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Abstract:

One of the common challenges faced by researchers in recent data analysis is missing values. In the
context of penalized linear regression, which has been extensively explored over several decades, missing
values introduce bias and yield a non-positive definite covariance matrix of the covariates, rendering
the least square loss function non-convex. In this paper, we propose a novel procedure called the linear
shrinkage positive definite (LPD) modification to address this issue. The LPD modification aims to
modify the covariance matrix of the covariates in order to ensure consistency and positive definiteness.
Employing the new covariance estimator, we are able to transform the penalized regression problem into
a convex one, thereby facilitating the identification of sparse solutions. Notably, the LPD modification
is computationally efficient and can be expressed analytically. In the presence of missing values,
we establish the selection consistency and prove the convergence rate of the ¢;-penalized regression
estimator with LPD, showing an f2-error convergence rate of square-root of log p over n by a factor of
(50)%/? (so: the number of non-zero coefficients). To further evaluate the effectiveness of our approach,
we analyze real data from the Genomics of Drug Sensitivity in Cancer (GDSC) dataset. This dataset
provides incomplete measurements of drug sensitivities of cell lines and their protein expressions. We
conduct a series of penalized linear regression models with each sensitivity value serving as a response

variable and protein expressions as explanatory variables.

*To whom all correspondence should be addressed.
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Key words and phrases: general missing dependency, lasso, positive definiteness.

1. Introduction

Regularized or penalized linear regression has been largely explored for decades, motivated

from a variety of modern applied fields (Lee et al.,|2003; (Ghosh and Chinnaiyan, 2005; Daye|

et al., 2012; [Han and Tsay, 2020) where the sample size is much smaller than the number of

variables to be analyzed. Among different regularizations in linear regression such as ridge

(Hoerl and Kennard, |1970), lasso (Tibshirani, 1996} |Zou, 2006]), Dantzig selector (Candes

and Tao, 2007)), elastic net (Zou and Hastie, 2005), SCAD (Fan and Li, 2001), the lasso

regression has gained its popularity because its statistical properties (Zhao and Yu, 2006;

Lee et al., 2015} [Zoul, [2006; van de Geer and Biithlmann|, [2009; Fu and Knight| 2000) and

computational aspects (Efron et al., |2004; |Osborne et al., 2000; Friedman et all 2007) are

well established.

Though the technology for data collection has exceptionally advanced in recent years,
one common issue that researchers face in data analyses is missing values. Our motivating
example is drug response data (https://www.cancerrxgene.org/, Release v8.4, July 2022)

and the pan-cancer proteomic profile of 8498 proteins from 949 human cancer cell lines

(28 tissue types, more than 40 cancer types) (Gongalves et al. [2022). This study was

to measure the sensitivities (IC50/AUC) of cells to different drugs and aimed to find the

association between drug responses and protein levels. Missing data are widely seen in mass

spectrometry (MS)-based proteomics (Webb-Robertson et al., 2015) or metabolomics

, 2018). Causes for missing values could be biological or technical (e.g., stochastic

fluctuations during data acquisition) and of random or not at-random (Karpievitch et al.)
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2012)). Unless treated appropriately, incomplete data often lead to biased results and hamper
study reproducibility (Dabke et al., 2021)). For instance, for the lasso regression Sgrensen
et al.| (2015) showed that a naive approach using the incomplete data without correction
does not satisfy estimation consistency (see Proposition 1 therein).

Many researchers have come up with different solutions to address this issue under
linear regression models. First, the expectation-maximization (EM) algorithm is developed
by Stdler and Bhlmann| (2010) where they aimed to find the sparse inverse covariance matrix
and used it in the sparse linear regression. However, the EM algorithm is model-specific and
known to converge slowly. Alternatively, variable selection can be combined with multiple
imputation that is commonly used in practice. For example, one can perform majority votes
based on selection results from multiply imputed datasets (Heymans et al., 2007;|Wood et al.,
2008; [Lachenbruch| |2011; |Long and Johnson, 2015). To avoid the ad-hoc rules for combining
different sets of selected variables, Wan et al.| (2015) and |Li et al.| (2023) considered stacking
imputed datasets and selected the same variables across all datasets, which is termed as
a stacked method in |Du et al.| (2022). In Chen and Caramanis (2013), they proposed the
group-wise selection approach to consistently choose variables across imputed datasets, which
is named a grouped method in Du et al.| (2022). These methods exhibited satisfactory
performance in simulated and real data analyses; however, theoretical evidences are elusive.

To fill this gap, researchers have paid attention on de-biasing approaches. These are
based on the observation that a loss function, for example, mean squared error, is biased if
data are not completely observed. Thus, related work adjusted it by adding or multiplying
de-biasing constants to the covariance part or Gram matrix (e.g. see (2.5])) and solved the

corrected optimization problem with different penalization methods; for example, |Liang and
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Li (2009) used the SCAD penalty, and Loh and Wainwright| (2012) adopted the lasso penalty.
Following Loh and Wainwright| (2012) where estimation consistency is proved, [Sgrensen et al.
(2015)) additionally showed sign consistency under the irrepresentable condition adapted to
their contexts. This line of work, however, has a computational issue that the modified loss
function is no longer convex. It was sidestepped in Rosenbaum and Tsybakov (2010) and
Wang et al.| (2019) by using Dantzig selector that is always defined as a linear programming
regardless of the modification.

A more fundamental remedy for the non-convexity is to modify the corrected covariance
factor 3 to be positive definite (PD). To this end, Datta and Zou (2017) found the closest

PD matrix to 3 using the element-wise maximum norm:

S — argmin || — 2o (1.1)
>0

Using it, they solved the ¢;-penalized regression problem, which is named CoColasso, and
proved estimation and selection consistency under regular conditions including the irrepre-
sentable condition. This area of research has been recently studied further. Though handling
the measurement error not missing data, Zheng et al.| (2018) and Zhang et al.| (2022) proposed
to use different penalty functions, a combination of ¢;- and concave penalty, and fy-penalty,
respectively, to ensure better theoretical properties of estimators (i.e. faster oracle inequal-
ity). |Escribe et al. (2021) considered partially corrupted data where some of explanatory
variables are corrupted under some measurement error model and the others are not. Thus,
they only solved for a smaller dimension at which the measurement errors are found. On
the other hand, in solving , Takada et al. (2019) suggested to downweight components
at which samples are highly missing. To do so, they used a weighted version of Frobenius

norim.
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However, solving is computationally demanding in general because it does not
have a closed form solution. More specifically, the eigen-decomposition of a p-dimensional
symmetric matrix and projection of a p?-dimensional vector to £;-ball are repeated until con-
vergence (Datta and Zou, |2017; [Han et al. [2014)). |Takada et al. (2019) used the (weighted)
Frobenius norm to find the closest PD matrix in which the eigen-decomposition is also re-
peated. Because of this, the existing methods mentioned above may not be practically useful.
The heavy workload can greatly impede further inference procedures using regularized esti-
mators such as bolasso (bootstrapped enhanced lasso, Bach! (2008)) and a modified residual
bootstrapped lasso, which are based on resampling procedures (Chatterjee and Lahiri| (2011,
2013) or stability selection (Meinshausen and Bhlmann, 2010)). Moreover, there is a need
for solving the penalized regression recursively; e.g. online learning procedure (Duchi and
Singer, [2009; Langford et al., [2008; Xiao, [2009)).

