparse and dense changes. Second, we develop fully

data-driven procedures for parameter selection, including threshold-based scale tuning and

rank-based sign alignment, that automatically focus statistical power on informative entries.

Building on these advances, we introduce a companion hypothesis testing procedure to assess

the existence of a change point, resulting in a unified framework for both estimation and
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inference. Extensive simulation studies and real-data applications demonstrate the superior

performance of our approach across a wide range of change patterns.

The article is structured as follows. Section 2 presents the model and methodology.

Section 3 states the assumptions and main theoretical results. Sections 4 and 5 detail

simulation studies and real data applications, respectively, including testing performance

and comparisons. Section 6 concludes. All proofs are in the supplement.

Notations. For a symmetric matrix H = (Hab)a,b=1,...,p ∈ Rp×p, vech(H) denotes the

half-vectorization, a p(p + 1)/2 vector formed by vectorizing the lower triangular part of

H. We denote by diag(A, B) a block-diagonal matrix composed of matrices A and B

of appropriate dimension. For a vector a ∈ Rp, ∥a∥2 =
√

a⊤a represents the ℓ2-norm of

a. The Hadamard product of vectors a and b is denoted by a ◦ b, while diag(a) denotes

the diagonal matrix with a as its diagonal entries. Additionally,
√

a = (√a1, . . . ,
√

ap)⊤

represents the element-wise square root of a. For a real number c, ⌊c⌋ denotes its integer

part, and (c)2 = c(c − 1). The p × p identity matrix is denoted by Ip, while 0p×p, 0p, and 1p

denote the p × p zero matrix, p-dimensional zero vector, and p-dimensional all-ones vector,

respectively.

2. Methodology

This paper focuses on detecting a single change point in the covariance structure of a

sequence of high-dimensional random vectors, occurring at an unknown time point. We

model the observations as independent p-dimensional random vectors with distinct covariance

matrices before and after the change point. Specifically, let X1, . . . , Xk0 , Xk0+1, . . . , Xn be

Statistica Sinica: Newly accepted Paper 



2.1 Change point detection

independent p-dimensional random vectors, where the i-th observation follows

Xi =


µ + Z1i, i = 1, . . . , k0

µ + Z2i, i = k0 + 1, . . . , n

with {Z1i}k0
i=1

i.i.d.∼ Z1 and {Z2i}n
i=k0+1

i.i.d.∼ Z2 satisfying EZ1 = EZ2 = 0,

Var(Z1) = Σ1 =
(
Σ1,ab

)
a,b=1,...,p

∈ Rp×p, Var(Z2) = Σ2 =
(
Σ2,ab

)
a,b=1,...,p

∈ Rp×p,

and Σ1 ̸= Σ2. Here, Σν,ab denotes the (a, b)-entry of Σν for ν = 1, 2. The unknown location

k0 is the true change point in the covariance matrices. Our primary objective is to estimate

k0 in high-dimensional settings. In the asymptotic analysis, we assume k0 = ⌊r0n⌋ for some

fixed r0 ∈ (0, 1), where ⌊·⌋ is the floor function. In the following, we propose a data-adaptive

methodology for detecting the covariance change point k0 based on the observed data.

2.1 Change point detection

Building on the model introduced above, we now describe our data-adaptive methodology for

detecting the covariance change point k0. To isolate the covariance structure, we center the

observations using the global sample mean Ẋi = Xi − X̄, where X̄ = 1
n

∑n
i=1 Xi. For each

observation, define the vectorized centered second-moment estimator σ̇(i) = vech(ẊiẊ
⊤
i ),

where vech(ẊiẊ
⊤
i ) denotes the half-vectorization that stacks the lower triangular elements

(including the diagonal) of a symmetric matrix into a vector of length p(p + 1)/2. The

indexing mapping h = (b − 1)(p − b/2) + a establishes a bijection between pairs (a, b) with

1 ≤ b ≤ a ≤ p and indices h = 1, . . . , p(p + 1)/2.
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2.1 Change point detection

To estimate the change point k0, we propose the reweighted CUSUM-type statistic

TW (k) = 1
(k)2(n − k)2

k∑ k∑
(i̸=t)=1

n∑ n∑
(j ̸=l)=k+1

(
σ̇(i) − σ̇(j)

)⊤
W

(
σ̇(t) − σ̇(l)

)
, (2.1)

where (k)2 = k(k−1). The weight matrix W ∈ Rp(p+1)/2×p(p+1)/2 assigns different importance

to individual covariance entries. The exclusion of diagonal terms (i = t and j = l) in the

summation removes the bias introduced by the squared noise terms, ensuring that the

statistic centers on the signal difference. Intuitively, placing larger weights on entries where

the pre- and post-change covariances Σ1 and Σ2 differ most substantially increases detection

sensitivity. In what follows, we develop a data-adaptive procedure for selecting W to optimize

performance. This enables TW (k) to effectively capture structural changes, allowing for

precise identification of the change point in the covariance matrices.

The effectiveness of TW (k) hinges on the choice of W . In high-dimensional settings, a

common modeling strategy represents structured matrices as the sum of a low-rank component

and a diagonal component (Johnstone, 2001; Cai et al., 2015; Wu et al., 2020). Following

this idea, we parameterize

W =
(
W 1/2

)⊤
W 1/2 = Γ + δδ⊤ ∈ R

p(p+1)
2 × p(p+1)

2 ,

where Γ = diag(γ) is a nonnegative diagonal matrix with entries γ = (γh)1≤h≤ p(p+1)
2

and

δ = (δh)1≤h≤ p(p+1)
2

is a p(p+1)
2 -dimensional vector. This decomposition allows the statistic to

be expressed as the sum of two interpretable components:

TW (k) = T1(k) + T2(k) = 1
(k)2(n − k)2

k∑ k∑
(i̸=t)=1

n∑ n∑
(j ̸=l)=k+1

(
σ̇(i) − σ̇(j)

)⊤
Γ

(
σ̇(t) − σ̇(l)

)

+ 1
(k)2(n − k)2

k∑ k∑
(i̸=t)=1

n∑ n∑
(j ̸=l)=k+1

[
δ⊤

(
σ̇(i) − σ̇(j)

)][
δ⊤

(
σ̇(t) − σ̇(l)

)]
.

