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Abstract

Under limited resources, the widely used Vi -optimal test plan determines the
sample size, termination time, and number of measurements by minimizing the ap-
proximate variances of the estimated g-quantile, t,, for highly reliable products. This
approach is economically efficient when the V;_-optimal test plan simultaneously sat-
isfies another optimality criterion through an appropriate choice of q. Therefore, we
theoretically study a bi-optimal quantile-based test plan based on a Wiener process,
which achieves 100% efficiency for two optimality criteria. The necessary and suf-
ficient conditions for its existence and uniqueness are derived, which can then be
used to determine the optimal test configuration for accelerated degradation tests.
Two numerical examples are presented to illustrate the practical applicability of the
proposed bi-optimal quantile-based test plan.
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1 Introduction

Rapid advances in technology have greatly improved product quality across industries,
which has led manufacturers to place a growing emphasis on the development of high-
reliability products to maintain competitiveness. Ensuring long-term product quality is
crucial for customer satisfaction and plays an important role in building and sustaining
a company’s reputation. Thus, manufacturers are expected to provide reliable lifetime
information for their products. When the quality characteristics of high-reliability products
are closely linked to the failure mechanism and degrade over time, precise inferences about
lifetime information can be made by analyzing collected degradation data. Degradation
analysis has gained increasing attention across diverse fields such as biomedical engineering,
aerospace, renewable energy systems, industrial applications, and public health research.
Applications of degradation models can be found in D’Hondt et al. (2014), Wang and
Wong (2015), Prasad et al. (2018), Prasad, Gopika, and Shridharan (2020), and Cheng,
Chen, and Lee (2025).

Before conducting a degradation test (DT), the initial test plan involves fundamental
decision variables such as the sample size, termination time, and number of measurements.
For accelerated DTs (ADTs), most plans focus on the test configuration, which includes the
stress levels, sample allocations, and number of measurements at each stress level under a
pre-specified total number of stress levels (e.g., Lim and Yum, 2011; Hu, Lee, and Tang,
2015; Tseng and Lee, 2016). However, the total sample size, termination time, and number
of measurements in the initial test plan are often assumed to be given without consideration
of the experimental costs. Hence, these decision variables need to be determined under a

total cost constraint. After this step, the test configuration for ADTs can then be selected



using existing approaches. Extensive discussions of degradation planning and analysis
can be found in Bagdonavi¢ius and Nikulin (2001), Nelson (2004), Meeker, Escobar, and
Pascual (2022), and the references cited therein.

Test plans are often optimized with respect to specific criteria. For instance, D-
optimality involves maximizing the determinant of the Fisher information matrix (FIM)
or precisely estimating the underlying model parameters @ (i.e., minimizing the volume
of a Wald confidence ellipsoid for 8). Vz-optimality involves minimizing the approximate
variance of the estimator of =, where = denotes a quantity of interest. The criterion V=
corresponds to the well-known c-optimality criterion in optimal design theory, as discussed
in standard references such as Pukelsheim (1993) and Atkinson, Donev, and Tobias (2007).
For practical applications, see Boulanger and Escobar (1994), Tseng, Tsai, and Balakr-
ishnan (2011), Tsai, Tseng, and Balakrishnan (2012), Lim (2015), and Peng and Cheng
(2021). Other optimality criteria are reviewed in Wu and Hamada (2021). However, most
studies on optimizing test plans employ a single optimality criterion. If a business owner
already has an optimal test plan with respect to one criterion, they may be interested in
knowing for which other criteria it is also optimal, as this helps assess the overall quality
of the test plan. Thus, a test plan that simultaneously satisfies more than one optimality
criterion would be economically attractive. In particular, a bi-optimal test plan can help
manufacturers develop a robust maintenance and service strategy for their products.

We herein propose a bi-optimal test plan under a total cost constraint and based on
the Vi -optimality criterion. A V; -optimal test plan can generally be found for a given
fixed ¢. This means that such a V; -optimal test plan can be considered as a function of
¢, which in turn allows the value ¢ to be chosen according to another optimality criterion.

Thus, a key issue is to find a value of ¢ such that the corresponding V;_-optimal test plan



simultaneously satisfies a second optimality. It is therefore of interest to investigate the
existence and uniqueness of such a test plan. If such a test plan exists, we refer to it as a
bi-optimal quantile-based test plan.

A Wiener process is used to illustrate the conditions for the existence and uniqueness
of a bi-optimal quantile-based test plan using D-optimality. The lifetime distribution of
the first hitting time for a Wiener process follows an inverse Gaussian (IG) distribution
(Chhikara and Folks, 1989), but there is no explicit expression for the g-quantile of the
IG distribution. Instead, a normalizing logarithmic transformation proposed by Whitmore
and Yalovsky (1978) provides an excellent approximation to the g-quantile of the IG dis-
tribution. This simple approximation facilitates the derivation of a closed form for the
bi-optimal ¢* (defined in Section 3), which in turn ensures the existence and uniqueness of
the bi-optimal quantile-based test plan. The resulting conditions for existence and unique-
ness reveal clear relationships between the model parameters and the experimental costs.

The assumptions on test configuration in Lee, Tseng, and Hong (2020) are adopted
to extend our results to fit the use of ADTs. The grid-search procedure used by Lee et
al. (2020) can be replaced with the proposed bi-optimal quantile-based test plan, thereby
reducing computational effort in practical applications. The optimal test configuration for
ADTs can then be determined using standard numerical search methods.

The remainder of this article is organized as follows. Section 2 introduces an accelerated
degradation model based on a Wiener process and derives the corresponding D- and Vz-
optimal test plans under cost constraints. Section 3 presents the derivation of the bi-
optimal quantile-based test plan. Section 4 provides an explicit expression and theoretical
properties of the bi-optimal quantile-based test plan for the Wiener process. Section 5

describes the optimal test configuration for ADTs based on the bi-optimal quantile-based



test plan. Section 6 presents numerical examples that illustrate the applicability of the

results. Concluding remarks are given in Section 7.

2 Model Formulation and Cost-Constrained Optimal

Test Plans

Assume that there are [ combinations of explanatory (or accelerating) variables for ADTs.
Let {Y'(t; Sg);t > 0} be a Wiener process in the kth experimental setting Sy (k =1,...,1).
The Y (¢;S),) follows a normal distribution with mean n(S;)t and variance o2(Sy)t (rep-
resented by Y(¢;5;) ~ N (n(Sk)t,0%(Sk)t)), where n(Sy) and o?(Sy) denote the drift
rate and dispersion functions, respectively, of Si. Let X = (1, Xp1,..., Xpn,—1) and
Z, = (1,Zy1,..., ZnN,—1) respectively denote the (column) vectors of standardized ex-
planatory variables in the kth experimental setting associated with the drift-rate and
dispersion functions, where Xy, and Zj, are functions of one or more standardized ex-
planatory variables (r = 1,...,N; — 1, s = 1,..., Ny — 1) and the transpose symbol “
"7 Let B = (6o, By Bn-1) and v = (Y0,71,---,YN,—1)" be the vectors of unknown
parameters (or regression coefficients) and @ = (3’,4’)’. Then, the following relationship

can be assumed between the parameter functions and standardized explanatory variables:

n(Sk) = g1(X8) and o*(Sk) = g2(ZyY),

where g, and g9 are link functions. In practice, the choice of link functions depends on
the purposes. For example, Tseng et al. (2011) used simple exp-linear regression and
constant functions for g; and go in ADTs, respectively. Note that Sy denotes the normal-

use conditions, i.e., Xo, = Zps =0forr=1,..., Ny —1,s=1,..., Ny — 1.



