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Statistica Sinica,

Two Sample Tests for Bivariate Heteroscedastic

Extremes with a Changing Tail Copula

Yifan Hu and Yanxi Hou

School of Data Science, Fudan University, 220, Handan Road, 200433, Shanghai, China

Abstract: We study the two-sample test problem on marginal tail features in-
cluding the extreme value indices and scedasis functions in the presence of non-
stationary tail dependence structures. To address this problem, we introduce a
unified bootstrap-based framework for bivariate heteroscedastic extremes, where
both margins and tail dependence structures are allowed to evolve over time. Our
approach is built upon a bivariate sequential tail empirical process, whose weak
convergence and bootstrap counterpart are established. Our simulations validate
the robustness and efficiency of the bootstrap-based tests. An empirical anal-

ysis is conducted on 8 assets, where two different scedasis functions are identified.

Key words and phrases: extreme value analysis; functional limit theorems; het-

eroscedastic extremes; two-sample test.



1. Introduction

Recent advancements in extreme value theory (EVT) have significantly ex-
panded its scope, moving beyond the classical setting of independent and
identically distributed (IID) observations to accommodate independent but
non-identically distributed (IND) data. Within the IND framework, sub-
stantial progress has been made in modeling univariate heterogeneous ex-
tremes. For instance, Einmahl et al) (2014) introduced the scedasis function
to characterize local variations in tail probabilities across observations. This
concept was further developed by He and Einmah] (2024); Einmahl and He
(2023), who extended the framework to incorporate more general forms of
marginal heterogeneity. Parallel strands of research have addressed related
challenges such as non-stationary trends (Mefleh et al), 2020) and serial
dependence in extremes (Bticher and Jennessen, 2024). These studies have
demonstrated the promising potential for applying heterogeneous extremes
in complex modeling and real-world applications.

In many empirical settings, heterogeneity arises not only in marginal
tail behavior but also in the extremal dependence structure. Dynamic de-
pendence has been widely documented in financial markets (Erb et al,, 1994;
Longin and Solnik, 1995; Engle, 2002), oil markets (Aloui et alJ, 2013), and

climate systems (Sarhadi et al), 2016; Xu et al), 2023). These findings under-



score the need for statistical frameworks that accommodate non-identically
distributed data in both margins and dependence. However, studies of
heteroscedastic extremes in bivariate and multivariate settings have only
recently gained attention. Einmahl and Zhou (2024) propose a framework
that accommodates marginal heteroscedastic extremes but assumes a con-
stant tail copula. Research addressing heterogeneity in the dependence
structure is still relatively new. Notably, Dreeg (2023) develop a testing
procedure for detecting changes in the tail copula, assuming stationary
marginals.

While recent studies have begun to investigate heterogeneity in both
marginal distributions and dependence structures, there remains a lack
of valid two-sample testing procedures for marginal tail estimators under
changing dependence structure. When the dependence structure is un-
known and potentially non-stationary, standard test statistics may fail
to exhibit valid asymptotic behavior. For instance, we show that the
Kolmogorov—Smirnov statistic proposed by Einmahl and Zhou (2024), which
is designed to test the equality of scedasis functions, does not converge to
a standard Brownian bridge when the tail copula varies over time. In prac-
tice, many applied problems require comparisons of marginal tail behavior,

such as testing the equality of extreme value indices or scedasis functions



across different populations. For example, Kinsvater et al| (2016) examine
GDP growth and identify differing patterns in upper and lower extreme
quantiles; while Adrian et al] (2019) report substantial heterogeneity in
extreme value indices across 18 rivers impacted by severe summer floods.
Given the prevalence of changing dependence in real-world data, these lim-
itations raise a fundamental methodological question: Can we construct
valid two-sample tests for marginal tail features without assuming a stable
dependence structure?

To study the problem, we model the survival distribution function S, ;
of the bivariate sample (XZ-(n), Y;(n)) fori =1,...,n by Sklar’s theorem, and
assume a (survival) copula C,, ; satisfying for the two marginal distributions
)

n,: >’

7 = 1,2, such that

Snil@,y) = Cog(1 = F(2),1 - F2(y), (z,9) eR%. (11)

K n,t

F 7(122) » , follow

Moreover, the two marginal distributions {Féll)}le and {
univariate heteroscedastic extremes. More specifically, there exists a heavy-

tailed distribution function G; and a scedasis function c; such that for all

i1=1,...,nand n € N,

i 1_F75{i)(t) ? 19 1.9
R A CY A A (12)

where ¢; is positive and continuous subject to the constraint fol cj(s)ds =1



for j =1,2. Cj(z) = foz cj(s)ds is called the integrated scedasis function.
Without an explicit statement in our paper, the two scedasis functions are

not assumed to be identical. For the changing copula structure, we assume

a positive function R on R? satisfying for alli =1,...,n and n € N,
i (T Y Z L 2
tim 1, (2. 2) —R(x,y,n), (r,4) € R, (13)

Here, R(x,y,z) is a tail copula given any z and captures the changing
tail dependence across samples, which generalizes the common tail cop-
ula in Einmahl and Zhou (2024). We refer to this model as Bivariate
Heteroscedastic Extremes, which extends the concept of heteroscedastic ex-
tremes to incorporate a changing tail dependence structure. More detailed
assumptions and discussions about this model are provided in Section E
Building on the proposed model, we develop a bootstrap-based frame-
work for conducting two-sample tests under Bivariate Heteroscedastic Ex-
tremes. Bootstrap methods are widely used in many problems to bypass
the direct estimation of complex variance structures and have significant
theoretical value. Recent developments have introduced bootstrap proce-
dures for EVT under both independent and dependent settings, covering
estimators such as probability weighted moments (PWM) (de Haan and
Zhou, 2024), Hill estimators (Jentsch and Kulik, 2021), and tail copulas