(2.2)
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2.1 Change point detection

We observe that the statistic T1(k) is a diagonally weighted CUSUM statistic commonly used

in change point analysis (Aue et al., 2009), and the statistic T2(k) resembles a burden-type

statistic frequently employed in sparse settings (Lee et al., 2014).

The statistic TW (k) quantifies the weighted discrepancy between the empirical covariance

structures of the observations before and after the candidate location k. The change point

estimation problem thus reduces to finding the position k that maximizes this discrepancy.

With the true change point at k0 = ⌊r0n⌋ for some fixed r0 ∈ (0, 1), we define the estimator

as

k̂0 = arg max
c1n≤k≤c2n

TW (k). (2.3)

The boundary trimming constants c1 and c2 are fixed prespecified values satisfying 0 < c1 <

c2 < 1, chosen to ensure sufficient observations in both pre- and post-candidate segments

(in our simulations and real data analysis, we set c1 = 0.1 and c2 = 0.9). As established in

Theorem 1, under suitable regularity conditions and appropriate parameter choices, k̂0 is

consistent for k0 as the sample size n and dimension p tend to infinity.

Remark 1. The statistic TW (k) shares conceptual similarities with those proposed by Shu

et al. (2022) and Jiang et al. (2024), which use random integration for two-sample mean

testing and mean change point detection, respectively. Prior works suggest various fixed

choices for δ and Γ when constructing the weight matrix W for TW (k) (e.g., δ = 0 with Γ a

positive definite diagonal matrix), but they do not provide explicit data-adaptive selection

procedures. In the next section, we introduce such a scheme and establish its theoretical

properties.

Remark 2. Boundary trimming is a standard practice in the change point literature to
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2.2 Data-adaptive weight selection

ensure adequate sample sizes on both sides of each candidate location, thereby mitigating

edge effects and potential boundary bias. Choosing (c1, c2) entails trading off maximal data

utilization against robustness near the sample endpoints. For example, Wang and Feng (2023)

set (c1, c2) = (0.2, 0.8). In a related high-dimensional setting, Dörnemann and Dette (2024)

employs a symmetric search region with c2 = 1−c1, recommending c1 > max{p/n+0.05, 0.2}

for hypothesis testing to ensure stable finite-sample behavior, while choosing c1 closer to the

critical boundary p/n when the primary goal is change point localization. We adopt the

setting (c1, c2) = (0.1, 0.9), a design that imposes no additional constraints on n and p and

preserves more observations while effectively controlling boundary interference.

2.2 Data-adaptive weight selection

The performance of the statistic TW (k) in (2.2) depends critically on the choice of parameters

Γ and δ. Appropriate selection of these weights enhances detection power by emphasizing

informative covariance entries while suppressing noise and weak signals.

Since Σ1 ̸= Σ2, there exist entries where Σ1,ab ̸= Σ2,ab. To formalize this, define the

index sets for the lower triangular elements (including the diagonal): N =
{
(a, b) : 1 ≤

b ≤ a ≤ p; Σ1,ab = Σ2,ab

}
as the positions with no change, and G =

{
(a, b) : 1 ≤ b ≤ a ≤

p; Σ1,ab ̸= Σ2,ab

}
, as those with a change. Additionally, let

P =
{
(a, b) : 1 ≤ b ≤ a ≤ p;

∣∣∣Σ1,ab − Σ2,ab

∣∣∣ ≥ c
√

τ/n
}

denote the subset of G where the change magnitude exceeds c
√

τ/n for some constant c > 0,

with τ a threshold that separates detectable signals from noise (specified in Section 2.2.3;

for context, thresholds of order
√

(log p)/n are common in high-dimensional covariance
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2.2 Data-adaptive weight selection

estimation, as discussed in Bickel and Levina (2008)). Here, τ depends on the sample size n

and dimension p, as the signal magnitude varies with both.

Focusing on entries in P is advantageous for two reasons. First, positions in N contribute

no signal and only increase effective dimensionality, reducing power and raising computational

burden. Second, changes in G but not in P are too weak to be reliably distinguished from

sampling variability, potentially degrading detection. Even within P , signal strengths vary,

so differential weighting can further improve performance by prioritizing greater changes. To

measure entry-wise change magnitudes, we introduce the statistic

vk =
(
vk,h

)
1≤h≤ p(p+1)

2

= 1
(k)2

∑ ∑
i̸=j≤k

σ̇(i) ◦ σ̇(j) + 1
(n − k)2

∑ ∑
i̸=j>k

σ̇(i) ◦ σ̇(j) − 2
k

(
n − k

) ∑
i≤k

∑
j>k

σ̇(i) ◦ σ̇(j).

(2.4)

This is a simplified version of a related quantity ṽk discussed in Remark 3, omitting higher-

order terms to reduce estimation bias.

Remark 3. The statistic vk is deliberately constructed by excluding the diagonal terms

(i.e., cases where i = j) from a natural alternative formulation, thereby avoiding bias arising

from higher-order moment contributions. To illustrate this choice, consider the alternative

statistic

ṽk =
(1

k

k∑
i=1

σ̇(i) − 1
n − k

n∑
i=k+1

σ̇(i)

)
◦

(1
k

k∑
i=1

σ̇(i) − 1
n − k

n∑
i=k+1

σ̇(i)

)

= 1
k2

k∑
i,j=1

σ̇(i) ◦ σ̇(j) + 1
(n − k)2

n∑
i,j=k+1

σ̇(i) ◦ σ̇(j) − 2
k(n − k)

k∑
i=1

n∑
j=k+1

σ̇(i) ◦ σ̇(j).