Let Y;(t; jx; Sk) denote the observation of the ith degradation path at time ¢; ;; in the
kth experimental setting, Sy, for : = 1,...,ng, 5 = 1,..., m, where ny is the sample size
(i.e., the number of test units) for setting Si, and m is the number of measurements per-
formed for each unit. The termination time of each degradation path at Sy is assumed to
be the same (i.e., t;;mr = tmi). However, different degradation paths may have different
measurement intervals before the termination time (i.e., €14, ..., tim—1x). The total test
units and total termination time are denoted by n and t,,, respectively, i.e., 22:1 ng=mn
and Zﬁc:l tmk = tm. The corresponding proportions of total test units and total termina-
tion time at Sy are denoted by pp = ni/n € [0,1] and ¢y = t,1/tm € [0,1], respectively.
For simplicity, let Yz = (Yi(ti16;5%),- .-, Yi(timu; Sk))" be the vector of observations of
the ith degradation path corresponding to the kth setting. Hence, the single degradation

path Y, follows an m-variate normal distribution:

Y ~ Non(91(X1.8)ti . 92(Z,77) Qi) (1)

where ti,kz = (ti,l,kza L- ;ti,m—l,kzatm,k)/ and 621'7]C = [min{ti,jhk,tiyj%k}]lgjhhgm. The corre-
sponding overall FIM, Z,, (), is expressed as a block diagonal matrix (see Supplementary

Section 1.1),
Z,,(6) = n((tmB) ® (mG/2)), (2)

where “@®” denotes the direct sum,

l ’ / 2
Z1 92(Z,) 0X,8 * k o Z (g (Zk’Y)) 0Z,~y ok

Note that the block matrix B in the FIM does not depend on the intervening measurement
times but relies on the termination time ¢, of each degradation path. Given t,,; and m
for each S, the measurement intervals do not have to be equal for each sample. This

flexibility allows for inspections to be conducted over arbitrary time periods in ADTs.



2.1 Cost-Constrained D-optimal Test Plan

The determinant of the FIM is expressed as

N1+N2tN1mN2
m

m n
Z,(0) =™ |1, B| |G| = B||G]. (3)

N2

where N; and N, represent the numbers of unknown parameters in the drift rate and
dispersion functions, respectively. Their influence is reflected in the total termination time
and number of measurements, respectively. Increasing the time span primarily improves the
estimation of mean-value parameters, while increasing the number of observations improves
the estimation of variance parameters by (2) and (3). The determinant depends on n
through a power law due to the total number of parameters. Increasing n relative to t,, or
m increases the amount of information obtained about the parameters involved in ADTs.

In real applications, the (accelerated) DT is constrained by the initial budget allocated
to the experiment. A well-known total cost constraint proposed by Yu and Tseng (1999)

is formulated as

C’optm + Cmeamn + Citn < Cb> (4)

tm 20, m>1,n=>1,

where the positive experimental costs Cop, Creq, Cit, and Cy, represent the cost of a time
unit of operation, unit cost of each measurement, unit cost of a tested sample and the total
budget, respectively. Without loss of generality, let C, = 1. Note that the lower bound of n
is the number of combinations of explanatory variables to fit the use of ADTs. When [ = 1,
it is the DT case. The upper bounds of the experimental costs C,,., and Cy are 1 (i.e.,
0 < Chnea, Cit < 1), but there is no upper bound for C,, as derived from (4). Applications
using the total cost constraint can be found in Wu and Chang (2002), Liao and Tseng
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(2006), Yang, Hsu, and Hu (2024), Cheng and Peng (2024), and Dong and Peng (2025).
Let & = (n,t,,,m) denote a test plan for n > [, t,, > 0, and m > 1. Because the
determinant in (3) is factored into a product of model parameters and decision variables,
this implies that the objective function is only proportional to the decision variables. Hence,
the determinant in (3) can be generalized to the following objective function without loss

of generality:

D(g) = nNotﬁlmNa N07N17N2 € N> (5)

where the exponents Ny, N1, and Ny are given constants. When [ = 1 for a DT without
explanatory variables (i.e., Xy, = Zys = 0forr = 1,...,N; =1, s = 1,..., Ny — 1),
then (Ng, N1, No) = (2,1,1) (e.g., Peng and Cheng, 2021). Tseng et al. (2011) used
g1(x) = exp(By + B1x) and go(2) = 7o for ADTs with a single accelerating variable x, which
corresponds to (No, N1, Na) = (3,2,1). According to (5), D(&) strictly increases with n,
tm, and m. Thus, some constraints are necessary for maximization problems.

Let X and €x = (nx,tmx,mx) denote any (alphabetical) optimality criterion and
the X-optimal test plan, respectively, under the total cost constraint in (4). Hence, the
D-optimal test plan &p maximizes D(€) in (5) subject to the total cost constraint in (4).
According to (3) or (5), the model parameters do not influence the D-optimal test plan,
which is robust to parameter uncertainty. All derivations of this article can be found in

the supplementary file.

Theorem 2.1. Given Ny, Ny, Na, Cop, Crrea, and Cjy, the D-optimal test plan &p can be

divided into two parts as follows:

(Z) For Ny > Ng,



(N1 + No)Cpea = 1 (No+ N1)Cit .
. PRSI V']
(1) Cy + N, <7< N, N, if and only if
£ — <l Ni(1—=1Cy)  No(1—1Cy) )
b "(N14+ N3)Cop” (N1 4+ N2)IChpea )
NQCit NO - N2 . .
(2) Chea < No N, and Cy < (No £ V1) if and only if
&p = ( No = N N NoCiy >
(No+ N1)Ci’ (No + N1)Cop” (No — Na)Clrea
NoCiy No . .
mea Z T AT d 7 mea PN d l
(3) C No I, and Cy + C, <l(N0+N1) if and only if
&b = ( Mo h 1>
(No + N1)(Cit + Crnea)” (No + N1)Cop’
No 1 (N1 4+ N2)Crea . .
_ 0 2 <0
(4) Nt V) = Cit + Criea < = Ci + N, if and only if
1 —1Ceq — ICy
€D (7 Cop ) >

(7,7,) For NO S NQ,

(Nl + N2)Cmea

1 .
() Clt+ N2

1
< 7 if and only if

Y (z Ni(1=1Cy)  No(1—1Cy) )
A (N1 + No)Cop (Ny 4 No)iCrea )

1 N- N
(9) Ciut Conea < 7 < o+ TNt i1 1 oy i
2
1 —1Chea — ICy
=1 1].
£D (7 Oop ) )

Note that the feasible region for the D-optimal test plan is bounded by Cj; > 0, C)eq >
0, and Cy 4 Cheq < 1/1 and shrinks with increasing [. Table 1 presents the monotonicity
property of the D-optimal decision variables in Theorem 2.1(i) with respect to the constants

Ny, Ny, and Ny as well as experimental costs. Note that the monotonicity property of the



NO Nl NQ Oz C10p Cmea NO Nl N2 Cz C(op Omea

(1) twp 0 + — — - 0 (2) np T 0 0

mp 0 - + — 0 - twp — + 0 0 — 0

mp — 0 + + 0 —

@3 np + - 0 — 0 — @ twp O 0 0 — — =
twp — + 0 0 - 0

Table 1: Monotonicity properties in the parameters and experimental costs for the D-optimal

test plan in Theorem 2.1(i).