(Biicher and Dettd, 2013). For instance, Biicher and Dette (2013) apply



transformations to the empirical process to enable valid bootstrap infer-
ence for tail copulas in IID settings. Similarly, our analysis identifies key
statistics as functionals of the bivariate sequential tail empirical process (B-
STEP), including estimators of the integrated scedasis functions and the
marginal EVIs. We prove the weak convergence of the B-STEP and develop
a bootstrap B-STEP that jointly resamples margins and copulas, accom-
modating both sources of heterogeneity. Using the convergence results of
B-STEP, we derive the asymptotic statistical properties of the integrated
scedasis functions and Hill estimator, establishing the corresponding asymp-
totic theorems and the properties of their bootstrap counterparts.
Leveraging these results, we develop consistent bootstrap tests for two
hypothesis testing problems: (i) equality of EVIs, and (ii) equality of sceda-
sis functions. For each case, we prove the asymptotic validity of the boot-
strap test, showing that the rejection probabilities converge to the signif-
icance level as both the sample size and number of bootstrap replications
increase. These results enable robust marginal inference in the presence
of changing dependence, and address practical scenarios where copula con-
stancy cannot be assumed a priori. To illustrate the practical value of our
method, we apply our proposed tests for 8 assets, and reveal two distinct

clusters of firms based on their scedasis functions, despite similar tail heavi-



ness across stocks. One group shows structural changes in tail risk following
the 2008 financial crisis, while the other remains stable over time.

The rest of this paper is organized as follows. In Section E, we pro-
vide details of the assumptions of Bivariate Heteroscedastic Extremes. In
Section B, we introduce the B-STEP and its bootstrap process. Moreover,
we develop estimators as functionals of the B-STEP in this section. We
also establish the asymptotic convergence results and then provide joint
asymptotic properties of the estimators. In Section @, we examine three hy-
pothesis tests and provide the simulation results. In Section H, we provide

an empirical study and illustrate the practical value of our method.

2. Bivariate Heteroscedastic Extremes

In this section, we introduce the assumptions for the bivariate heteroscedas-

tic extremes model,

YZ.(") ~ F? where FY) satisfies () for 7 =1,2,

n,t n,i

X(”) - F(l)

n,

(1= B0 = F™)) ~ Cog, with C satistying (L.3)
(2.4)
Assumption EI characterizes the tail behavior of the marginal distri-
butions FY). These conditions are consistent with those established in

n,t

Einmahl et al} (2014) for univariate distributions.



Assumption 1 (Marginal Heteroscedastic Extremes). For j = 1,2, the
scedasis function ¢;(s) is positive, continuous, and bounded away from 0
on [0, 1], satisfying C;(1) = 1. Moreover, there exist a positive, eventually

decreasing function A; with lim; ,,, A;(t) = 0, and a distribution function
G, such that as ¢t — oo,

e ()| =o [ {=em)]

For the reference function G, there exist some v; > 0, 3; < 0, an eventually

Sup max
neN 1<isn

positive or negative function B;, such that

. 1 1 —Gj(tx) e xPil
lim ! - 1/”):3: Vit 2>0.
t=ee By (1/(1 = Gj(t))) ( 1 =G;(t) 738

Remark 1. The parameter v;, also known as the extreme value index
(EVI), characterizes the tail heaviness of the marginal distribution. In the
IID setting, 7; determines the shape parameter of the limiting generalized
extreme value distribution for sample maxima, and a larger v; > 0 corre-
sponds to a heavier tail, implying higher probabilities of extreme events.
In IND settings, Einmahl et al| (2014) shows that, under mild regularity
conditions, the Hill estimator remains consistent and asymptotically nor-
mal for estimating «,. Hence, v, serves as a key quantity summarizing the

extremal behavior of each marginal process.

Assumption B specifies the convergence rate of () This condition



extends the assumptions in Einmahl and Zhou (2024) to accommodate the
modeling of a changing copula structure. Specifically, the tail copula R is
required to be non-degenerate at each z € [0,1]. For every fixed z, the
conditions imposed on the derivatives of R are analogous to those discussed

in Bucher and Dette (2013).

Assumption 2 (Tail Dependence Structure). R(z,y, z) is continuous on
R? satisfying R(1,1,2) > 0 for all z € [0,1]. The partial derivatives of R

exist and satisfy that

OR(z,y,z)/0z is continuous on 0 < z < 00,0 < y < o0;

OR(x,y,z)/0y is continuous on 0 < y < 00,0 < x < oco.

Moreover, it holds for an a > 0 and a constant 7" > 1, that as t — oo,

sup sup
neN 0<z,y<T
i=1,...,n

tCus (3,2) R <x,y, %) ‘ —0(t™). (2.5)

Assumption B generalizes the smoothing conditions presented in [Ein-
mahl et al] (2014) to the bivariate context. Furthermore, to demonstrate

the practicality of these assumptions, we provide two examples that meet

both Assumptions E and B

Assumption 3 (Smoothing Conditions). For the scedasis functions and



tail copula functions, it holds for j = 1,2, that

lim  sup  Vk|e;(u) — ¢;(v)| =0,

0 lu—v|<1/n

lim  sup  VE|R(Ly,u) = R(1,y,v)| =0,

"0 lu—v|<1/n, y€[0,T].

lim sup VE|R(z,1,u) — R(x,1,v)| = 0.