In this paper, we propose the linear shrinkage positive definite (LPD) modification of
the covariance matrix for the high-dimensional regression problem with incomplete data.
The key idea is to reduce the class of PD matrices over which the minimization is
taken. We consider the linear shrinkage class defined in . In other words, we shrink
the non-PD & (corrected estimator defined in ) to ul as oSy (1 — a)ul for
some « and p. The proposed way is easy and straightforward due to its simple form, and
above all, computationally fast since the optimal o and p have explicit forms (see
and Proposition . Based on the new covariance estimators, we convexify the penalized
regression problem and thus can easily find the sparse solution ,@LPD to 1} Furthermore,
under the irrepresentable condition, we establish the selection consistency and prove the rate

of convergence by O, (x/log p/ n) in {y-error, which is comparable to what was previously
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achieved by CoColasso (Datta and Zou|, 2017). One of the key tools to prove the results is the
non-asymptotic inequality of the IPW estimator (Theorem [S1|in Supplementary Materials
S1)), which can be of independent interest. Our numerical study also reveals the proposed
one performs comparatively in the finite sample scenarios. We also analyze real data from
Genomics of Drug Sensitivity in Cancer (GDSC) where sensitivity to different drugs and
protein expressions was measured but incompletely. We separately run a list of penalized
linear regression models with each of sensitivity values as a response variable and protein
expressions as explanatory variables, which would have not been feasible if our estimation
procedure were not scalable like CoColasso.

The remainder of the paper is organized as follows. In Section 2, we define different
classes of linear shrinkage estimators from different matrix norms. Then, we describe how to
use the modified Gram matrix in the lasso regression and verify theoretical properties of the
resulting lasso estimator under some conditions. In Section 3, we examine the finite sam-
ple performance of the proposed method compared to existing methods through simulated
data. In Section 4, the proposed regularized regression is applied to incomplete data from
Genomics of Drug Sensitivity in Cancer (GDSC) to identify the most predictive proteins for
two example drugs. In Section 5, we conclude this paper with a discussion of limitations and

potential extensions.
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2. Convexification of Lasso using LPD

2.1 Problem formulation

We assume a linear relationship between explanatory variables x; = (%1, ..., %) and a

response variable y;, which is represented by regression coefficients 8 = (81, ...,8,)
yi=x, B+e, i=1,...,n, (2.2)

where ¢; is an error term independent of x;, and samples are independent acrossi =1,...,n.

For ease of exposition, we assume all the variables are centered; Ex;; = Ee; = 0 and thus

Ey; = 0. Due to the missing structure, we can only observe §;, &; = (%1, ..., Zi) where
y;, if y; is observed, x;;, if z;; is observed,
0, otherwise, 0, otherwise.

Adopting matrix notations, we write § = (§1,...,9,)" and X = [&y,...,&,]". The pe-

nalized regression problem of our interest would be defined by minimizing the residual sum
of squares, ming 5|y — X 3|12 + JA(B) for some penalty function J, indexed by a tuning
parameter A > 0. The problem can be depicted with covariance terms, § = X X /n and
y— XT@/n, ie.

mn %ﬂTSB PB4 1(B) = g(B: S, 7. Jy). (2.4)

However, bias caused by missing values in S and 7 renders the optimal solution of the above
inconsistent. A straightforward remedy is to adjust the bias through an inverse probability
~IPW

weighting (IPW) technique and to use the corrected estimators: ie. S < X |r «

f)IPW. The IPW estimators are defined by correcting every component with an observation
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probability:

=IPW

=S«

ik J

1 1
—m,lﬁj,kép], i)IPWZT*{ :cy71<]<p] (2.5)
T T

where * is the element-wise product between two matrices (or vectors) of the same size.
7§y is a probability that the (j, k)-th explanatory variables are observed, and 7;* that the
J-th explanatory variable and response variable are observed. They are precisely defined
in Assumption [2] The idea of replacing the sample covariances by the IPW estimators has
been used in covariance/precision matrix estimation (Park et al. 2023; |Lounici, 2014; Park
and Lim, 2019; |Park et al., [2021} [Pavez and Ortegal 2021; Cai and Zhang), 2016). However,
iIPW is not PD in general, and thus ¢(3; ilpw, o'W Jy) in is not convex, even if Jy
is convex (e.g. lasso penalty). Thus, we use a PD alternative based on the linear shrinkage
method (Ledoit and Wolf, 2004; (Choi et al., [2019), which finds a PD matrix closest to the

non-PD in the linear shrinkage class. It solves

~IPW AIPW
®,.(X )€ Argmin H , (2.6)
& C IPW
w,a€ e
for some matrix norm || - ||, where C. is a class of the linear shrinkage matrices defined in

(2.9). Hereafter, we name the PD modification using the linear shrinkage method as LPD and
' ~IPW LPD , . . :
denote the solution ®,,(X ) by X for notational simplicity. In the following sections,
we give a detailed account of explicit forms of LPDs in different matrix norms (Section 2.2).
In the next section (Section 2.3), we study theoretical properties of the solution of the lasso

regression:

~LPD
min 1aTs"g a7, P+ N8B, (2.7)

~LPD
where X is applied as the Gram matrix.

We end this section by introducing the results of|Lee et al. (2015) where the authors study
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a generalized framework for the regularized M-estimators that includes our problem ({2.7)).
To prove the rate of convergence in terms of ¢s-error and consistent recovery of the support,
they assumed three conditions (i) restricted strong convexity (RSC), (ii) irrepresentability
condition (IR), and (iii) bounded gradient condition (BG). We refer to Supplementary Ma-
terials [52.1] or the original reference for more details about the formulation. In our context,
the IR and BG conditions are simplified to the condition (C1) and (C2) of Proposition [2
while the RSC condition is reduced to (C3) of it due to the linear shrinkage structure.

