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Abstract: We study the two-sample test problem on marginal tail features in-

cluding the extreme value indices and scedasis functions in the presence of non-

stationary tail dependence structures. To address this problem, we introduce a

unified bootstrap-based framework for bivariate heteroscedastic extremes, where

both margins and tail dependence structures are allowed to evolve over time. Our

approach is built upon a bivariate sequential tail empirical process, whose weak

convergence and bootstrap counterpart are established. Our simulations validate

the robustness and efficiency of the bootstrap-based tests. An empirical anal-

ysis is conducted on 8 assets, where two different scedasis functions are identified.

Key words and phrases: extreme value analysis; functional limit theorems; het-

eroscedastic extremes; two-sample test.
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1. Introduction

Recent advancements in extreme value theory (EVT) have significantly ex-

panded its scope, moving beyond the classical setting of independent and

identically distributed (IID) observations to accommodate independent but

non-identically distributed (IND) data. Within the IND framework, sub-

stantial progress has been made in modeling univariate heterogeneous ex-

tremes. For instance, Einmahl et al. (2014) introduced the scedasis function

to characterize local variations in tail probabilities across observations. This

concept was further developed by He and Einmahl (2024); Einmahl and He

(2023), who extended the framework to incorporate more general forms of

marginal heterogeneity. Parallel strands of research have addressed related

challenges such as non-stationary trends (Mefleh et al., 2020) and serial

dependence in extremes (Bücher and Jennessen, 2024). These studies have

demonstrated the promising potential for applying heterogeneous extremes

in complex modeling and real-world applications.

In many empirical settings, heterogeneity arises not only in marginal

tail behavior but also in the extremal dependence structure. Dynamic de-

pendence has been widely documented in financial markets (Erb et al., 1994;

Longin and Solnik, 1995; Engle, 2002), oil markets (Aloui et al., 2013), and

climate systems (Sarhadi et al., 2016; Xu et al., 2023). These findings under-
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score the need for statistical frameworks that accommodate non-identically

distributed data in both margins and dependence. However, studies of

heteroscedastic extremes in bivariate and multivariate settings have only

recently gained attention. Einmahl and Zhou (2024) propose a framework

that accommodates marginal heteroscedastic extremes but assumes a con-

stant tail copula. Research addressing heterogeneity in the dependence

structure is still relatively new. Notably, Drees (2023) develop a testing

procedure for detecting changes in the tail copula, assuming stationary

marginals.

While recent studies have begun to investigate heterogeneity in both

marginal distributions and dependence structures, there remains a lack

of valid two-sample testing procedures for marginal tail estimators under

changing dependence structure. When the dependence structure is un-

known and potentially non-stationary, standard test statistics may fail

to exhibit valid asymptotic behavior. For instance, we show that the

Kolmogorov–Smirnov statistic proposed by Einmahl and Zhou (2024), which

is designed to test the equality of scedasis functions, does not converge to

a standard Brownian bridge when the tail copula varies over time. In prac-

tice, many applied problems require comparisons of marginal tail behavior,

such as testing the equality of extreme value indices or scedasis functions
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across different populations. For example, Kinsvater et al. (2016) examine

GDP growth and identify differing patterns in upper and lower extreme

quantiles, while Adrian et al. (2019) report substantial heterogeneity in

extreme value indices across 18 rivers impacted by severe summer floods.

Given the prevalence of changing dependence in real-world data, these lim-

itations raise a fundamental methodological question: Can we construct

valid two-sample tests for marginal tail features without assuming a stable

dependence structure?

To study the problem, we model the survival distribution function Sn,i

of the bivariate sample (X
(n)
i , Y

(n)
i ) for i = 1, . . . , n by Sklar’s theorem, and

assume a (survival) copula Cn,i satisfying for the two marginal distributions

F
(j)
n,i , j = 1, 2, such that

Sn,i(x, y) = Cn,i(1− F
(1)
n,i (x), 1− F

(2)
n,i (y)), (x, y) ∈ R2. (1.1)

Moreover, the two marginal distributions {F (1)
n,i }ni=1 and {F (2)

n,i }ni=1 follow

univariate heteroscedastic extremes. More specifically, there exists a heavy-

tailed distribution function Gj and a scedasis function cj such that for all

i = 1, . . . , n and n ∈ N,

lim
t→∞

1− F
(j)
n,i (t)

1−Gj(t)
= cj

(
i

n

)
, j = 1, 2, (1.2)

where cj is positive and continuous subject to the constraint
∫ 1

0
cj(s)ds = 1
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for j = 1, 2. Cj(z) =
∫ z

0
cj(s)ds is called the integrated scedasis function.