=00 |y —p|<1/n, z€[0,T].
Example 1 (Mixture Copula). Denote Cy(u,v) = (u™' + v —1)"t as a
Clayton copula, and Cy(u,v) = u+v—1+ (1 —u)(1 —v)/(1 —uv) as a

Ali-Mikhail-Haq copula. A changing (survival) copula is given by
Cri(u,v) == p(i/n)Cy (u,v) + (1 — p(i/n))Cou,v), (u,v) € [0,1]?,

where 0 < p(z) < 1 is a function satisfying lim,, . \/Esup|u_v|§1/n Ip(u) —
p(v)| = 0. The function R is defined as R(z,y,z) = p(z)(z ' +y~ 1)L
We then prove that the mixture copula C), ; satisfies Assumption B For

sufficiently large ¢ > T, we observe that

sup sup [tC,(at™", yt™t) — p(i/n) (@' +y~ )7
n 0<z,y<T
1<i<n

t(1 — ot ) (1 —yt™h)

r+y—1t+

<sup sup (1—p(i/n))

n 0<z,y<T 1—ZL’yt—2
1<i<n
i .
v wp | pti/m)
n o<zy<T [tr +ty=' —1 a7t +y”
1<i<n

1
4yt — (a1 +y1)?

< sup
0<z,y<T

xy? + 2%y — 2ayt
xy — t?




272 T2/4
_l’_
SR -T2 t—T/2

=0(1/t).
Furthermore, Assumption E is satisfied if the function p meets the condition:

lim Vk sup |p(u) — p(v)| = 0.

n—00 |lu—v|<1/n
In this example, the mixture probability p(z) and the tail copula (z,y) —

(7' +y~ 17! of the Clayton copula govern the tail dependence structure.
Example 2 (Parameterized Copula Sequence). Consider the copula
Ci(utyv) = (=0 406 1) ~HOC,

If 6 is Lipschitz continuous, and if M; = info<,<; 6(z) > 0 and M, =
SUpPg<.<; 0(2) < 0o, then the function R is defined as R(z,y,z) = (27 +
y—0()=1/0(),

We first verify that the parameterized copula sequence C,,; satisfies

Assumption E For t > T', the following uniform convergence holds:

sup sup ’tCn,i (f y> - (:B_e(i/") + y_e(i/n)yl/e(i/n)

n 0<z,y<T t ’ ;
1<i<n
t— [t9(i/n) ()i T/ oGi/m)
=sup sup (I—eu/n) i y—G(i/n))_l/e(i/”) RETR
neN 0<z,y<T £0(i/n) ()0 (/) 1/6(i/n)
i=1,..n ™ 206 1P

o(i/n) \ YOG/
<T [ —
<rsw sup (1= (1~ g )



TM:

<T o1-1/M2 4 .
< maX( , )2M1tM1

To verify that C,,; satisfies Assumption B, we derive the derivative of R

with respect to 6,

(y_g . x_g)—l/e (ln (y‘9 + x_e) N (Iny) -y %+ (Inz) - x_9> ‘

62 0(y=0+x79)

Due to the symmetry of the expression in x and y, we set y = 1 and obtain

(1 n x,@)—1/9 <1n (1 + x—e) N In(z) - x? > |

62 6(1+277)
which is bounded for x € [0,1]. Thus, by the Lipschitz continuity of 6(z),
Assumption E is satisfied. This example corresponds to the ‘G-linear’ and
‘t-linear’ models used in the simulation study of Drees (2023), where the

copula structure is controlled by a changing parameter.

Assumption @ specifies the conditions for intermediate orders. Notably

that we permit distinct intermediate order sequences k; for j = 1,2.

Assumption 4 (Intermediate Order). The sequences k and k; satisfy
k/n — 0, k/k; — s; > T~ VEA;(n/(2Tk)) — 0, VEB;(n/k) — 0,

and Vk(n/k)~® — 0 as n — oo and for j = 1,2.

3. Estimators as Functionals of Tail Processes

This section concentrates on the development of tail estimators and their

associated processes under the assumptions in Section E We first introduce



some necessary notations. Let X, denote the k-th smallest order statistic
of Xl(n), . ,Xfln), and Y}, , denote the k-th order statistic of Yl(n), cee v,
We define |z] := max{i € Z | i < z}, 2 Vy = max(z,y), and z Ay =

min(z,y). The inverse of a non-decreasing function f is given by

(

sup {t € Ry | f(t) =0}, z =0,

[T(x) = inf{t e R, | f(t) >z}, 0 < x < supran f,

inf {t e Ry | f(t) =supran f}, x> supran f.
\

Specifically, the inverse function of 1/(1 — G;) at t is denoted as Uj(t) for
j = 1,2. Weintroduce a weight function ¢(x, y) with a constant 0 < n < 1/2
by

(xVvy)", if (z,y) € R?

q(x,y) = ", ifx e R, Y = 00, (36)

y", ifyeR, x=o00.
\

For simplicity, we denote = — ¢(x,00) and y — ¢(00,y) as ¢;(x) and ¢2(y),

respectively. An important space in our analysis is defined as



The space (> (Dr) represents the set of bounded functions on Dy.

We use the notation W,, ~» W in £*°(Dr) to indicate the weak conver-
gence of the process W, to a tight process W in the metric space ¢*°(Dr) as
n — oo. For the bootstrap process, we establish the conditional weak con-
vergence, as defined by Kosorok (2003). For an asymptotically measurable

process in (>°(Dr)
Wn = Wn <X1(n), o 7X7(ln)’}/'1(")’ s ,ern),fl, e 75”) 2

the conditional weak convergence of W,, to W is defined as

sup |Ech (W,,) —ER(W)| = o0p(1), asn — oo, (3.7)
h€BL1 (¢>°(Dr))
where E;¢ represents the conditional expectation given (X fn), X Yl("), o

and BL; (¢>°(Dr)) is the the class of functionals h : £>°(Dy) — R, such that

v

BLy(£(Dr)) = {h [ Al < L, [A(f2) = R(f2)] < [lf1 = foll, VF1, fo € £2(D1)} .