D-optimal decision variables in Theorem 2.1(ii) is the same as described by Theorem 2.1(i)-
(1) and (4) and is therefore not included in Table 1. For Theorem 2.1(i)-(2), np is strictly
increasing with Ny and strictly decreasing with Ny, Ny, and Cj;. t,,.p is strictly decreasing
with Ny and C,, and increasing with Ny. mp is strictly decreasing with Ny and C,,., and
increasing with Ny and Cj;. Similar explanations apply to the other cases (i.e., Theorem
2.1(i)-(1), (3) and (4)) presented in Table 1.

The necessary and sufficient conditions outlined in Theorem 2.1 do not depend on the
experimental cost C,,. Thus, let the experimental costs Cy; and C,¢, be represented by the
r-axis and y-axis, respectively. Figure 1 depicts the feasible regions of optimal test plans
with the dividing functions representing the necessary and sufficient conditions described
in Theorem 2.1. Different colored areas correspond to the different feasible regions for the
D-optimal test plans as described in Theorem 2.1: khaki corresponds to the interior case
np >l and mp > 1, pale-green corresponds to the boundary case np = [, pink corresponds

to the boundary case mp = 1; and the light-blue corresponds to the trivial case np = [ and
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mp = 1. In Figure 1(a), the intersection point P = ((Ny — N2)/(I(No + N1)), Nao/(I(No +
N1))) can be calculated by using the dividing functions C,eq = NaoCit/(Ng — N2) and
Cit = (No — Na)/(I(No + N1)). As Ny — Ny — 0 in Theorem 2.1(i), the intersection point
P moves toward (0, No/(I(No + Ny))) in Figure 1(a), which simplifies to Figure 1(b). The

corresponding result is reduced to Theorem 2.1(ii) (i.e., np =1).

=
=

I — Nzclt:(NO_NZ)Cmea ! - C\l+(N1+N2)Cmea/N2:1/|
— 1Cit=(No=N2)/(No+Ny) Cit+Crea =1/l
— Cit+(N1+N2)Cea/N2=1/I
— 1(Cit*+Cmea) =No/(No+Ny)
Cit+Cmea =1/
No
I(No+Ny) | -
5=
: np =| b mp =
= mp = E N,
O © I(N;+Np) |
N, nD>|1 P
I(Ng+Ny) 1Mo
np =1
Np >| nD:I mp>1
mp>1 mp >1
0 : 0
o No-N, 1 0 1
1(No+Ny) T c 1
it
Cit
(a) Ny > Ny (b) No < N2

Figure 1: Feasible regions of D-optimal test plans

In practice, cost coefficients may vary. Thus, it is of interest to assess how often the
alternatives (i.e., interior, boundary, and trivial cases) occur. To this end, we assume that
the cost coefficients are uniformly distributed over a feasible region. Then, the feasible
regions of the D-optimal test plans in Theorem 2.1 can be compared as follows. Based on
the conditions in Theorem 2.1(i), let 2 be the sample space of the D-optimal test plan (i.e.,
the feasible region is enclosed by Cjy = 0, Cipeq = 0, and Cjy + Ceq = 1/1). Let A; be the

area of the D-optimal test plan p in Theorem 2.1(i)-(j) for j = 1,2, 3,4. Therefore, we

11



have ) = U?Zl A;. The occurrence probabilities in Theorem 2.1(i) are easy to calculate as

Pr(dy) = Mt Ne) gy Na (o = No)
(No + N1) (No + N1)
Pr(Ay) = Jo0o=Mo) ) = M @No ¥ Ny~ )
(No + N1) (No + N1)

A similar definition can be made for Theorem 2.1(ii).
Corollary 2.1. Given the D-optimal test plan in Theorem 2.1.

(i) For Ny > Ny, the ratio of the cases in Theorem 2.1(i)-(1)-(4) is

N1+N2_1_N0 ~Ni(2No + N1 — Ny)

Pr(A;) : Pr(Ay) : Pr(As) : Pr(Ay) = No—N; " "Ny Ny(Ny— N,)

Moreover, we have Pr(Ay) < Pr(As).

(ii) For Ny < Ny, the ratio of the areas in Theorem 2.1(ii)-(1) and (2) is Ny : Nj.

Corollary 2.1 provides a clear comparison of the occurrence probabilities of the different
types of D-optimal test plans. It demonstrates that the interior case of the D-optimal test
plan is not the most probable scenario.

For certain relationships among the exponents Ny, N, and Ny, the D-optimal test
plan to the cost-constrained maximization problem leads to (partially) equal allocations of

experimental cost.

Corollary 2.2. Given the D-optimal test plan in Theorem 2.1.

(i) For Theorem 2.1(1)-(1) and (ii)-(1), we have NoCoptp.p = IN1Crpeamp.

(i) For Theorem 2.1(i)-(2), (a) if No = Ny + Na, then Coptim.p = Cunp; (b) if No =
Ny + Ny and Ny = Ny (i.e., Ng: Ny : Ny =2:1:1), then Copty.p = Crneampnp =
CitTLD = 1/3

12



(1ii) For Theorem 2.1(i)-(3), we have NoCoptm:p = Ni(Cit + Crpea)np-

Corollary 2.2(ii)-(a) indicates that, under partially equal experimental cost allocations
(i.e., Coptm:p = Ciunp), an increase in the experimental cost C,, leads to a decrease in the
D-optimal total termination time ¢,,.p, while an increase in the experimental cost C;; leads
to a decrease in the D-optimal total sample size np. According to Corollary 2.2(ii)-(b),

each experimental cost allocation occupies one third of the total budget.

2.2 Cost-Constrained Vz-optimal Test Plan

Let Z(6) be a real-valued and continuously differentiable function, and let VE(0) be a
non-zero vector with the gradient of = evaluated at 6. Then, the invariance property of

the maximum likelihood (ML) estimator (denoted by @), the delta method, and (2) can be

used to the approximate the variance of Z(6):

AVar(Z(9)) = VZ(0)'Z; ' (0)VZ(0)

BT 0=(0)

:1<85<0> aE(@)) tn| Bl 08

n\ 98 o 0 2G# 9=(6)

RITe] Oy

1 1 0=(8) ,,0=(0) 2 0=(0) ., 0=(0)

3\ (tm|B| o B g tmia oy © oy
1

where B# and G7 denote the adjoint matrices of B and G, respectively, and

n
a_
n

0=(0) ., 0=(6)
a~<e>—2|B| o & o (7)
T G B )

0B 19J6]

The functional form presented in (6) highlights some important features relevant to the
Wiener process. Information regarding the approximate variance of E(é) can be summa-
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rized in a single function az=(6), which leads to a substantial simplification of AVar(Z(8)).
The function az(0) is called the integrated variance (IV) function (Dong and Peng, 2025).

Under normal-use conditions Sy (i.e., Xo, = Zps = 0 for r = 1,...,N; — 1, s =
L,...,Ny — 1), we have VE(0) = (0=(0)/0B, Oy, _,,0=(0) /00, 0,_,)', where Oy, _; is a
zero vector of length Ny — 1. Then the IV function az(0) in (7) is simplified to

_ 29" |B| (9E(6)/0)*

(
a=(0) b |G| (0Z(8)/88,)°

(8)

where b(1:Y) represents the determinant of the (N7 — 1) x (N; — 1) matrix obtained after

removing the first row and first column from B and the same definition for g(tb.

