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Abstract
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1 Introduction

Rapid advances in technology have greatly improved product quality across industries,

which has led manufacturers to place a growing emphasis on the development of high-

reliability products to maintain competitiveness. Ensuring long-term product quality is

crucial for customer satisfaction and plays an important role in building and sustaining

a company’s reputation. Thus, manufacturers are expected to provide reliable lifetime

information for their products. When the quality characteristics of high-reliability products

are closely linked to the failure mechanism and degrade over time, precise inferences about

lifetime information can be made by analyzing collected degradation data. Degradation

analysis has gained increasing attention across diverse fields such as biomedical engineering,

aerospace, renewable energy systems, industrial applications, and public health research.

Applications of degradation models can be found in D’Hondt et al. (2014), Wang and

Wong (2015), Prasad et al. (2018), Prasad, Gopika, and Shridharan (2020), and Cheng,

Chen, and Lee (2025).

Before conducting a degradation test (DT), the initial test plan involves fundamental

decision variables such as the sample size, termination time, and number of measurements.

For accelerated DTs (ADTs), most plans focus on the test configuration, which includes the

stress levels, sample allocations, and number of measurements at each stress level under a

pre-specified total number of stress levels (e.g., Lim and Yum, 2011; Hu, Lee, and Tang,

2015; Tseng and Lee, 2016). However, the total sample size, termination time, and number

of measurements in the initial test plan are often assumed to be given without consideration

of the experimental costs. Hence, these decision variables need to be determined under a

total cost constraint. After this step, the test configuration for ADTs can then be selected
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using existing approaches. Extensive discussions of degradation planning and analysis

can be found in Bagdonavičius and Nikulin (2001), Nelson (2004), Meeker, Escobar, and

Pascual (2022), and the references cited therein.

Test plans are often optimized with respect to specific criteria. For instance, D-

optimality involves maximizing the determinant of the Fisher information matrix (FIM)

or precisely estimating the underlying model parameters θ (i.e., minimizing the volume

of a Wald confidence ellipsoid for θ). VΞ-optimality involves minimizing the approximate

variance of the estimator of Ξ, where Ξ denotes a quantity of interest. The criterion VΞ

corresponds to the well-known c-optimality criterion in optimal design theory, as discussed

in standard references such as Pukelsheim (1993) and Atkinson, Donev, and Tobias (2007).

For practical applications, see Boulanger and Escobar (1994), Tseng, Tsai, and Balakr-

ishnan (2011), Tsai, Tseng, and Balakrishnan (2012), Lim (2015), and Peng and Cheng

(2021). Other optimality criteria are reviewed in Wu and Hamada (2021). However, most

studies on optimizing test plans employ a single optimality criterion. If a business owner

already has an optimal test plan with respect to one criterion, they may be interested in

knowing for which other criteria it is also optimal, as this helps assess the overall quality

of the test plan. Thus, a test plan that simultaneously satisfies more than one optimality

criterion would be economically attractive. In particular, a bi-optimal test plan can help

manufacturers develop a robust maintenance and service strategy for their products.

We herein propose a bi-optimal test plan under a total cost constraint and based on

the Vtq -optimality criterion. A Vtq -optimal test plan can generally be found for a given

fixed q. This means that such a Vtq -optimal test plan can be considered as a function of

q, which in turn allows the value q to be chosen according to another optimality criterion.

Thus, a key issue is to find a value of q such that the corresponding Vtq -optimal test plan
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simultaneously satisfies a second optimality. It is therefore of interest to investigate the

existence and uniqueness of such a test plan. If such a test plan exists, we refer to it as a

bi-optimal quantile-based test plan.

A Wiener process is used to illustrate the conditions for the existence and uniqueness

of a bi-optimal quantile-based test plan using D-optimality. The lifetime distribution of

the first hitting time for a Wiener process follows an inverse Gaussian (IG) distribution

(Chhikara and Folks, 1989), but there is no explicit expression for the q-quantile of the

IG distribution. Instead, a normalizing logarithmic transformation proposed by Whitmore

and Yalovsky (1978) provides an excellent approximation to the q-quantile of the IG dis-

tribution. This simple approximation facilitates the derivation of a closed form for the

bi-optimal q∗ (defined in Section 3), which in turn ensures the existence and uniqueness of

the bi-optimal quantile-based test plan. The resulting conditions for existence and unique-

ness reveal clear relationships between the model parameters and the experimental costs.

The assumptions on test configuration in Lee, Tseng, and Hong (2020) are adopted

to extend our results to fit the use of ADTs. The grid-search procedure used by Lee et

al. (2020) can be replaced with the proposed bi-optimal quantile-based test plan, thereby

reducing computational effort in practical applications. The optimal test configuration for

ADTs can then be determined using standard numerical search methods.

The remainder of this article is organized as follows. Section 2 introduces an accelerated

degradation model based on a Wiener process and derives the corresponding D- and VΞ-

optimal test plans under cost constraints. Section 3 presents the derivation of the bi-

optimal quantile-based test plan. Section 4 provides an explicit expression and theoretical

properties of the bi-optimal quantile-based test plan for the Wiener process. Section 5

describes the optimal test configuration for ADTs based on the bi-optimal quantile-based
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test plan. Section 6 presents numerical examples that illustrate the applicability of the

results. Concluding remarks are given in Section 7.

2 Model Formulation and Cost-Constrained Optimal

Test Plans

Assume that there are l combinations of explanatory (or accelerating) variables for ADTs.

Let {Y (t;Sk); t ≥ 0} be a Wiener process in the kth experimental setting Sk (k = 1, . . . , l).

The Y (t;Sk) follows a normal distribution with mean η(Sk)t and variance σ2(Sk)t (rep-

resented by Y (t;Sk) ∼ N (η(Sk)t, σ
2(Sk)t)), where η(Sk) and σ2(Sk) denote the drift

rate and dispersion functions, respectively, of Sk. Let Xk = (1, Xk,1, . . . , Xk,N1−1)
′ and

Zk = (1, Zk,1, . . . , Zk,N2−1)
′ respectively denote the (column) vectors of standardized ex-

planatory variables in the kth experimental setting associated with the drift-rate and

dispersion functions, where Xk,r and Zk,s are functions of one or more standardized ex-

planatory variables (r = 1, . . . , N1 − 1, s = 1, . . . , N2 − 1) and the transpose symbol “

′ ”. Let β = (β0, β1, . . . , βN1−1)
′ and γ = (γ0, γ1, . . . , γN2−1)

′ be the vectors of unknown

parameters (or regression coefficients) and θ = (β′,γ ′)′. Then, the following relationship

can be assumed between the parameter functions and standardized explanatory variables:

η(Sk) = g1(X
′

kβ) and σ2(Sk) = g2(Z
′

kγ),

where g1 and g2 are link functions. In practice, the choice of link functions depends on

the purposes. For example, Tseng et al. (2011) used simple exp-linear regression and

constant functions for g1 and g2 in ADTs, respectively. Note that S0 denotes the normal-

use conditions, i.e., X0,r = Z0,s = 0 for r = 1, . . . , N1 − 1, s = 1, . . . , N2 − 1.
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Let Yi(ti,j,k;Sk) denote the observation of the ith degradation path at time ti,j,k in the

kth experimental setting, Sk, for i = 1, . . . , nk, j = 1, . . . ,m, where nk is the sample size

(i.e., the number of test units) for setting Sk, and m is the number of measurements per-

formed for each unit. The termination time of each degradation path at Sk is assumed to

be the same (i.e., ti,m,k = tm,k). However, different degradation paths may have different

measurement intervals before the termination time (i.e., ti,1,k, . . . , ti,m−1,k). The total test

units and total termination time are denoted by n and tm, respectively, i.e.,
∑l

k=1 nk = n

and
∑l

k=1 tm,k = tm. The corresponding proportions of total test units and total termina-

tion time at Sk are denoted by pk = nk/n ∈ [0, 1] and ψk = tm,k/tm ∈ [0, 1], respectively.