We denote the conditional weak convergence as W), {: W in £ (D7). For a
review of conditional weak convergence, we refer to Biicher and Kojadinovid
(2019) and van der Vaart and Wellner (1996). Equation (@) states that
the expectation of the unknown distribution h(WW') can be approximated by

computing the conditional expectation h(WW,,).



3.1 Bivariate Sequential Tail Empirical Process

3.1 Bivariate Sequential Tail Empirical Process

In Einmahl et al] (2014), the STEP process serves as an important theoret-

ical tool, which is defined as:

LmJ

I Z {X(n > Ul(”/(kx))} — Ci(2)z. (3.8)

A natural extension is to analyze a process whose projection on the two

margins is a STEP in the univariate context. Thus, we denote R (z,y, 2)

| )
(2,9, 2) : 21 {X > Uy(n/(kz)), Y™ > Ug(n/(ky))} (3.9)

Suppose 1 — Féji)(t) ~ ¢;(i/n)(1 — Fy(t)), the expectation of R'(z,y, z) is,

[nz] :
, kx i\ k
E(R (CB Y, < A Zonz (Cl (_) 7’62 (ﬁ) %)
~ R (z,y,2) = / R(cy(t)z, eo(t)y)dt, asn — oo.
0

We then define the B-STEP with the weight function ¢ by

1

=y

(R'(m,y, 2) — R'(x,v, z)) : (3.10)

We now formulate the bootstrap B-STEP. For a fixed index b, let
{&:i}7_, be an IID sequence of positive random variables, independent of
{(Xi(n), Yi(n)) ? ;. This sequence is replicated for b =1,2,..., B. We define

the bootstrap empirical distribution functions as

Z&” ( )<x> and F() Z&” (Z < ),



3.1 Bivariate Sequential Tail Empirical Process

. . <
and their corresponding generalized inverses U = (1 /(1 — FY ))> for

j = 1,2. The bootstrap estimator of (@) is given by

[nz]

R(z,y,2) Z&n (X0 > i) (ke)), Y, > Ualn/ (ky)) }

The bootstrap B-STEP is then given by

1
F?L(x7y7 Z) - 3

q(z,y) <Rb/(x’y’ 2) = Ry, Z)) : (3.11)

The following assumption is for the bootstrap weights.

Assumption 5 (Bootstrap Weight). The bootstrap weights {&; }1-, satisfy

that for the constant n > 0 of ¢ in (@), we have
Et] =1, E[(& —1)° =1, and E[l - &]|""] < cc.

In the following, we assume the process W is a Weiner process on Dp

with covariance function

cov(W(xy,y1,21) , W (22,92, 22)) = R (21 N wo,y1 Ao, 21 A 22),  (3.12)
where oo Aco := oo. We now establish the asymptotic property of B-STEP.
Theorem 1. Under Assumptions B—B, we have as n — 00,

VEF, ~W/q and VEF® «;i W/q. (3.13)
b



3.1 Bivariate Sequential Tail Empirical Process

To prove Theorem m, we first establish the weak convergence of the
simple bivariate sequential tail empirical process in Propositions @ and @
Then, under Assumptions m—a, we prove that the (> distance between the
B-STEP and the simple B-STEP converges in probability to 0, thereby es-
tablishing the weak convergence of the B-STEP. The definition of the simple
B-STEP, Propositions @ and @, and the detailed proof of Theorem m are
provided in Section @ of the supplementary material.

As Uj; is typically unknown, empirical quantiles are used to provide a
data-driven approximation for tail thresholds. Specifically, we define the

empirical version of R’ by
K 1 2l
Rry,=) =73 1 (X}”) > X (ko) Y > Yn,kaJ,n) . (3.14)
i=1

The process R’ can be derived from the process R’ by applying a functional

® and the delta method to the process F,,, such that ®(R'/q) — ® (R'/q) =

A~

R — R'. For a function # on Dy satisfying 6(0+, 0o, 1) = 0, 6(c0,0+,1) =0,

where 6(z,00,1) and 0(c0,y, 1) are non-decreasing on [0,7], ® is given by

(q ’ 9) ((q : 9)&(‘% 00, 1)7 (q ’ 9)9(007:% 1)7Z> if T,y 7é 00,

(0)(,9:2) =9 (q-0) ((q-0)(,00,1), 00, 2) if y = oo,

(g-0)(00,(q-0) (c0,y,1),2) if £ = 0.
(3.15)

\



3.1 Bivariate Sequential Tail Empirical Process

Notice for R, it holds that R (x,00,1) = z, and R"* (oc0,y,1) = y. More-

over, the inverse of R'(z,00,1) and R'(co,y, 1) satisfy that
~ n ~
RM_(ZU,OO, ]-) = E{l_Gl(Xn,nftka)}a RN_(Oan7 ) = _{]— GZ( n,n— kaj)}

Similarly for the bootstrap process F2, we have ®(R"/q) — ®(R'/q) =

RY — R on Dy, where RY (x,y, z) is defined as

1 =]
) = g et {0 000 (1) 00 ()}

We then apply the functional delta method to derive the asymptotic result

of R'. We further define Wy as
WR(xv Y, Z) = W(:E7y7 2) - Rll(l‘,:% Z)W (CL’, o0, ]-) - Ré(ﬂf,y, Z)W (OO, Y, ]-) )

where we denote the partial derivatives of R’ as

(
0, {(z,y,2) €Dy | x =0 or x = 0},
Ry(z,y,2) =
\ OR'(z,y,2)/0x, {(z,y,2) €Dy |0 <z <00,0<y <00},
(
0, {(z,y,2) €Dy |y =0o0ry= o0},
Ry(z,y,2) = <
\ OR (z,y,2)/0y, {(z,y,2)€Dr|0<2<00,0<y< o0}