Without loss of generality, the Vz-objective function is formulated as follows:

V=) = (i =0

n \tm, m

) , az(0) > 0. (9)

Applications of the same functional form in (9) can be found in Peng and Cheng (2021) for
the IG process in a DT, Lim and Yum (2011) for the Wiener process in ADTs, and Tseng
and Lee (2016) for the Tweedie process in ADTs. To avoid parameter uncertainty in the
Vz-optimal test plan, the locally optimal design proposed by Chernoff (1953) is adopted,
where the ML estimates are used to replace the unknown parameters in a=(0). The cost-
constrained Vz-optimization problem is to minimize Vz(§) in (9) subject to the total cost
constraint in (4). Following a similar proof of Theorem 2.1 proposed by Dong and Peng

(2025), the Vz-optimal test plan &y can be derived as follows.

Theorem 2.2. Given a=(0), Cop, Crnea, and Cy, the Vz-optimal test plan with the total

cost constraint can be divided into four parts as follows:

(i) The Vz-optimal test plan is

e _ (i 1—1Cy 1—1Cy
= 7 CYop + \/055(0)6’0106(7neal7 lCmea + \/lCopCmea/aE(e)

14



1 1 —21C;)?
if and only if (a) 2Cy + Crea < = and ( [Cir) Cop < ag(0) or

l Z3Cmea0i2t
1 [CneaC
| [ _ mea'“ op )
(b) Czt —+ Cmea < [ = Czt + Cmea and a_(@) > (1 — lCzt — lOmea)2

(i) The Vz-optimal test plan is & = (n(mg),t(me), me), where

Himg) = \/ Copma(Copme + a=z(0)) — Copmae
’ Copa=(6) |
C’op’rnﬂ + aE(e) - \/Copme(copme + O-/E(g))
045(0) (Cmeame + C’Lt) 7

me = —35; {\3/k1(055(9)) + ko(a=(0)) + ki(a=(0)) — ky(az(0)) — 2} 7

n(me) =

with

. 27C’meaa5 (0)

k1(a=(0)) TR
it“op
3 ?)CmeaOKE 0 27Cmeaa5 (7]
k2<a5<0>>:5\/ C,tc”( " ”_32>
it“op it“op

1 ; 1 20% + Cmea CmeaCo 1-— 2[01 200
if and only if 2C; + Chiea < 7 and (2C: 035) P a=(0) < ( ZBCZ%CZL& P

(iii) The Vz-optimal test plan is

£ = Cop +a=(0) — \/COP(COP + az(0)) \/OOP(COP +az(0)) — Cyp 1
= a=(0)(Cit + Cinea) ’ az(0)C., ’

(207,t + Cmea)CmeaOop

1 20(C; -1
Zf and only if20it+cmea < Z and ( Z(Clt + Cmea) ) Cop e
it

l (1 = 1CH — 1Chea)?

(iv) The Vz-optimal test plan is

1- lcmea - lC@t
= (! 1
£V: < ) ng ; )

1
if and only if (a) 2C;+Chea < 7 < 2(Ci+Chea) and 0 < az(0) < (

20(Cit + Crnea) — 1)Cyp
(1 - lClt - lcmea>2

or

lCmeaOop
(1 —1Cy —1Cea)?

(b) Cit + Cmea <

~| =

< 2C5 4 Chieq and 0 < az(0) <

15



Corollary 2.3. When «(6) — 0, the Vz-optimal test plan is

1 1
L = 1
€V: <2(Ozt + Cmea) 7 200]37 >

1
for 2(Cy + Chea) < 7,' otherwise, the V=-optimal test plan is

1-— ZCmea - lCZt
L = 1]).
EV: (l’ Cop ? )

Let the parameter function az(@) and experimental cost C,, be represented by the -
1
l )

1
< 2(Cit + Crpea), and (¢) Cyy + Criea < 7 < 2Ci + Chyeq, the feasible

axis and y-axis, respectively. According to the different cost ranges (a) 2(Ci + Chea) <
(0) 2Ci + O < 7 <
regions for the Vz-optimal test plans are plotted in Figure 2 using the same colors as in
Figure 1. The dividing functions are the necessary and sufficient conditions of the Vz=-
optimal test plan &y.. Clearly, the slopes of the dividing functions are influenced by the
experimental costs Cy; and C,,., in Figure 2. The related properties can be found in Dong
and Peng (2025).

The following section introduces the bi-optimal quantile-based test plan that simulta-

neously satisfies the two criteria.

3 Bi-optimal Quantile-based Test Plan

When the quantity of interest is the g-quantile of a product’s lifetime under normal-use
conditions Sy (i.e., Z(0) = t,), the parameter function in (8) can be seen as a function
of ¢ (denoted by @&(q)) and is referred to as the integrated quantile (IQ) function. The
corresponding V; -optimal test plan 'fvtq can be obtained by Theorem 2.2. Hence, a test
plan that achieves V; -optimality and D-optimality simultaneously is considered. More

precisely, if there exists any ¢ such that the optimal decision variables in both (V; - and
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Figure 2: Feasible regions of Vz-optimal test plans (a) 2(Cy+ Chea) < i (b) 2Ci1 4+ Creq <
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D-) optimality criteria are the same, i.e.,

&vi, =&p & i, =np, tmyy, = tmp, My, =MD, (10)

then this ¢ is termed as the bi-optimal ¢*. The bi-optimal quantile-based test plan is
referred to as the D(q¢*)-optimal test plan (denoted by &p(s+)), i-e., &€p(g) = £th* = &p.
Applying Theorems 2.1 and 2.2 to (10) yields a system of three nonlinear equations in
the single unknown ¢. In general, such a system is difficult to solve without imposing
additional conditions. However, a solution can be found if the three equations can first
be reduced to a single equation. Otherwise, the D(¢*)-optimal test plan does not exist.
Particularly in the interior case (np-) > and mpe) > 1), three equations need to be
solved under the total cost constraint in (4), which implies that at least an additional
condition is required to solve the system of nonlinear equations. In the boundary case

(either npg+) = I or mpgy = 1), only two equations need to be solved under the total cost
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constraint (4), so no further conditions are required. In this situation, the bi-optimal ¢*
can be found from a single equation at the intersection of the feasible regions for the V; -
and D-optimal test plans. For the trivial case (i.e., np+) = and mp) = 1), we have
tmin(gr) = (1 =1Cpeqa — 1Ct) /Cop and no equation needs to be solved for the D(g*)-optimal
test plan £p(4+). For the bi-optimal ¢*, all that is required is to find the intersection of the
feasible regions for both the V;, and D-optimal test plans.

Here, D(g*)-optimality is considered achieved by simultaneously minimizing the gener-
alized variance of model parameters and approximate variance of the estimated g-quantile
of the product’s lifetime distribution. If the V; -optimal test plan simultaneously satisfies
the D-optimality criterion, then the unknown ¢ must satisfy three equations corresponding
to three decision variables (i.e., & = &£p). Hence, it is possible to find the D(g*)-optimal
test plan within the same case, as outlined in Theorems 2.1 and 2.2. Otherwise, the D(g*)-
optimal test plan does not exist. The feasible region for the existence of a D(¢*)-optimal

test plan can thus be derived as follows.