To describe the results, we introduce notations. Consider the model space M4 = {3 €
RP: 3; =0,j € A°} where A C [p| is the support of true parameter 8*. We divide a square
matrix using the support A and denote by A g4, Aasc, Asca, Ascac, each of which restricts
rows and columns of A on corresponding index sets. We denote by Apin(A) or Apax(A) the
smallest or largest eigenvalue of A, respectively. Then, we can easily derive the following
based on the results in Lee et al. (2015). Remark that the norm in (C1) is the matrix (-
norm (i.e. maximum of column-wise sum) and the one in (C2) is the element-wise maximum

norm of a vector.

. ~IPW ~LPD
Proposition 1. Assume A\, (X ) < 0. For € > 0 such that € < A\, (%), define by 3

~IPW ~IPW , .
the LPD of X over the class C.(X ). Suppose there exists constants 7 € (0,1) and

A > 0 such that:

(C1)

HALPD ALPD 1

<l-7,
oo

42 —17) HZA:LPD

(C2) g —p™ <

~LPD
(CS) t't;é%lgxlCZO tTE t/tTt Z min{0'5>\min(2AA)v :u}a
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Then, the followings hold:
(R1) The minimizer ELPD of (2.7)) is unique,

. 4 7
Bl S oo (1 + Z) VA,

(R3) AP =0, jeA-

D

®2) 8"

The proof of Proposition [I] is postponed to Supplementary Materials which is offered

solely for completeness. We do not assert any contribution to it.

2.2 Explicit forms of LPD

In the estimation of high dimensional covariance matrix (Bickel and Levina, 2008bja; Roth-
man, 2012), structural assumptions on true covariance matrix are often made, and many
regularized estimators are proposed accordingly. However, the regularization typically does
not impose PDness, which makes the resulting estimate not PD in general. Several efforts
are made to find an estimator that attains both sparsity and PDness (Bien and Tibshirani,
2011; Lam and Fan, 2009; |[Liu et al.l 2014; Rothman, [2012; Xue et al.l 2012; |Choi et al.|
2019). Among them, the fixed support positive definite modification (FSPD) by [Choi et al.
(2019) is initially designed to make a covariance matrix estimator PD while preserving its
support as its name indicates. However, FSPD is still tempting even for cases where we do
not have structural assumptions on covariance matrices but need PDness. Since it is com-
putationally easy and is applicable to any non-PD matrix, we adopt this idea for estimating
the PD gram matrix under the missing data structure.

Let A be a real symmetric matrix to be modified PD. For a given ¢ > 0, we define the

class of LPD by

C(A)={aA+ (1 —a)ul:ac(0,1),p € R adpm(A)+ (1 —a)u>e}.  (2.8)
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Following |Choi et al. (2019) and (Cho et al. (2021, we minimize a distance induced by any
matrix norm || - ||:

i A—d, .. 2.9
%rglcrj(A)H ol (2.9)

Note that the minimization is taken over (u, a), and the distance in (2.6)) is indeed rewritten
as |JaA+ (1 —a)ul — Al = (1 — a) ||uI — A|. In the meantime, if Apin(A) < € < pu, the
constraint can be expressed as

W—€

dpin(A)+ (1 —a)p>e <—= a < ———.
(A)+ (1 - (A

We thus know that the optimal solution a* for fixed p > € is

o =a(p) = (A (2.10)

regardless of the type of the norm. On the other hand, the solution to p depends on
the distance we use. The following proposition summarizes the results. We define matrix
norms as ||All2 = \/Amax(ATA), ||Allr = \/tr(ATA)/ds, || Al = maxies,) 252, Jas],

|| A max = maX;e(a] jelds] |@s;] for any real matrix A € R%*d2,

Proposition 2. For a given symmetric matrix A = (a;j)1<; <, With positive diagonals,
assume Apin(A) < 0 < € < p. The linear shrinkage ®,, o~ of A achieves the minimum at

different values of y according to different matrix norms.
1. (Spectral norm, Lemma 2 of (Choi et al.| (2019))
A = ®parlly = € = Amin(A)
for any p > max{e, (Amax(A) + Amin(A))/2}.
2. ((Scaled) Frobenius norm, Lemma 3 of |Choi et al.| (2019))

HA - q)u},a* HF = (6 — Amin(A))V/ 111
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where 15 = >0 (N(A) — N2/ > 1 (N(A) = Amin(A))? and \ is an average of the

J=1

eigenvalues of A, A\j(A),...,\,(A).

3. ({x-norm, Lemma 3 of |Cho et al.| (2021))

HA - (I)u,a* 00
(\ € — Amin(A) as pu — oo, if Apin(A) + My > 0,
e~ Aum(A). for any > (M, — My)2,
= if Apin(A) + My =0,
(€= dunl ) (IRt = (0~ M2
if Apin(A) + My <0,

\
where M; = max; (a;; + Dii |a;;|) and My = max; (—a;; + D i |a;;|). Note that

if Amin(A) + My > 0, there is no solution.

4. (Element-wise maximum norm)

A = @]

max

.
(6 — )\min(A))(ad,max - CLd,min)/Q
(ad,max + ad,min)/Q - )\min(A) ’

at p = (ad,max + ad,min)/27

if (ad,max - ad,min)/2 > Qoff max )

(6 -V Amin(A))aoff,maX
G min + Qoff,max — >\min<A) ,

at H = Gd min + Qoff,max >

if (ad,max - ad,min)/z S aoff,max~

\

where agmax = MAaX; ajj, Agmin = MiN; aj;, ANd Aoffmax = MaAX;£; |a;5].

We only provide a proof of the last case of Proposition [2] which is in Supplementary Materials

[S2.2] and for the others we refer readers to the original references.
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Finally, we provide a guideline to choose tuning parameters of LPD, i.e. € and pu.
Throughout this paper, we set € = 107*, and the choice has exhibited satisfactory perfor-
mance. The choice of  depends on the type of matrix norms in LPD and matrix A = iIPW.
The result of the Frobenius norm suggests the single best value for u. In contrast, when the

)/2}

is sufficient for the optimality of shrinkage (see Proposition . In this case, we recommend

~IPW ~IPW
spectral norm is used, any choice of u beyond gy, := max{e, Apax(E ) + Amin(X )

use the value at the boundary because it minimizes the effect of shrinkage. However, the
choice is not sensitive in practice, which is verified in our simulation study where different

values of p are compared.

2.3 Main results for consistency

In this section, we check the two conditions in Proposition [I and compute the convergence
rate of BLPD in /y-norm. Prior to it, we state the assumptions and data structure more
precisely.