This ṽk represents the element-wise squared difference between the pre-k and post-k sample

second-moment estimators. However, the inclusion of i = j terms renders ṽk,h a biased

estimator of a quantity proportional to (Σ1,ab − Σ2,ab)2, with the bias originating from the
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2.2 Data-adaptive weight selection

variance of these diagonal terms. By omitting the i = j contributions, vk eliminates this

higher-order bias. Furthermore, the expectation of vk,h is

Evk,h =



(1 − 2
n
)2(Σ1,ab − Σ2,ab)2, k = k0,

(k0)2
(k)2

(1 − 2
n
)2(Σ1,ab − Σ2,ab)2, k > k0,

(n−k0)2
(n−k)2

(1 − 2
n
)2(Σ1,ab − Σ2,ab)2, k < k0.

Thus, for any fixed k ≠ k0, larger absolute differences |Σ1,ab − Σ2,ab| yield larger expected

values of vk,h.

Since the true k0 is unknown, we aggregate over candidate locations k:

d =
(
dh

)
1≤h≤ p(p+1)

2
= 1

n − 3

n−2∑
k=2

k
(
n − k

)
n

vk. (2.5)

The weights k(n − k)/n are introduced to mitigate the effect of large variances near the

boundaries, thereby enhancing the robustness of the statistic.

2.2.1 Selection of Γ and δ

Each entry dh of d provides an aggregated estimate of the squared change magnitude in

the corresponding covariance element. Larger values of dh thus indicate stronger differences

between Σ1,ab and Σ2,ab. The vector d therefore captures essential information about the

magnitude of entry-wise changes between the pre- and post-change covariances. Under

sufficient signal strength in the set G, a suitably chosen threshold τ can distinguish the

strongly changed entries in P (as formalized in Section 3). This thresholding strategy for

dimensionality reduction aligns with ideas in Dette et al. (2022).
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2.2 Data-adaptive weight selection

We accordingly define the weights as

Γ = diag(γ), γh = I(dh > τ) and δh = sh ·
√

dh · I(dh > τ)
∥
√

d ◦ I(d > τ)∥2
, (2.6)

where sh is the sign of the estimated change in the h-th entry (detailed below). Note that the

threshold τ is chosen to be positive (as described in Section 2.2.3), ensuring the validity of the

square root operation. The diagonal form of Γ is standard for capturing dense changes across

many entries. For δ, the element-wise magnitudes of vech(Σ1 − Σ2) are naturally estimated

by
√

d (inspired by Wang and Samworth (2018)). Normalization ensures ∥δ∥2 = 1, rendering

TW (k) scale-invariant and preventing one component from dominating the other. Covariance

changes may increase or decrease individual entries, leading to positive or negative differences

Σ1,ab − Σ2,ab across positions. Ignoring signs when constructing δ risks cancellation in terms

like δ⊤(σ̇(i) − σ̇(j)). The factor sh therefore aligns δh with the dominant directional trend of

the change, as determined by the rank-based procedure described next.

2.2.2 Rank-based sign selection

To capture the directional trend of covariance changes, i.e., whether individual entries

increase or decrease after the change point, while enhancing practical robustness to outliers,

we propose a rank-based statistic. For each entry h = 1, . . . , p(p + 1)/2, define

s∗
h =

n−1∑
k=1

√
k(n − k)

n

(1
k

k∑
i=1

Rank(σ̇(i),h) − 1
n − k

n∑
i=k+1

Rank(σ̇(i),h)
)

,

where Rank(σ̇(i),h) assigns ranks to the values {σ̇(1),h, . . . , σ̇(n),h} separately for each h: the

smallest value receives rank 1, the next rank 2, and the largest rank n. In the rare event of

ties, we assign the average rank to all tied values, following standard statistical practice. The
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2.2 Data-adaptive weight selection

weights
√

k(n − k)/n stabilize contributions from candidates k near the boundaries, where

fewer observations increase variability.

The final sign vector is s = (sh)1≤h≤ p(p+1)
2

, where

sh = sgn(s∗
h) =



1 if s∗
h > 0

0 if s∗
h = 0

−1, if s∗
h < 0

.

This rank-based approach focuses on relative ordering rather than absolute magnitudes,

making sign estimation less sensitive to outliers or extreme observations. By applying signs

only to entries that receive non-zero weights (those in the strongly changed set P), the

procedure further mitigates noise from weak or negligible changes. Overall, this strategy

reduces effective dimensionality, improves estimation accuracy, and enhances computational

efficiency.

2.2.3 Threshold selection

To determine a data-driven threshold τ in (2.6) that effectively separates unchanged entries

(N ) from those with substantial changes (P), we employ a nonparametric bootstrap procedure.

The threshold is chosen based on the distribution of the statistic d in (2.5) under a null-like

scenario where no systematic covariance change is present. For an entry h corresponding

to a position in N , the expected value of vk,h (and thus dh) is small across candidates k,

reflecting only random variation.

We generate bootstrap resamples by sampling the centered observations Ẋi = Xi − X̄

(for i = 1, . . . , n) with replacement. Let Ẋ(q) = (Ẋ(q)
1 , . . . , Ẋ(q)

n ) denote the q-th resample,
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2.3 Existence of the change point

for q = 1, . . . , Q where Q is sufficiently large (e.g., Q = 500 in our implementations). This

resampling destroys the original change point structure, producing a “mixed” sample akin to

the null hypothesis of no change. Under thorough mixing, the pre- and post-k segments for

any candidate k exhibit no systematic covariance difference, resulting in small values of d
(q)
h

across all entries h.