Without an explicit statement in our paper, the two scedasis functions are

not assumed to be identical. For the changing copula structure, we assume

a positive function R on R3 satisfying for all i = 1, . . . , n and n ∈ N,

lim
t→∞

tCn,i

(x
t
,
y

t

)
= R

(
x, y,

i

n

)
, (x, y) ∈ R2. (1.3)

Here, R(x, y, z) is a tail copula given any z and captures the changing

tail dependence across samples, which generalizes the common tail cop-

ula in Einmahl and Zhou (2024). We refer to this model as Bivariate

Heteroscedastic Extremes, which extends the concept of heteroscedastic ex-

tremes to incorporate a changing tail dependence structure. More detailed

assumptions and discussions about this model are provided in Section 2.

Building on the proposed model, we develop a bootstrap-based frame-

work for conducting two-sample tests under Bivariate Heteroscedastic Ex-

tremes. Bootstrap methods are widely used in many problems to bypass

the direct estimation of complex variance structures and have significant

theoretical value. Recent developments have introduced bootstrap proce-

dures for EVT under both independent and dependent settings, covering

estimators such as probability weighted moments (PWM) (de Haan and

Zhou, 2024), Hill estimators (Jentsch and Kulik, 2021), and tail copulas

(Bücher and Dette, 2013). For instance, Bücher and Dette (2013) apply
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transformations to the empirical process to enable valid bootstrap infer-

ence for tail copulas in IID settings. Similarly, our analysis identifies key

statistics as functionals of the bivariate sequential tail empirical process (B-

STEP), including estimators of the integrated scedasis functions and the

marginal EVIs. We prove the weak convergence of the B-STEP and develop

a bootstrap B-STEP that jointly resamples margins and copulas, accom-

modating both sources of heterogeneity. Using the convergence results of

B-STEP, we derive the asymptotic statistical properties of the integrated

scedasis functions and Hill estimator, establishing the corresponding asymp-

totic theorems and the properties of their bootstrap counterparts.

Leveraging these results, we develop consistent bootstrap tests for two

hypothesis testing problems: (i) equality of EVIs, and (ii) equality of sceda-

sis functions. For each case, we prove the asymptotic validity of the boot-

strap test, showing that the rejection probabilities converge to the signif-

icance level as both the sample size and number of bootstrap replications

increase. These results enable robust marginal inference in the presence

of changing dependence, and address practical scenarios where copula con-

stancy cannot be assumed a priori. To illustrate the practical value of our

method, we apply our proposed tests for 8 assets, and reveal two distinct

clusters of firms based on their scedasis functions, despite similar tail heavi-
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ness across stocks. One group shows structural changes in tail risk following

the 2008 financial crisis, while the other remains stable over time.

The rest of this paper is organized as follows. In Section 2, we pro-

vide details of the assumptions of Bivariate Heteroscedastic Extremes. In

Section 3, we introduce the B-STEP and its bootstrap process. Moreover,

we develop estimators as functionals of the B-STEP in this section. We

also establish the asymptotic convergence results and then provide joint

asymptotic properties of the estimators. In Section 4, we examine three hy-

pothesis tests and provide the simulation results. In Section 5, we provide

an empirical study and illustrate the practical value of our method.

2. Bivariate Heteroscedastic Extremes

In this section, we introduce the assumptions for the bivariate heteroscedas-

tic extremes model,
X

(n)
i ∼ F

(1)
n,i , Y

(n)
i ∼ F

(2)
n,i ,where F

(j)
n,i satisfies (1.2) for j = 1, 2,(

1− F
(1)
n,i (X

(n)
i ), 1− F

(2)
n,i (Y

(n)
i )

)
∼ Cn,i,with Cn,i satisfying (1.3).

(2.4)

Assumption 1 characterizes the tail behavior of the marginal distri-

butions F
(j)
n,i . These conditions are consistent with those established in

Einmahl et al. (2014) for univariate distributions.
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Assumption 1 (Marginal Heteroscedastic Extremes). For j = 1, 2, the

scedasis function cj(s) is positive, continuous, and bounded away from 0

on [0, 1], satisfying Cj(1) = 1. Moreover, there exist a positive, eventually

decreasing function Aj with limt→∞Aj(t) = 0, and a distribution function

Gj, such that as t → ∞,

sup
n∈N

max
1≤i≤n

∣∣∣∣∣1− F
(j)
n,i (t)

1−Gj(t)
− cj

(
i

n

)∣∣∣∣∣ = O

[
Aj

{
1

1−Gj(t)

}]
.