We introduce binary random variables that indicate whether each entry of data is ob-
served or not: ¢; = I(y; is observed), &7, = I(z;; is observed), i = 1,...,n, j = 1,...,p.
Then, we can concisely express the observed data by the product of the indicator variable
and the data, i.e. §; = 0;y;, Zij = 03;x45, which is equivalent to (2.3)).

We define the sub-Gaussian (or t¢»-) norm of a random variable X in R by || X]||y, =

sup,> (E|X|?)"/?/,/p, and X is called sub-Gaussian if its ¥»-norm is bounded. Under the

regression setting (2.2, we assume the following.

Assumption 1. Fori =1,...,n, fg?%”xij/‘/aﬁHw < K* and ||€;/\/Tcc||yy < K€, where

0;; = Var(zy;), 0 = Var(ey).
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Assume the indicators are Bernoulli variables with general dependency structure (Dai et al.|

2013; [Park et al., 2021), that is:

Assumption 2. Fori=1,...,n, (67,0%,... ,(Sfp) is from the multivariate Bernoulli distri-

bution with the first two moments written by

B0 = nt%, Eo6%0Y =n7Y, E6%L0% =ik,

Jo 7% jo ijYik —
More general moment is denoted as Eéfjlészéfjs =T
The missing mechanism we use is the missing completely at random (MCAR). In the current

data structure, we can specify the assumption as follows.

Assumption 3. The data and indicator variables are independent, i.e.

i Yl » Yaip

The last assumption is about the class of covariance matrices for the covariates. Without
loss of generality, assume the variables of interest (i.e. in the set A) are located in front and

the covariance matrix X is decomposed in blocks accordingly.
Assumption 4. Assume the population covariance matrix 3 = Cov(x;) satisfies
(a) X 44 is positive definite, and

(b) the irrepresentability condition for ¥ is satisfied with respect to the support set A, i.e.,

there exists 7 € (0,1) such that || Z 44X Yllee <1 —7.

The first condition that the smallest eigenvalue is away from zero is not very restrictive, and
the other condition is known to be sufficient and “almost” necessary for selection consistency

(van de Geer and Biithlmann, [2009; |Lee et al., [2015; [Wainwright, |2009).
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~IPW
Throughout this section, we define the LPD estimator as follows. If A\in(X ) >

~IPW
0, construct the LPD estimator ®,,(3 ) by choosing = 1 (and any real-valued pu).

~IPW

Otherwise, for € > 0 such that € < A\pin(2), set o = (p —€)/(1t — Amin(E ) and choose

any p greater than 2e. Based on the assumptions, we present results that guarantee the two

conditions (C1) and (C3) in Proposition (1| with high probability.

Theorem 1 (Irrepresentability condition and RSC condition). Let Assumption @ @
~IPW

hold. Assume 3 4, 1s non-singular. Then, the LPD estimator satisfies the irrepresentability

condition for some constant T € (0, 1) with probability greater than 1 —3/p" for u > 0 if the

sample size satisfies

o logp

n {tr<z>max{<m>2,w_u+1}}2, > on®

(w4 1)%log*(p v n),
min{r/ [ S04,  Avin(Saa) (u+1)"log(p v )

4
for some ¢ > 0. Here, mo = MAX) ko b1, Thokotrtn! (Thop, Thag, ). Moreover, under the same

o IPW
conditions, (C3) of Proposition holds; if Amin(2 ) > 0, u is excluded in the lower bound

of (C3).

To prove the theorem, we first show in Theorem [S2|and [S3|that the irrepresentability condi-
tion holds for f]LPD if 3 is in the small neighborhood of the IPW estimator in terms of /.,
2-norms. The probability of being in the neighborhood is calculated in the proof of Theorem
[[] Technical details can be found in Supplementary Materials [S3.1] In Lemma 6 of Dattal
and Zoul (2017), they also showed similar results: if a surrogate estimator 3, which is the
LPD estimator in our context, is close enough to 3, then ) Ae Ai];lll is to X4 AE;&. In the
theorem below, we use a new notation || B||w 4 = max kz;‘ |bjk|-
€

1<j<p

The following guarantees (C2) of Proposition [1] with high probability.
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Theorem 2 (Bound on the gradient). Let Assumption @ @ hold. Then, if n and p satisfy

n > emax { log p/mil,, 70, log* (p v n) }

for some ¢ > 0, the gradient vector of the mean squared error satisfies the upper bound with
probability greater than 1 —9/p

~ 1
E"8 - o™ < nan/ 22,

n

[0

where L > 0 is a function of parameters given by

max {\/UmaxaeerKi Umax(K””)z}

L= Olﬁ;ax max{(Kx) } 7Tmax hl (,LL, by A) + CQ =5 y
Tmin
i+9 (4) — T TT Tx 4 _
for some positive constants Cy,Cy. Here, Tmax = p hax T trtn] (T Thasy)s Mo =
_ ~IPW
ming 7Y, e = max |B5], and hi(p; 2, A) = tr(Z) (1 + [|Bllsca/p) if Auin(E ) <0

1<5<p
and opax Otherwise.
Proof of the theorem can be found in Supplementary Materials [S3.5] [Loh and Wainwright
(2013, 2017) also required the bounded gradient condition (see Theorem 1 in |Loh and Wain-
wright| (2013)) or [Loh and Wainwright| (2017))). Also, one remarks that dependency of the

bound on 5

max

is similarly observed in the literature of missing data (see SNR conditions in
Chen and Caramanis| (2013); |Datta and Zou| (2017); Theorem 1 in |[Rosenbaum and Tsybakov
(2010)).

Combining these results with Proposition [T, we present the properties of the solution
~LPD
8" of [2.1).
~IPW

Theorem 3. Let Assumptzonl @ @ I hold. Assume EAA 1s non-singular. We choose the

tuning parameter X o< L|.A|(log p/n)'/?

n - c{ tr(32) max{(K*)? 1}

min{r/ Hz;@Hm,Amin(EM

for the lasso regression. If n and p satisfy

(4)

2
lo
- } ) n>cmax{ zgy ) r(;gxlog (p\/n)}
Tmax 10 P )} ™

min
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for some ¢ > 0, then there exist some C' > 0,d > 0,7 € (0,1) such that we can guarantee

with probability greater than 1 — d/p

L ~LPD .
(R1) The minimizer 3 is unique.