The procedure is as follows:

1. For each resample q, compute the bootstrap analogs v
(q)
k and d(q) using the definitions

in Eqs. (2.4) and (2.5).

2. Set τ (q) = maxh d
(q)
h , the maximum entry in the q-th bootstrap d.

3. Define the threshold as τ = minq=1,...,Q τ (q).

This conservative choice (the minimum over bootstrap maxima) ensures that τ captures the

upper tail of the null-like distribution of maxh dh, providing a data-driven cutoff to identify

strongly changed entries.

2.3 Existence of the change point

In addition to estimating the covariance change point location, it is often of interest to test

whether a covariance change is present at all:

H0 : no change point vs. H1 : a change point exists.

This hypothesis testing problem has been widely studied (e.g., Aue and Horváth (2013); Kao

et al. (2018)).
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2.3 Existence of the change point

Recall that the weight construction in (2.6) retains only entries of d exceeding the

threshold τ , setting the others to zero. Let m denote the number of non-zero elements in

the resulting vector δ. Under H0 (no change), all true entry-wise differences are zero, so

m = 0 is expected. Under H1, at least some differences are non-zero, leading to m > 0 with

high probability when the signal is sufficiently strong. A natural test therefore rejects H0 if

m > 0. The threshold τ = minq=1,...,Q τ (q) from Section 2.2.3 (the minimum over bootstrap

maxima) tends to be conservative, often yielding excessively small values that may fail to

detect moderate changes. To achieve a better size-power balance, we adjust the threshold to

the α-level quantile of the bootstrap maxima.

Specifically, for a nominal level α (e.g., α = 0.05), sort the bootstrap maxima {τ (1), . . . , τ (Q)}

in increasing order and set τα = τ (q), where q satisfies

#{i : τ (i) > τ (q)} = ⌊α · Q⌋.

The value of τα is used to calculate m in the testing procedure. Under H0, the resampling-

induced mixing ensures that the bootstrap maxima approximate the null distribution of

maxh dh, so τα controls the probability of falsely identifying non-zero entries (yielding empirical

size close to α). Under H1, the systematic change in the original data produces larger values

of dh for changed entries, exceeding τα and leading to m > 0.

Remark 4. Methods such as Yu and Chen (2021) and Zhou et al. (2025) employ Gaussian

multiplier bootstraps to approximate the null distribution of their test statistics and calibrate

critical values, ensuring asymptotic size control. In contrast, our nonparametric resampling

bootstrap serves dual purposes: (i) identifying informative covariance entries for data-

adaptive weighting (Section 2.2.3), and (ii) providing an empirical quantile-based threshold
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for testing (this section). Although not a formal multiplier calibration, extensive simulations

show excellent empirical size control (typically at or below the nominal α) alongside high

power. Note that we employ a ‘min-max’ criterion for weight selection to include potentially

informative signals, whereas a stricter quantile-based threshold is used in Section 2.3 for

formal hypothesis testing to control the type I error rate.

3. Asymptotic Properties

To analyze the theoretical properties of our proposed approach, we first outline the necessary

assumptions regarding the distribution of the random vectors Xi and the structure of the

covariance matrices. These assumptions are critical to ensure the validity and consistency of

our method.

Assumption 1. (a) Sub-Gaussianity and Bounded Covariance: Let Xi = (Xi1, . . . , Xip)⊤, i =

1, . . . , n. For any 1 ≤ j ≤ p, Xij is a sub-Gaussian random variable, meaning there exist

positive constants C1, C2 (independent of indices i and j) such that, for any t > 0,

P
(
|Xij| > t

)
≤ C1e

−C2t2
.

Additionally, the covariance matrices before and after the change point satisfy max
1≤a,b≤p

∣∣∣Σν,ab

∣∣∣ ≤

M, ν = 1, 2 for some positive constant M .

(b) Magnitude of Covariance Matrix Difference: The smallest nonzero element of the

matrix Σ1 − Σ2 satisfies |Σ1,ab − Σ2,ab| ≥ c
√

τ/n for some positive constant c.

Assumption 1(a) imposes sub-Gaussian tails, which is crucial for deriving concentration

inequalities and ensuring stability in high-dimensional settings. It is standard in high-

dimensional statistics to guarantee finite-sample performance, as seen in works like Vershynin
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(2018). This condition also bounds individual covariance entries, stabilizing the estimation

process. Assumption 1(b) imposes a minimal signal strength on the difference between Σ1

and Σ2, ensuring that the change in covariance structure is sufficiently pronounced to be

detectable in high-dimensional settings, thus enabling reliable identification of the change

point. Under these assumptions, we establish the following Proposition 1 and Theorem 1.

Proposition 1. (a) No Covariance Change: For any position (a, b) where Σ1,ab = Σ2,ab, the

following conclusion holds under Assumption 1(a):

P
{
dh > τ

}
≤ c1n

[
e−c2

√
τ + e−c3

√
nτ + e−c4n

√
τ
]
,

where ci(i = 1, . . . , 4) are positive constants. In particular, if p2n = o(ec
√

τ ) for some constant

c, then

p2 · P{dh > τ} → 0. (3.7)

(b) Significant Covariance Change: For any position (a, b) where
∣∣∣Σ1,ab − Σ2,ab

∣∣∣ ≥ c
√

τ/n for

some constant c, the following holds under Assumption 1(a):

P
{
dh ≤ τ

}
≤ c1n

[
e−c2τ + e−c3

√
nτ + ne−c4

√
τ + ne−c5n

√
τ
]
,

where ci(i = 1, . . . , 5) are positive constants. In particular, if p2n2 = o(ec
√

τ ) for some

constant c, then

p2 · P{dh ≤ τ} → 0. (3.8)

Proposition 1(a) implies that, when the true covariances are equal at position (a, b), the

probability that dh exceeds the threshold is negligible. Consequently, such entries contribute

little to the aggregated statistic TW , thereby reducing the influence of random fluctuations. In
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contrast, Proposition 1(b) shows that, when a genuine covariance difference exists at position

(a, b), the probability that dh fails to exceed the threshold is negligible. This ensures that

truly informative entries are reliably retained in TW . Note that the condition p2n2 = o(ec
√

τ )

implies p2n = o(ec
√

τ ) suggesting that these asymptotic results (3.7) and (3.8) hold under

the condition p2n2 = o(ec
√

τ ).