For simplicity, let Yik = (Yi(ti,1,k;Sk), . . . , Yi(ti,m,k;Sk))
′ be the vector of observations of

the ith degradation path corresponding to the kth setting. Hence, the single degradation

path Yik follows an m-variate normal distribution:

Yik ∼ Nm(g1(X
′

kβ)ti,k, g2(Z
′

kγ)Qi,k), (1)

where ti,k = (ti,1,k, . . . , ti,m−1,k, tm,k)
′ and Qi,k = [min{ti,j1,k, ti,j2,k}]1≤j1,j2≤m. The corre-

sponding overall FIM, In(θ), is expressed as a block diagonal matrix (see Supplementary

Section 1.1),

In(θ) = n((tmB)⊕ (mG/2)), (2)

where “⊕” denotes the direct sum,

B =
l∑

k=1

pkψk

g2(Z
′
kγ)

(
∂g1(X

′

kβ)

∂X
′
kβ

)2

XkX
′

k and G =
l∑

k=1

pk
(g2(Z

′
kγ))

2

(
∂g2(Z

′

kγ)

∂Z
′
kγ

)2

ZkZ
′

k.

Note that the block matrix B in the FIM does not depend on the intervening measurement

times but relies on the termination time tm,k of each degradation path. Given tm,k and m

for each Sk, the measurement intervals do not have to be equal for each sample. This

flexibility allows for inspections to be conducted over arbitrary time periods in ADTs.
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2.1 Cost-Constrained D-optimal Test Plan

The determinant of the FIM is expressed as

|In(θ)| = nN1+N2 |tmB|
∣∣∣m
2
G
∣∣∣ = nN1+N2tN1

m mN2

2N2
|B| |G| , (3)

where N1 and N2 represent the numbers of unknown parameters in the drift rate and

dispersion functions, respectively. Their influence is reflected in the total termination time

and number of measurements, respectively. Increasing the time span primarily improves the

estimation of mean-value parameters, while increasing the number of observations improves

the estimation of variance parameters by (2) and (3). The determinant depends on n

through a power law due to the total number of parameters. Increasing n relative to tm or

m increases the amount of information obtained about the parameters involved in ADTs.

In real applications, the (accelerated) DT is constrained by the initial budget allocated

to the experiment. A well-known total cost constraint proposed by Yu and Tseng (1999)

is formulated as

Coptm + Cmeamn+ Citn ≤ Cb, (4)

tm ≥ 0, m ≥ 1, n ≥ l,

where the positive experimental costs Cop, Cmea, Cit, and Cb represent the cost of a time

unit of operation, unit cost of each measurement, unit cost of a tested sample and the total

budget, respectively. Without loss of generality, let Cb = 1. Note that the lower bound of n

is the number of combinations of explanatory variables to fit the use of ADTs. When l = 1,

it is the DT case. The upper bounds of the experimental costs Cmea and Cit are 1 (i.e.,

0 < Cmea, Cit < 1), but there is no upper bound for Cop as derived from (4). Applications

using the total cost constraint can be found in Wu and Chang (2002), Liao and Tseng
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(2006), Yang, Hsu, and Hu (2024), Cheng and Peng (2024), and Dong and Peng (2025).

Let ξ = (n, tm,m) denote a test plan for n ≥ l, tm ≥ 0, and m ≥ 1. Because the

determinant in (3) is factored into a product of model parameters and decision variables,

this implies that the objective function is only proportional to the decision variables. Hence,

the determinant in (3) can be generalized to the following objective function without loss

of generality:

D(ξ) = nN0tN1
m mN2 , N0, N1, N2 ∈ N, (5)

where the exponents N0, N1, and N2 are given constants. When l = 1 for a DT without

explanatory variables (i.e., Xk,r = Zk,s = 0 for r = 1, . . . , N1 − 1, s = 1, . . . , N2 − 1),

then (N0, N1, N2) = (2, 1, 1) (e.g., Peng and Cheng, 2021). Tseng et al. (2011) used

g1(x) = exp(β0+β1x) and g2(z) = γ0 for ADTs with a single accelerating variable x, which

corresponds to (N0, N1, N2) = (3, 2, 1). According to (5), D(ξ) strictly increases with n,

tm, and m. Thus, some constraints are necessary for maximization problems.

Let X and ξX = (nX , tm;X ,mX) denote any (alphabetical) optimality criterion and

the X-optimal test plan, respectively, under the total cost constraint in (4). Hence, the

D-optimal test plan ξD maximizes D(ξ) in (5) subject to the total cost constraint in (4).

According to (3) or (5), the model parameters do not influence the D-optimal test plan,

which is robust to parameter uncertainty. All derivations of this article can be found in

the supplementary file.

Theorem 2.1. Given N0, N1, N2, Cop, Cmea, and Cit, the D-optimal test plan ξD can be

divided into two parts as follows:

(i) For N0 > N2,
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(1) Cit +
(N1 +N2)Cmea

N2

<
1

l
≤ (N0 +N1)Cit

N0 −N2

if and only if

ξD =

(
l,
N1(1− lCit)

(N1 +N2)Cop

,
N2(1− lCit)

(N1 +N2)lCmea

)
.

(2) Cmea <
N2Cit

N0 −N2

and Cit <
N0 −N2

l(N0 +N1)
if and only if

ξD =

(
N0 −N2

(N0 +N1)Cit

,
N1

(N0 +N1)Cop

,
N2Cit

(N0 −N2)Cmea

)
.

(3) Cmea ≥
N2Cit

N0 −N2

and Cit + Cmea <
N0

l(N0 +N1)
if and only if

ξD =

(
N0

(N0 +N1)(Cit + Cmea)
,

N1

(N0 +N1)Cop

, 1

)
.

(4) N0

l(N0 +N1)
≤ Cit + Cmea <

1

l
≤ Cit +

(N1 +N2)Cmea

N2

if and only if

ξD =

(
l,
1− lCmea − lCit

Cop

, 1

)
.

(ii) For N0 ≤ N2,

(1) Cit +
(N1 +N2)Cmea

N2

<
1

l
if and only if

ξD =

(
l,
N1(1− lCit)

(N1 +N2)Cop

,
N2(1− lCit)

(N1 +N2)lCmea

)
.

(2) Cit + Cmea <
1

l
≤ Cit +

(N1 +N2)Cmea

N2

if and only if

ξD =

(
l,
1− lCmea − lCit

Cop

, 1

)
.