Theorem 3.1. Given &(q), No, N1, Na, Cop, Crrea, and Cy, the D(q*)-optimal test plan

Ep) (= Eth* = &p) can be divided into four cases as follows:

N N Ctmea
(i) For npgy =1, &€pg) ewists if and only if Cy + (Vs +N2) <
2

~| =

, the bi-optimal

q* satisfies

o N2C,
a(q") = —NE?Omia’ (11)

1 < (N() + N1>Cit

and one of the following two conditions: (a) Nog > Ny + No, — < ~——. (D)
l Ny — Ny

1 N.
No < Ny 4+ Ny, - < (24 32) Ci.
l Ny

Cmea NZ

(ii) For np(gr) > 1 and mp(gy > 1, Ep(g) exists if and only if Ng = N1+ Na, < < N
i 1
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Ci < and the bi-optimal q* satisfies

M
12N, + o)

. 2N, + No)N2C;,C,
(g = BTN GG,
1 Ymea

N,
(iii) For mpgy = 1, &€p(g) exists if and only if Ci + Cpreq < 0

q* satisfies
~ % (Ng B le)co
a(q ) = N12 p?

and one of the following two conditions: (a) No > Ny + Ns and

Cmea N2
> .
Ciy = No— N,

(b) maX{Nl,NQ} < N() < N; + NQ,
() For npg) = l,mpgy =1, Ep(g~) exists if and only if

1
(a) 2Cy 4 Chea < 7 the bi-optimal ¢* satisfying

~/ % <2Z<Czt + Cmea) - 1)Cop
MQ)E<Q (1= iCy —1Cm)? |’

and one of the following conditions:

N,
(1) max{Nl,Ng} < N() < M +N2; Cz‘t + Cmea > I 0

(Nl + NQ)Cmea
Ny '

1 Ny + No)Chea 1
(2) No < Ny, N2<N1;_§Cit+( 1+ M) (mdjﬁ

[ Ny
(Nl + NQ)Cmea
Ny ’

1
(3) No < Ny, Ny < Ny andi < Cy+

No
No > N1+ Na, Cit + Crea 2 77— -
(4) No > N 2, Cit (N + )

1 (N1 + N2)Crea

[(No + Ny)

(12)

, the bi-optimal

(13)

Cmea > NO_NI'

1
(b) Cit - Cmea < = S 2C’Lt + Cmea; 7 S Cit +
l l Ny

satisfying

~/ % lcmea C’op
a@)e@wLJQ—K%@2’

and one of the following two conditions:
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No

1) N, N N. dC’L Cmeaz—'
() 0> N1+ INo an t + l<N0+N1)

(2) Ny < N, + Ns.
Otherwise, the D(q*)-optimal test plan does not exist.

We refer to (11)—(13) in Theorem 3.1(i)—-(iii) as the D@Q-equation. When the DQ-
equation holds, the IQ function &(g*) is only proportional to the experimental costs, which
is not related to test configuration. In the following special case Ny = Ny + No, (11)-(13)

in Theorem 2.1 can be further simplified into a common DQ)-equation.
Corollary 3.1. For Ny = Ny + Na, the DQ-equation in Theorem 3.1(i)—(iii) is
- Ny
OZ((,] ) - Flva
where the D-optimal frequency fp = mp/tm:p.

Corollary 3.1 indicates that the D@Q-equation for the D (¢*)-optimal test plan provides
the relation of engineering implication (i.e., D-optimal frequency fp).

According to (14)—(15) in Theorem 3.1(iv), there exists more than one bi-optimal ¢*,
which is deemed the least interesting case. The bi-optimal ¢* with D(g¢*)-optimality is
determined by both the model parameters and experimental costs (see Supplementary

Figures 1-3 for feasible regions in Theorem 3.1).

4 1IQ Function a(q) Based on the Wiener Process

For the DQ@Q-equation in Theorem 3.1, the IQ function &(gq) plays a crucial role in the
D(q*)-optimal test plan. There exists more than one solution regarding the unknown ¢
in the DQ-equation. Hence, the IQ function &(gq) based on the Wiener process can be
investigated to solve the D@Q-equation.
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In the Wiener process, the lifetime T of a product under normal-use conditions Sy is
defined as the first hitting time when the degradation path Y'(¢;.Sy) crosses the prefixed
threshold w, i.e., T' = inf{t|Y (t; So) > w}. The lifetime T follows an IG distribution with
mean w/n and shape parameter w?/o?, where n = g1() > 0 and 0? = gy(y9) > 0. The

cumulative distribution function (CDF) of T" is given by

nt —w 2nw nt +w
Fr(t;0) = — P | -
r{#;f) (\/a2t)+exp<02> ( UQt)’

where @ is the CDF of the standard normal distribution. When Z(0) = F;'(¢; 0) = t,,

the ¢-quantile of the product’s lifetime can be numerically evaluated by solving Fr(t,;0) =
q. However, since the CDF Fr(t;60) is analytically intractable, there is no closed-form
expression for ¢,. Consequently, deriving the explicit expression of &(q) for the D(q*)-
optimal test plan is not feasible. Hence, a normalizing logarithmic transformation proposed

by Whitmore and Yalovsky (1978) is used to study the bi-optimal quantile-based test plan:

1 nT
AR 1
2p+pn(w), (16)

where p = /nw/o? is the signal-to-noise (SN) ratio for the IG distribution. Whitmore and
Yalovsky (1978) showed that Z converges in distribution to the standard normal distribu-
tion as p — oo. The convergence rate of Z is of the order 1/p* which is the square of the
coefficient of variation for the IG distribution. When the SN ratio p is large, the g-quantile

of the lifetime distribution of 7" for the Wiener process can be approximated as

o1 1
ty & gexp (& - —2) : (17)
n P 2p

The IQ function &(q) in (8), using (17), can then be derived as

2 ( 1—pd'(q)
2

i) =2 (LB ) e o) (18)
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which is a continuously differentiable function of ¢q. The properties of &(q) in (18) are

depicted in Figure 3.

Proposition 1. As 0 < p < oo, the IQ function a(q) is increasing on (0,®(p~! — 2p))
and (®(p~1),1), and decreasing on (®(p~' — 2p), ®(p~')). There is an absolute mini-
mum at ¢ = ®(p~1) with a(®(p~')) = 0. The IQ function &(q) is concave down on
(0,®(29)) and concave up on (P(z),1) with the inflection point at ¢ = ® (zy), where zo =
(—2p<p2 ~ 1)+ @+ VTR 2+ (- Mvz) /(30%) with 21 = ~20%(8p° +

39p* + 6p? + 1) and the discriminant A = 4p°(16p5 + 51p* + 12p* + 2). Moreover, there is

a vertical asymptote at ¢ = ®(p~' — 2p) and lim, 0 &(q) = lim,_,1 &(q) = 2n*/0*.