Theorem 2. Under Assumptions B—B, we have as n — 00

Vi (R' - R’) W, and Vk (1%”' - 1%’) Zﬂ} W, (3.16)



3.2 Estimator for the Integrated Scedasis Functions.

Remark 2. Specifically, we calculate R’ on Dy as:

R'(z,y,2) =

;

\

Iy R(ca(t)x, ea(t)y, t) dt, 0<z,y<oo,0<z<1,
Jg R(ei(t)x, 00, t) dt =2 Ci(2), y=00,0<x<00,0<2z<1,

Joy R(oo,ca(t)y,t)dt = yCo(z), x=00,0<y<00,0<2z<1.

Since for every fixed z, R is a tail copula, the definition of R’ aligns with

Jo R(c1(t)x, ca(t)y, t) dt when extended to Dr.

R'(z,y,z) serves as a key component in the limit theory. For instance,

we will see in the later sections that the function is related to the asymp-

totic covariance of the Hill estimators. The quality also has practical ap-

plications in risk modeling. For instance, R'(z,y, z) quantifies the limiting

probability that two assets simultaneously exceed intermediate thresholds,

Up(n/(kx)) and Us(n/(ky)), during the time interval [0, z] as n — oo. This

characteristic makes R'(x,y, z) a dynamic index of extreme co-movements.

3.2 Estimator for the Integrated Scedasis Functions.

We estimate the integrated scedasis functions C;(z) for z € [0, 1] by

[nz]

A 1

Cl(Z) = k_l Z 1 (Xz(n) > Xn—lﬁ,n) )
i=1
Lnz]

~ 1 "
CQ(Z) = ]{;_2 Z 1 (Y;( ) > YTL*]CQ,TL) .
=1



3.3  Estimators for the Extreme Value Indices.

Notice that the intermediate orders for the two margins are different. By

plugging (k1 /k, 00, z) into the process R', we have that

[nz)
- 1 n k
R/(kl/k,oo,z) = EZ]' (Xz( ) > ank17n> - Zlcl( )

=1

Similarly, by plugging (k1 /k, o0, z) into the process R, we derive ZL 3 (Xi(n) >
(n/kl))/krl and ZWJ (Yi(n) > Ub(2) (n/k2))/ks. Notice the two pro-
cesses do not equal 1 when z = 1, so we modify and derive the following

bootstrap estimators.

YL &t (V> U (n/k))

We then establish the asymptotic results for the integrated scedasis
function. Define Wg) and Wg)by W((/})(z) = 51Whg(sy', 00, 2), and Wg)(z) =

59Wr(00, 851, 2).
Theorem 3. Under Assumptions @@, we have for j = 1,2 and as n — oo,

\/E<C'J — C'j) ~ W((;j) and \/_<C'b C’) WC : (3.17)

3.3 Estimators for the Extreme Value Indices.

The well-known Hill estimators for v; are given by

k1
R 1
e k?_l ;log(Xn—i,n) — log (X k1 n),



3.3  Estimators for the Extreme Value Indices.

ko
) 1
Yo = k_2 ; log(Yiin) — 10g(Yn—ky.n)-

To study the joint asymptotic properties of 4; with other estimators and to
propose the bootstrap estimators, it is necessary to rewrite 4; as a functional
of the tail empirical process. We start by taking (n(1—G1(Uy(n/ki)x="))/k, 00, 1)

into the process () and derive the following tail empirical process

o (z) = — S (X > e U/,

@ (z)kr =
We then define the functional for a non-decreasing function # on R with
6(0+) =0,

(q1-0) (1)
T(0) = /0 H(t)ql(t)%. (3.18)

Notice that for II(z) = x/qi(z), it holds that W(II) = 1. Thus, the Hill

estimators can be written as

(Xn—kl,n/Ul(n/kl))il/’Yl n dS
- —5"1(X™ > U (n/k ) — U (Fy,).
N 71/0 klz ( s 1(n/ky) s N (Fin)

i=1

Based on this functional, the bootstrap Hill estimator for 4; is given by

i = (FL,) = me (1og(x") = log (U} (n/k1))) 1 (X > UM (n/ky))

with the bootstrap tail empirical process

{ > %Ul(n/kl)}

Fi,(z)



Similarly, the bootstrap estimator for 4, is given by

= kQZ&n (108" = 105(U? (n/k2)) 1 (Y, > U (/k2))

Next, we prove the asymptotic result of the bootstrap Hill estimator.

Denote

! dt
Iy :=s1m (/ W(tsl_l,oo,l)?—W 31 , 00 )
0
! dt
F2::5272</ W(oo t321,1)7—W 0032, >
0

Theorem 4. Under Assumptions B—B, we have that for j = 1,2 and as

n — oo,

~ ~ ~ P
VE@#; —9)~T5  and VE(F = %) P (3.19)

Remark 3. The asymptotic covariance of (VE(51 — 1), Vk(32 — 72)) is
given by
8171 R (52,81, 1)1172
R'(s2,51, )17 5273

In applications, we estimate R'(sy, s1,1) by k2R (ky/k, ky/k, 1)/ (k1kz).

4. Bootstrap-Based Tests

In this section, we formally define two hypothesis testing problems and sub-

sequently propose a bootstrap-based approach for conducting these tests.