Note that the feasible region for the D-optimal test plan is bounded by Cit > 0, Cmea >

0, and Cit + Cmea < 1/l and shrinks with increasing l. Table 1 presents the monotonicity

property of the D-optimal decision variables in Theorem 2.1(i) with respect to the constants

N0, N1, and N2 as well as experimental costs. Note that the monotonicity property of the

9
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N0 N1 N2 Cit Cop Cmea N0 N1 N2 Cit Cop Cmea

(1) tm;D 0 + − − − 0 (2) nD + − − − 0 0

mD 0 − + − 0 − tm;D − + 0 0 − 0

mD − 0 + + 0 −

(3) nD + − 0 − 0 − (4) tm;D 0 0 0 − − −

tm;D − + 0 0 − 0

Table 1: Monotonicity properties in the parameters and experimental costs for theD-optimal

test plan in Theorem 2.1(i).

D-optimal decision variables in Theorem 2.1(ii) is the same as described by Theorem 2.1(i)-

(1) and (4) and is therefore not included in Table 1. For Theorem 2.1(i)-(2), nD is strictly

increasing with N0 and strictly decreasing with N1, N2, and Cit. tm;D is strictly decreasing

with N0 and Cop and increasing with N1. mD is strictly decreasing with N0 and Cmea and

increasing with N2 and Cit. Similar explanations apply to the other cases (i.e., Theorem

2.1(i)-(1), (3) and (4)) presented in Table 1.

The necessary and sufficient conditions outlined in Theorem 2.1 do not depend on the

experimental cost Cop. Thus, let the experimental costs Cit and Cmea be represented by the

x-axis and y-axis, respectively. Figure 1 depicts the feasible regions of optimal test plans

with the dividing functions representing the necessary and sufficient conditions described

in Theorem 2.1. Different colored areas correspond to the different feasible regions for the

D-optimal test plans as described in Theorem 2.1: khaki corresponds to the interior case

nD > l and mD > 1, pale-green corresponds to the boundary case nD = l, pink corresponds

to the boundary case mD = 1; and the light-blue corresponds to the trivial case nD = l and
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Statistica Sinica: Newly accepted Paper 



mD = 1. In Figure 1(a), the intersection point P = ((N0 − N2)/(l(N0 + N1)), N2/(l(N0 +

N1))) can be calculated by using the dividing functions Cmea = N2Cit/(N0 − N2) and

Cit = (N0 −N2)/(l(N0 +N1)). As N0 −N2 → 0 in Theorem 2.1(i), the intersection point

P moves toward (0, N0/(l(N0 +N1))) in Figure 1(a), which simplifies to Figure 1(b). The

corresponding result is reduced to Theorem 2.1(ii) (i.e., nD = l).

Cit

C
m

e
a

●

P

0
N0 − N2

l(N0 + N1)
1

l

0

N2

l(N0 + N1)

N0

l(N0 + N1)

1

l

nD > l
mD > 1

nD > l
mD = 1

nD = l
mD > 1

nD = l
mD = 1

N2Cit = (N0 − N2)Cmea

lC it = (N0 − N2) (N0 + N1)
Cit + (N1 + N2)Cmea N2 = 1 l
l(Cit + Cmea) = N0 (N0 + N1)
Cit + Cmea = 1 l

C i t

C
m

e
a

0
1

l

0

N2

l(N1 + N2)

1

l

nD = l
mD > 1

nD = l
mD = 1

Cit + (N1 + N2)Cmea N2 = 1 l
C it + Cmea = 1 l

(a) N0 > N2 (b) N0 ≤ N2

Figure 1: Feasible regions of D-optimal test plans

In practice, cost coefficients may vary. Thus, it is of interest to assess how often the

alternatives (i.e., interior, boundary, and trivial cases) occur. To this end, we assume that

the cost coefficients are uniformly distributed over a feasible region. Then, the feasible

regions of the D-optimal test plans in Theorem 2.1 can be compared as follows. Based on

the conditions in Theorem 2.1(i), let Ω be the sample space of the D-optimal test plan (i.e.,

the feasible region is enclosed by Cit = 0, Cmea = 0, and Cit + Cmea = 1/l). Let Aj be the

area of the D-optimal test plan ξD in Theorem 2.1(i)-(j) for j = 1, 2, 3, 4. Therefore, we
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have Ω =
⋃4

j=1Aj. The occurrence probabilities in Theorem 2.1(i) are easy to calculate as

Pr (A1) =
N2 (N1 +N2)

(N0 +N1)
2 , Pr (A2) =

N2 (N0 −N2)

(N0 +N1)
2 ,

Pr (A3) =
N0 (N0 −N2)

(N0 +N1)
2 , Pr (A4) =

N1 (2N0 +N1 −N2)

(N0 +N1)
2 .

A similar definition can be made for Theorem 2.1(ii).

Corollary 2.1. Given the D-optimal test plan in Theorem 2.1.

(i) For N0 > N2, the ratio of the cases in Theorem 2.1(i)-(1)–(4) is

Pr (A1) : Pr (A2) : Pr (A3) : Pr (A4) =
N1 +N2

N0 −N2

: 1 :
N0

N2

:
N1(2N0 +N1 −N2)

N2(N0 −N2)
.

Moreover, we have Pr(A2) < Pr(A3).

(ii) For N0 ≤ N2, the ratio of the areas in Theorem 2.1(ii)-(1) and (2) is N2 : N1.

Corollary 2.1 provides a clear comparison of the occurrence probabilities of the different

types of D-optimal test plans. It demonstrates that the interior case of the D-optimal test

plan is not the most probable scenario.

For certain relationships among the exponents N0, N1, and N2, the D-optimal test

plan to the cost-constrained maximization problem leads to (partially) equal allocations of

experimental cost.

Corollary 2.2. Given the D-optimal test plan in Theorem 2.1.

(i) For Theorem 2.1(i)-(1) and (ii)-(1), we have N2Coptm;D = lN1CmeamD.

(ii) For Theorem 2.1(i)-(2), (a) if N0 = N1 + N2, then Coptm;D = CitnD; (b) if N0 =

N1 +N2 and N1 = N2 (i.e., N0 : N1 : N2 = 2 : 1 : 1), then Coptm;D = CmeamDnD =

CitnD = 1/3.

12
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(iii) For Theorem 2.1(i)-(3), we have N0Coptm;D = N1(Cit + Cmea)nD.

Corollary 2.2(ii)-(a) indicates that, under partially equal experimental cost allocations

(i.e., Coptm;D = CitnD), an increase in the experimental cost Cop leads to a decrease in the

D-optimal total termination time tm;D, while an increase in the experimental cost Cit leads

to a decrease in the D-optimal total sample size nD. According to Corollary 2.2(ii)-(b),

each experimental cost allocation occupies one third of the total budget.

