
Statistica Sinica Preprint No: SS-2025-0303 
Title Linear Shrinkage Convexification of Penalized Linear 

Regression with Missing Data 
Manuscript ID SS-2025-0303 

URL http://www.stat.sinica.edu.tw/statistica/ 
DOI 10.5705/ss.202025.0303 

Complete List of Authors Seongoh Park,  
Seongjin Lee,  
Nguyen Thi Hai Yen,  
Nguyen Phuoc Long and 
Johan Lim 

Corresponding Authors Johan Lim 
E-mails johanlim@snu.ac.kr 

Notice: Accepted author version. 



Statistica Sinica

Linear Shrinkage Convexification of

Penalized Linear Regression With Missing Data

Seongoh Park1, Seong Jin Lee2, Nguyen Thi Hai Yen3,

Nguyen Phuoc Long4, Johan Lim5,∗

1Sungshin Women’s University, 2University of North Carolina at Chapel Hill,

3Inje University College of Medicine, 4Chang Gung University, 5Seoul National University

Abstract:

One of the common challenges faced by researchers in recent data analysis is missing values. In the

context of penalized linear regression, which has been extensively explored over several decades, missing

values introduce bias and yield a non-positive definite covariance matrix of the covariates, rendering

the least square loss function non-convex. In this paper, we propose a novel procedure called the linear

shrinkage positive definite (LPD) modification to address this issue. The LPD modification aims to

modify the covariance matrix of the covariates in order to ensure consistency and positive definiteness.

Employing the new covariance estimator, we are able to transform the penalized regression problem into

a convex one, thereby facilitating the identification of sparse solutions. Notably, the LPD modification

is computationally efficient and can be expressed analytically. In the presence of missing values,

we establish the selection consistency and prove the convergence rate of the `1-penalized regression

estimator with LPD, showing an `2-error convergence rate of square-root of log p over n by a factor of

(s0)3/2 (s0: the number of non-zero coefficients). To further evaluate the effectiveness of our approach,

we analyze real data from the Genomics of Drug Sensitivity in Cancer (GDSC) dataset. This dataset

provides incomplete measurements of drug sensitivities of cell lines and their protein expressions. We

conduct a series of penalized linear regression models with each sensitivity value serving as a response

variable and protein expressions as explanatory variables.

∗To whom all correspondence should be addressed.
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1. INTRODUCTION
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1. Introduction

Regularized or penalized linear regression has been largely explored for decades, motivated

from a variety of modern applied fields (Lee et al., 2003; Ghosh and Chinnaiyan, 2005; Daye

et al., 2012; Han and Tsay, 2020) where the sample size is much smaller than the number of

variables to be analyzed. Among different regularizations in linear regression such as ridge

(Hoerl and Kennard, 1970), lasso (Tibshirani, 1996; Zou, 2006), Dantzig selector (Candes

and Tao, 2007), elastic net (Zou and Hastie, 2005), SCAD (Fan and Li, 2001), the lasso

regression has gained its popularity because its statistical properties (Zhao and Yu, 2006;

Lee et al., 2015; Zou, 2006; van de Geer and Bühlmann, 2009; Fu and Knight, 2000) and

computational aspects (Efron et al., 2004; Osborne et al., 2000; Friedman et al., 2007) are

well established.

Though the technology for data collection has exceptionally advanced in recent years,

one common issue that researchers face in data analyses is missing values. Our motivating

example is drug response data (https://www.cancerrxgene.org/, Release v8.4, July 2022)

and the pan-cancer proteomic profile of 8,498 proteins from 949 human cancer cell lines

(28 tissue types, more than 40 cancer types) (Gonçalves et al., 2022). This study was

to measure the sensitivities (IC50/AUC) of cells to different drugs and aimed to find the

association between drug responses and protein levels. Missing data are widely seen in mass

spectrometry (MS)-based proteomics (Webb-Robertson et al., 2015) or metabolomics (Wei

et al., 2018). Causes for missing values could be biological or technical (e.g., stochastic

fluctuations during data acquisition) and of random or not at-random (Karpievitch et al.,
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1. INTRODUCTION

2012). Unless treated appropriately, incomplete data often lead to biased results and hamper

study reproducibility (Dabke et al., 2021). For instance, for the lasso regression Sørensen

et al. (2015) showed that a naive approach using the incomplete data without correction

does not satisfy estimation consistency (see Proposition 1 therein).

Many researchers have come up with different solutions to address this issue under

linear regression models. First, the expectation-maximization (EM) algorithm is developed

by Stdler and Bhlmann (2010) where they aimed to find the sparse inverse covariance matrix

and used it in the sparse linear regression. However, the EM algorithm is model-specific and

known to converge slowly. Alternatively, variable selection can be combined with multiple

imputation that is commonly used in practice. For example, one can perform majority votes

based on selection results from multiply imputed datasets (Heymans et al., 2007; Wood et al.,

2008; Lachenbruch, 2011; Long and Johnson, 2015). To avoid the ad-hoc rules for combining

different sets of selected variables, Wan et al. (2015) and Li et al. (2023) considered stacking

imputed datasets and selected the same variables across all datasets, which is termed as

a stacked method in Du et al. (2022). In Chen and Caramanis (2013), they proposed the

group-wise selection approach to consistently choose variables across imputed datasets, which

is named a grouped method in Du et al. (2022). These methods exhibited satisfactory

performance in simulated and real data analyses; however, theoretical evidences are elusive.

To fill this gap, researchers have paid attention on de-biasing approaches. These are

based on the observation that a loss function, for example, mean squared error, is biased if

data are not completely observed. Thus, related work adjusted it by adding or multiplying

de-biasing constants to the covariance part or Gram matrix (e.g. see (2.5)) and solved the

corrected optimization problem with different penalization methods; for example, Liang and
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Li (2009) used the SCAD penalty, and Loh and Wainwright (2012) adopted the lasso penalty.

Following Loh and Wainwright (2012) where estimation consistency is proved, Sørensen et al.

(2015) additionally showed sign consistency under the irrepresentable condition adapted to

their contexts. This line of work, however, has a computational issue that the modified loss

function is no longer convex. It was sidestepped in Rosenbaum and Tsybakov (2010) and

Wang et al. (2019) by using Dantzig selector that is always defined as a linear programming

regardless of the modification.

A more fundamental remedy for the non-convexity is to modify the corrected covariance

factor Σ̂ to be positive definite (PD). To this end, Datta and Zou (2017) found the closest

PD matrix to Σ̂ using the element-wise maximum norm:

Σ̃
CoCo

= arg min
Σ�0

‖Σ̂−Σ‖max. (1.1)

Using it, they solved the `1-penalized regression problem, which is named CoColasso, and

proved estimation and selection consistency under regular conditions including the irrepre-

sentable condition. This area of research has been recently studied further. Though handling

the measurement error not missing data, Zheng et al. (2018) and Zhang et al. (2022) proposed

to use different penalty functions, a combination of `1- and concave penalty, and `0-penalty,

respectively, to ensure better theoretical properties of estimators (i.e. faster oracle inequal-

ity). Escribe et al. (2021) considered partially corrupted data where some of explanatory

variables are corrupted under some measurement error model and the others are not. Thus,

they only solved (1.1) for a smaller dimension at which the measurement errors are found. On

the other hand, in solving (1.1), Takada et al. (2019) suggested to downweight components

at which samples are highly missing. To do so, they used a weighted version of Frobenius

norm.
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However, solving (1.1) is computationally demanding in general because it does not

have a closed form solution. More specifically, the eigen-decomposition of a p-dimensional

symmetric matrix and projection of a p2-dimensional vector to `1-ball are repeated until con-

vergence (Datta and Zou, 2017; Han et al., 2014). Takada et al. (2019) used the (weighted)

Frobenius norm to find the closest PD matrix in which the eigen-decomposition is also re-

peated. Because of this, the existing methods mentioned above may not be practically useful.