4.1 Test for Equal Tail Heaviness.

Following this, we design comprehensive simulation experiments to evaluate
the performance of the proposed tests.For each realization of {(X i("), Yi(")) o,

we simulate & and ’Ay;’, C’Jl?, RY for b = 1, 2,..., B as defined in Section B

We denote the significance level as « in this section.

4.1 Test for Equal Tail Heaviness.

The first test examines whether {X™} and {Y;"} exhibit the same tail
heaviness without assuming a prior knowledge of the changing dependence

structure C,,; and the scedasis functions ¢; and cy. This hypothesis test is

Hiyg:vi =7 vs. Hi:v # 7. (4.20)

To formulate the bootstrap-based test, we define
A . b A a2
Trio =k (1 — 72)27 Tto=F (’Yf — =+ 72) -

The empirical distribution of the bootstrap samples is defined as Fpo(z) :=
< S 1(Thy < ), and its inverse function is defined as @10(@) = Figo(a).
We reject the null hypothesis if Th19 > t10(1 — ).

The bootstrap method can effectively address cases where the two sam-
ples exhibit asymptotically tail independence. Given that the covariance
between W (z, 00, z) and W(oo,y,z) is 0 for x,y € [0,1], the two Hill

estimators become asymptotically independent under asymptotically tail



4.2 Test for Equal Scedasis Functions.

independence. Consequently, the functional delta method and continuous
mapping theorem remain applicable to the marginal statistics, thereby en-
suring the validity of the asymptotic results presented in Theorem @ This
finding indicates the potential effectiveness and conciseness of the bootstrap

method as an inference tool under heteroscedastic extremes.

4.2 Test for Equal Scedasis Functions.

The second hypothesis test evaluates whether the two marginal distribu-

tions have the same scedasis function, i.e.,
HQ() L C1 = Cg, Vt S [0, 1] VS. HQl . C 7é Co, dt S [0, 1] (421)

In financial applications, this test helps to determine whether two assets
undergo identical crises. Variations in the scedasis function, which capture
the impact of financial crises, play a crucial role in this assessment (Einmahl

et all, 2014). Specifically, we define the test statistics,
Tyo(2) = Ci(2) = Ca(2),  T(2) = Ci(z) — C3(2).
The KS and Cramér-von Mises (CVM) statistics are defined as

The = s?p]me(zn, Ty = s?p]mT;a(z)—Tzo(zn,
z€|0,1 z€|0,1

1 1
TEM / (To(2))? dz, TUE™ = / (Th(2) — Too(2))° d,



4.2 Test for Equal Scedasis Functions.

respectively, with the bootstrap distributions given by

B B
(KS _ 1 (CVM 1 b(CVM)
Flag (%) Z (T, H20 <), Fpy : Z 1(T; H20 <uz).
b:l b:l
The corresponding quantile function is denoted as uggs), aéﬁVM). We reject

the null hypothesis when Témﬁ) ﬁgg )( ) and TJEI(;XM) aéSVM)(a) for KS
and CVM tests, respectively.

Note that when C; = C5 and the copula changes across sample, the
process Ci — Cy does not converge to a Brownian bridge. For example, if
we examine the covariance structure of Wg) — Wéz) for 0 < 21 < 2o < 1,

by assuming s; = sy = 1, we find that

cov (WP(21) = WE (), W () - W ()

=204 (21)(1 = Ch(22)) + 2[Ch(22) R'(1, 1, 21) + C1 ()R (1, 1, 25)]
-2 [R/(l, ]., 21) + 01(21)01(22>R/(1, 1, 1)] .

Consequently, the bootstrap method becomes essential for conducting the
. . 2
test. A similar result is also observed in the CVM test for k fol (C’l (2) — C’g(z)) dz.

The asymptotic result for our test statistic is established as follows.

Proposition 1. Under Assumptions B—E, asn — oo and B — 0o, we have

for M € {KS,CVM},

(a) If Hyg holds, then P(Ty1g > tio(1 — ) = a;



4.3 Simulation Results

If |y — 72| = 6 > 0, then P(Tw10 > t1o(1 — ) — 1;
If Hag holds, P(Tip > iy (1 — @) — ;

If there exists a constant z such that |C1(z) — Ca(z)] = 0 > 0, then

M ~(M
P(Thy > sy (1 — ) — 1.

4.3 Simulation Results

We now turn to the finite sample performance of the two proposed tests.

The simulation study comprises 1000 replications for each setting, with each

replicate undergoing 200 bootstrap iterations. We set the sample size n =

1000 and the intermediate order k£ = 50, 100, 200. All tests are conducted at

a = 0.05 and 0.01. The random weights &;,; are generated from a standard

exponential distribution.

The two marginal scedasis functions for z € [0, 1] are chosen from the

following options:

a;(z) = 0.8+ 0.4z, as(z) = 0.6 + 0.8z,
az(z) = 14 0.5sin(272), as(z) =1+ 0.2sin(272),
0.5+2z, ze€[0,3] 02543z, z¢€[0,3]
&5(2’) = ) QG(Z) =
25 -2z, ze(3,1] 3.25-3z, ze(3.1]

These functions have been utilized in prior research, such as Einmahl and



4.3 Simulation Results

Zhou (2024) and Drees (2023). Among them, a; and as are linear functions,
az and a4 follow sinusoidal patterns, while a5 and ag are piecewise linear
functions. For j = 1,2, 3, the even-indexed functions ay; display volatility
characteristics akin to their odd-indexed counterparts ag;—;. However, the
fluctuation behavior of a;, as, and as differs markedly. In our experiment,
we examine how these similarities and differences in scedasis functions im-
pact the two-sample test.