2.2 Cost-Constrained VΞ-optimal Test Plan

Let Ξ(θ) be a real-valued and continuously differentiable function, and let ∇Ξ(θ) be a

non-zero vector with the gradient of Ξ evaluated at θ. Then, the invariance property of

the maximum likelihood (ML) estimator (denoted by θ̂), the delta method, and (2) can be

used to the approximate the variance of Ξ(θ̂):

AVar(Ξ(θ̂)) = ∇Ξ(θ)′I−1
n (θ)∇Ξ(θ)

=
1

n

(
∂Ξ(θ)

∂β′
∂Ξ(θ)

∂γ ′

)
B#

tm|B|
0N1×N2

0N2×N1

2G#

m|G|




∂Ξ(θ)

∂β
∂Ξ(θ)

∂γ


=

1

n

(
1

tm |B|
∂Ξ(θ)

∂β′ B#∂Ξ(θ)

∂β
+

2

m |G|
∂Ξ(θ)

∂γ ′ G#∂Ξ(θ)

∂γ

)
∝ 1

n

(
1

tm
+
αΞ(θ)

m

)
, (6)

where B# and G# denote the adjoint matrices of B and G, respectively, and

αΞ(θ) =

2 |B| ∂Ξ(θ)
∂γ ′ G#∂Ξ(θ)

∂γ

|G| ∂Ξ(θ)
∂β′ B#∂Ξ(θ)

∂β

. (7)

The functional form presented in (6) highlights some important features relevant to the

Wiener process. Information regarding the approximate variance of Ξ(θ̂) can be summa-
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rized in a single function αΞ(θ), which leads to a substantial simplification of AVar(Ξ(θ̂)).

The function αΞ(θ) is called the integrated variance (IV) function (Dong and Peng, 2025).

Under normal-use conditions S0 (i.e., X0,r = Z0,s = 0 for r = 1, . . . , N1 − 1, s =

1, . . . , N2 − 1), we have ∇Ξ(θ) = (∂Ξ(θ)/∂β0,0
′
N1−1, ∂Ξ(θ)/∂γ0,0

′
N2−1)

′, where 0N1−1 is a

zero vector of length N1 − 1. Then the IV function αΞ(θ) in (7) is simplified to

αΞ(θ) =
2g(1,1) |B| (∂Ξ(θ)/∂γ0)2

b(1,1) |G| (∂Ξ(θ)/∂β0)2
. (8)

where b(1,1) represents the determinant of the (N1 − 1) × (N1 − 1) matrix obtained after

removing the first row and first column from B and the same definition for g(1,1).

Without loss of generality, the VΞ-objective function is formulated as follows:

VΞ(ξ) =
1

n

(
1

tm
+
αΞ(θ)

m

)
, αΞ(θ) > 0. (9)

Applications of the same functional form in (9) can be found in Peng and Cheng (2021) for

the IG process in a DT, Lim and Yum (2011) for the Wiener process in ADTs, and Tseng

and Lee (2016) for the Tweedie process in ADTs. To avoid parameter uncertainty in the

VΞ-optimal test plan, the locally optimal design proposed by Chernoff (1953) is adopted,

where the ML estimates are used to replace the unknown parameters in αΞ(θ). The cost-

constrained VΞ-optimization problem is to minimize VΞ(ξ) in (9) subject to the total cost

constraint in (4). Following a similar proof of Theorem 2.1 proposed by Dong and Peng

(2025), the VΞ-optimal test plan ξVΞ
can be derived as follows.

Theorem 2.2. Given αΞ(θ), Cop, Cmea, and Cit, the VΞ-optimal test plan with the total

cost constraint can be divided into four parts as follows:

(i) The VΞ-optimal test plan is

ξVΞ
=

(
l,

1− lCit

Cop +
√
αΞ(θ)CopCmeal

,
1− lCit

lCmea +
√
lCopCmea/αΞ(θ)

)
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if and only if (a) 2Cit + Cmea <
1

l
and (1− 2lCit)

2Cop

l3CmeaC2
it

≤ αΞ(θ) or

(b) Cit + Cmea <
1

l
≤ 2Cit + Cmea and αΞ(θ) >

lCmeaCop

(1− lCit − lCmea)2
.

(ii) The VΞ-optimal test plan is ξVΞ
= (n(mθ), t(mθ),mθ), where

t(mθ) =

√
Copmθ(Copmθ + αΞ(θ))− Copmθ

CopαΞ(θ)
,

n(mθ) =
Copmθ + αΞ(θ)−

√
Copmθ(Copmθ + αΞ(θ))

αΞ(θ)(Cmeamθ + Cit)
,

mθ =
Cit

3Cmea

{
3
√
k1(αΞ(θ)) + k2(αΞ(θ)) +

3
√
k1(αΞ(θ))− k2(αΞ(θ))− 2

}
,

with

k1(αΞ(θ)) =
27CmeaαΞ(θ)

2CitCop

− 8,

k2(αΞ(θ)) =
3

2

√
3CmeaαΞ(θ)

CitCop

(
27CmeaαΞ(θ)

CitCop

− 32

)

if and only if 2Cit+Cmea <
1

l
and (2Cit + Cmea)CmeaCop

C2
it

< αΞ(θ) <
(1− 2lCit)

2Cop

l3C2
itCmea

.

(iii) The VΞ-optimal test plan is

ξVΞ
=

(
Cop + αΞ(θ)−

√
Cop(Cop + αΞ(θ))

αΞ(θ)(Cit + Cmea)
,

√
Cop(Cop + αΞ(θ))− Cop

αΞ(θ)Cop

, 1

)

if and only if 2Cit+Cmea <
1

l
and (2l(Cit + Cmea)− 1)Cop

(1− lCit − lCmea)2
< αΞ(θ) ≤

(2Cit + Cmea)CmeaCop

C2
it

.

(iv) The VΞ-optimal test plan is

ξVΞ
=

(
l,
1− lCmea − lCit

Cop

, 1

)

if and only if (a) 2Cit+Cmea <
1

l
≤ 2(Cit+Cmea) and 0 < αΞ(θ) ≤

(2l(Cit + Cmea)− 1)Cop

(1− lCit − lCmea)2

or

(b) Cit + Cmea <
1

l
≤ 2Cit + Cmea and 0 < αΞ(θ) ≤

lCmeaCop

(1− lCit − lCmea)2
.
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Corollary 2.3. When α(θ) → 0, the VΞ-optimal test plan is

ξVΞ
=

(
1

2(Cit + Cmea)
,

1

2Cop

, 1

)

for 2(Cit + Cmea) <
1

l
; otherwise, the VΞ-optimal test plan is

ξVΞ
=

(
l,
1− lCmea − lCit

Cop

, 1

)
.

Let the parameter function αΞ(θ) and experimental cost Cop be represented by the x-

axis and y-axis, respectively. According to the different cost ranges (a) 2(Cit +Cmea) <
1

l
,

(b) 2Cit + Cmea <
1

l
≤ 2(Cit + Cmea), and (c) Cit + Cmea <

1

l
≤ 2Cit + Cmea, the feasible

regions for the VΞ-optimal test plans are plotted in Figure 2 using the same colors as in

Figure 1. The dividing functions are the necessary and sufficient conditions of the VΞ-

optimal test plan ξVΞ
. Clearly, the slopes of the dividing functions are influenced by the

experimental costs Cit and Cmea in Figure 2. The related properties can be found in Dong

and Peng (2025).

The following section introduces the bi-optimal quantile-based test plan that simulta-

neously satisfies the two criteria.