~LPD L A logp
R2 ~ Bl < C \/7
(R2) B =Bl = O s —s oV =

(R3) BP =0, jeA

Here, ha(pty Amin(X44)) = min{ Apin(Xa4), 1} if )\min(fllpw) < 0 and Apin(X44) otherwise.

The factor L appears in Theorem 9

We have some remarks regarding this main result. First, the results hold regardless of the
choice of matrix norms in because the optimal choice of « in LPD is independent of
the matrix norms. Also, no terms are involved with € in the theorems, though the actual
performance of LPD can change according to different ¢ due to the numerical stability.
Second, the constant L depends on tr(X), which is an order of p in general. This
trace term is introduced when we control the magnitude of the gradient vector of the loss
function based on the LPD. This condition related to the gradient vector is commonly used
in literature (e.g. (3.1) of|Loh and Wainwright| (2012))). We believe that the additional factor
is the expense in theory we need to pay for convexification of the loss function. However, the
empirical performance of the propose method scales with \/W up to an multiplicative
constant not depending on n and p, which is presented in Supplementary Material [S4.5]
Moreover, there exists a class of distributions of covariates where the constant L is
independent of p. As in the literature on covariance estimation (Lounici (2014); [Mendelson
and Zhivotovskiy| (2020); [Koltchinskii and Lounici (2017))), we can express the trace of X

by the effective rank that measures intrinsic dimension of a symmetric matrix, defined by
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r(X) = tr(X)/||X||2- Note that r(X) < rank(X) < p for general matrices, but the effective
rank would be much smaller than p if 3 is approximately low-rank. See more discussion
in Section 2.2 of Lounici| (2014) or Remark 5.53 of [Vershynin| (2011). Hence, the constant
L would not depend on p if we consider a class of covariance matrices satisfying that (1)
approximately low-rank, or r(X) := tr(X)/||X2]|2 < R (independent of p) and (2) the largest
eigenvalue is bounded, or ||X||s < B (independent of p). Note that the boundedness of a
trace of low-rank matrix ¥ does not contradict to Assumption 4l Then, Theorem [3 states
that under this class of distributions for covariates, the sample size n 2 logp is enough to
guarantee that the solution BLPD is (R1) unique, (R2) fy-consistent, and (R3) has no false
positive with probability close to 1.

Third, we would like to compare our result with the ones previously obtained in Datta
and Zoul (2017) and Loh and Wainwright| (2012)). To facilitate a fair comparison, we reor-
ganize all the results into the following format: if the sample size and dimension satisfies

n/logp > M, then with probability at least 1 — ¢/p, it holds that

~ 1
1B=Blls < C- - A /=22,

where ¢, C' > 0 are some positive constants. Here, E is a coefficient estimator from one of
Datta and Zou| (2017), Loh and Wainwright| (2012)), or the proposed, and #* is the true value
to be estimated. The specific forms of I, £, and M depend on parameters such as (but not
limited to) (1) observation probability, (2) tail thickness (or sub-Gaussian parameter) of the
response variable, (3) tail thickness of the covariates, (4) covariance matrix of the covariates.
While the triplet (K, £, M) is not directly comparable as each paper uses slightly different
assumptions, we aim to highlight the general tendencies.

The convergence rate £ commonly depends on (1) observation probability, (2) tail thick-
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ness (or sub-Gaussian parameter) of the response variable, (3) tail thickness of the covariates,
(4) magnitude of the true value g*, and (5) well-conditionedness of ¥. Regarding (5), the
result from Loh and Wainwright| (2012) is £ o< 1/Amin(2), while Datta and Zou| (2017)

obtained £ o 1/€2, where

Q := minz' 3z, R =A{z:||z|l2 =1, ||z
z€R

1 < 3|zall1},

which is related to the compatibility condition. In contrast, our result satisfies £ o< 1/{7 -
(Amin(X44) A )}, where 7 is a constant from the irrepresentability condition of the LPD
estimator. Similar quantities have appeared from restricted strong convexity in the related
context (Negahban et al.| (2012)), typically with the same order of 1 in the denominator.
The rate from |Loh and Wainwright| (2012) would get worse if the covariance matrix from
covariates on A€ is ill-conditioned, while the other two are not affected. Additionally, while
our result depends on p (the tuning parameter of LPD procedure), this dependency is negli-
gible if 1 is chosen sufficiently large, i.e., g > Apin(X.44). Lastly, our result has dependency
on tr(X), i.e. £ o tr(X).

The constant M characterizes the sample size required to guarantee the derived conver-
gence rate. Across all three methods, the constant depends on (1) observation probability,
(2) tail thickness of the covariates, and (3) well-conditionedness of 3. The dependency on

(3) is similar to that of £. More specifically,

MLoh X 1/)\min<2)27 MDatta X 1/ min{cl7—27 CQQ2}> MPark X 1/{T : )\min(EAfO}Q

where C1,Cy > 0 are constants. In Datta and Zou (2017), M also depends on (5% . and
the tail thickness of the response variable. In our case, M o tr(X), which can be explained

similarly to its appearance in L.
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The constant IC represents the order of sparsity in the convergence rate. Both |Datta and
Zou| (2017) and our result share the same order I = 3/2, while Loh and Wainwright| (2012)
achieves a smaller order L = 1. The order of sparsity may have room for improvement
in proof techniques, as the exponent K = 1/2 in |A|* is commonly observed in the high-
dimensional regression literature (e.g. van de Geer and Bithlmann (2009);|Wainwright| (2009);
Negahban et al. (2012))). In contrast, our result yields K = 3/2, which is attributed to
the linear shrinkage of the non-PD matrix. This can also be seen as a cost incurred for
convexification.

In conclusion, this comparison shows that our method still guarantees similar results
from the previous work, but with an extra term tr(3). Theoretically, this difference is the
price we need to pay for convexification and faster computation. However, for a smaller class
of covariance matrices (e.g., low-rank and bounded largest eigenvalue), this term becomes

negligible.

2.4 Estimation of unknown parameters

It should be noted that our results are based on two implicit assumptions. First, we assume
the observation probabilities are known, as in other error-in-variable literatures (Datta and
Zou| (2017); Serensen et al.| (2015)). Second, following a convention in a regression framework,
we also assume covariates are centered, i.e. mean-zero. However, these may not be the case in
real-world data, and thus we would like to leave some remarks regarding these assumptions.

For estimating the observation probabilities, it is natural to use the empirical proportions
(i.e. the proportion of observed pairs) under MCAR, due to the law of large numbers. In

; ~TT n T ST ~TY n r SY
other words, we suggest using 75y = > i, 0705 /n and 7;¥ = > 1| 67;0] /n. Then, the new



3. NUMERICAL STUDY

IPW estimator is

~IPW,# ~IPW, T )
jk
We have found throughout our numerical study that the penalized regression based on the

above estimator performs quite well.