The heavy workload can greatly impede further inference procedures using regularized esti-

mators such as bolasso (bootstrapped enhanced lasso, Bach (2008)) and a modified residual

bootstrapped lasso, which are based on resampling procedures (Chatterjee and Lahiri (2011,

2013) or stability selection (Meinshausen and Bhlmann, 2010)). Moreover, there is a need

for solving the penalized regression recursively; e.g. online learning procedure (Duchi and

Singer, 2009; Langford et al., 2008; Xiao, 2009).

In this paper, we propose the linear shrinkage positive definite (LPD) modification of

the covariance matrix for the high-dimensional regression problem with incomplete data.

The key idea is to reduce the class of PD matrices over which the minimization (1.1) is

taken. We consider the linear shrinkage class defined in (2.8). In other words, we shrink

the non-PD Σ̂
IPW

(corrected estimator defined in (2.5)) to µI as αΣ̂
IPW

+ (1 − α)µI for

some α and µ. The proposed way is easy and straightforward due to its simple form, and

above all, computationally fast since the optimal α and µ have explicit forms (see (2.10)

and Proposition 2). Based on the new covariance estimators, we convexify the penalized

regression problem and thus can easily find the sparse solution β̂
LPD

to (2.7). Furthermore,

under the irrepresentable condition, we establish the selection consistency and prove the rate

of convergence by Op

(√
log p/n

)
in `2-error, which is comparable to what was previously
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achieved by CoColasso (Datta and Zou, 2017). One of the key tools to prove the results is the

non-asymptotic inequality of the IPW estimator (Theorem S1 in Supplementary Materials

S1), which can be of independent interest. Our numerical study also reveals the proposed

one performs comparatively in the finite sample scenarios. We also analyze real data from

Genomics of Drug Sensitivity in Cancer (GDSC) where sensitivity to different drugs and

protein expressions was measured but incompletely. We separately run a list of penalized

linear regression models with each of sensitivity values as a response variable and protein

expressions as explanatory variables, which would have not been feasible if our estimation

procedure were not scalable like CoColasso.

The remainder of the paper is organized as follows. In Section 2, we define different

classes of linear shrinkage estimators from different matrix norms. Then, we describe how to

use the modified Gram matrix in the lasso regression and verify theoretical properties of the

resulting lasso estimator under some conditions. In Section 3, we examine the finite sam-

ple performance of the proposed method compared to existing methods through simulated

data. In Section 4, the proposed regularized regression is applied to incomplete data from

Genomics of Drug Sensitivity in Cancer (GDSC) to identify the most predictive proteins for

two example drugs. In Section 5, we conclude this paper with a discussion of limitations and

potential extensions.

Statistica Sinica: Newly accepted Paper 



2. CONVEXIFICATION OF LASSO USING LPD

2. Convexification of Lasso using LPD

2.1 Problem formulation

We assume a linear relationship between explanatory variables xi = (xi1, . . . , xip)
> and a

response variable yi, which is represented by regression coefficients β = (β1, . . . , βp)
>:

yi = x>i β + εi, i = 1, . . . , n, (2.2)

where εi is an error term independent of xi, and samples are independent across i = 1, . . . , n.

For ease of exposition, we assume all the variables are centered; Exij = Eεi = 0 and thus

Eyi = 0. Due to the missing structure, we can only observe ỹi, x̃i = (x̃i1, . . . , x̃ip)
> where

ỹi =


yi, if yi is observed,

0, otherwise,

x̃ij =


xij, if xij is observed,

0, otherwise.

(2.3)

Adopting matrix notations, we write ỹ = (ỹ1, . . . , ỹn)> and X̃ = [x̃1, . . . , x̃n]>. The pe-

nalized regression problem of our interest would be defined by minimizing the residual sum

of squares, minβ
1

2n
‖ỹ − X̃β‖2

2 + Jλ(β) for some penalty function Jλ indexed by a tuning

parameter λ > 0. The problem can be depicted with covariance terms, S = X̃
>
X̃/n and

r = X̃
>
ỹ/n, i.e.

min
β

1

2
β>Sβ − r>β + Jλ(β) ≡ g(β;S, r, Jλ). (2.4)

However, bias caused by missing values in S and r renders the optimal solution of the above

inconsistent. A straightforward remedy is to adjust the bias through an inverse probability

weighting (IPW) technique and to use the corrected estimators: i.e. S ← Σ̂
IPW

, r ←

ρ̂IPW. The IPW estimators are defined by correcting every component with an observation
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2. CONVEXIFICATION OF LASSO USING LPD

probability:

Σ̂
IPW

= S ∗

[
1

πxxjk
, 1 ≤ j, k ≤ p

]
, ρ̂IPW = r ∗

[
1

πxyj
, 1 ≤ j ≤ p

]
, (2.5)

where ∗ is the element-wise product between two matrices (or vectors) of the same size.

πxxjk is a probability that the (j, k)-th explanatory variables are observed, and πxyj that the

j-th explanatory variable and response variable are observed. They are precisely defined

in Assumption 2. The idea of replacing the sample covariances by the IPW estimators has

been used in covariance/precision matrix estimation (Park et al., 2023; Lounici, 2014; Park

and Lim, 2019; Park et al., 2021; Pavez and Ortega, 2021; Cai and Zhang, 2016). However,

Σ̂
IPW

is not PD in general, and thus g(β; Σ̂
IPW

, ρ̂IPW, Jλ) in (2.4) is not convex, even if Jλ

is convex (e.g. lasso penalty). Thus, we use a PD alternative based on the linear shrinkage

method (Ledoit and Wolf, 2004; Choi et al., 2019), which finds a PD matrix closest to the

non-PD in the linear shrinkage class. It solves

Φµ,α(Σ̂
IPW

) ∈ Arg min
Φµ,α∈Cε(Σ̂

IPW
)

∥∥∥Σ̂IPW
− Φµ,α

∥∥∥ , (2.6)

for some matrix norm ‖ · ‖, where Cε is a class of the linear shrinkage matrices defined in

(2.9). Hereafter, we name the PD modification using the linear shrinkage method as LPD and

denote the solution Φµ,α(Σ̂
IPW

) by Σ̂
LPD

for notational simplicity. In the following sections,

we give a detailed account of explicit forms of LPDs in different matrix norms (Section 2.2).

In the next section (Section 2.3), we study theoretical properties of the solution of the lasso

regression:

min
β

1

2
β>Σ̂

LPD
β − β>ρ̂IPW + λ‖β‖1, (2.7)

where Σ̂
LPD

is applied as the Gram matrix.

We end this section by introducing the results of Lee et al. (2015) where the authors study
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2. CONVEXIFICATION OF LASSO USING LPD

a generalized framework for the regularized M-estimators that includes our problem (2.7).

To prove the rate of convergence in terms of `2-error and consistent recovery of the support,

they assumed three conditions (i) restricted strong convexity (RSC), (ii) irrepresentability

condition (IR), and (iii) bounded gradient condition (BG). We refer to Supplementary Ma-

terials S2.1 or the original reference for more details about the formulation. In our context,

the IR and BG conditions are simplified to the condition (C1) and (C2) of Proposition 2,

while the RSC condition is reduced to (C3) of it due to the linear shrinkage structure.

To describe the results, we introduce notations. Consider the model space MA = {β ∈

Rp : βj = 0, j ∈ Ac} where A ⊂ [p] is the support of true parameter β∗. We divide a square

matrix using the support A and denote by AAA,AAAc ,AAcA,AAcAc , each of which restricts

rows and columns of A on corresponding index sets. We denote by λmin(A) or λmax(A) the

smallest or largest eigenvalue of A, respectively. Then, we can easily derive the following

based on the results in Lee et al. (2015). Remark that the norm in (C1) is the matrix `∞-

norm (i.e. maximum of column-wise sum) and the one in (C2) is the element-wise maximum

norm of a vector.