Theorem 1. Suppose Assumption 1 holds, and the statistic (2.1) satisfies γh > 0 for a

nonempty subset J1 ⊆ P and γh = 0 otherwise, while δh matches the sign of Σ1,ab − Σ2,ab

for a nonempty subset J2 ⊆ P and δh = 0 otherwise, where P =
{
(a, b) : 1 ≤ b ≤ a ≤

p;
∣∣∣Σ1,ab − Σ2,ab

∣∣∣ ≥ c
√

τ/n
}
. Then, the estimator (2.3) satisfies

P
{∣∣∣ k̂0

k0
− 1

∣∣∣ ≥ ϵ
}

≤ c1p
2n

[
e−c2τ + e−c3

√
nτ + ne−c4

√
τ + ne−c5n

√
τ
]
,

where ci(i = 1, . . . , 5) are some constants. In particular, if p2n2 = o(ec
√

τ ) for some constant

c, then
k̂0

k0

p−→ 1.

Theorem 1 establishes the consistency of change point estimation under stringent

regularity conditions imposed on the weight matrix W = Γ + δδ⊤. Notably, Proposition 1

demonstrates that the equality J1 = J2 = P is statistically guaranteed in the asymptotic

setting. The data-adaptive parameter selection framework introduced in Section 2.2 inherently

satisfies these conditions, ensuring that the consistency guarantees are not only theoretical

but also practically achievable.
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4. Simulations

In this section, we present simulation studies to evaluate the numerical performance of the

proposed estimator in finite samples. We begin by defining the notation. Unless otherwise

specified, all simulation results are based on 1000 independent replications per scenario. For

each replication i = 1, . . . , B (with B = 1000), we obtain an estimate k̂i of the true change

point k0 and compute the absolute error ∆i = |k̂i − k0|. To evaluate change point localization

performance in the subsequent analysis, we report the mean absolute error (MAE) and

standard deviation (SD) of the {∆i}B
i=1 as follows:

MAE = 1
B

B∑
i=1

∆i, SD =

√√√√ 1
B − 1

B∑
i=1

(∆i − MAE)2.

4.1 Data generation settings

For each Monte Carlo replication, we first generate a mean vector µ = (µ1, . . . , µp), where

each component µj is drawn independently from Unif(1, 2). Conditional on this fixed mean

vector µ, we then generate n observations from a multivariate normal distribution with mean

µ and the specified covariance matrix. Specifically, we consider four distinct matrices Σ1 as

follows:

1) Σ(1)
1 = Ip;

2) Σ(2)
1 =

(
Σ(2)

ij

)
i,j=1,...,p

, where Σ(2)
ii = 1, Σ(2)

ij = 0.4 for 5(k − 1) + 1 ≤ i ̸= j ≤ 5k,

k = 1, . . . , ⌊p/5⌋, and Σ(2)
ij = 0 otherwise;

3) Σ(3)
1 = (Σ(3)

ij )i,j=1,...,p, where Σ(3)
ii = 1 and Σ(3)

ij = (−1)min{i,j}+10.4|i−j|;
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4.1 Data generation settings

4) Σ(4)
1 = QD1Q

⊤, where Q is an orthogonal matrix and D1 = diag(u1) with u1 being a

p-dimensional vector whose elements are i.i.d. from Unif(0.5, 1.5).

In these settings, Σ(1)
1 is a diagonal matrix, while Σ(2)

1 , Σ(3)
1 and Σ(4)

1 introduce weak

correlations. Specifically, Σ(2)
1 is a block diagonal matrix with 5 × 5 blocks, as used in Cai

et al. (2013); Σ(3)
1 is Toeplitz-type matrix incorporating positive and negative correlations

via (−1)min{i,j}+1; and Σ(4)
1 represents a general covariance matrix, as employed in Ding et al.

(2025). The structure of each Σ1 is illustrated in Figure 1 with p = 20. To examine variations

in covariance, we consider different relationships between p and n, which determine the

signal strength. For n = 200 and p ∈ {50, 100}, given a specific Σ1, we study three distinct

covariance matrices Σ2 as follows:

1) Σ(1)
2 = Σ1 + ∆1, where ∆1 = diag

(
(u⊤

1,0.3p, u⊤
2,0.7p)⊤

)
, with u1,0.3p and u2,0.7p being

0.3p- and 0.7p-dimensional vectors whose elements are i.i.d. from Unif(2, 3) and Unif(0,

1), respectively;

2) Σ(2)
2 = Σ1+∆2, where ∆2 = (δij)i,j=1,...,p, with δii = 2, δij = (−1)min{i,j}+1 for |i−j| = 1

and δij = 0 otherwise;

3) Σ(3)
2 = D

1
2 Σ1D

1
2 , where D = diag(u) with u being a p-dimensional vector whose

elements are i.i.d. from Unif(2, 4).

In these settings for Σ2, Σ(1)
2 introduces changes on the diagonal with varying magnitudes;

Σ(2)
2 indicates a band structure change, introducing increasing and decreasing variations

through (−1)min{i,j}+1; and Σ(3)
2 represents a covariance matrix where each element undergoes

multiplicative changes of varying magnitudes, a configuration similarly explored in Cai et al.
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4.1 Data generation settings

Σ1
(1) Σ1

(2) Σ1
(3) Σ1

(4)

Figure 1: Four distinct structures of Σ1 examined in the simulation with p = 20.