Next, we consider the case when covariates may have non-zero means. The most straight-

noo~
forward way is to center each covariate by the IPW mean estimator fi; = Zz:—;xw As used

in Kolar and Xing| (2012) and (Cai and Zhang| (2016), this type of IPW estimator is defined
~IPW, n . e . . N : _
by X, g > i1 0505, (Tiy — 1) (Tax — fix)/(n7sy). However, this is not unbiased (in fi-

nite sample), which often complicates theoretical analyses (e.g. concentration inequality).

To address it, we proposed another type of IPW estimator in our earlier work (Park et al.

(2021)):
SIPW3 _ S Tk \ Z?ﬁ TijTirg, _
n(n — 1)7rff7r,f,f

We remark that our theory is based on two types of concentration inequalities for IPW
estimators: one is about the element-wise maximum norm and the other is the spectral norm.
The former has been investigated in our earlier work (Park et al.|(2023)), but the latter has
not yet in literature. Though we tried to derive the non-asymptotic inequality based on the
spectral norm, it is not as simple as the other. We think including such an analysis in this

paper would be unnecessarily complicated, and thus leave it as our future work.

3. Numerical study

We showcase the empirical performance of the proposed estimator LPD based on different
simulation parameters (e.g. dimension p, missing rate of observations, covariance structure

for variables). Our analysis consists of three parts. In the first part, we compare several
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methods including two existing ones and the proposed one based on different choices of p.
In the second, we examine how sensitive the models are to missing values. In the third, we
time an algorithm of each method to see their scalability.

It has to be noted that a simulation study performed by |Romeo and Thoresen (2019)
compared a group of methods available until then, but only considered additive measurement
error models. In the meantime, our simulation study deals with missing data cases, which

is clearly different from what was covered in their work.

3.1 Setting

We adopt experimental settings of Serensen (2019) where they generate responses from the
normal model, i.e. y ~ Nn(j(ﬁ*, O'SI), and each row of the design matrix X from N(0,%)
where the covariance structure is the compound symmetry (3;; = 0.5'0#7)). The dimension
p of covariates varies over p = 200, 500. The regression coefficients 3* have non-zero values
at random positions while keeping the proportion of them at s = 0.05,0.1 (i.e. s is the level
of sparsity). The non-zero coefficients are all equal to 1. We fix n = 200 and o, = 3.
Responses and covariates are subject to missing completely at random (MCAR). More
specifically, we define matrices of missing indicators: M, = (§}) and Mx = (J;) where

o; ~ Ber(0), 675; ~ Ber(f), j = 1,..., |p/3], independently. Then, the corrupted data are

y=9y*M, X=Xx*My,

where x is the element-wise product. Other missing mechanisms (MAR, MNAR) will be
discussed in Section We control the observation probability § = 0.7,0.9. We generate
100 independent datasets to consider random variability.

Given incomplete data (y, X), we compute three comparative estimators: (1) linear
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shrinkage positive definite lasso (LPD), (2) convex conditioned lasso (CoCo) (Datta and Zou,
2017)), and (3) non-convex lasso (NCL) (Loh and Wainwright, [2012). We use the R package
named BDcocolasso (available at https://github.com/celiaescribe/BDcocolasso) im-
plemented by |[Escribe et al|(2021]) to obtain the second estimator and hdme (Sgrensen, |2019)
to obtain the third. Additionally, we add two types of lasso regression in comparison. One
uses the complete data (¢, X) and is named (4) “true lasso”, while the other runs the lasso
regression with mean imputed data and is named (5) “naive lasso”. We do not include the
complete-case analysis as none of the samples are completely observed in high-dimensional
missing data. For instance, in the real data we analyzed, every cell line has at least 48
missing values, making the straightforward approach impractical.

In terms of LPD, we can consider a set of variants based on different choices of pu, but
found that LPD using /.,-norm empirically works well and is robust to different setups.
Hence, for readability, we only report the corresponding results in this section, while the
entire results are provided in Supplementary Materials and

The penalized regression methods mentioned earlier have hyperparameters to be tuned.
To choose a penalty parameter A of CoCo and LPD, we use the corrected cross-validation
proposed in Datta and Zou (2017)), that is, the cross-validation approach adjusted for cor-
rupted data. Simply put, the idea is to minimize the mean square prediction error where
a non-PD covariance matrix estimate is replaced by the PD matrix. More details can be
found in Supplementary Materials [S4.1 The grids are evenly spaced in log scale within the
interval [R/10000, R] where R = 2||7Tqaive||max and Tpaive is the naive lasso estimator. If R =0
(i.e. Thave = 0), then we set R by || X "4y /n||max. For NCL, we need to decide the radius

b such that the solution satisfies || B |1 < b. We search the optimal radius over the grid in
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[R/10000, R] with R = 2||”paive||1- The number of grid points is 100 throughout. Using the
optimal tuning parameter, we re-fit each model and have the estimates of coefficients.

We measure six criteria to assess performance of each method. Following |[Datta and
Zou (2017), we compute the prediction error (PE) and mean squared error (MSE), which is

respectively defined

-~

PE(B)=(B-8")"S(B -8, MSEB)=(B-p8) (B 8.

The number of covariates corrected/incorrectly identified (TP and FP) are also counted.
To see an overall accuracy of variable selection, we also compute the (partial) area under
the ROC curve (pAUC) and Fi-score (harmonic mean of precision and recall) denoted by
F1. We also measure the time each method would take to finish. This includes the tuning

parameter search.

3.2 Results

We present the results of our numerical study, which consists of three parts: (1) a comparison
of different regression methods, (2) a sensitivity analysis with respect to missing rates and
missing mechanisms, and (3) a timing analysis for computation. Due to space limitations,
the latter two are provided in Supplementary Material (see Section and .