3 Bi-optimal Quantile-based Test Plan

When the quantity of interest is the q-quantile of a product’s lifetime under normal-use

conditions S0 (i.e., Ξ(θ) = tq), the parameter function in (8) can be seen as a function

of q (denoted by α̃(q)) and is referred to as the integrated quantile (IQ) function. The

corresponding Vtq -optimal test plan ξVtq
can be obtained by Theorem 2.2. Hence, a test

plan that achieves Vtq -optimality and D-optimality simultaneously is considered. More

precisely, if there exists any q such that the optimal decision variables in both (Vtq - and
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(a)
C

o
p

nVΞ = l
mVΞ > 1

nVΞ > l
mVΞ > 1

nVΞ > l
mVΞ = 1

0

0
(b)

αΞ(θ)

nVΞ = l
mVΞ > 1

nVΞ > l
mVΞ > 1

nVΞ > l
mVΞ = 1

nVΞ = l
mVΞ = 1

0

(c)

nVΞ = l
mVΞ > 1

nVΞ = l
mVΞ = 1

0

Cop =
Cit

2

Cmea(2Cit + Cmea)
αΞ(θ)   Cop =

l3Cit
2Cmea

(1 − 2lC it)2
αΞ(θ) Cop =

(1 − lC it − lCmea)2

2l(Cit + Cmea) − 1
αΞ(θ) Cop =

(1 − lC it − lCmea)2

lCmea
αΞ(θ)  

Figure 2: Feasible regions of VΞ-optimal test plans (a) 2(Cit+Cmea) <
1

l
, (b) 2Cit+Cmea <

1

l
≤ 2(Cit + Cmea), and (c) Cit + Cmea <

1

l
≤ 2Cit + Cmea

D-) optimality criteria are the same, i.e.,

ξVtq
= ξD ⇔ nVtq

= nD, tm;Vtq
= tm,D, mVtq

= mD, (10)

then this q is termed as the bi-optimal q∗. The bi-optimal quantile-based test plan is

referred to as the D(q∗)-optimal test plan (denoted by ξD(q∗)), i.e., ξD(q∗) = ξVtq∗
= ξD.

Applying Theorems 2.1 and 2.2 to (10) yields a system of three nonlinear equations in

the single unknown q. In general, such a system is difficult to solve without imposing

additional conditions. However, a solution can be found if the three equations can first

be reduced to a single equation. Otherwise, the D(q∗)-optimal test plan does not exist.

Particularly in the interior case (nD(q∗) > l and mD(q∗) > 1), three equations need to be

solved under the total cost constraint in (4), which implies that at least an additional

condition is required to solve the system of nonlinear equations. In the boundary case

(either nD(q∗) = l or mD(q∗) = 1), only two equations need to be solved under the total cost
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constraint (4), so no further conditions are required. In this situation, the bi-optimal q∗

can be found from a single equation at the intersection of the feasible regions for the Vtq -

and D-optimal test plans. For the trivial case (i.e., nD(q∗) = l and mD(q∗) = 1), we have

tm;D(q∗) = (1− lCmea − lCit)/Cop and no equation needs to be solved for the D(q∗)-optimal

test plan ξD(q∗). For the bi-optimal q∗, all that is required is to find the intersection of the

feasible regions for both the Vtq and D-optimal test plans.

Here, D(q∗)-optimality is considered achieved by simultaneously minimizing the gener-

alized variance of model parameters and approximate variance of the estimated q-quantile

of the product’s lifetime distribution. If the Vtq -optimal test plan simultaneously satisfies

the D-optimality criterion, then the unknown q must satisfy three equations corresponding

to three decision variables (i.e., ξVtq
= ξD). Hence, it is possible to find the D(q∗)-optimal

test plan within the same case, as outlined in Theorems 2.1 and 2.2. Otherwise, the D(q∗)-

optimal test plan does not exist. The feasible region for the existence of a D(q∗)-optimal

test plan can thus be derived as follows.

Theorem 3.1. Given α̃(q), N0, N1, N2, Cop, Cmea, and Cit, the D(q∗)-optimal test plan

ξD(q∗)(= ξVtq∗
= ξD) can be divided into four cases as follows:

(i) For nD(q∗) = l, ξD(q∗) exists if and only if Cit +
(N1 +N2)Cmea

N2

<
1

l
, the bi-optimal

q∗ satisfies

α̃(q∗) =
N2

2Cop

N2
1 lCmea

, (11)

and one of the following two conditions: (a) N0 ≥ N1 +N2,
1

l
≤ (N0 +N1)Cit

N0 −N2

. (b)

N0 < N1 +N2,
1

l
≤
(
2 +

N2

N1

)
Cit.

(ii) For nD(q∗) > l and mD(q∗) > 1, ξD(q∗) exists if and only if N0 = N1+N2,
Cmea

Cit

<
N2

N1

,
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Cit <
N1

l(2N1 +N2)
and the bi-optimal q∗ satisfies

α̃(q∗) =
(2N1 +N2)N

2
2CitCop

N3
1Cmea

. (12)

(iii) For mD(q∗) = 1, ξD(q∗) exists if and only if Cit + Cmea <
N0

l(N0 +N1)
, the bi-optimal

q∗ satisfies

α̃(q∗) =
(N2

0 −N2
1 )Cop

N2
1

, (13)

and one of the following two conditions: (a) N0 > N1 + N2 and Cmea

Cit

≥ N0 −N1

N1

.

(b) max{N1, N2} < N0 ≤ N1 +N2,
Cmea

Cit

≥ N2

N0 −N2

.

(iv) For nD(q∗) = l,mD(q∗) = 1, ξD(q∗) exists if and only if

(a) 2Cit + Cmea <
1

l
, the bi-optimal q∗ satisfying

α̃(q∗) ∈
(
0,

(2l(Cit + Cmea)− 1)Cop

(1− lCit − lCmea)2

]
, (14)

and one of the following conditions:

(1) max{N1, N2} < N0 < N1 + N2, Cit + Cmea ≥ N0

l(N0 +N1)
and 1

l
≤ Cit +

(N1 +N2)Cmea

N2

.

(2) N0 ≤ N1, N2 < N1,
1

l
≤ Cit +

(N1 +N2)Cmea

N2

and 1

l
≤ 2(Cit + Cmea).

(3) N0 ≤ N2, N1 < N2 and 1

l
≤ Cit +

(N1 +N2)Cmea

N2

,

(4) N0 ≥ N1 +N2, Cit + Cmea ≥
N0

l(N0 +N1)
.

(b) Cit + Cmea <
1

l
≤ 2Cit + Cmea,

1

l
≤ Cit +

(N1 +N2)Cmea

N2

, the bi-optimal q∗

satisfying

α̃(q∗) ∈
(
0,

lCmeaCop

(1− lCit − lCmea)2

]
, (15)

and one of the following two conditions:
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(1) N0 > N1 +N2 and Cit + Cmea ≥
N0

l(N0 +N1)
.

(2) N0 ≤ N1 +N2.

Otherwise, the D(q∗)-optimal test plan does not exist.

We refer to (11)–(13) in Theorem 3.1(i)–(iii) as the DQ-equation. When the DQ-

equation holds, the IQ function α̃(q∗) is only proportional to the experimental costs, which

is not related to test configuration. In the following special case N0 = N1 +N2, (11)–(13)

in Theorem 2.1 can be further simplified into a common DQ-equation.

Corollary 3.1. For N0 = N1 +N2, the DQ-equation in Theorem 3.1(i)–(iii) is

α̃(q∗) =
N2

N1

fD,

where the D-optimal frequency fD = mD/tm;D.

Corollary 3.1 indicates that the DQ-equation for the D (q∗)-optimal test plan provides

the relation of engineering implication (i.e., D-optimal frequency fD).

According to (14)–(15) in Theorem 3.1(iv), there exists more than one bi-optimal q∗,

which is deemed the least interesting case. The bi-optimal q∗ with D(q∗)-optimality is

determined by both the model parameters and experimental costs (see Supplementary

Figures 1–3 for feasible regions in Theorem 3.1).