In all cases, the marginal distributions follow a Fréchet distribution
such that

FY)(x) = exp(—c;(i/n)a™),

where ¢; is the scedasis function and ); is a shape parameter. The Fréchet
distribution with shape parameter \; has an EVI of 1/);. Since the test
statistics of Hog is rank-based, the marginal distributions do not influence
their results. Therefore, for these tests, we fix A\; = 2. For the test assessing
the equivalence of EVIs, the values of \; are provided in Table E]

On the other hand, we construct the changing copula by combining
the t copula and the Gumbel Copula. Denote the bivariate t-copula as
Ci(u,v; v, p) with degrees of freedom v and correlation p, and the Gumbel

copula with a dependence parameter § > 1 as Cy(u,v; ), which is given by

Cy(u,v;60) = exp [— {(-Inu)’+ (—lnv)e}l/e} , u,v € Ry,



4.3 Simulation Results

Based on these two copula families, we define six changing (survival) copula

for our tests. For j = 1,2,5, we define
Cj(l’,y,Z) = p](z)Ct($7y7270)+(1_p](2))Cg(xayv 2)a T,y € R-HZ € [07 1]7

where p1(z) = 0.5 4 0.5cos(27z), p2(2) = 0.5 + 0.2cos(27z), ps = 0.5 for
z € ]0,1]. These copulas possess the characteristic that the mixture weight

p;(t) changes smoothly across z. For j = 3,4, 6, we define
Ci(w,y,2) = Cy(w,y;0 = p;(2)), x,y€Ry, z€0,1],

where p3(2) = 243z, ps(2) = 2+ 2z, and pg = 2 for z € [0, 1]. These copulas
possess the characteristic that the dependence parameter 6 of the Gumbel
copula varies as a function of z.

Table m provides a summary of the simulated rejection frequencies for
the test () The first two columns specify the A;; the third and fourth
columns represent the scedasis functions selected from aq,as, as; the fifth
column identifies the changing copula structures. For cases with equivalent
EVIs (rows 1-3), the rejection frequencies at k = 200 closely match the
significance levels (0.05 and 0.10), demonstrating that the test effectively
controls Type I errors. When k = 50 or £ = 100, the rejection frequencies
are lower than the significance levels. Thus, in our experiment settings,

k = 200 is necessary to achieve accurate performance. For cases with
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Table 1: Simulated rejection frequency for testing Hig.

EVIs Scedasis Copula k£ 50 100 200

A A o o o 005 01 005 01 005 0.1
25 25 a1 as ¢ 0.03 0.07 0.04 0.08 0.05 0.10

2 2 ay  oas Cy 0.03 0.07 0.04 0.08 0.05 0.10

3 3 az as Cs 0.02 0.06 0.03 0.07 0.03 0.06
25 2 a1 as Cy 0.34 047 0.69 0.79 0.95 1.00
25 22 a1 as C 0.11 0.19 0.20 0.31 0.38 0.53
25 24 az as Co 0.04 0.10 0.06 0.12 0.07 0.13
25 26 a3 as Cs 0.04 0.08 0.056 0.09 0.07 0.12
25 28 a; as Cy 0.10 0.19 0.22 0.33 041 0.53
25 3 a3 as ¢ 0.17 028 0.34 047 0.64 0.76

differing EVIs (rows 4-9), the rejection frequencies increase with larger k.
For example, in row 4 (where A; = 2.5 and Ay = 2), the rejection frequency
reaches 95% at a = 0.05 when k& = 200, compared to only 34% at k = 50.
Table E summarizes the simulated rejection frequencies for the test
() The first six rows correspond to scenarios under the null hypothesis,
where we observe consistently low rejection frequencies. The subsequent six
rows assess the power of the proposed methods under alternative hypothe-

ses. When k = 50, 100, the rejection frequencies are relatively low for the
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Table 2: Simulated rejection frequency for testing Hoyp.

Distribution £ 50 100 200

scedasis a 0.05 0.1 0.05 0.1 0.05 0.1

a M KS CVM KS CVM KS CVM KS CVM KS CVM KS CVM
a a G 0.03 0.04 0.06 0.07 0.04 0.03 007 0.07 0.05 0.05 0.09 0.10
ay ay Gy 0.03 0.04 0.07 0.07 0.03 0.04 008 0.09 0.05 005 0.10 0.10
as a3 Cs 0.01 0.01 0.04 0.04 0.01 0.01 003 0.04 0.03 0.02 0.06 0.06
ay ay Cy 0.01 0.02 0.03 0.03 0.01 002 003 0.04 0.03 0.03 0.06 0.06
as a5 Cs 0.03 0.03 0.06 0.06 0.04 0.04 008 0.08 0.05 005 0.11 0.10
ag as Cg 0.01 0.02 0.04 0.04 0.02 0.03 005 0.06 0.03 0.03 0.07 0.06
a ay G 0.07 0.09 012 0.15 0.10 0.14 018 022 022 026 032 0.35
as ays Cy 0.13 0.16 0.22 024 0.30 032 044 042 0.60 0.58 0.70 0.70
as ag Cs 0.02 0.02 0.05 0.07 0.05 006 011 015 0.14 020 0.27 0.39
a a3 Cy 0.86 090 094 095 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ay as Cs 0.14 0.13 025 0.27 032 032 045 047 0.68 0.68 0.79 0.80
as a5 Cs 0.64 068 0.76 079 0.96 097 098 099 1.00 1.00 1.00 1.00

seventh and ninth experiments. However, the rejection frequencies improve
when k£ = 200, indicating that larger intermediate thresholds enhance the
test’s ability to detect differences in scedasis functions. Additionally, in
most scenarios, the CVM test exhibits slightly higher rejection frequencies
than the KS test.