(2013). The primary objective of this simulation setup is to compare various covariance

matrix structures and assess how differences in these matrices influence the performance of

change point detection methods. For n = 200 and p ∈ {200, 300}, preliminary simulations

indicate that a strong difference signal, as described above, is not necessary to achieve

satisfactory change point detection results. Therefore, we weaken the signal by considering,

for a given Σ1, three new covariance matrices Σ2 as follows:

1) Σ(1∗)
2 = Σ1 + ∆∗

1, where ∆∗
1 = diag

(
(u⊤

1,20, u⊤
2,30, 0⊤

p−50)⊤
)
, with u1,20 and u2,30 being

20- and 30-dimensional vectors whose elements are i.i.d. from Unif(1.5, 3.5) and Unif(0,

1);

2) Σ(2∗)
2 = Σ1 + ∆∗

2, where ∆∗
2 = diag(∆2, 0p−50×p−50), with ∆2 = (δij)50×50, δii = 2,

δij = (−1)min{i,j}+1 for |i − j| = 1 and δij = 0 otherwise;

3) Σ(3∗)
2 = D∗ 1

2 Σ1D
∗ 1

2 , where D∗ = diag(u∗) with u∗ being a p-dimensional vector whose

elements are i.i.d. from Unif(1, 3).
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4.2 Testing for the existence of a change point

4.2 Testing for the existence of a change point

To evaluate the finite-sample performance of our proposed test for the existence of a change

point, we conduct a simulation study. Under the null hypothesis H0, we consider four distinct

covariance matrices Σ1, as described in Section 4.1, with Σ2 = Σ1. Under the alternative

hypothesis H1, for each Σ1, we pair it with three corresponding post-change covariance

matrices Σ(1)
2 , Σ(2)

2 , Σ(3)
2 , as specified in Section 4.1. We set the sample size to n = 200, the

change point to k0 = ⌊0.3n⌋, the number of resampling iterations to Q = 500, and vary the

dimension p from 50 to 200. For each configuration, we report the empirical frequency of

rejecting H0. The simulation results under H0 and H1 are summarized in Table 1. The

proportions of rejecting H0 when Σ1 = Σ2 are consistently close to 0, while the proportions

of rejecting H0 when Σ1 ̸= Σ2 are consistently close to 1. These results demonstrate the

effectiveness of our method in detecting the existence of a change point.

Table 1: Rejection frequencies for the existence of a change point over 1000 simulation

replications: rows labeled H0 report rejections when Σ2 = Σ1, while rows labeled H1 report

the average rejections across three distinct Σ2 configurations.

Σ(1)
1 Σ(2)

1 Σ(3)
1 Σ(4)

1 Σ(1)
1 Σ(2)

1 Σ(3)
1 Σ(4)

1

p = 50 p = 100

H0 33 45 38 32 27 39 25 35
H1 999.7 1000 999.3 1000 1000 1000 1000 1000

p = 150 p = 200

H0 26 19 26 21 21 22 20 20
H1 1000 1000 1000 1000 1000 1000 1000 1000
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4.3 Accuracy of change point localization

4.3 Accuracy of change point localization

Before presenting the simulation setup, we introduce two alternative statistics corresponding

to different choices of δ. The first statistic, TW1 , sets δ1 = 0. The second statistic, TW2 ,

employs

δ2,h = sh · I(dh > τ)/∥I(d > τ)∥2,

which assigns equal normalized weights to the selected entries. For the data-generating

process, we consider multiple configurations of Σ1 and Σ2 as described in Section 4.1. The

sample size is fixed at n = 200, with parameters c1 = 0.1 and c2 = 0.9; the dimension p

varies from 50 to 300, and the change point is set at k0 = ⌊0.3n⌋. For each configuration,

both the method introduced by Dette et al. (2022) and our method were used to estimate

the change point k0, performing 1000 repetitions to compute the mean absolute error (MAE)

and standard deviation (SD) of the estimates. The numerical results are summarized in

Table 2 for strong signal scenarios and Table 3 for weak signal scenarios.

By comparing the estimators, we identify several key insights that highlight the advan-

tages of our approach. First, across all scenarios, the first three estimates introduced in

this paper exhibit an MAE closer to zero compared to those of Dette et al. (2022), along

with a smaller SD in most cases, indicating more effective covariance change point detection.

Second, while the first three estimators perform similarly in most cases, they exhibit notable

differences in specific scenarios. For instance, when Σ2 = Σ(1)
2 with Σ1 = Σ(1)

1 , Σ(2)
1 , Σ(3)

1

for p = 50, Σ2 = Σ(1∗)
2 with Σ1 = Σ(1)

1 for p = 200, and Σ2 = Σ(1∗)
2 with Σ1 = Σ(2)

1 for

p = 300, the SD of TW1 is significantly larger. This is attributed to the emergence of bounded

estimates, whereas TW performs robustly, suggesting that incorporating T2(k) enhances the
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4.3 Accuracy of change point localization

Table 2: MAE (SD) of estimators for different cases with p = 50 and 100.