4 IQ Function α̃(q) Based on the Wiener Process

For the DQ-equation in Theorem 3.1, the IQ function α̃(q) plays a crucial role in the

D(q∗)-optimal test plan. There exists more than one solution regarding the unknown q

in the DQ-equation. Hence, the IQ function α̃(q) based on the Wiener process can be

investigated to solve the DQ-equation.
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In the Wiener process, the lifetime T of a product under normal-use conditions S0 is

defined as the first hitting time when the degradation path Y (t;S0) crosses the prefixed

threshold ω, i.e., T = inf{t|Y (t;S0) > ω}. The lifetime T follows an IG distribution with

mean ω/η and shape parameter ω2/σ2, where η = g1(β0) > 0 and σ2 = g2(γ0) > 0. The

cumulative distribution function (CDF) of T is given by

FT (t;θ) = Φ

(
ηt− ω√
σ2t

)
+ exp

(
2ηω

σ2

)
Φ

(
−ηt+ ω√

σ2t

)
,

where Φ is the CDF of the standard normal distribution. When Ξ(θ) = F−1
T (q;θ) = tq,

the q-quantile of the product’s lifetime can be numerically evaluated by solving FT (tq;θ) =

q. However, since the CDF FT (t;θ) is analytically intractable, there is no closed-form

expression for tq. Consequently, deriving the explicit expression of α̃(q) for the D(q∗)-

optimal test plan is not feasible. Hence, a normalizing logarithmic transformation proposed

by Whitmore and Yalovsky (1978) is used to study the bi-optimal quantile-based test plan:

Z =
1

2ρ
+ ρ ln

(
ηT

ω

)
, (16)

where ρ =
√
ηω/σ2 is the signal-to-noise (SN) ratio for the IG distribution. Whitmore and

Yalovsky (1978) showed that Z converges in distribution to the standard normal distribu-

tion as ρ→ ∞. The convergence rate of Z is of the order 1/ρ2, which is the square of the

coefficient of variation for the IG distribution. When the SN ratio ρ is large, the q-quantile

of the lifetime distribution of T for the Wiener process can be approximated as

tq ≈
ω

η
exp

(
Φ−1(q)

ρ
− 1

2ρ2

)
. (17)

The IQ function α̃(q) in (8), using (17), can then be derived as

α̃(q) =
2η2

σ2

(
1− ρΦ−1(q)

2ρ2 − 1 + ρΦ−1(q)

)2

, q ∈ (0, 1), (18)
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which is a continuously differentiable function of q. The properties of α̃(q) in (18) are

depicted in Figure 3.

Proposition 1. As 0 < ρ < ∞, the IQ function α̃(q) is increasing on (0,Φ(ρ−1 − 2ρ))

and (Φ(ρ−1), 1), and decreasing on (Φ(ρ−1 − 2ρ),Φ(ρ−1)). There is an absolute mini-

mum at q = Φ(ρ−1) with α̃(Φ(ρ−1)) = 0. The IQ function α̃(q) is concave down on

(0,Φ(z0)) and concave up on (Φ(z0), 1) with the inflection point at q = Φ(z0), where z0 =(
−2ρ(ρ2 − 1) + 3

√
(z1 +

√
27ρ4∆)/2 + 3

√
(z1 −

√
27ρ4∆)/2

)
/(3ρ2) with z1 = −2ρ3(8ρ6 +

39ρ4 + 6ρ2 + 1) and the discriminant ∆ = 4ρ6(16ρ6 + 51ρ4 + 12ρ2 + 2). Moreover, there is

a vertical asymptote at q = Φ(ρ−1 − 2ρ) and limq→0 α̃(q) = limq→1 α̃(q) = 2η2/σ2.

q

α~ (
q

)

●

Φ z0



0 Φ ρ−1
 1Φ ρ−1 − 2ρ



0

2η2

σ2

2η2

σ2

●

● ●● ●

Figure 3: α̃(q) vs. q

A smaller value for q is of greater interest for product reliability because it provides

information on early failures, which in turn offers manufacturers and engineers insights for

developing robust maintenance and service strategies. Since the normalizing logarithmic

transformation in (16) provides an excellent approximation when the SN ratio ρ is larger
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than 3 (Whitmore and Yalovsky, 1978), the value of Φ(ρ−1−2ρ) is less than 10−8. Therefore,

to cover the whole range of α̃(q), the interested interval

(
Φ
(
ρ−1 − 2ρ

)
,Φ
(
ρ−1
))
, ρ <∞ (19)

is primarily used to determine the bi-optimal q∗ for the Wiener process in practical appli-

cations. The inverse function of α̃(q) is well-defined on the interval (0,∞). As shown in

Supplementary Section 1.7, the bi-optimal q∗ using (18) is expressed as

q∗ = α̃−1(c) = Φ

(
ρ−1 − 2

ρ−1 +
√

2η/(ωc)

)
for c > 0. (20)

Then, a D(q∗)-optimal test plan always exists within the interested interval for any Cit,

Cmea and Cop as follows:

Theorem 4.1. Given N1, N2, Cop, Cmea, Cit, and (18) for the Wiener process and the

interested interval (19) with (20), the D(q∗)-optimal test plan can be divided into four cases

as follows:

(i) For nD(q∗) = l, ξD(q∗) uniquely exists if and only if Cit+(N1+N2)Cmea/N2 < 1/l and

Cit ≥ N1/(l(2N1 +N2)).

(ii) For nD(q∗) > l and mD(q∗) > 1, ξD(q∗) uniquely exists if and only if Cmea/Cit < N2/N1

and Cit < N1/(l(2N1 +N2)).

(iii) For mD(q∗) = 1, ξD(q∗) uniquely exists if and only if Cit+Cmea < (N1+N2)/(l(2N1+

N2)) and Cmea/Cit ≥ N2/N1.

(iv) For nD(q∗) = l,mD(q∗) = 1, ξD(q∗) exists if and only if

(a) 2Cit + Cmea < 1/l and Cit + Cmea ≥ (N1 +N2)/(l(2N1 +N2)) or
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(b) 2Cit + Cmea ≥ 1/l, Cit + Cmea < 1/l and Cit + (N1 +N2)Cmea/N2 ≥ 1/l.

Furthermore, the bi-optimal q∗ for (i)–(iii) is q∗ = α̃−1(N2fD/N1). For the (iv), there are

infinite bi-optimal q∗s:

(a) q∗ ∈
[
α̃−1

(
(2l(Cit + Cmea)− 1)Cop

(1− lCit − lCmea)2

)
,Φ(ρ−1)

)
or

(b) q∗ ∈
[
α̃−1

(
lCmeaCop

(1− lCit − lCmea)2

)
,Φ(ρ−1)

)
.

Since the function α̃−1 is decreasing, Theorem 4.1(i)–(iii) indicates that a higher D-

optimal frequency results in a smaller the bi-optimal q∗.

Based on the proposed bi-optimal quantile-based test plan, the test configuration for

ADTs can be determined numerically in the following section.