Proposition 1. Assume λmin(Σ̂
IPW

) < 0. For ε > 0 such that ε < λmin(Σ), define by Σ̂
LPD

the LPD of Σ̂
IPW

over the class Cε(Σ̂
IPW

). Suppose there exists constants τ̃ ∈ (0, 1) and

λ > 0 such that:

(C1)
∥∥∥Σ̂LPD

AcA(Σ̂
LPD

AA )−1
∥∥∥
∞
≤ 1− τ̃ ,

(C2)
4(2− τ̃)

τ̃

∥∥∥Σ̂LPD
β∗ − ρ̂IPW

∥∥∥
∞
< λ,

(C3) min
t:t6=0,tAc=0

t>Σ̂
LPD
t/t>t ≥ min{0.5λmin(ΣAA), µ},
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2. CONVEXIFICATION OF LASSO USING LPD

Then, the followings hold:

(R1) The minimizer β̂
LPD

of (2.7) is unique,

(R2) ‖β̂
LPD
− β∗‖2 ≤

4

min{λmin(ΣAA), µ}

(
1 +

τ̃

4

)√
|A|λ,

(R3) β̂LPD
j = 0, j ∈ Ac.

The proof of Proposition 1 is postponed to Supplementary Materials S2.1, which is offered

solely for completeness. We do not assert any contribution to it.

2.2 Explicit forms of LPD

In the estimation of high dimensional covariance matrix (Bickel and Levina, 2008b,a; Roth-

man, 2012), structural assumptions on true covariance matrix are often made, and many

regularized estimators are proposed accordingly. However, the regularization typically does

not impose PDness, which makes the resulting estimate not PD in general. Several efforts

are made to find an estimator that attains both sparsity and PDness (Bien and Tibshirani,

2011; Lam and Fan, 2009; Liu et al., 2014; Rothman, 2012; Xue et al., 2012; Choi et al.,

2019). Among them, the fixed support positive definite modification (FSPD) by Choi et al.

(2019) is initially designed to make a covariance matrix estimator PD while preserving its

support as its name indicates. However, FSPD is still tempting even for cases where we do

not have structural assumptions on covariance matrices but need PDness. Since it is com-

putationally easy and is applicable to any non-PD matrix, we adopt this idea for estimating

the PD gram matrix under the missing data structure.

Let A be a real symmetric matrix to be modified PD. For a given ε > 0, we define the

class of LPD by

Cε(A) = {αA+ (1− α)µI : α ∈ (0, 1), µ ∈ R, αλmin(A) + (1− α)µ ≥ ε} . (2.8)
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2. CONVEXIFICATION OF LASSO USING LPD

Following Choi et al. (2019) and Cho et al. (2021), we minimize a distance induced by any

matrix norm || · ||:

min
Φµ,α∈Cε(A)

‖A− Φµ,α‖ . (2.9)

Note that the minimization is taken over (µ, α), and the distance in (2.6) is indeed rewritten

as ‖αA+ (1− α)µI−A‖ = (1 − α) ‖µI−A‖. In the meantime, if λmin(A) < ε ≤ µ, the

constraint can be expressed as

αλmin(A) + (1− α)µ ≥ ε ⇐⇒ α ≤ µ− ε
µ− λmin(A)

.

We thus know that the optimal solution α∗ for fixed µ ≥ ε is

α∗ = α∗(µ) =
µ− ε

µ− λmin(A)
. (2.10)

regardless of the type of the norm. On the other hand, the solution to µ depends on

the distance we use. The following proposition summarizes the results. We define matrix

norms as ||A||2 =
√
λmax(A>A), ||A||F =

√
tr(A>A)/d2, ||A||∞ = maxi∈[d1]

∑d2
j=1 |aij|,

||A||max = maxi∈[d1],j∈[d2] |aij| for any real matrix A ∈ Rd1×d2 .

Proposition 2. For a given symmetric matrix A = (aij)1≤i,j≤p with positive diagonals,

assume λmin(A) < 0 < ε ≤ µ. The linear shrinkage Φµ,α∗ of A achieves the minimum at

different values of µ according to different matrix norms.

1. (Spectral norm, Lemma 2 of Choi et al. (2019))

‖A− Φµ,α∗‖2 = ε− λmin(A)

for any µ ≥ max{ε, (λmax(A) + λmin(A))/2}.

2. ((Scaled) Frobenius norm, Lemma 3 of Choi et al. (2019))

∥∥A− Φµ∗F ,α
∗
∥∥
F

= (ε− λmin(A))
√
µ∗F
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2. CONVEXIFICATION OF LASSO USING LPD

where µ∗F =
∑p

j=1(λj(A) − λ̄)2/
∑p

j=1(λj(A) − λmin(A))2 and λ̄ is an average of the

eigenvalues of A, λ1(A), . . . , λp(A).

3. (`∞-norm, Lemma 3 of Cho et al. (2021))

‖A− Φµ,α∗‖∞

=



↘ ε− λmin(A) as µ→∞, if λmin(A) +M2 > 0,

ε− λmin(A), for any µ ≥ (M1 −M2)/2,

if λmin(A) +M2 = 0,

(ε− λmin(A))
(M1 +M2)/2

(M1 −M2)/2− λmin(A)
, at µ = (M1 −M2)/2,

if λmin(A) +M2 < 0,

where M1 = maxj
(
ajj +

∑
i:i6=j |aij|

)
and M2 = maxj

(
− ajj +

∑
i:i6=j |aij|

)
. Note that

if λmin(A) +M2 > 0, there is no solution.

4. (Element-wise maximum norm)

‖A− Φµ,α∗‖max

=



(ε− λmin(A))(ad,max − ad,min)/2

(ad,max + ad,min)/2− λmin(A)
, at µ = (ad,max + ad,min)/2,

if (ad,max − ad,min)/2 > aoff,max,

(ε− λmin(A))aoff,max

ad,min + aoff,max − λmin(A)
, at µ = ad,min + aoff,max,

if (ad,max − ad,min)/2 ≤ aoff,max.

where ad,max = maxj ajj, ad,min = minj ajj, and aoff,max = maxi6=j |aij|.

We only provide a proof of the last case of Proposition 2, which is in Supplementary Materials

S2.2, and for the others we refer readers to the original references.
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2. CONVEXIFICATION OF LASSO USING LPD

Finally, we provide a guideline to choose tuning parameters of LPD, i.e. ε and µ.

Throughout this paper, we set ε = 10−4, and the choice has exhibited satisfactory perfor-

mance. The choice of µ depends on the type of matrix norms in LPD and matrix A = Σ̂
IPW

.

The result of the Frobenius norm suggests the single best value for µ. In contrast, when the

spectral norm is used, any choice of µ beyond µlb := max{ε, (λmax(Σ̂
IPW

) + λmin(Σ̂
IPW

))/2}

is sufficient for the optimality of shrinkage (see Proposition 2). In this case, we recommend

use the value at the boundary because it minimizes the effect of shrinkage. However, the

choice is not sensitive in practice, which is verified in our simulation study where different

values of µ are compared.

2.3 Main results for consistency

In this section, we check the two conditions in Proposition 1, and compute the convergence

rate of β̂
LPD

in `2-norm. Prior to it, we state the assumptions and data structure more

precisely.

We introduce binary random variables that indicate whether each entry of data is ob-

served or not: δyi = I(yi is observed), δxij = I(xij is observed), i = 1, . . . , n, j = 1, . . . , p.

Then, we can concisely express the observed data by the product of the indicator variable

and the data, i.e. ỹi = δyi yi, x̃ij = δxijxij, which is equivalent to (2.3).

We define the sub-Gaussian (or ψ2-) norm of a random variable X in R by ||X||ψ2 =

supp≥1(E|X|p)1/p/
√
p, and X is called sub-Gaussian if its ψ2-norm is bounded. Under the

regression setting (2.2), we assume the following.