The simulation results are sensitive to the choice of k. When £k is

small, many studies have shown that the bootstrap may fail to approxi-



mate the correct asymptotic distribution; see, for example, Chernozhukov
and Fernandez-Val (2011). Consequently, the empirical rejection frequen-
cies can fall below a. In a more recent contribution, Zhang (2018) rec-
ommend employing the bootstrap procedure of Bickel and Sakov (2008) to
better approximate the limiting distribution under extreme quantile set-
tings. Several alternative approaches have also been proposed to improve
bootstrap accuracy. For instance, [Li et al| (2011)) (Figure 1) document that
the bootstrap-based coverage tends to be lower than the nominal confidence
level when £ is small, and they introduce a bootstrap calibration procedure
to correct this bias. Enhancing the finite-sample reliability of bootstrap

methods for small k remains an open and challenging research problem.

5. Empirical Study

We collect 2516 daily stock return data of 8 companies from the S&P in-
dex, from January 4th, 2010 to January 3rd, 2020. We use the negative
daily return to indicate the loss for each company, which follows a similar
modeling approach in Einmahl et al| (2014). Our data analysis conducts
tests on the problems () and () for each pair of the 8 companies.
Table B lists the basic data information of each stock. We implement

the two tests in Einmahl et al| (2014) for each univariate loss; one is the



Table 3: Stock Symbol, company name, k and hill estimator of 8 stocks. A
validation test and a test for ¢ = 1 are conducted by the methodologies in

Einmahl et al] (2014).

p-value
Company Name k; Hill Estimator Validation Test Test for ¢ =1
EXPE Expedia Group, Inc. 173 0.391 0.144 0.002
RMD  ResMed Inc. 191 0.402 0.447 0.000
AKAM Akamai Technologies, Inc. 248 0.421 0.701 0.000
IT Gartner, Inc. 159 0.400 0.769 0.000
ILMN Mlumina, Inc. 151 0.385 0.797 0.216
LDOS Leidos Holdings, Inc. 236 0.422 0.649 0.354
QCOM Qualcomm Incorporated 151 0.420 0.926 0.236

HSY  The Hershey Company 192 0.352 0.149 0.698
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validation test T} from tEinma,hl et alj (l2014l) and the other is 7} in
() to test whether ¢ = 1 or not. The p-values of the two tests are

summarized in Table . We conclude that the heteroscedastic extremes are
fit for the marginal distribution of each stock loss data. The tests for the
first four stocks reject the ¢ = 1, while the tests for the other stocks do not

reject the hypothesis that ¢; = 1.

£

Figure 1: P-values of the pair two sample tests of Hio(the equivalence of
extreme value index, left) and Hs(the equivalence of scedasis functions,

right), for 8 stocks from January 4th, 2010, to January 3rd, 2020.

We then apply the testing procedures outlined in Section H to each pair
of stock returns. For each test, we implement the bootstrap method with

B = 500 replications. The resulting p-values are presented in Figure Iil



In the test for Hig, we find that most stocks exhibit similar tail heavi-
ness, with Hill estimators ranging from 0.34 to 0.43, as reported in Table .
However, when testing the equality of scedasis functions, the stocks ap-
pear to cluster into two distinct groups, suggesting that certain stocks may
be subject to common underlying factors and therefore exhibit similar re-
sponses to extreme events. This clustering further highlights the presence
of co-movement in extreme quantiles across the market, offering empirical
evidence for recent developments in quantile factor models (Chen et al.,
2021; Ando and Bai, 2020; Ando et al), 2022).

To further investigate the differing trends in scedasis functions across
the two clusters, Figure E presents the estimated scedasis functions for each
group. For each company, we estimate ¢;(s) using the kernel method pro-
posed by Einmahl et al| (2014), employing a biweight kernel with bandwidth
0.3. The group-level estimator ¢(s) is defined as éZj = 19¢;(s), where g
denotes the number of companies in the group. The scedasis functions for
EXPE, RMD, AKAM, and IT exhibit a pronounced structural change be-
tween 2010 and 2012, whereas those for ILMN, LDOS, QCOM, and HSY
remain relatively smooth and stable over time. These clustering patterns
and differing scedasis trends offer potential insights for risk management.

In particular, researchers may cluster the estimated scedasis functions to



identify latent factors driving tail risk and investigate the underlying eco-
nomic sources of their variation. The p-values from our proposed tests can
serve as a natural similarity measure for such clustering, highlighting an
avenue for future research in identifying and modeling common drivers of

tail risk across assets.

1.6

1.0

0.4

2010 2012 2014 2016 2018 2020

Date

1.6
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0.4

2010 2012 2014 2016 2018 2020
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Figure 2: Estimation of ¢ of EXPE, RMD, AKAM, IT (top), and ILMN,
LDOS, QCOM, HSY (bottom). The dashed lines are bootstraped 90% con-

fidence interval.



6. Conclusion

This paper proposes a copula-based model for independent but not identi-
cally distributed data with bivariate heteroscedastic extremes. The model
allows both the copula structure and marginal distributions to vary across
samples. We develop a comprehensive framework to derive bootstrap esti-
mators via the B-STEP process, using the functional delta method. Sim-
ulation results validate the robustness of our bootstrap approach. Other
bootstrap techniques (de Haan and Zhou (2024); Jentsch and Kulik (2021))
are not covered in our framework, and their asymptotic validity under bi-
variate heteroscedastic extremes remains unexplored. Extending our frame-
work to time-series settings with mild dependence (e.g., mixing conditions
as in Biicher and Segers (2018); Zou et al| (2021))) is a potential next step,
but the asymptotic analysis under such conditions is left as an open problem

due to the need for a separate theoretical framework.

Supplementary Materials

This supplement collects the proofs of the theoretical results in the article.
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