For the reference function Gj, there exist some γj > 0, βj < 0, an eventually

positive or negative function Bj, such that

lim
t→∞

1

Bj (1/(1−Gj(t)))

(
1−Gj(tx)

1−Gj(t)
− x−1/γj

)
= x−1/γj

xβj/γj − 1

γjβj

, x > 0 .

Remark 1. The parameter γj, also known as the extreme value index

(EVI), characterizes the tail heaviness of the marginal distribution. In the

IID setting, γj determines the shape parameter of the limiting generalized

extreme value distribution for sample maxima, and a larger γj > 0 corre-

sponds to a heavier tail, implying higher probabilities of extreme events.

In IND settings, Einmahl et al. (2014) shows that, under mild regularity

conditions, the Hill estimator remains consistent and asymptotically nor-

mal for estimating γj. Hence, γj serves as a key quantity summarizing the

extremal behavior of each marginal process.

Assumption 2 specifies the convergence rate of (1.3). This condition
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extends the assumptions in Einmahl and Zhou (2024) to accommodate the

modeling of a changing copula structure. Specifically, the tail copula R is

required to be non-degenerate at each z ∈ [0, 1]. For every fixed z, the

conditions imposed on the derivatives of R are analogous to those discussed

in Bücher and Dette (2013).

Assumption 2 (Tail Dependence Structure). R(x, y, z) is continuous on

R3 satisfying R(1, 1, z) > 0 for all z ∈ [0, 1]. The partial derivatives of R

exist and satisfy that

∂R(x, y, z)/∂x is continuous on 0 < x < ∞, 0 ≤ y < ∞;

∂R(x, y, z)/∂y is continuous on 0 < y < ∞, 0 ≤ x < ∞.

Moreover, it holds for an α > 0 and a constant T ≥ 1, that as t → ∞,

sup
n∈N

sup
0<x,y≤T
i=1,...,n

∣∣∣∣tCn,i

(x
t
,
y

t

)
−R

(
x, y,

i

n

)∣∣∣∣ = O
(
t−α
)
. (2.5)

Assumption 3 generalizes the smoothing conditions presented in Ein-

mahl et al. (2014) to the bivariate context. Furthermore, to demonstrate

the practicality of these assumptions, we provide two examples that meet

both Assumptions 2 and 3.

Assumption 3 (Smoothing Conditions). For the scedasis functions and
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tail copula functions, it holds for j = 1, 2, that

lim
n→∞

sup
|u−v|≤1/n

√
k|cj(u)− cj(v)| = 0,

lim
n→∞

sup
|u−v|≤1/n, y∈[0,T ].

√
k |R(1, y, u)−R(1, y, v)| = 0,

lim
n→∞

sup
|u−v|≤1/n, x∈[0,T ].

√
k |R(x, 1, u)−R(x, 1, v)| = 0.

Example 1 (Mixture Copula). Denote C1(u, v) = (u−1 + v−1 − 1)−1 as a

Clayton copula, and C2(u, v) = u + v − 1 + (1− u)(1− v)/(1− uv) as a

Ali-Mikhail-Haq copula. A changing (survival) copula is given by

Cn,i(u, v) := p(i/n)C1(u, v) + (1− p(i/n))C2(u, v), (u, v) ∈ [0, 1]2,

where 0 < p(z) ≤ 1 is a function satisfying limn→∞
√
k sup|u−v|≤1/n |p(u) −

p(v)| = 0. The function R is defined as R(x, y, z) = p(z)(x−1 + y−1)−1.

We then prove that the mixture copula Cn,i satisfies Assumption 2. For

sufficiently large t > T , we observe that

sup
n

sup
0≤x,y≤T
1≤i≤n

∣∣tCn,i(xt
−1, yt−1)− p(i/n)(x−1 + y−1)−1

∣∣
≤ sup

n
sup

0≤x,y≤T
1≤i≤n

(1− p(i/n))

∣∣∣∣x+ y − t+
t(1− xt−1)(1− yt−1)

1− xyt−2

∣∣∣∣
+ sup

n
sup

0≤x,y≤T
1≤i≤n

∣∣∣∣ tp(i/n)

tx−1 + ty−1 − 1
− p(i/n)

x−1 + y−1

∣∣∣∣
≤ sup

0≤x,y≤T

∣∣∣∣xy2 + x2y − 2xyt

xy − t2

∣∣∣∣+ ∣∣∣∣ 1

x−1 + y−1 − t(x−1 + y−1)2

∣∣∣∣
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≤ 2T 2t

t2 − T 2
+

T 2/4

t− T/2

=O(1/t).