Σ(1)
2 Σ(2)

2 Σ(3)
2 Σ(1)

2 Σ(2)
2 Σ(3)

2

p = 50 Σ(1)
1 Σ(2)

1

TW 0.157(0.457) 0.023(0.150) 0.025(0.156) 0.216(0.544) 0.025(0.156) 0.103(0.350)

TW1 0.273(3.754) 0.021(0.143) 0.026(0.159) 0.345(3.828) 0.025(0.156) 0.098(0.347)

TW2 0.220(0.569) 0.034(0.187) 0.028(0.182) 3.197(17.99) 0.026(0.159) 0.636(7.551)

H.Dette 1.608(2.845) 0.794(1.493) 0.677(1.378) 1.786(3.029) 0.891(1.722) 1.469(2.643)

Σ(3)
1 Σ(4)

1

TW 0.196(0.512) 0.055(0.249) 0.045(0.226) 0.157(0.457) 0.030(0.176) 0.015(0.122)

TW1 0.321(3.822) 0.054(0.247) 0.045(0.230) 0.137(0.393) 0.028(0.171) 0.017(0.129)

TW2 0.615(6.494) 0.069(0.280) 0.058(0.250) 0.321(3.823) 0.041(0.203) 0.019(0.144)

H.Dette 1.664(2.932) 1.077(1.963) 1.002(1.940) 1.611(2.850) 0.939(1.741) 0.753(1.388)

p = 100 Σ(1)
1 Σ(2)

1

TW 0.035(0.189) 0.001(0.032) 0.001(0.032) 0.059(0.252) 0.002(0.045) 0.014(0.118)

TW1 0.031(0.179) 0.001(0.032) 0.001(0.032) 0.063(0.259) 0.002(0.045) 0.012(0.109)

TW2 0.033(0.190) 0.001(0.032) 0.002(0.045) 0.065(0.266) 0.003(0.055) 0.027(0.168)

H.Dette 0.695(1.471) 0.371(0.881) 0.357(0.844) 0.705(1.493) 0.387(0.901) 0.621(1.271)

Σ(3)
1 Σ(4)

1

TW 0.040(0.201) 0.006(0.077) 0.003(0.055) 0.037(0.199) 0.001(0.032) 0.002(0.045)

TW1 0.039(0.199) 0.005(0.071) 0.003(0.055) 0.038(0.201) 0.002(0.045) 0.002(0.045)

TW2 0.051(0.246) 0.006(0.077) 0.004(0.063) 0.052(0.239) 0.002(0.045) 0.002(0.045)

H.Dette 0.728(1.505) 0.530(1.141) 0.541(1.109) 0.750(1.514) 0.375(0.904) 0.377(0.917)

original statistic T1(k). However, this improvement relies on a well-chosen δ. Similarly, in

certain cases, particularly those involving Σ2 = Σ(1)
2 with Σ1 = Σ(2)

1 , Σ(3)
1 , Σ(4)

1 for p = 50 and
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4.3 Accuracy of change point localization

Table 3: MAE (SD) of estimators for different cases with p = 200 and 300.

Σ(1∗)
2 Σ(2∗)

2 Σ(3∗)
2 Σ(1∗)

2 Σ(2∗)
2 Σ(3∗)

2

p = 200 Σ(1)
1 Σ(2)

1

TW 0.082(0.312) 0.024(0.160) 0.017(0.129) 0.133(0.462) 0.036(0.197) 0.047(0.221)

TW1 0.202(3.774) 0.027(0.168) 0.017(0.129) 0.141(0.479) 0.037(0.194) 0.041(0.203)

TW2 0.820(8.948) 0.027(0.168) 0.020(0.140) 1.579(12.86) 0.041(0.203) 0.052(0.235)

H.Dette 1.323(2.602) 0.789(1.511) 0.738(1.390) 1.277(2.372) 0.830(1.619) 1.287(2.178)

Σ(3)
1 Σ(4)

1

TW 0.125(0.440) 0.066(0.282) 0.032(0.176) 0.093(0.329) 0.021(0.150) 0.031(0.173)

TW1 0.122(0.389) 0.061(0.267) 0.032(0.176) 0.089(0.327) 0.022(0.153) 0.032(0.176)

TW2 0.262(3.788) 0.195(3.804) 0.040(0.196) 1.070(10.39) 0.023(0.157) 0.035(0.189)

H.Dette 1.305(2.313) 1.048(2.045) 1.155(1.996) 1.215(2.150) 0.729(1.493) 1.085(1.963)

p = 300 Σ(1)
1 Σ(2)

1

TW 0.090(0.319) 0.029(0.168) 0.018(0.133) 0.163(0.520) 0.041(0.208) 0.019(0.137)

TW1 0.086(0.308) 0.028(0.171) 0.018(0.133) 0.278(3.764) 0.038(0.201) 0.018(0.133)

TW2 0.468(6.371) 0.030(0.171) 0.021(0.143) 0.317(3.832) 0.033(0.184) 0.018(0.133)

H.Dette 1.234(2.333) 0.844(1.670) 0.887(1.780) 1.193(2.184) 0.826(1.616) 1.034(1.829)

Σ(3)
1 Σ(4)

1

TW 0.140(0.430) 0.070(0.309) 0.014(0.118) 0.111(0.378) 0.022(0.153) 0.007(0.095)

TW1 0.143(0.437) 0.065(0.277) 0.016(0.148) 0.096(0.321) 0.024(0.160) 0.008(0.100)

TW2 0.144(0.438) 0.069(0.304) 0.020(0.140) 0.742(8.371) 0.034(0.207) 0.008(0.100)

H.Dette 1.201(2.224) 1.012(1.882) 1.059(1.816) 1.245(2.178) 0.857(1.707) 0.693(1.379)

Σ2 = Σ(1∗)
2 with Σ1 = Σ(1)

1 , Σ(2)
1 , Σ(3)

1 , Σ(4)
1 for p = 200, 300, the SD of TW2 is notably larger,

reinforcing the appropriateness of our δ selection. Third, comparing the data generation
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process settings and results in Tables 2 and 3, we observe that as the dimension p increases

from less than n to greater than n, our proposed statistic does not require the strength of the

change to scale with p. Instead, a fixed-scale signal strength, independent of p, is sufficient

to achieve superior detection results, highlighting the effectiveness of the reweighting method

in high-dimensional settings. Finally, our estimator consistently delivers robust performance

across all scenarios, demonstrating its capability to accurately estimate change point locations

under diverse covariance structures and varying degrees of covariance changes.