5 Test Configuration in ADTs

Tseng and Lee (2016) indicated that, for a three-level allocation problem using the Wiener

process, the Vtq -optimal sample size allocation exists only for l = 2, with the highest

stress level always included. Therefore, following the assumptions on the test configura-

tion for ADTs proposed by Lee et al. (2020), the Vtq -optimal test configuration deter-

mines the sample size allocation, stress levels, and termination time at each stress level

for l = 2. For the Wiener process, the simple exp-linear relationship between the mean

drift rate and a specific accelerating variable, and the constant function for the diffusion

coefficient are assumed, i.e., g1(X
′

kβ) = exp(β0 + β1Xk,1) and g2(Z
′

kγ) = γ0, respectively.

Hence, we have (N0, N1, N2) = (3, 2, 1) and θ = (β0, β1, γ0)
′. As long as the experimen-

tal costs (Cmea, Cop, Cit) and parameter estimates are given, the D(q∗)-optimal test plan

ξD(q∗) = (nD(q∗), tm;D(q∗),mD(q∗)) and bi-optimal q∗ can be obtained directly from Theorem
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4.1. Furthermore, the D(q∗)-optimal test plan depends only on the experimental costs and

is not related to the test configuration.

For l = 2, the sample proportions are (p1, 1 − p1). The two standardized accelerating

variables are (X1,1, X2,1) = (x1,1, 1) within the range of stress level (xL, 1), where xL is a

given fixed lower bound. The termination time at Sk is defined as tm,k = tUrkm, where tU

is a unit of time and rk is the number of units of time at Sk. The corresponding ratio of

two termination times is u = r1/r2, which is not related to tU and m. Let Ξ(θ) = tq∗ , then

the approximate variance of t̂q∗ is given by

AVar(t̂q∗) =
1

nD(q∗)

(
2γ20 (∂tq∗/∂γ0)

2

mD(q∗)
+
γ0 exp(−2β0) (∂tq∗/∂β0)

2

tm;D(q∗)
H(p1, x1,1, u)

)

∝ 1

nD(q∗)

(
1

tm;D(q∗)
+
αtq∗ (θ)

mD(q∗)

)
,

where

H(p1, x1,1, u) =
(1 + u)

{
up1x

2
1,1 exp(2β1x1,1) + (1− p1) exp(2β1)

}
up1(1− p1)(1− x1,1)2 exp (2β1(1 + x1,1))

and (21)

αtq∗ (θ) =
2γ0 exp(2β0) (∂tq∗/∂γ0)

2

H(p1, x1,1, u) (∂tq∗/∂β0)
2 .

Consequently, the D(q∗)-optimal test plan can be obtained directly, which eliminates the

computation time needed for a grid-search procedure in Section 4 proposed by Lee et

al. (2020). Given the parameter estimates and D(q∗)-optimal test plan, finding the Vtq∗ -

optimal test configuration (p∗1, x∗1,1, u∗) by minimizing AVar(t̂q∗) is equivalent to minimizing

H(p1, x1,1, u) subject to

1

nD(q∗)
≤ p1 ≤

nD(q∗) − 1

nD(q∗)
, xL ≤ x1,1 ≤ 1, and

fD(q∗)tU
1− fD(q∗)tU

≤ u ≤
1− fD(q∗)tU
fD(q∗)tU

, (22)

where fD(q∗) = mD(q∗)/tm;D(q∗). Due to the complicated structure of H(p1, x1,1, u), it is

challenging to obtain an explicit expression for each test configuration. However, the Vtq∗ -

optimal test configuration (p∗1, x∗1,1, u∗) for l = 2 benefits from relying on numerical search
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methods. Based on the definition of ψk in Section 2, the relation between ψ1 and u is

u = ψ1/(1− ψ1). Therefore, the Vtq∗ -optimal ψ∗
1 can be obtained from ψ∗

1 = u∗/(1 + u∗).

6 Applications

The following examples are presented to demonstrate the practical applicability of the

previous theoretical analysis.

Example 6.1. Gallium arsenide (GaAs) laser data (Meeker et al., 2022, example 20.1) are

used to demonstrate the D(q∗)-optimal test plan under a total cost constraint using the

Wiener process (i.e., (N0, N1, N2) = (2, 1, 1)). According to Cheng and Peng (2012), the

ML estimates of the unknown parameters are (η̂, σ̂) = (2.04 × 10−3, 1.27 × 10−2) and the

threshold is ω = 10. The SN ratio is estimated to be 11.28, which is sufficiently large for this

case. For illustrative purposes, the link functions g1 and g2 are chosen as constant functions,
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Figure 4: D(q∗)-optimal test plan for the GaAs laser data
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and the experimental costs are set to (Cit, Cmea, Cop) = (0.03, 0.0166, 10−4). Based on the

experimental costs (Cit, Cmea) = (0.03, 0.0166), Figure 4(a) shows that the D-optimal test

plan is the interior case and ξD = (11.11, 3333.33, 1.81) by Theorem 2.1(i)-(2). Since

2(Cit + Cmea) = 0.093 < 1, Figure 4(b) illustrates the necessary and sufficient conditions

for the Vtq -optimal test plan by Theorem 2.2, where the second x-axis represents the value

of q. When Cop = 10−4, the Vtq -optimal test plan is the interior case by Theorem 2.2(ii)

for q ∈ [0.01, 0.152] and boundary case by Theorem 2.2(iii) for q ∈ (0.152, 0.535]. Since the

D-optimal test plan is the interior case by Theorem 3.1(ii), the black dotted line indicating

Cop = α̃(q)Cmea/(3Cit) = α̃(q)/5.43 represents the DQ equation in (12). The point of

intersection between Cop = 10−4 and Cop = α̃(q)/5.43 manifests at (5.4 × 10−4, 10−4). By

Theorem 4.1(ii), the bi-optimal q∗ is α̃−1(5.4 × 10−4) = 0.022 and the D(q∗)-optimal test

plan is ξD(0.022) = (11.11, 3333.33, 1.81).

In practice, the optimal integers n and m can be obtained using Theorems 2.1 and

2.2 as the starting point for discrete search algorithms (e.g., Taha, 2017). Using the grid-

search method, the D- and Vt0.022-optimal test plans are found as ξ�D = (11, 3056.54, 2)

and ξ�Vt0.022
= (10, 3687.76, 2), respectively, which are quite close to the D(q∗)-optimal test

plan ξD(0.022). The D- and Vtq -efficiencies at the experimental costs (Cop, Cmea, Cit) can be

defined as

EffD(ξ) =

{
D(ξ)
D(ξD)

} 1
N1+N2

and EffVtq
(ξ) =

Vtq(ξVtq
)

Vtq(ξ)
, (23)

respectively. The corresponding D- and Vt0.022-efficiencies under the experimental costs

(Cit, Cmea, Cop) = (0.03, 0.0166, 10−4) are EffD(ξ
�
D) = 99.6% and EffVt0.022

(ξ�Vt0.022
) = 99.5%,

respectively.

For a typical fixed value of q (e.g., q = 0.1), the IQ function and Vt0.1-optimal test plan
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are α̃ (0.1) = 2.17 × 10−4 from (18) and ξVt0.1
= (12.49, 3745.95, 1.21) by Theorem 2.2(ii),

respectively. Based on the Vtq -efficiency defined in (23), the corresponding Vt0.1-efficiency

of the D(q∗)-optimal test plan (i.e., ξVt0.1
versus ξD(0.022)) is

EffVt0.1
(ξD(0.022)) =

Vt0.1(ξVt0.1
)

Vt0.1(ξD(0.022))
=

1
12.49

(
1

3745.95
+ 2.17×10−4

1.21

)
1

11.11

(
1

3333.33
+ 2.17×10−4

1.81

) = 94.50%.