Furthermore, Assumption 3 is satisfied if the function p meets the condition:

lim
n→∞

√
k sup
|u−v|≤1/n

|p(u)− p(v)| = 0.

In this example, the mixture probability p(z) and the tail copula (x, y) 7→

(x−1 + y−1)−1 of the Clayton copula govern the tail dependence structure.

Example 2 (Parameterized Copula Sequence). Consider the copula

Cn,i(u, v) =
(
u−θ(i/n) + v−θ(i/n) − 1

)−1/θ(i/n)
.

If θ is Lipschitz continuous, and if M1 = inf0≤z≤1 θ(z) > 0 and M2 =

sup0≤z≤1 θ(z) < ∞, then the function R is defined as R(x, y, z) = (x−θ(z) +

y−θ(z))−1/θ(z).

We first verify that the parameterized copula sequence Cn,i satisfies

Assumption 2. For t > T , the following uniform convergence holds:

sup
n

sup
0≤x,y≤T
1≤i≤n

∣∣∣tCn,i

(x
t
,
y

t

)
−
(
x−θ(i/n) + y−θ(i/n)

)−1/θ(i/n)∣∣∣
=sup

n∈N
sup

0<x,y≤T
i=1,...,n

(
x−θ(i/n) + y−θ(i/n)

)−1/θ(i/n) t− [tθ(i/n) − (xy)θ(i/n)

xθ(i/n)+yθ(i/n)

]1/θ(i/n)
[
tθ(i/n) − (xy)θ(i/n)

xθ(i/n)+yθ(i/n)

]1/θ(i/n)
≤T sup

n∈N
sup

i=1,...,n

(
1−

(
1− T θ(i/n)

2tθ(i/n)

)1/θ(i/n)
)
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≤T max
(
21−1/M2 , 1

) TM2

2M1tM1
.

To verify that Cn,i satisfies Assumption 3, we derive the derivative of R

with respect to θ,

(
y−θ + x−θ

)−1/θ( ln
(
y−θ + x−θ

)
θ2

+
(ln y) · y−θ + (ln x) · x−θ

θ (y−θ + x−θ)

)
.

Due to the symmetry of the expression in x and y, we set y = 1 and obtain

(
1 + x−θ

)−1/θ( ln
(
1 + x−θ

)
θ2

+
ln(x) · x−θ

θ (1 + x−θ)

)
,

which is bounded for x ∈ [0, 1]. Thus, by the Lipschitz continuity of θ(z),

Assumption 3 is satisfied. This example corresponds to the ‘G-linear’ and

‘t-linear’ models used in the simulation study of Drees (2023), where the

copula structure is controlled by a changing parameter.

Assumption 4 specifies the conditions for intermediate orders. Notably

that we permit distinct intermediate order sequences kj for j = 1, 2.

Assumption 4 (Intermediate Order). The sequences k and kj satisfy

k/n → 0, k/kj → sj > T−1,
√
kAj(n/(2Tk)) → 0,

√
kBj(n/k) → 0,

and
√
k(n/k)−α → 0 as n → ∞ and for j = 1, 2.

3. Estimators as Functionals of Tail Processes

This section concentrates on the development of tail estimators and their

associated processes under the assumptions in Section 2. We first introduce
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some necessary notations. Let Xk,n denote the k-th smallest order statistic

of X(n)
1 , . . . , X

(n)
n , and Yk,n denote the k-th order statistic of Y (n)

1 , . . . , Y
(n)
n .

We define bxc := max{i ∈ Z | i ≤ x}, x ∨ y = max(x, y), and x ∧ y =

min(x, y). The inverse of a non-decreasing function f is given by

f←(x) =



sup {t ∈ R+ | f(t) = 0} , x = 0,

inf {t ∈ R+ | f(t) ≥ x} , 0 < x < sup ran f,

inf {t ∈ R+ | f(t) = sup ran f} , x ≥ sup ran f.

Specifically, the inverse function of 1/(1 − Gj) at t is denoted as Uj(t) for

j = 1, 2. We introduce a weight function q(x, y) with a constant 0 ≤ η < 1/2

by

q(x, y) =



(x ∨ y)η, if (x, y) ∈ R2,

xη, if x ∈ R, y = ∞,

yη, if y ∈ R, x = ∞.