In summary, the simulations demonstrate substantial improvements from our proposed

estimator, especially when the true change point lies away from the sample center. To

demonstrate the computational efficiency of our method, we measured the execution time of

each step. Specifically, using MATLAB (R2018a) on an 11th Gen Intel® Core™ i5-11320H

3.20 GHz processor with p = 100 and n = 200, detecting the existence of the change point

and computing the threshold took approximately 7.8 seconds, and estimating the change

point took only 0.17 seconds. The robustness and accuracy of our method across a wide

range of covariance structures and change scenarios underscore its potential as a reliable tool

for change point detection in diverse applications.

5. Empirical Evidence

In this section, we apply our method to a dataset of handwritten numeral features (‘0’–‘9’)

extracted from a collection of Dutch utility maps (misc_multiple_features_72) and com-

pare its performance with other estimators described in Section 4.3. The dataset comprises

https://archive.ics.uci.edu/dataset/72/multiple+features
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2,000 handwritten numerals (‘0’–‘9’), with 200 patterns per class, digitized into binary images.

These digits are represented using six different feature sets, and we selected the set of 76

Fourier coefficients (i.e., p = 76). We focus on the change point problem involving the

numeral ‘0’ relative to other numerals.

To investigate the existence of a change point, we construct concatenated datasets by

randomly selecting 100 patterns of the numeral ‘0’ and 100 patterns of another numeral,

resulting in a dataset with n = 200 and k0 = 100. We then apply our proposed method, as

detailed in Section 2.3, to test for the existence of a change point in these newly formed

datasets. For every pair of numerals, we repeat this experiment 1000 times and report the

empirical rejection proportion of the null hypothesis H0. Furthermore, given the rotation-

invariant nature of Fourier feature sets, we do not anticipate a change point between the

numerals ‘6’ and ‘9’ (van Breukelen et al., 1998). To validate this, we similarly combine the

datasets for numerals ‘6’ and ‘9’ and conduct the change point detection test. The results,

summarized in Table 4, demonstrate that our method effectively identifies the existence of

the change point. Specifically, a change point is consistently detected between the numeral

‘0’ and each of the other numerals, while the results for numerals ‘6’ and ‘9’ align with the

theoretical expectation, confirming the absence of a change point between them.

Next, we address the problem of estimating the change point. Building on the above

design, we concatenate the dataset for ‘0’ with each other numeral in turn by randomly

sampling 120 patterns of ‘0’ and 180 patterns of the other numeral, resulting in n = 300 with

the true change point k0 = 0.4n. We then estimate the change point using the boundary

trimming parameters c1 = 0.1 and c2 = 0.9, repeating the procedure 1000 times for each
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Table 4: Proportion of rejecting H0 for various pairs of numbers.

‘0’ and ‘1’ ‘0’ and ‘2’ ‘0’ and ‘3’ ‘0’ and ‘4’ ‘0’ and ‘5’

Prop 1.000 1.000 1.000 1.000 1.000

‘0’ and ‘6’ ‘0’ and ‘7’ ‘0’ and ‘8’ ‘0’ and ‘9’ ‘6’ and ‘9’

Prop 1.000 1.000 0.962 1.000 0.022

combination. We visualize the estimation results by plotting boxplots of estimated relative

change point locations k̂i/n (i = 1, . . . , B) for each combination in Figure 2.
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Figure 2: Boxplots of the change point estimates for each combination.
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As shown in Figure 2, TW , TW1 , TW2 are generally more accurate than the benchmark

estimator of Dette et al. (2022) across most pairings. However, for the combination of ‘0’ and

‘5’, TW1 produces the boundary estimate, while TW2 and TW perform well, which is consistent

with our simulation results. For the combination of ‘0’ and ‘8’, the latter three estimators all

produce the boundary estimate, and multiple contributing factors influence this outcome.

First, the difference between the covariance matrices of ‘0’ and ‘8’ is relatively small, as seen

in the results in Table 4, which affects the performance of estimators. Second, similar to the

CUSUM statistic, a general statistic can be expressed as T
′
W (k) =

(
(k)2(n−k)2

n2

)η
·TW (k), where

η ∈ [0, 1] is a tuning parameter. Hariz et al. (2007) considered the CUSUM statistic with

different tuning parameter settings. The tuning parameters η = 1 and η = 0.5 correspond

to the statistics used in Fryzlewicz (2014) and Enikeeva and Harchaoui (2019), respectively.

Our boundary removal procedure is reasonable given our k0 = ⌊r0n⌋ setting, and following

Jiang et al. (2024), we use the statistic with η = 0. With boundary removal, the estimate

with η = 0 can be more accurate, especially when the relative location of the change point r0

is not near 0.5. However, the estimate is inevitably susceptible to boundary effects. Better

results may be obtained by estimating the change point with a η ̸= 0 for the ‘0’ and ‘8’

combination. Furthermore, the boundary removal procedure may not be strictly necessary

with a sufficiently large η. The selection of η will be explored in future work.

6. Conclusions

This article addresses the problem of detecting the change point in covariance matrices.

First, we propose a reweighted CUSUM-type statistic for estimating the change point. Next,
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we introduce a data-adaptive parameter selection method. Additionally, building on this

change point estimation approach, we develop a hypothesis testing procedure to assess the

existence of a change point. Extensive simulation studies and real-world data analyses

validate the accuracy of our change point estimation, the precision of our parameter selection,

and the effectiveness of our method for testing the existence of the change point. Finally,

our theoretical results establish the consistency of the proposed estimators. Future research

could further investigate the construction of theoretically optimal estimators, relax the tail

assumptions, and extend the proposed framework to broader settings, including online change

point detection and multiple change point scenarios.
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