In the followings, we compare different regression methods. To reduce the workload
of simulations, we fix § = 0.9 under MCAR. Compared with the existing methods (CoCo,
NCL), LPD is less sparser and has more TP and FP. LPD is proved to be successful in
estimation (low MSE), prediction (low PE), and variable selection (high pAUC, high TP).
Though the difference is negligible considering standard deviation, LPD performs best in

almost all scenarios of the finite sample setting. This result is of great importance since
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p = 200,s = 0.05
PE MSE pAUC Fq TP FP
TL 1.892 (0.601) 3.653 (1.162) 0.953 (0.032) 0.439 (0.065) 9.700 (0.482) 25.370 (6.935)
NL 3.710 (1.279) 6.186 (1.950) 0.873 (0.075) 0.397 (0.076) 8.560 (1.157) 25.590 (7.732)
CoCo 3.490 (1.276) 6.641 (2.424) 0.816 (0.073) 0.398 (0.083) 8.370 (1.236) 24.650 (6.658)
NCL 5.162 (1.337) 6.447 (1.820) 0.519 (0.083) 0.439 (0.118) 8.140 (1.477) 21.800 (15.525)
LPD 3.352 (1.000) 6.320 (1.824) 0.873 (0.070) 0.369 (0.066) 8.790 (1.104) 29.710 (7.312)
p = 500, s = 0.05
PE MSE pAUC Fq TP FP
TL 6.073 (1.243) 11.940 (2.433) 0.815 (0.044) 0.420 (0.054) 22.980 (1.239) 63.190 (16.677)
NL 16.327 (4.124) 26.382 (4.161) 0.555 (0.084) 0.298 (0.060) 13.130 (3.084) 49.950 (9.090)
CoCo 15.738 (3.154) 30.083 (5.651) 0.600 (0.044) 0.290 (0.062) 12.530 (3.119) 48.810 (9.018)
NCL 27.640 (7.481) 26.873 (3.507) 0.506 (0.062) 0.218 (0.055) 14.810 (5.025) 105.450 (55.242)
LPD 13.375 (2.323) 25.482 (3.883) 0.717 (0.064) 0.262 (0.050) 15.250 (3.141) 76.730 (16.213)
p =200,s = 0.1
PE MSE pAUC Fq TP FP
TL 3.240 (0.841) 6.263 (1.631) 0.915 (0.034) 0.535 (0.060) 19.600 (0.651) 34.570 (8.335)
NL 10.299 (3.229) 15.240 (3.293) 0.761 (0.068) 0.438 (0.062) 14.400 (2.340) 31.500 (5.458)
CoCo 9.361 (2.429) 17.288 (4.059) 0.723 (0.055) 0.437 (0.070) 13.880 (2.341) 29.950 (6.660)
NCL 16.726 (3.676) 17.447 (2.445) 0.617 (0.046) 0.398 (0.099) 14.170 (2.775) 42.950 (26.712)
LPD 8.477 (2.144) 15.565 (3.406) 0.774 (0.060) 0.419 (0.057) 14.970 (2.115) 36.940 (7.678)
p = 500,s =0.1
PE MSE pAUC Fq TP FP
TL 14.001 (2.440) 27.630 (4.914) 0.683 (0.049) 0.477 (0.048) 43.950 (2.488) 91.930 (18.908)
NL 48.644 (11.035) 77.535 (11.147) 0.391 (0.057) 0.269 (0.055) 16.770 (3.928) 57.530 (9.157)
CoCo 47.577 (8.028) 91.880 (15.888) 0.548 (0.033) 0.259 (0.051) 15.560 (3.529) 54.000 (8.060)
NCL 76.542 (26.472) 65.129 (11.035) 0.489 (0.039) 0.241 (0.036) 24.940 (7.538) 129.610 (44.213)
LPD 37.225 (5.155) 71.559 (9.319) 0.606 (0.043) 0.267 (0.045) 21.020 (4.259) 86.310 (15.103)

Table 1: Method comparison for p = 200,500 and s = 0.05,0.1. Each performance measure is averaged

over R = 100 repetitions (standard deviation in parenthesis).

LPD is much faster than its competitors (see Table [S4). The naive lasso (NL) seems to have
smaller MSE and higher Fi-score than LPD, but it sharply deteriorates when p increases.
Compared to it, LPD performs nearly best for all cases considered.

Though its more restrictive structure in LPD than CoCo, it shows the superior perfor-
mance in the finite sample study. We believe this is because LPD preserves the off-diagonal

elements of the initial estimator. That is, LPD does not change information about the co-
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variance part. In contrast, CoCo focuses on element-wise approximation, which may lose
such information. As a result, CoCo has good theoretical support, but LPD offers a more

practical solution.

4. Real data: Genomics of Drug Sensitivity in Cancer

Protein Expression Matrix

Pan-cancer proteomic map of 949 human cellines --——--—--.._
(Table 52 of Goncalves et al) H
S ==
AUC values of Lapatinib LX-4720 downloaded !
from https:/iwww.cancermxgene.org release v8.4
(
a
o Sing -
1

| ceulms«mmymnmg.slessmm“
| protein expression leve is igher.

Cellline sensitvity to drug is greater when |
the protein expression level is igher.

Figure 1: The overview of the pan-cancer drug sensitivity analysis and partial validation.

In this section, we studied the performance of the proposed method through drug response
data available from Genomics of Drug Sensitivity in Cancer (GDSC). In this dataset, cancer
cell lines (samples) are treated with different drugs or compounds. Sensitivity to some drugs
was measured by the area under the doseresponse curve (AUCRg) (a response variable), which
is to be modeled by the protein levels of cells (explanatory variables). A small AUCgg value

indicates a strong drug response of the cell line to the drug. A large value of AUCgg means

no or limited response of the cell line to the tested drug (Vis et al.,2016). Among many, we

used the protein expression data from 949 human cancer cell lines. We aimed to discover a
list of (small portion of) proteins (biomarkers) that help explain the drug sensitivity for the
anti-cancer drug of interest. These lists may also be used to identify cell lines that respond

to some drugs more actively than others.
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In the dataset, 949 cell lines and 8, 498 protein expressions were incompletely measured,
but we deleted proteins in which more than 30% of values were missing, resulting in the
bottom left of Figure 2l Then, the final data we used to analyze is n = 867 cell lines and
p = 4,183 proteins. It has 7.15% of missing values in average across cell lines (see the top
of Figure . However, every cell line has at least 48 missing values (see the bottom right of

Figure , meaning the listwise deletion is not feasible.

500 proteins (sorted by missing rate)

)
1] .
£ Missing
T 50 (6.9%)
O Present
(93.1%)
75
2000
8 200 8 1500
@ @
L L
S £ 1000
o o
© 100 o
] ]
2 S 5w
0 o4
0 1000 2000 3000 4000 0 25 500 750
Proteins Cell lines

Figure 2: In the top figure, missing values are marked as black in the data matrix with
randomly chosen 500 proteins. The two bottom figures show the number of missing values

in either proteins (left) or cell lines (right).