® [of]

a(a)

2n? 2n?

a? o2

o @[ -2ef] *fpf 1

Figure 3: a(q) vs. ¢

A smaller value for ¢ is of greater interest for product reliability because it provides
information on early failures, which in turn offers manufacturers and engineers insights for
developing robust maintenance and service strategies. Since the normalizing logarithmic

transformation in (16) provides an excellent approximation when the SN ratio p is larger
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than 3 (Whitmore and Yalovsky, 1978), the value of ®(p~'—2p) is less than 1078, Therefore,

to cover the whole range of a(g), the interested interval

(@(p'=2p),@(p7")), p<o0 (19)

is primarily used to determine the bi-optimal ¢* for the Wiener process in practical appli-
cations. The inverse function of &(q) is well-defined on the interval (0,00). As shown in

Supplementary Section 1.7, the bi-optimal ¢* using (18) is expressed as

¢=alc)=2o (p_l for ¢ > 0. (20)

2
p~t+/2n/ (w0)>
Then, a D(q*)-optimal test plan always exists within the interested interval for any Cj,

Cinea and Cy, as follows:

Theorem 4.1. Given Ny, N2, Cop, Crea, Cit, and (18) for the Wiener process and the
interested interval (19) with (20), the D(q*)-optimal test plan can be divided into four cases

as follows:

(i) For npg) =1, &p(g+) uniquely exists if and only if Cy + (N1 4+ N2)Crea /N2 < 1/1 and

Ci > N1 /(1(2N7 + Ny)).

(ii) Fornp) > 1 and mpg) > 1, Ep(g+) uniquely exists if and only if Crea/Cir < NofNy

and Cit < N1/<l(2N1 + NQ))

(iii) For mp(gy = 1, &p(g~y uniquely exists if and only if Ci + Crea < (N1+ Na)/(1(2N7 +

Nz)) and Cmea/cit 2 NQ/Nl.
() For npgy = l,mpgy =1, Ep(g~) exists if and only if

(0,) 20115 + Cmea < 1/l (I?’Ld Cit + Cmea Z (N1 + NQ)/(Z(QNl + Ng)) or
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(b) 20@1& +Cmea Z 1/[, Cit + Cmea < 1/l and Cit + (Nl + NQ)Cmea/N2 Z 1/l

Furthermore, the bi-optimal ¢* for (i)-(iii) is ¢* = & Y(Nofp/Ny). For the (iv), there are

infinite bi-optimal q*s:

e o (A o ) )

b e () )

1

Since the function &' is decreasing, Theorem 4.1(i)—(iii) indicates that a higher D-
optimal frequency results in a smaller the bi-optimal ¢*.

Based on the proposed bi-optimal quantile-based test plan, the test configuration for

ADTs can be determined numerically in the following section.

5 Test Configuration in ADTs

Tseng and Lee (2016) indicated that, for a three-level allocation problem using the Wiener
process, the V; -optimal sample size allocation exists only for [ = 2, with the highest
stress level always included. Therefore, following the assumptions on the test configura-
tion for ADTs proposed by Lee et al. (2020), the V; -optimal test configuration deter-
mines the sample size allocation, stress levels, and termination time at each stress level
for [ = 2. For the Wiener process, the simple exp-linear relationship between the mean
drift rate and a specific accelerating variable, and the constant function for the diffusion
coefficient are assumed, i.e., g,(X,3) = exp(Bo + p1Xk,1) and 92(Z,) = 7o, respectively.
Hence, we have (No, N1, Ny) = (3,2,1) and @ = (By, B1,7%)’. As long as the experimen-
tal costs (Ciea, Cop, Cit) and parameter estimates are given, the D(¢*)-optimal test plan

€p(g*) = (MD(g*)s tm;D(g*), MD(q+)) and bi-optimal ¢* can be obtained directly from Theorem
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4.1. Furthermore, the D(g*)-optimal test plan depends only on the experimental costs and
is not related to the test configuration.

For | = 2, the sample proportions are (p;,1 — p;). The two standardized accelerating
variables are (X;1,X21) = (211,1) within the range of stress level (x, 1), where x, is a
given fixed lower bound. The termination time at S} is defined as t,,, , = tyrym, where ty
is a unit of time and r; is the number of units of time at Si. The corresponding ratio of
two termination times is u = ry/ry, which is not related to ¢y and m. Let Z(6) = ¢,-, then

the approximate variance of fq* is given by

AVar(fy) = — (278 (0t /020)" | 70 exp(=260) (Ot /050)"

D(q*)

L] ( 1 +oth*(0)>
np(g) \tmiD(g*)  ™MD(g*)

H(pl,l‘l,hu))

Mp(q*) bm;D(q*)

where

(14 u) {upra? exp(2B1211) + (1 — p1) exp(261) }
upy (1 —p1)(1 —211)%exp (281 (1 + 211))

_ 270exp(260) (9t /0%0)”

H(p1,x11,u) (atq*/ﬁﬁo)z.

and (21)

H(plaxl,lau) =

. (0)

Consequently, the D(g*)-optimal test plan can be obtained directly, which eliminates the
computation time needed for a grid-search procedure in Section 4 proposed by Lee et
al. (2020). Given the parameter estimates and D(g*)-optimal test plan, finding the V; .-
optimal test configuration (p7, 27 ;,u*) by minimizing AVar(t,) is equivalent to minimizing
H(p1,x11,u) subject to

1 Np(g+) — 1 ot 1— T
< 1<L’ v < a1y <1, andMSuSM

o)~ Mg 1 = fpgntu fo@ntu

(22

where fp+) = mD(q*)/tm;D(q*). Due to the complicated structure of H(py,x11,u), it is
challenging to obtain an explicit expression for each test configuration. However, the V; .-
optimal test configuration (py, =7, u") for [ = 2 benefits from relying on numerical search
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methods. Based on the definition of v, in Section 2, the relation between ; and w is

u = 1 /(1 —11). Therefore, the V; ,-optimal ¥} can be obtained from 7 = u*/(1 + u").

6 Applications

The following examples are presented to demonstrate the practical applicability of the
previous theoretical analysis.

Example 6.1. Gallium arsenide (GaAs) laser data (Meeker et al., 2022, example 20.1) are
used to demonstrate the D(¢*)-optimal test plan under a total cost constraint using the
Wiener process (i.e., (Ng, N1, No) = (2,1,1)). According to Cheng and Peng (2012), the
ML estimates of the unknown parameters are (7),5) = (2.04 x 1073,1.27 x 1072) and the
threshold is w = 10. The SN ratio is estimated to be 11.28, which is sufficiently large for this

case. For illustrative purposes, the link functions g; and g, are chosen as constant functions,

q

¥ 0535 0.152 0.1 0.022 0.01
3 = ! ! !
—— Cit=Cpea & —— Cop=ii(q)/1.41
— Cy=1/3 ny,>1 <+ . Cop=i(q)/5.43
- — Cit+2Cmea=1 my, =1 —— Cop=0(q)/59282
@ — Cu*Cmea=2/3 (8(0.022),107)
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Figure 4: D(q*)-optimal test plan for the GaAs laser data
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and the experimental costs are set to (Ci;, Crnea, Cop) = (0.03,0.0166,107*). Based on the
experimental costs (Cjt, Creq) = (0.03,0.0166), Figure 4(a) shows that the D-optimal test
plan is the interior case and &p = (11.11,3333.33,1.81) by Theorem 2.1(i)-(2). Since
2(Cy + Chiea) = 0.093 < 1, Figure 4(b) illustrates the necessary and sufficient conditions
for the V; -optimal test plan by Theorem 2.2, where the second z-axis represents the value
of ¢. When C,, = 10~*, the V,_-optimal test plan is the interior case by Theorem 2.2(ii)
for ¢ € [0.01,0.152] and boundary case by Theorem 2.2(iii) for ¢ € (0.152,0.535]. Since the
D-optimal test plan is the interior case by Theorem 3.1(ii), the black dotted line indicating
Cop = &(q)Cnea/(3Ci) = a(q)/5.43 represents the D@ equation in (12). The point of
intersection between C,, = 107* and C,, = @(q)/5.43 manifests at (5.4 x 107%,107*). By
Theorem 4.1(ii), the bi-optimal ¢* is @~ (5.4 x 107*) = 0.022 and the D(q*)-optimal test
plan is €p(o.on) = (11.11,3333.33,1.81).