Assumption 1. For i = 1, . . . , n, max
1≤j≤p

||xij/
√
σjj||ψ2 ≤ Kx and ||εi/

√
σεε||ψ2 ≤ Kε, where

σjj = Var(x1j), σεε = Var(ε1).
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2. CONVEXIFICATION OF LASSO USING LPD

Assume the indicators are Bernoulli variables with general dependency structure (Dai et al.,

2013; Park et al., 2021), that is:

Assumption 2. For i = 1, . . . , n, (δyi , δ
x
i1, . . . , δ

x
ip) is from the multivariate Bernoulli distri-

bution with the first two moments written by

Eδxij = πxxjj , Eδxijδ
y
i = πxyj , Eδxijδxik = πxxjk .

More general moment is denoted as Eδxij1δ
x
ij2
δxij3 · · · = πxxj1j2j3....

The missing mechanism we use is the missing completely at random (MCAR). In the current

data structure, we can specify the assumption as follows.

Assumption 3. The data and indicator variables are independent, i.e.

{εi,xi} ⊥⊥ {δyi , δxi1, . . . , δxip}, i = 1, . . . , n.

The last assumption is about the class of covariance matrices for the covariates. Without

loss of generality, assume the variables of interest (i.e. in the set A) are located in front and

the covariance matrix Σ is decomposed in blocks accordingly.

Assumption 4. Assume the population covariance matrix Σ = Cov(xi) satisfies

(a) ΣAA is positive definite, and

(b) the irrepresentability condition for Σ is satisfied with respect to the support set A, i.e.,

there exists τ ∈ (0, 1) such that ‖ΣAcAΣ−1
AA‖∞ ≤ 1− τ .

The first condition that the smallest eigenvalue is away from zero is not very restrictive, and

the other condition is known to be sufficient and “almost” necessary for selection consistency

(van de Geer and Bühlmann, 2009; Lee et al., 2015; Wainwright, 2009).

Statistica Sinica: Newly accepted Paper 



2. CONVEXIFICATION OF LASSO USING LPD

Throughout this section, we define the LPD estimator as follows. If λmin(Σ̂
IPW

) >

0, construct the LPD estimator Φµ,α(Σ̂
IPW

) by choosing α = 1 (and any real-valued µ).

Otherwise, for ε > 0 such that ε < λmin(Σ), set α = (µ − ε)/(µ − λmin(Σ̂
IPW

)) and choose

any µ greater than 2ε. Based on the assumptions, we present results that guarantee the two

conditions (C1) and (C3) in Proposition 1 with high probability.

Theorem 1 (Irrepresentability condition and RSC condition). Let Assumption 1, 2, 3, 4

hold. Assume Σ̂
IPW

AA is non-singular. Then, the LPD estimator satisfies the irrepresentability

condition for some constant τ̃ ∈ (0, 1) with probability greater than 1− 3/pu for u > 0 if the

sample size satisfies

n

π
(4)
max log p

≥ c

{
tr(Σ) max{(Kx)2, 1}

√
u+ 1

min{τ/
∥∥Σ−1
AA
∥∥
∞ , λmin(ΣAA)}

}2

, n > c π(4)
max(u+ 1)3 log3(p ∨ n),

for some c > 0. Here, π
(4)
max = maxk1,k2,`1,`2 π

xx
k1k2`1`2

/(πxxk1`1π
xx
k2`2

). Moreover, under the same

conditions, (C3) of Proposition 1 holds; if λmin(Σ̂
IPW

) > 0, µ is excluded in the lower bound

of (C3).

To prove the theorem, we first show in Theorem S2 and S3 that the irrepresentability condi-

tion holds for Σ̂
LPD

if Σ is in the small neighborhood of the IPW estimator in terms of `∞,

2-norms. The probability of being in the neighborhood is calculated in the proof of Theorem

1. Technical details can be found in Supplementary Materials S3.1. In Lemma 6 of Datta

and Zou (2017), they also showed similar results: if a surrogate estimator Σ̃, which is the

LPD estimator in our context, is close enough to Σ, then Σ̃AcAΣ̃
−1

AA is to ΣAcAΣ−1
AA. In the

theorem below, we use a new notation ‖B‖∞,A = max
1≤j≤p

∑
k∈A
|bjk|.

The following guarantees (C2) of Proposition 1 with high probability.
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Theorem 2 (Bound on the gradient). Let Assumption 1, 2, 3 hold. Then, if n and p satisfy

n > cmax
{

log p/πxymin, π
(4)
max log3(p ∨ n)

}
for some c > 0, the gradient vector of the mean squared error satisfies the upper bound with

probability greater than 1− 9/p∥∥∥Φµ,α(Σ̂
IPW

)β∗ − ρ̂IPW
∥∥∥
∞
≤ L|A|

√
log p

n
,

where L > 0 is a function of parameters given by

L = C1β
∗
max max{(Kx)2, 1}

√
π

(4)
max · h1(µ; Σ,A) + C2

max
{√

σmaxσεεK
xKε, σmax(Kx)2

}
√
πxymin

,

for some positive constants C1, C2. Here, π
(4)
max = max

k1,k2,`1,`2
πxxk1k2`1`2/(π

xx
k1`1

πxxk2`2), πxymin =

mink π
xy
k , β∗max = max

1≤j≤p
|β∗j |, and h1(µ; Σ,A) = tr(Σ)

(
1 + ‖Σ‖∞,A/µ

)
if λmin(Σ̂

IPW
) ≤ 0

and σmax otherwise.

Proof of the theorem can be found in Supplementary Materials S3.5. Loh and Wainwright

(2013, 2017) also required the bounded gradient condition (see Theorem 1 in Loh and Wain-

wright (2013) or Loh and Wainwright (2017)). Also, one remarks that dependency of the

bound on β∗max is similarly observed in the literature of missing data (see SNR conditions in

Chen and Caramanis (2013); Datta and Zou (2017); Theorem 1 in Rosenbaum and Tsybakov

(2010)).

Combining these results with Proposition 1, we present the properties of the solution

β̂
LPD

of (2.7).

Theorem 3. Let Assumption 1, 2, 3, 4 hold. Assume Σ̂
IPW

AA is non-singular. We choose the

tuning parameter λ ∝ L|A|(log p/n)1/2 for the lasso regression. If n and p satisfy

n

π
(4)
max log p

≥ c

{
tr(Σ) max{(Kx)2, 1}

min{τ/
∥∥Σ−1
AA
∥∥
∞ , λmin(ΣAA)}

}2

, n > cmax
{ log p

πxymin

, π(4)
max log3(p ∨ n)

}
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for some c > 0, then there exist some C > 0, d > 0, τ̃ ∈ (0, 1) such that we can guarantee

with probability greater than 1− d/p

(R1) The minimizer β̂
LPD

is unique.

(R2) ‖β̂
LPD
− β∗‖2 ≤ C

L

τ̃ · h2(µ, λmin(ΣAA))

√
|A|3 log p

n

(R3) β̂LPD
j = 0, j ∈ Ac.

Here, h2(µ, λmin(ΣAA)) = min{λmin(ΣAA), µ} if λmin(Σ̂
IPW

) ≤ 0 and λmin(ΣAA) otherwise.

The factor L appears in Theorem 2.

We have some remarks regarding this main result. First, the results hold regardless of the

choice of matrix norms in (2.6) because the optimal choice of α in LPD is independent of

the matrix norms. Also, no terms are involved with ε in the theorems, though the actual

performance of LPD can change according to different ε due to the numerical stability.

Second, the constant L depends on tr(Σ), which is an order of p in general. This

trace term is introduced when we control the magnitude of the gradient vector of the loss

function based on the LPD. This condition related to the gradient vector is commonly used

in literature (e.g. (3.1) of Loh and Wainwright (2012)). We believe that the additional factor

is the expense in theory we need to pay for convexification of the loss function. However, the

empirical performance of the propose method scales with
√

log p/n up to an multiplicative

constant not depending on n and p, which is presented in Supplementary Material S4.5.