We used Lapatinib (an approved drug in treating HER2-positive breast cancers, an
inhibitor of EGFR (also known as ERBB1 and HER1) (Xu et al., 2017) and HER2 (also
known as ERBB2)) and PLX-4720 (selective inhibitor of BRAFV600E) as two examples to
showcase the application of our method in examining the pan-cancer drug responses and
exploring potential protein biomarkers of cancer vulnerabilities.

Before running our proposed method based on ¢,.-norm, we standardized AUCgrg and

protein expressions using sample means and standard deviations calculated ignoring missing
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values. The grid search for the tuning parameter was similarly performed as in the simu-
lation study; the naive lasso estimator 7,.vc was fit and used to decide the range of grids
[R/10000, R] with R = 2||7paive||max in which 100 evenly spaced grid points were considered.

The cross-validation error curves are given in the left of Figure [3]

Lapatinib PLX-4720
LPD-Linf LPD-Linf

error
error

03 1e02 le-0: 1e400 0.001 0.010 0.100
lambda (log10 scale) lambda (log10 scale)

Figure 3: The corrected cross-validation error (solid line). The two vertical lines indicate the
optimal tuning parameter (dashed line) and 1-se rule (dotted line), respectively. The error

bar is deviated from the center by one standard error.

We attempted to interpret the estimated coefficients. For simplicity, we applied the 1-se
rule (the dotted line in Figure [3|) that chose a slightly larger tuning parameter and pursued
a sparser solution whose accuracy was still acceptable. Table [2| below shows the number of

non-zero coefficients and their signs.

Lapatinib PLX-4720

Sign (<) (+) =zero (=) (+) =zero

Count 48 40 4088 58 29 4089

Table 2: Signs of the estimated coefficients from the 1-se rule (transposed).

In our analysis, a negative association (coefficient) with AUCRg suggests greater sensitivity
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(of a cell line) when the protein level is high. A tool developed by Qin et al. (2017) aiming
at the discovery of drug sensitivity and gene expression association was used to assist us
in demonstrating the robustness of our method. In Qin et al. (2017)), a positive correlation
with the IC50 indicates that the drug is less effective when the expression of a targeted
gene is higher and vice versa. However, it is essential to note that the concordance between
proteomics and transcriptomics can be weak (Wu et al., [2013). Integrating the information
obtained from each data modality may help predict the effects of gene/protein levels on
anti-cancer drug activity (Gongalves et al., [2022)).

For the case of Lapatinib, we found 48 proteins that showed a significant negative asso-
ciation with the AUCRgg. Interestingly, EGFR, the canonical target of Lapatinib, was also
found to be among the selected proteins. Among 48 proteins, nine showed concordance
with the expression of nine genes (BAIAP2, FAM83H, HDHD3, HSD17B8, KRT19, MIEN1,
PLXNB2, REEPG, and SEC16A) affecting the activity of Lapatinib estimated by [Qin et al.
(2017) using IC50 and GDSC gene expression data. It has been known that MIENT is am-
plified along FRBB2 and exhibits oncogenic potential (Omenn et al., 2014)). It is linked to
cisplatin resistance and is highly expressed in Lapatinib-sensitive breast cancer cells than
Lapatinib-resistant breast cancer cells (Kumar et al., 2019).

PLX-4720 has shown in vitro and in vivo efficacy in treating thyroid cancer and melanoma
(Coperchini et al., [2019). In our analysis, 58 proteins showed a negative association with
AUCRgs. Regarding thyroid cancer, 8 corresponding genes (FAHD2A, FKBP10, GSN, QDPR,
RAB27A, RETSAT, S100A13, TIMM50) also had negative Spearman’s rank correlation co-
efficient in the analysis by Qin et al.| (2017) (using IC50 and GDSC gene expression data). Ten

out of 12 genes (AMDHD2, CTSB, ENDOD1, HIBADH, KANK2, PML, RPS27L, SP100,
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STX7, and TIMMDC1) showed negative Spearman’s rank correlation coefficient in the anal-
ysis for melanoma by |Qin et al.| (2017). These generally concordant results suggest the

relevance of our pan-cancer regression modeling approach.

5. Conclusion

This paper tackles the penalized linear regression problem with missing observations where
the estimated Gram matrix of covariates is non-PD in general. To handle it, we present a
significantly simpler approach for positive definite modification of non-PD matrices inspired
by linear shrinkage of covariance matrix. Due to its closed forms, the procedure is scalable
even for high-dimensional regression, while the lasso solution based on it still enjoys the same
rate of convergence and selection consistency. Through analyzing simulated and real data, we
verify that the proposed method has a greater advantage in computational aspect compared
to existing methods while ensuring theoretical properties such as selection consistency.

We acknowledged some potential to extend our method to the MAR case by modeling

T
ik

the observation probability 7%, = m(@;ons;m) using the (fully) observed data. It can be
shown that the corresponding IPW estimator is unbiased under the MAR assumption, but
its concentration inequalities are more difficult to derive due to the dependency of observed
data. This extension is interesting for future work. Moreover, we expressed the estimation
performance with the minimum pairwise sample size. Zheng and Allen| (2023) came up with
measuring individual dependency on missing observations in a different context (estimation
of the graphical model). Under suitable assumptions on the graph structure of explanatory

variables (e.g. sparsity), representing the individual dependency would give more insights

for the regression coefficients. This needs more investigation on the simultaneous estimation
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of covariance matrix and regression coefficients, and thus we leave it as future work.

As the quadratic loss is closely connected to the Gaussian distribution, a natural ex-
tension of our work is to exponential families, i.e. the generalized linear model (GLM).
Seemingly, it looks challenging to define a Gram matrix in this context due to the non-linear
link function. However, when fitting the generalized linear model, an adjusted dependent
variable is used in the process of an iterative (re-)weighted least squares (James and Rad-
chenkol (2009)). Moreover, one may find that the adjusted dependent variable can be seen
as the sum of a linear predictor (evaluated at the current iteration) and the Pearson resid-
ual. Based on this observation, we may construct Gram matrices defined between linear
predictors and/or Pearson residuals. We plan to explore this extension in future.

To address the sub-optimal convergence rate caused by the trace term in our theories,
there might be room for improvement. Currently, we transit the deviation of the smallest
eigenvalue of the IPW estimator (see Lemma to the spectral norm using Weyl’s inequal-

IPW ~IPW . : Co
) — Auin(X)| < |13 — X||o. However, this inequality may not be tight in

ity; [Amin(S
a certain class C of the covariance matrix. If a sharper upper bound of the left-hand side,

ideally not depending on the trace term, could be achieved, then the theoretical results could

be further improved.

Supplementary Materials

The supplementary material available online presents additional simulation results and tech-

nical theorems to prove the main results.
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