In practice, the optimal integers n and m can be obtained using Theorems 2.1 and
2.2 as the starting point for discrete search algorithms (e.g., Taha, 2017). Using the grid-
search method, the D- and V;, ,,-optimal test plans are found as &%, = (11, 3056.54,2)
and Ei}to‘m = (10, 3687.76, 2), respectively, which are quite close to the D(¢*)-optimal test
plan £p(o.022). The D- and V; -efficiencies at the experimental costs (Cop, Crneq; Ciz) can be

defined as

N+ V,, (&,
R R e (23)

D(¢)
D(&p)

Eito(e) - {

respectively. The corresponding D- and V,, ,,-efficiencies under the experimental costs
(City Creas Cop) = (0.03,0.0166, 10~*) are Effp(£5,) = 99.6% and Eftv, .. (5;20'022) = 99.5%,
respectively.

For a typical fixed value of ¢ (e.g., ¢ = 0.1), the IQ function and Vj_,-optimal test plan
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are @ (0.1) = 2.17 x 107 from (18) and &y, = (12.49,3745.95,1.21) by Theorem 2.2(ii),
respectively. Based on the V; -efficiency defined in (23), the corresponding V;, ,-efficiency

of the D(g*)-optimal test plan (i.e., &y,  versus §p(o.o22)) is

1 1 2.17x10—4
Vtoq(gvtm) 12.49 <3745.95 + =5 )
Effy,, , (§p(0.022)) = v -1 1 217x10-4\ 94.50%.
0.1 (€D(0.022)) 1111 (3333.33 + s )

The result shows that the D(¢*)-optimal test plan is also highly efficient for a typical
fixed value ¢ = 0.1. Note that the bi-optimal ¢* is determined by the given experimental
costs and the pre-specified values of the model parameters (refer to (20)). Therefore, it
may not be close to a typical fixed value of ¢q. For example, if the experimental costs are
changed to (Cieq, Cop, Cit) = <1.45 x 1073, 1074, 3.6 X 10_3>, the V}, ,-optimal test plan is
&v,,, = (107.6, 3873.75, 1.44). Using (20), the bi-optimal ¢* = 0.01, which is not very
close to the typical fixed value ¢ = 0.1. Nevertheless, the corresponding V;, ,-efficiency of
the D (¢*)-optimal test plan (i.e., {p.01) = (92.59, 3333.33, 2.48)) is still 90.7%.

Under the experimental costs (Ci, Crea, Cop) = (0.03,0.0166,107%), a practical range
for ¢ can be naively chosen as [0.01,0.152] (i.e., the interior case). Figure 5 shows the
D-efficiency defined in (23) of the V; -optimal test plan for this range. For each ¢, the
Vi,-optimal test plan, &y, , can be obtained by Theorem 2.2. For the typical fixed value

q = 0.1, the D-efficiency of &y,  is evaluated as

1
D(&y,, )| " \/12.492 x 3745.95 x 1.21
Eff XEYraw = = 97.48%.
p (&) { D(£p) } 11.112 x 3333.33 x 1.81 7

In addition, Figure 5 demonstrates that the D-efficiency for &y, is above 90% for all ¢ in
this range. How to reconcile the discrepancy between the computed ¢* and the value of ¢
suggested by the business owner deserves further study.

Example 6.2. We use the stress relaxation data with a single accelerating variable (i.e.,
temperature) from Yang (2007) to illustrate the D(g*)-optimal test plan and V; .-optimal
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Figure 5: D-efficiencies of &y, over ¢ € [0.01,0.152] for the GaAs laser data under

(City Creas Cop) = (0.03,0.0166, 10~*)

test configuration obtained by the Wiener process (i.e., (No, Ny, Nao) = (3,2,1)) under
the total cost constraint in (4). According to Table 3 in Tseng and Lee (2016), the ML
estimates of the unknown parameters under a normal use condition (i.e., Sy = 40°C) are
(7,5) = (exp(Fo), vAo) = (exp(—2.0709), /1/3.7481) = (0.126,0.517) and f; = 1.9745
with the threshold w = 30. The SN ratio is estimated to be 3.77, which is sufficiently large
for this case. Given the experimental costs (Cii, Cynea, Cop) = (0.05,5 x 107%,1.008 x 1074)
and [ = 2, the conditions Cpeq = 5 x 107% < NoCj;/(Ny — N3) = 0.025 and Cj; = 0.05 <
(No — N2)/(I(No + N1)) = 0.2 in Theorem 4.1(ii) are satisfied (i.e., the interior case).
Therefore, by Corollary 3.1 and Theorem 4.1(ii), the bi-optimal ¢* = a~!(fp/2) = 0.02,
where the D-optimal frequency is fp = No(Ng + N1)CitCop/(N1(No — Na)Cipea) = 0.0126.
The D(q*)-optimal test plan, &€p.o2) = (8,3968.25,50), achieves 100% efficiency for two
optimality criteria. The D(¢*)-optimal test plan can be used to gather more information

about model parameters and more precisely estimate the ¢*-quantile of the product lifetime
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distribution at Sy = 40°C.
Following assumptions of the test configuration at [ = 2 and ¢y = 1 in Lee et al. (2020),
the temperature range is set to (50°C, 100°C). Based on the Arrhenius law, the lower bound

of the testing standardized stress level is

1/(273.15 + 40) — 1/(273.15 + 50)
- = 0.1925.
1/(273.15 + 40) — 1/(273.15 + 100)

The V; .-optimal test configuration (pj, 27 ;,u") can then be obtained numerically by min-

imizing H (p1, 11, u) in (21) subject to the following constraints

0.0126 1-0.0126
<yu< ——

< < .
=P = 1-00126 = = " 0.0126

5 0.1925 S x1,1 S ]., and

o
(Ol BN

Therefore, the V; ,-optimal test configuration is (p}, 7, u*) = (0.875,0.2113,8.4909) with
H(py, 7 ,,u*) = 0.997 by using the function optim in R (R Core Team 2025). Table 2
presents the unit-scale and original-scale values for the V; ,-optimal test configuration based
on the D(g*)-optimal test plan &p.02) = (8,3968.25,50), where 9} = u*/(1 4+ v*) = 0.895.
A larger sample size allocation pj (i.e., upper bound) and a longer termination time ¢ ,

increase the importance of the optimal stress level 7 |, which is close to xp.