Moreover, there exists a class of distributions of covariates where the constant L is

independent of p. As in the literature on covariance estimation (Lounici (2014); Mendelson

and Zhivotovskiy (2020); Koltchinskii and Lounici (2017)), we can express the trace of Σ

by the effective rank that measures intrinsic dimension of a symmetric matrix, defined by
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r(Σ) = tr(Σ)/||Σ||2. Note that r(Σ) ≤ rank(Σ) ≤ p for general matrices, but the effective

rank would be much smaller than p if Σ is approximately low-rank. See more discussion

in Section 2.2 of Lounici (2014) or Remark 5.53 of Vershynin (2011). Hence, the constant

L would not depend on p if we consider a class of covariance matrices satisfying that (1)

approximately low-rank, or r(Σ) := tr(Σ)/||Σ||2 ≤ R (independent of p) and (2) the largest

eigenvalue is bounded, or ||Σ||2 ≤ B (independent of p). Note that the boundedness of a

trace of low-rank matrix Σ does not contradict to Assumption 4. Then, Theorem 3 states

that under this class of distributions for covariates, the sample size n & log p is enough to

guarantee that the solution β̂
LPD

is (R1) unique, (R2) `2-consistent, and (R3) has no false

positive with probability close to 1.

Third, we would like to compare our result with the ones previously obtained in Datta

and Zou (2017) and Loh and Wainwright (2012). To facilitate a fair comparison, we reor-

ganize all the results into the following format: if the sample size and dimension satisfies

n/ log p >M, then with probability at least 1− c/p, it holds that

||β̂ − β∗||2 ≤ C · L · |A|K
√

log p

n
,

where c, C > 0 are some positive constants. Here, β̂ is a coefficient estimator from one of

Datta and Zou (2017), Loh and Wainwright (2012), or the proposed, and β∗ is the true value

to be estimated. The specific forms of K, L, andM depend on parameters such as (but not

limited to) (1) observation probability, (2) tail thickness (or sub-Gaussian parameter) of the

response variable, (3) tail thickness of the covariates, (4) covariance matrix of the covariates.

While the triplet (K,L,M) is not directly comparable as each paper uses slightly different

assumptions, we aim to highlight the general tendencies.

The convergence rate L commonly depends on (1) observation probability, (2) tail thick-
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ness (or sub-Gaussian parameter) of the response variable, (3) tail thickness of the covariates,

(4) magnitude of the true value β∗, and (5) well-conditionedness of Σ. Regarding (5), the

result from Loh and Wainwright (2012) is L ∝ 1/λmin(Σ), while Datta and Zou (2017)

obtained L ∝ 1/Ω, where

Ω := min
x∈R

x>Σx, R = {x : ||x||2 = 1, ||xAc ||1 ≤ 3||xA||1},

which is related to the compatibility condition. In contrast, our result satisfies L ∝ 1/{τ̃ ·

(λmin(ΣAA) ∧ µ)}, where τ̃ is a constant from the irrepresentability condition of the LPD

estimator. Similar quantities have appeared from restricted strong convexity in the related

context (Negahban et al. (2012)), typically with the same order of 1 in the denominator.

The rate from Loh and Wainwright (2012) would get worse if the covariance matrix from

covariates on Ac is ill-conditioned, while the other two are not affected. Additionally, while

our result depends on µ (the tuning parameter of LPD procedure), this dependency is negli-

gible if µ is chosen sufficiently large, i.e., µ > λmin(ΣAA). Lastly, our result has dependency

on tr(Σ), i.e. L ∝ tr(Σ).

The constantM characterizes the sample size required to guarantee the derived conver-

gence rate. Across all three methods, the constant depends on (1) observation probability,

(2) tail thickness of the covariates, and (3) well-conditionedness of Σ. The dependency on

(3) is similar to that of L. More specifically,

MLoh ∝ 1/λmin(Σ)2, MDatta ∝ 1/min{C1τ
2, C2Ω2}, MPark ∝ 1/{τ · λmin(ΣAA)}2

where C1, C2 > 0 are constants. In Datta and Zou (2017), M also depends on β∗max and

the tail thickness of the response variable. In our case, M∝ tr(Σ), which can be explained

similarly to its appearance in L.
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The constant K represents the order of sparsity in the convergence rate. Both Datta and

Zou (2017) and our result share the same order K = 3/2, while Loh and Wainwright (2012)

achieves a smaller order K = 1. The order of sparsity may have room for improvement

in proof techniques, as the exponent K = 1/2 in |A|K is commonly observed in the high-

dimensional regression literature (e.g. van de Geer and Bühlmann (2009); Wainwright (2009);

Negahban et al. (2012)). In contrast, our result yields K = 3/2, which is attributed to

the linear shrinkage of the non-PD matrix. This can also be seen as a cost incurred for

convexification.

In conclusion, this comparison shows that our method still guarantees similar results

from the previous work, but with an extra term tr(Σ). Theoretically, this difference is the

price we need to pay for convexification and faster computation. However, for a smaller class

of covariance matrices (e.g., low-rank and bounded largest eigenvalue), this term becomes

negligible.

2.4 Estimation of unknown parameters

It should be noted that our results are based on two implicit assumptions. First, we assume

the observation probabilities are known, as in other error-in-variable literatures (Datta and

Zou (2017); Sørensen et al. (2015)). Second, following a convention in a regression framework,

we also assume covariates are centered, i.e. mean-zero. However, these may not be the case in

real-world data, and thus we would like to leave some remarks regarding these assumptions.

For estimating the observation probabilities, it is natural to use the empirical proportions

(i.e. the proportion of observed pairs) under MCAR, due to the law of large numbers. In

other words, we suggest using π̂xxjk =
∑n

i=1 δ
x
ijδ

x
ik/n and π̂xyj =

∑n
i=1 δ

x
ijδ

y
i /n. Then, the new
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IPW estimator is

Σ̂
IPW,π̂

=
(

(Σ̂
IPW

)jk
πxxjk
π̂xxjk

, 1 ≤ j, k ≤ p
)
.

We have found throughout our numerical study that the penalized regression based on the

above estimator performs quite well.

Next, we consider the case when covariates may have non-zero means. The most straight-

forward way is to center each covariate by the IPW mean estimator µ̂j =

∑n
i=1 x̃ij
nπxxjj

. As used

in Kolar and Xing (2012) and Cai and Zhang (2016), this type of IPW estimator is defined

by Σ̂
IPW,2

jk =
∑n

i=1 δ
x
ijδ

x
ik(x̃ij − µ̂j)(x̃ik − µ̂k)/(nπ

xx
jk ). However, this is not unbiased (in fi-

nite sample), which often complicates theoretical analyses (e.g. concentration inequality).

To address it, we proposed another type of IPW estimator in our earlier work (Park et al.

(2021)):

Σ̂
IPW,3

jk =

∑n
i=1 x̃ijx̃ik
nπxxjk

−
∑n

i6=i′ x̃ijx̃i′k

n(n− 1)πxxjj π
xx
kk

.

We remark that our theory is based on two types of concentration inequalities for IPW

estimators: one is about the element-wise maximum norm and the other is the spectral norm.

The former has been investigated in our earlier work (Park et al. (2023)), but the latter has

not yet in literature. Though we tried to derive the non-asymptotic inequality based on the

spectral norm, it is not as simple as the other. We think including such an analysis in this

paper would be unnecessarily complicated, and thus leave it as our future work.

3. Numerical study

We showcase the empirical performance of the proposed estimator LPD based on different

simulation parameters (e.g. dimension p, missing rate of observations, covariance structure

for variables). Our analysis consists of three parts. In the first part, we compare several
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methods including two existing ones and the proposed one based on different choices of µ.

In the second, we examine how sensitive the models are to missing values. In the third, we

time an algorithm of each method to see their scalability.