The result shows that the D(q∗)-optimal test plan is also highly efficient for a typical

fixed value q = 0.1. Note that the bi-optimal q∗ is determined by the given experimental

costs and the pre-specified values of the model parameters (refer to (20)). Therefore, it

may not be close to a typical fixed value of q. For example, if the experimental costs are

changed to (Cmea, Cop, Cit) =
(
1.45× 10−3, 10

−4
, 3.6× 10−3

)
, the Vt0.1-optimal test plan is

ξVt0.1
= (107.6, 3873.75, 1.44). Using (20), the bi-optimal q∗ = 0.01, which is not very

close to the typical fixed value q = 0.1. Nevertheless, the corresponding Vt0.1-efficiency of

the D (q∗)-optimal test plan (i.e., ξD(0.01) = (92.59, 3333.33, 2.48)) is still 90.7%.

Under the experimental costs (Cit, Cmea, Cop) = (0.03, 0.0166, 10−4), a practical range

for q can be naively chosen as [0.01,0.152] (i.e., the interior case). Figure 5 shows the

D-efficiency defined in (23) of the Vtq -optimal test plan for this range. For each q, the

Vtq -optimal test plan, ξVtq
, can be obtained by Theorem 2.2. For the typical fixed value

q = 0.1, the D-efficiency of ξVt0.1
is evaluated as

EffD(ξVt0.1
) =

{D(ξVt0.1
)

D(ξD)

} 1
N1+N2

=

√
12.492 × 3745.95× 1.21

11.112 × 3333.33× 1.81
= 97.48%.

In addition, Figure 5 demonstrates that the D-efficiency for ξVtq
is above 90% for all q in

this range. How to reconcile the discrepancy between the computed q∗ and the value of q

suggested by the business owner deserves further study.

Example 6.2. We use the stress relaxation data with a single accelerating variable (i.e.,

temperature) from Yang (2007) to illustrate the D(q∗)-optimal test plan and Vtq∗ -optimal
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Figure 5: D-efficiencies of ξVtq
over q ∈ [0.01, 0.152] for the GaAs laser data under

(Cit, Cmea, Cop) = (0.03, 0.0166, 10−4)

test configuration obtained by the Wiener process (i.e., (N0, N1, N2) = (3, 2, 1)) under

the total cost constraint in (4). According to Table 3 in Tseng and Lee (2016), the ML

estimates of the unknown parameters under a normal use condition (i.e., S0 = 40◦C) are

(η̂, σ̂) = (exp(β̂0),
√
γ̂0) = (exp(−2.0709),

√
1/3.7481) = (0.126, 0.517) and β̂1 = 1.9745

with the threshold ω = 30. The SN ratio is estimated to be 3.77, which is sufficiently large

for this case. Given the experimental costs (Cit, Cmea, Cop) = (0.05, 5× 10−4, 1.008× 10−4)

and l = 2, the conditions Cmea = 5 × 10−4 < N2Cit/(N0 − N2) = 0.025 and Cit = 0.05 <

(N0 − N2)/(l(N0 + N1)) = 0.2 in Theorem 4.1(ii) are satisfied (i.e., the interior case).

Therefore, by Corollary 3.1 and Theorem 4.1(ii), the bi-optimal q∗ = α̃−1(fD/2) = 0.02,

where the D-optimal frequency is fD = N2(N0 +N1)CitCop/(N1(N0 −N2)Cmea) = 0.0126.

The D(q∗)-optimal test plan, ξD(0.02) = (8, 3968.25, 50), achieves 100% efficiency for two

optimality criteria. The D(q∗)-optimal test plan can be used to gather more information

about model parameters and more precisely estimate the q∗-quantile of the product lifetime
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distribution at S0 = 40◦C.

Following assumptions of the test configuration at l = 2 and tU = 1 in Lee et al. (2020),

the temperature range is set to (50◦C, 100◦C). Based on the Arrhenius law, the lower bound

of the testing standardized stress level is

xL =
1/(273.15 + 40)− 1/(273.15 + 50)

1/(273.15 + 40)− 1/(273.15 + 100)
= 0.1925.

The Vtq∗ -optimal test configuration (p∗1, x∗1,1, u∗) can then be obtained numerically by min-

imizing H(p1, x1,1, u) in (21) subject to the following constraints

1

8
≤ p1 ≤

7

8
, 0.1925 ≤ x1,1 ≤ 1, and 0.0126

1− 0.0126
≤ u ≤ 1− 0.0126

0.0126
.

Therefore, the Vtq∗ -optimal test configuration is (p∗1, x
∗
1,1, u

∗) = (0.875, 0.2113, 8.4909) with

H(p∗1, x
∗
1,1, u

∗) = 0.997 by using the function optim in R (R Core Team 2025). Table 2

presents the unit-scale and original-scale values for the Vtq∗ -optimal test configuration based

on the D(q∗)-optimal test plan ξD(0.02) = (8, 3968.25, 50), where ψ∗
1 = u∗/(1 + u∗) = 0.895.

A larger sample size allocation p∗1 (i.e., upper bound) and a longer termination time t∗m,1

increase the importance of the optimal stress level x∗1,1, which is close to xL.

7 Concluding Remarks

Under a total cost constraint, we propose a bi-optimal quantile-based test plan for the

Wiener process. The value of q is chosen based on a secondary optimality criterion (i.e.,

it is problem-driven), with the aim of improving product reliability (i.e., engineering im-

plication) while ensuring effective resource allocation (i.e., business considerations). The

proposed innovation is practically applicable and provides manufacturers with insights for

developing robust maintenance and service strategies. The given fixed q and bi-optimal q∗
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D(q∗)-Optimal Test Plan Vtq∗ -Optimal Test Configuration

ξD(q∗) Unit Scale Original Scale

q∗ = 0.02 x∗1,1 = 0.2113 51.01◦C

nD(q∗) = 8 p∗1 = 0.875 (n∗
1, n

∗
2) = (7, 1)

tm;D(q∗) = 3968.25 ψ∗
1 = 0.895 (t∗m,1, t

∗
m,2) = (3550.14, 418.11)

mD(q∗) = 50 − (mD(q∗),mD(q∗)) = (50, 50)

Table 2: D(q∗)-optimal test plan and Vtq∗ -optimal test configuration with

l = 2 for the stress relaxation data.

can be viewed as playing roles analogous to the pre-specified significance level α (often 5%)

and the p-value in statistical hypothesis testing. The existence of a D(q∗)-optimal test plan

is established in Theorem 3.1. Furthermore, by using a normalizing logarithmic transfor-

mation for the Wiener process, we show that a D(q∗)-optimal test plan always exists and

is unique within the interested interval, except in the trivial case. The ADT model based

on the Wiener process in (1) offers a clear and intuitive interpretation of the bi-optimal

quantile-based test plan. The Vtq∗ -optimal test configuration for the ADT can be found

using numerical search methods in practical applications.

It is an important and challenging problem to determine an optimal test plan for a

given fixed q that appropriately balances between the two objectives. A promising avenue

for future research is the theoretical and numerical investigation of multi-optimal quantile-

based test plans.
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