7 Concluding Remarks

Under a total cost constraint, we propose a bi-optimal quantile-based test plan for the
Wiener process. The value of ¢ is chosen based on a secondary optimality criterion (i.e.,
it is problem-driven), with the aim of improving product reliability (i.e., engineering im-
plication) while ensuring effective resource allocation (i.e., business considerations). The
proposed innovation is practically applicable and provides manufacturers with insights for

developing robust maintenance and service strategies. The given fixed ¢ and bi-optimal ¢*
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D(q*)-Optimal Test Plan V;,.-Optimal Test Configuration

Ep(g) Unit Scale Original Scale

¢ = 0.02 7, = 0.2113 51.01°C

Np(g) = 8 p = 0.875 (ni,n3) =(7,1)
Lm;D(q+) = 3968.25 Y7 =0.895  (ty,1,tn,2) = (3550.14,418.11)
Mp(gr) = 50 — (mD(q*),mD(q*)) = (507 50)

Table 2: D(q*)-optimal test plan and Vi,.-optimal test configuration with

[ = 2 for the stress relaxation data.

can be viewed as playing roles analogous to the pre-specified significance level « (often 5%)
and the p-value in statistical hypothesis testing. The existence of a D(g*)-optimal test plan
is established in Theorem 3.1. Furthermore, by using a normalizing logarithmic transfor-
mation for the Wiener process, we show that a D(q*)-optimal test plan always exists and
is unique within the interested interval, except in the trivial case. The ADT model based
on the Wiener process in (1) offers a clear and intuitive interpretation of the bi-optimal
quantile-based test plan. The V; .-optimal test configuration for the ADT can be found
using numerical search methods in practical applications.

It is an important and challenging problem to determine an optimal test plan for a
given fixed ¢ that appropriately balances between the two objectives. A promising avenue
for future research is the theoretical and numerical investigation of multi-optimal quantile-

based test plans.

31



References

[1] Atkinson, A. C., Donev, A. N.; and Tobias, R. D. (2007), Optimum Ezxperimental

Designs, with SAS, New York: Oxford University Press.

[2] Bagdonavicius, V. and Nikulin, M. S. (2001), Accelerated Life Models: Modeling and

Statistical Analysis, Boca Raton: Chapman & Hall/CRC.

[3] Boulanger, M. and Escobar, L. A. (1994), Experimental design for a class of accelerated

degradation tests. Technometrics, 36, 260-272.

[4] Cheng, Y. S., Chen, Y., and Lee, M. L. T. (2025), Longitudinal survival analysis using
first hitting time threshold regression: with applications to Wiener processes. Stats, 8,

Article 32.

[5] Cheng, Y.S. and Peng, C. Y. (2012), Integrated degradation models in R using iDEMO.

Journal of Statistical Software, 49, 1-22.

[6] Cheng, Y. S. and Peng, C. Y. (2024), Optimal test planning for heterogeneous Wiener

processes. Naval Research Logistics, 71, 509-520.

[7] Chernoff, H. (1953), Locally optimal designs for estimating parameters. Annals of

Mathematical Statistics, 24, 586—602.

[8] Chhikara, R. S. and Folks, L. (1989), The Inverse Gaussian Distribution: Theory,

Methodology, and Applications, New York: Marcel Dekker.

32



[9] D’Hondt, M., Fedorova, M., Peng, C. Y., Gevaert, B., Taevernier, L., Hoffmann, R.,
and De Spiegeleer, B. (2014), Dry heat forced degradation of buserelin peptide: Kinetics

and degradant profiling. International Journal of Pharmaceutics, 467, 48-59.

[10] Dong, Y. S. and Peng, C. Y. (2025), Importance inference of optimal test planning

for degradation analysis. IEEFE Transactions on Reliability, 74, 4426-4440.

[11] Hu, C. H., Lee, M. Y., and Tang, J. (2015), Optimum step-stress accelerated degra-
dation test for Wiener degradation process under constraints. FEuropean Journal of

Operational Research, 241, 412-421.

[12] Lee, I. C., Tseng, S. T., and Hong, Y. (2020), Global planning of accelerated degrada-
tion tests based on exponential dispersion degradation models. Naval Research Logistics,

67, 469-483.

[13] Liao, C. M. and Tseng, S. T. (2006), Optimal design for step-stress accelerated degra-

dation tests. IEFE Transactions on Reliability, 55, 59-66.

[14] Lim, H. (2015), Optimum accelerated degradation tests for the gamma degradation

process case under the constraint of total cost. Entropy, 17, 2556-2572.

[15] Lim, H. and Yum, B. J. (2011), Optimal design of accelerated degradation tests based

on Wiener process models. Journal of Applied Statistics, 38, 309-325.

[16] Meeker, W. Q., Escobar, L. A., and Pascual, F. G. (2022), Statistical Methods for

Reliability Data (2nd ed.), New York: John Wiley & Sons.

[17] Nelson, W. B. (2004), Accelerated Testing: Statistical Models, Test Plans, and Data

Analysis, New York: John Wiley & Sons.

33



[18] Peng, C. Y. and Cheng, Y. S. (2021), Profile optimum planning for degradation

analysis. Naval Research Logistics, 68, 951-962.

[19] Prasad, M., Gopika, V., and Shridharan, A. (2020), Application of Hougaard stochas-
tic model for flow-accelerated corrosion wall thinning in an orifice. Life Cycle Reliability

and Safety Engineering, 9, 349-352.

[20] Prasad, M., Gopika, V., Sridharan, A., Parida, S., and Gaikwad, A. J. (2018),
Hougaard process stochastic model to predict wall thickness in flow accelerated cor-

rosion. Annals of Nuclear Energy, 117, 247-258.

[21] Pukelsheim, F. (1993), Optimal Design of Experiments, New York: John Wiley &

Sons.

[22] R Core Team (2025), R: a language and environment for statistical computing, Vienna:

R foundation for statistical computing. Available at http://www.R-project.org/

[23] Taha, H. A. (2017), Operations Research: An Introduction (10th ed.), New York:

Pearson Education.

[24] Tsai, C. C., Tseng, S. T., and Balakrishnan, N. (2012), Optimal design for gamma
degradation processes with random effects. [FEE Transactions on Reliability, 61,

604-613.

[25] Tseng, S. T. and Lee, I. C. (2016), Optimum allocation rule for accelerated degradation
tests with a class of exponential-dispersion degradation models. Technometrics, 58,

244-254.

[26] Tseng, S. T., Tsai, C. C., and Balakrishnan, N. (2011), Optimal sample size allocation
for accelerated degradation test based on Wiener process, in: Balakrishnan N. (ed.).

34



Methods and Applications of Statistics in Engineering, Quality Control, and the Physical

Sciences. New York: John Wiley & Sons, 330-343.

[27] Wang, Y. H. and Wong, S. H. D. (2015), Modelling accelerated degradation test and
shelf-life prediction of dye-sensitized solar cells with different types of solvents. Solar

Energy, 118, 600-610.

[28] Whitmore, G. A. and Yalovsky, M. (1978), A normalizing logarithmic transformation

for inverse Gaussian random variables. Technometrics, 20, 207-208.

[29] Wu, S. J. and Chang, C. T. (2002), Optimal design of degradation tests in presence

of cost constraint. Reliability Engineering and System Safety, 76, 109-115.

[30] Wu, C. F. J. and Hamada, M. (2021), Ezperiments: Planning, Analysis, and Opti-

mization (3rd ed.), New York: John Wiley & Sons.

[31] Yang, C. H., Hsu, Y. H., and Hu, C. H. (2024), Mis-specification analyses and optimum
degradation test plan for Wiener and inverse Gaussian processes. Communications in

Statistics— Theory and Methods, 53, 7T00-717.

[32] Yang, G. (2007), Life Cycle Reliability Engineering, New York: John Wiley & Sons.

[33] Yu, H. F. and Tseng, S. T. (1999), Designing a degradation experiment. Naval Research

Logistics, 46, 689-706.

35