It has to be noted that a simulation study performed by Romeo and Thoresen (2019)

compared a group of methods available until then, but only considered additive measurement

error models. In the meantime, our simulation study deals with missing data cases, which

is clearly different from what was covered in their work.

3.1 Setting

We adopt experimental settings of Sørensen (2019) where they generate responses from the

normal model, i.e. ỹ ∼ Nn(X̃β∗, σ2
yI), and each row of the design matrix X̃ from N(0,Σ)

where the covariance structure is the compound symmetry (Σij = 0.5I(i6=j)). The dimension

p of covariates varies over p = 200, 500. The regression coefficients β∗ have non-zero values

at random positions while keeping the proportion of them at s = 0.05, 0.1 (i.e. s is the level

of sparsity). The non-zero coefficients are all equal to 1. We fix n = 200 and σy = 3.

Responses and covariates are subject to missing completely at random (MCAR). More

specifically, we define matrices of missing indicators: M y = (δyi ) and MX = (δxij) where

δyi ∼ Ber(θ), δxi,3j ∼ Ber(θ), j = 1, . . . , bp/3c, independently. Then, the corrupted data are

y = ỹ ∗M y, X = X̃ ∗MX ,

where ∗ is the element-wise product. Other missing mechanisms (MAR, MNAR) will be

discussed in Section S4.3. We control the observation probability θ = 0.7, 0.9. We generate

100 independent datasets to consider random variability.

Given incomplete data (y,X), we compute three comparative estimators: (1) linear
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shrinkage positive definite lasso (LPD), (2) convex conditioned lasso (CoCo) (Datta and Zou,

2017), and (3) non-convex lasso (NCL) (Loh and Wainwright, 2012). We use the R package

named BDcocolasso (available at https://github.com/celiaescribe/BDcocolasso) im-

plemented by Escribe et al. (2021) to obtain the second estimator and hdme (Sørensen, 2019)

to obtain the third. Additionally, we add two types of lasso regression in comparison. One

uses the complete data (ỹ, X̃) and is named (4) “true lasso”, while the other runs the lasso

regression with mean imputed data and is named (5) “naive lasso”. We do not include the

complete-case analysis as none of the samples are completely observed in high-dimensional

missing data. For instance, in the real data we analyzed, every cell line has at least 48

missing values, making the straightforward approach impractical.

In terms of LPD, we can consider a set of variants based on different choices of µ, but

found that LPD using `∞-norm empirically works well and is robust to different setups.

Hence, for readability, we only report the corresponding results in this section, while the

entire results are provided in Supplementary Materials S4.2 and S4.3.

The penalized regression methods mentioned earlier have hyperparameters to be tuned.

To choose a penalty parameter λ of CoCo and LPD, we use the corrected cross-validation

proposed in Datta and Zou (2017), that is, the cross-validation approach adjusted for cor-

rupted data. Simply put, the idea is to minimize the mean square prediction error where

a non-PD covariance matrix estimate is replaced by the PD matrix. More details can be

found in Supplementary Materials S4.1. The grids are evenly spaced in log scale within the

interval [R/10000, R] where R = 2||rnaive||max and rnaive is the naive lasso estimator. If R = 0

(i.e. rnaive = 0), then we set R by ||X>y/n||max. For NCL, we need to decide the radius

b such that the solution satisfies ||β̂||1 ≤ b. We search the optimal radius over the grid in
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[R/10000, R] with R = 2||rnaive||1. The number of grid points is 100 throughout. Using the

optimal tuning parameter, we re-fit each model and have the estimates of coefficients.

We measure six criteria to assess performance of each method. Following Datta and

Zou (2017), we compute the prediction error (PE) and mean squared error (MSE), which is

respectively defined

PE(β̂) = (β̂ − β∗)>Σ(β̂ − β∗), MSE(β̂) = (β̂ − β∗)>(β̂ − β∗).

The number of covariates corrected/incorrectly identified (TP and FP) are also counted.

To see an overall accuracy of variable selection, we also compute the (partial) area under

the ROC curve (pAUC) and F1-score (harmonic mean of precision and recall) denoted by

F1. We also measure the time each method would take to finish. This includes the tuning

parameter search.

3.2 Results

We present the results of our numerical study, which consists of three parts: (1) a comparison

of different regression methods, (2) a sensitivity analysis with respect to missing rates and

missing mechanisms, and (3) a timing analysis for computation. Due to space limitations,

the latter two are provided in Supplementary Material (see Section S4.3 and S4.4).

In the followings, we compare different regression methods. To reduce the workload

of simulations, we fix θ = 0.9 under MCAR. Compared with the existing methods (CoCo,

NCL), LPD is less sparser and has more TP and FP. LPD is proved to be successful in

estimation (low MSE), prediction (low PE), and variable selection (high pAUC, high TP).

Though the difference is negligible considering standard deviation, LPD performs best in

almost all scenarios of the finite sample setting. This result is of great importance since
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p = 200, s = 0.05

PE MSE pAUC F1 TP FP

TL 1.892 (0.601) 3.653 (1.162) 0.953 (0.032) 0.439 (0.065) 9.700 (0.482) 25.370 (6.935)

NL 3.710 (1.279) 6.186 (1.950) 0.873 (0.075) 0.397 (0.076) 8.560 (1.157) 25.590 (7.732)

CoCo 3.490 (1.276) 6.641 (2.424) 0.816 (0.073) 0.398 (0.083) 8.370 (1.236) 24.650 (6.658)

NCL 5.162 (1.337) 6.447 (1.820) 0.519 (0.083) 0.439 (0.118) 8.140 (1.477) 21.800 (15.525)

LPD 3.352 (1.000) 6.320 (1.824) 0.873 (0.070) 0.369 (0.066) 8.790 (1.104) 29.710 (7.312)

p = 500, s = 0.05

PE MSE pAUC F1 TP FP

TL 6.073 (1.243) 11.940 (2.433) 0.815 (0.044) 0.420 (0.054) 22.980 (1.239) 63.190 (16.677)

NL 16.327 (4.124) 26.382 (4.161) 0.555 (0.084) 0.298 (0.060) 13.130 (3.084) 49.950 (9.090)

CoCo 15.738 (3.154) 30.083 (5.651) 0.600 (0.044) 0.290 (0.062) 12.530 (3.119) 48.810 (9.018)

NCL 27.640 (7.481) 26.873 (3.507) 0.506 (0.062) 0.218 (0.055) 14.810 (5.025) 105.450 (55.242)

LPD 13.375 (2.323) 25.482 (3.883) 0.717 (0.064) 0.262 (0.050) 15.250 (3.141) 76.730 (16.213)

p = 200, s = 0.1

PE MSE pAUC F1 TP FP

TL 3.240 (0.841) 6.263 (1.631) 0.915 (0.034) 0.535 (0.060) 19.600 (0.651) 34.570 (8.335)

NL 10.299 (3.229) 15.240 (3.293) 0.761 (0.068) 0.438 (0.062) 14.400 (2.340) 31.500 (5.458)

CoCo 9.361 (2.429) 17.288 (4.059) 0.723 (0.055) 0.437 (0.070) 13.880 (2.341) 29.950 (6.660)

NCL 16.726 (3.676) 17.447 (2.445) 0.617 (0.046) 0.398 (0.099) 14.170 (2.775) 42.950 (26.712)

LPD 8.477 (2.144) 15.565 (3.406) 0.774 (0.060) 0.419 (0.057) 14.970 (2.115) 36.940 (7.678)

p = 500, s = 0.1

PE MSE pAUC F1 TP FP

TL 14.001 (2.440) 27.630 (4.914) 0.683 (0.049) 0.477 (0.048) 43.950 (2.488) 91.930 (18.908)

NL 48.644 (11.035) 77.535 (11.147) 0.391 (0.057) 0.269 (0.055) 16.770 (3.928) 57.530 (9.157)

CoCo 47.577 (8.028) 91.880 (15.888) 0.548 (0.033) 0.259 (0.051) 15.560 (3.529) 54.000 (8.060)

NCL 76.542 (26.472) 65.129 (11.035) 0.489 (0.039) 0.241 (0.036) 24.940 (7.538) 129.610 (44.213)

LPD 37.225 (5.155) 71.559 (9.319) 0.606 (0.043) 0.267 (0.045) 21.020 (4.259) 86.310 (15.103)

Table 1: Method comparison for p = 200, 500 and s = 0.05, 0.1. Each performance measure is averaged

over R = 100 repetitions (standard deviation in parenthesis).

LPD is much faster than its competitors (see Table S4). The naive lasso (NL) seems to have

smaller MSE and higher F1-score than LPD, but it sharply deteriorates when p increases.

Compared to it, LPD performs nearly best for all cases considered.

Though its more restrictive structure in LPD than CoCo, it shows the superior perfor-

mance in the finite sample study. We believe this is because LPD preserves the off-diagonal

elements of the initial estimator. That is, LPD does not change information about the co-
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variance part. In contrast, CoCo focuses on element-wise approximation, which may lose

such information. As a result, CoCo has good theoretical support, but LPD offers a more

practical solution.

4. Real data: Genomics of Drug Sensitivity in Cancer

Data 

Source

Pan-Cancer 

Modeling
Coefficient Value 

Estimate

Cell line sensitivity to drug is greater when 

the protein expression level is higher.

Cell line sensitivity to drug is less when the 

protein expression level is higher.

Genomics of Drug Sensitivity in Cancer (GDSC)

Cancer Cell Line Encyclopedia (CCLE) 

Pan-cancer proteomic map of 949 human cell lines

(Table S2 of Goncalves et al.)

Protein Expression Matrix

AUC values of Lapatinib and PLX-4720 downloaded 

from https://www.cancerrxgene.org release v8.4 

Drug Response Data

Negative

Positive

Contain Missing 

Values

Data 

Processing

Data Merging

Data Standardization

Feature Exclusion (Those with > 30% Missing Rate)

Partial 

Validation

Drug is more effective when 

the gene expression level is 

higher (p-value < 0.05).

Drug is less effective when 

the gene expression lever 

is higher (p-value < 0.05).

IC50 and GDSC data:

- Lapatinib: breast cancer

- PLX-4720: melanoma

CCLE GDSC gene expression - drug 

sensitivity correlations (Qin et al.)

Supportive evidence

Literature Review

Negative

Positive

Spearman’s Rank 

Correlation

Figure 1: The overview of the pan-cancer drug sensitivity analysis and partial validation.

In this section, we studied the performance of the proposed method through drug response

data available from Genomics of Drug Sensitivity in Cancer (GDSC). In this dataset, cancer

cell lines (samples) are treated with different drugs or compounds. Sensitivity to some drugs

was measured by the area under the doseresponse curve (AUCRS) (a response variable), which

is to be modeled by the protein levels of cells (explanatory variables). A small AUCRS value

indicates a strong drug response of the cell line to the drug. A large value of AUCRS means

no or limited response of the cell line to the tested drug (Vis et al., 2016). Among many, we

used the protein expression data from 949 human cancer cell lines. We aimed to discover a

list of (small portion of) proteins (biomarkers) that help explain the drug sensitivity for the

anti-cancer drug of interest. These lists may also be used to identify cell lines that respond

to some drugs more actively than others.

Statistica Sinica: Newly accepted Paper 



4. REAL DATA: GENOMICS OF DRUG SENSITIVITY IN CANCER

In the dataset, 949 cell lines and 8, 498 protein expressions were incompletely measured,

but we deleted proteins in which more than 30% of values were missing, resulting in the

bottom left of Figure 2. Then, the final data we used to analyze is n = 867 cell lines and

p = 4, 183 proteins. It has 7.15% of missing values in average across cell lines (see the top

of Figure 2). However, every cell line has at least 48 missing values (see the bottom right of

Figure 2), meaning the listwise deletion is not feasible.
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Figure 2: In the top figure, missing values are marked as black in the data matrix with

randomly chosen 500 proteins. The two bottom figures show the number of missing values

in either proteins (left) or cell lines (right).

We used Lapatinib (an approved drug in treating HER2-positive breast cancers, an

inhibitor of EGFR (also known as ERBB1 and HER1) (Xu et al., 2017) and HER2 (also

known as ERBB2)) and PLX-4720 (selective inhibitor of BRAFV600E) as two examples to

showcase the application of our method in examining the pan-cancer drug responses and

exploring potential protein biomarkers of cancer vulnerabilities.

Before running our proposed method based on `∞-norm, we standardized AUCRS and

protein expressions using sample means and standard deviations calculated ignoring missing
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values. The grid search for the tuning parameter was similarly performed as in the simu-

lation study; the naive lasso estimator rnaive was fit and used to decide the range of grids

[R/10000, R] with R = 2||rnaive||max in which 100 evenly spaced grid points were considered.

The cross-validation error curves are given in the left of Figure 3.
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Figure 3: The corrected cross-validation error (solid line). The two vertical lines indicate the

optimal tuning parameter (dashed line) and 1-se rule (dotted line), respectively. The error

bar is deviated from the center by one standard error.

We attempted to interpret the estimated coefficients. For simplicity, we applied the 1-se

rule (the dotted line in Figure 3) that chose a slightly larger tuning parameter and pursued

a sparser solution whose accuracy was still acceptable. Table 2 below shows the number of

non-zero coefficients and their signs.

Lapatinib PLX-4720

Sign (–) (+) zero (–) (+) zero

Count 48 40 4088 58 29 4089

Table 2: Signs of the estimated coefficients from the 1-se rule (transposed).

In our analysis, a negative association (coefficient) with AUCRS suggests greater sensitivity
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(of a cell line) when the protein level is high. A tool developed by Qin et al. (2017) aiming

at the discovery of drug sensitivity and gene expression association was used to assist us

in demonstrating the robustness of our method. In Qin et al. (2017), a positive correlation

with the IC50 indicates that the drug is less effective when the expression of a targeted

gene is higher and vice versa. However, it is essential to note that the concordance between

proteomics and transcriptomics can be weak (Wu et al., 2013). Integrating the information

obtained from each data modality may help predict the effects of gene/protein levels on

anti-cancer drug activity (Gonçalves et al., 2022).

For the case of Lapatinib, we found 48 proteins that showed a significant negative asso-

ciation with the AUCRS. Interestingly, EGFR, the canonical target of Lapatinib, was also

found to be among the selected proteins. Among 48 proteins, nine showed concordance

with the expression of nine genes (BAIAP2, FAM83H, HDHD3, HSD17B8, KRT19, MIEN1,

PLXNB2, REEP6, and SEC16A) affecting the activity of Lapatinib estimated by Qin et al.

(2017) using IC50 and GDSC gene expression data. It has been known that MIEN1 is am-

plified along ERBB2 and exhibits oncogenic potential (Omenn et al., 2014). It is linked to

cisplatin resistance and is highly expressed in Lapatinib-sensitive breast cancer cells than

Lapatinib-resistant breast cancer cells (Kumar et al., 2019).

PLX-4720 has shown in vitro and in vivo efficacy in treating thyroid cancer and melanoma

(Coperchini et al., 2019). In our analysis, 58 proteins showed a negative association with

AUCRS. Regarding thyroid cancer, 8 corresponding genes (FAHD2A, FKBP10, GSN, QDPR,

RAB27A, RETSAT, S100A13, TIMM50 ) also had negative Spearman’s rank correlation co-

efficient in the analysis by Qin et al. (2017) (using IC50 and GDSC gene expression data). Ten

out of 12 genes (AMDHD2, CTSB, ENDOD1, HIBADH, KANK2, PML, RPS27L, SP100,
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STX7, and TIMMDC1 ) showed negative Spearman’s rank correlation coefficient in the anal-

ysis for melanoma by Qin et al. (2017). These generally concordant results suggest the

relevance of our pan-cancer regression modeling approach.

5. Conclusion

This paper tackles the penalized linear regression problem with missing observations where

the estimated Gram matrix of covariates is non-PD in general. To handle it, we present a

significantly simpler approach for positive definite modification of non-PD matrices inspired

by linear shrinkage of covariance matrix. Due to its closed forms, the procedure is scalable

even for high-dimensional regression, while the lasso solution based on it still enjoys the same

rate of convergence and selection consistency. Through analyzing simulated and real data, we

verify that the proposed method has a greater advantage in computational aspect compared

to existing methods while ensuring theoretical properties such as selection consistency.

We acknowledged some potential to extend our method to the MAR case by modeling

the observation probability πxxi,jk = π(xi,obs;η) using the (fully) observed data. It can be

shown that the corresponding IPW estimator is unbiased under the MAR assumption, but

its concentration inequalities are more difficult to derive due to the dependency of observed

data. This extension is interesting for future work. Moreover, we expressed the estimation

performance with the minimum pairwise sample size. Zheng and Allen (2023) came up with

measuring individual dependency on missing observations in a different context (estimation

of the graphical model). Under suitable assumptions on the graph structure of explanatory

variables (e.g. sparsity), representing the individual dependency would give more insights

for the regression coefficients. This needs more investigation on the simultaneous estimation
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of covariance matrix and regression coefficients, and thus we leave it as future work.

As the quadratic loss is closely connected to the Gaussian distribution, a natural ex-

tension of our work is to exponential families, i.e. the generalized linear model (GLM).

Seemingly, it looks challenging to define a Gram matrix in this context due to the non-linear

link function. However, when fitting the generalized linear model, an adjusted dependent

variable is used in the process of an iterative (re-)weighted least squares (James and Rad-

chenko (2009)). Moreover, one may find that the adjusted dependent variable can be seen

as the sum of a linear predictor (evaluated at the current iteration) and the Pearson resid-

ual. Based on this observation, we may construct Gram matrices defined between linear

predictors and/or Pearson residuals. We plan to explore this extension in future.

To address the sub-optimal convergence rate caused by the trace term in our theories,

there might be room for improvement. Currently, we transit the deviation of the smallest

eigenvalue of the IPW estimator (see Lemma S3) to the spectral norm using Weyl’s inequal-

ity; |λmin(Σ̂
IPW

) − λmin(Σ)| ≤ ||Σ̂
IPW
−Σ||2. However, this inequality may not be tight in

a certain class C̃ of the covariance matrix. If a sharper upper bound of the left-hand side,

ideally not depending on the trace term, could be achieved, then the theoretical results could

be further improved.

Supplementary Materials

The supplementary material available online presents additional simulation results and tech-

nical theorems to prove the main results.
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van de Geer, S. A. and P. Bühlmann (2009). On the conditions used to prove oracle results for the Lasso. Electronic

Journal of Statistics 3, 1360 – 1392.

Vershynin, R. (2011). Introduction to the non-asymptotic analysis of random matrices.

Vis, D. J., L. Bombardelli, H. Lightfoot, F. Iorio, M. J. Garnett, and L. F. Wessels (2016). Multilevel models improve

precision and speed of ic50 estimates. Pharmacogenomics 17 (7), 691–700. PMID: 27180993.

Statistica Sinica: Newly accepted Paper 



REFERENCES

Wainwright, M. J. (2009). Sharp thresholds for high-dimensional and noisy sparsity recovery using `1 -constrained

quadratic programming (lasso). IEEE Transactions on Information Theory 55 (5), 2183–2202.

Wan, Y., S. Datta, D. Conklin, and M. Kong (2015). Variable selection models based on multiple imputation with

an application for predicting median effective dose and maximum effect. Journal of Statistical Computation and

Simulation 85 (9), 1902–1916.

Wang, Y., J. Wang, S. Balakrishnan, and A. Singh (2019). Rate optimal estimation and confidence intervals for

high-dimensional regression with missing covariates. Journal of Multivariate Analysis 174, 104526.

Webb-Robertson, B.-J. M., H. K. Wiberg, M. M. Matzke, J. N. Brown, J. Wang, J. E. McDermott, R. D. Smith,

K. D. Rodland, T. O. Metz, J. G. Pounds, and K. M. Waters (2015). Review, evaluation, and discussion of

the challenges of missing value imputation for mass spectrometry-based label-free global proteomics. Journal of

Proteome Research 14 (5), 1993–2001. PMID: 25855118.

Wei, R., J. Wang, M. Su, E. Jia, S. Chen, T. Chen, and Y. Ni (2018, Jan). Missing value imputation approach for

mass spectrometry-based metabolomics data. Scientific Reports 8 (1), 663.

Wood, A. M., I. R. White, and P. Royston (2008). How should variable selection be performed with multiply imputed

data? Statistics in Medicine 27 (17), 3227–3246.

Wu, L., S. I. Candille, Y. Choi, D. Xie, L. Jiang, J. Li-Pook-Than, H. Tang, and M. Snyder (2013, Jul). Variation

and genetic control of protein abundance in humans. Nature 499 (7456), 79–82.

Xiao, L. (2009). Dual averaging method for regularized stochastic learning and online optimization. In Y. Bengio,

D. Schuurmans, J. Lafferty, C. Williams, and A. Culotta (Eds.), Advances in Neural Information Processing

Systems, Volume 22. Curran Associates, Inc.

Xu, Z.-q., Y. Zhang, N. Li, P.-j. Liu, L. Gao, X. Gao, and X.-j. Tie (2017). Efficacy and safety of lapatinib and

trastuzumab for her2-positive breast cancer: a systematic review and meta-analysis of randomised controlled

trials. BMJ Open 7 (3).

Statistica Sinica: Newly accepted Paper 



REFERENCES

Xue, L., S. Ma, and H. Zou (2012). Positive-definite `1-penalized estimation of large covariance matrices. Journal of

the American Statistical Association 107 (500), 1480–1491.

Zhang, J., Y. Li, N. Zhao, and Z. Zheng (2022). L0-regularization for high-dimensional regression with corrupted

data. Communications in Statistics - Theory and Methods 0 (0), 1–17.

Zhao, P. and B. Yu (2006). On model selection consistency of lasso. Journal of Machine Learning Research 7 (90),

2541–2563.

Zheng, L. and G. I. Allen (2023). Graphical model inference with erosely measured data. Journal of the American

Statistical Association 0 (ja), 1–22.

Zheng, Z., Y. Li, C. Yu, and G. Li (2018). Balanced estimation for high-dimensional measurement error models.

Computational Statistics & Data Analysis 126, 78–91.

Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American Statistical Association 101 (476),

1418–1429.

Zou, H. and T. Hastie (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical

Society: Series B (Statistical Methodology) 67 (2), 301–320.

Seongoh Park, School of Mathematics, Statistics and Data Science, Sungshin Women’s University

E-mail: spark6@sungshin.ac.kr

Seong Jin Lee, Department of Statistics and Operations Research, University of North Carolina at Chapel Hill

E-mail: slee7@unc.edu

Nguyen Thi Hai Yen, Department of Pharmacology and PharmacoGenomics Research Center, Inje University College

of Medicine

E-mail: haiyenzenny97a1@gmail.com

Nguyen Phuoc Long, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University

Statistica Sinica: Newly accepted Paper 



REFERENCES

E-mail: phuoclong@mail.cgu.edu.tw

Johan Lim, Department of Statistics, Seoul National University

E-mail: johanlim@snu.ac.kr

Statistica Sinica: Newly accepted Paper 


	Introduction
	Convexification of Lasso using LPD
	Problem formulation
	Explicit forms of LPD
	Main results for consistency
	Estimation of unknown parameters

	Numerical study
	Setting
	Results

	Real data: Genomics of Drug Sensitivity in Cancer
	Conclusion