(3.6)

For simplicity, we denote x 7→ q(x,∞) and y 7→ q(∞, y) as q1(x) and q2(y),

respectively. An important space in our analysis is defined as

DT :={(x, y, z) | 0 ≤ z ≤ 1, 0 ≤ x, y ≤ T}

∪ {(x, y, z) | 0 ≤ z ≤ 1, x = ∞, 0 ≤ y ≤ T}

∪ {(x, y, z) | 0 ≤ z ≤ 1, y = ∞, 0 ≤ x ≤ T}.
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The space ℓ∞(DT ) represents the set of bounded functions on DT .

We use the notation Wn ⇝ W in ℓ∞(DT ) to indicate the weak conver-

gence of the process Wn to a tight process W in the metric space ℓ∞(DT ) as

n → ∞. For the bootstrap process, we establish the conditional weak con-

vergence, as defined by Kosorok (2003). For an asymptotically measurable

process in ℓ∞(DT )

Wn := Wn

(
X

(n)
1 , . . . , X (n)

n , Y
(n)
1 , . . . , Y (n)

n , ξ1, . . . , ξn

)
,

the conditional weak convergence of Wn to W is defined as

sup
h∈BL1(ℓ∞(DT ))

|Eξh (Wn)− Eh(W )| = oP(1), as n → ∞, (3.7)

where Eξ represents the conditional expectation given (X
(n)
1 , . . . , X

(n)
n , Y

(n)
1 , . . . , Y

(n)
n ),

and BL1(ℓ
∞(DT )) is the the class of functionals h : ℓ∞(DT ) → R, such that

BL1(ℓ
∞(DT )) = {h | ‖h‖∞ ≤ 1, |h(f1)− h(f2)| ≤ ‖f1 − f2‖, ∀f1, f2 ∈ ℓ∞(DT )} .

We denote the conditional weak convergence as Wn
P⇝
ξ
W in ℓ∞(DT ). For a

review of conditional weak convergence, we refer to Bücher and Kojadinovic

(2019) and van der Vaart and Wellner (1996). Equation (3.7) states that

the expectation of the unknown distribution h(W ) can be approximated by

computing the conditional expectation h(Wn).
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3.1 Bivariate Sequential Tail Empirical Process

3.1 Bivariate Sequential Tail Empirical Process

In Einmahl et al. (2014), the STEP process serves as an important theoret-

ical tool, which is defined as:

1

k

⌊nz⌋∑
i=1

1
{
X

(n)
i > U1(n/(kx))

}
− C1(z)x. (3.8)

A natural extension is to analyze a process whose projection on the two

margins is a STEP in the univariate context. Thus, we denote R̃′(x, y, z)

R̃′(x, y, z) :=
1

k

⌊nz⌋∑
i=1

1
{
X

(n)
i > U1(n/(kx)), Y

(n)
i > U2(n/(ky))

}
. (3.9)

Suppose 1− F
(j)
n,i (t) ≈ cj(i/n)(1− Fj(t)), the expectation of R̃′(x, y, z) is,

E(R̃′(x, y, z)) ≈ 1

n

n

k

⌊nz⌋∑
i=1

Cn,i

(
c1

(
i

n

)
kx

n
, c2

(
i

n

)
ky

n

)
≈ R′(x, y, z) :=

∫ z

0

R(c1(t)x, c2(t)y) dt, as n → ∞.

We then define the B-STEP with the weight function q by

Fn(x, y, z) =
1

q(x, y)

(
R̃′(x, y, z)−R′(x, y, z)

)
. (3.10)

We now formulate the bootstrap B-STEP. For a fixed index b, let

{ξbi}ni=1 be an IID sequence of positive random variables, independent of

{(X(n)
i , Y

(n)
i )}ni=1. This sequence is replicated for b = 1, 2, . . . , B. We define

the bootstrap empirical distribution functions as

F
(1)
b (x) =

1

n

n∑
i=1

ξbi1
(
X

(n)
i ≤ x

)
, and F

(2)
b (y) =

1

n

n∑
i=1

ξbi1
(
Y

(n)
i ≤ y

)
,
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3.1 Bivariate Sequential Tail Empirical Process

and their corresponding generalized inverses U
(j)
b =

(
1/(1− F

(j)
b )
)←

for

j = 1, 2. The bootstrap estimator of (3.9) is given by

R̃b′(x, y, z) :=
1

k

⌊nz⌋∑
i=1

ξbi1
{
X

(n)
i > U1(n/(kx)), Y

(n)
i > U2(n/(ky))

}
.

The bootstrap B-STEP is then given by

Fb
n(x, y, z) =

1

q(x, y)

(
R̃b′(x, y, z)− R̃′(x, y, z)

)
. (3.11)

The following assumption is for the bootstrap weights.

Assumption 5 (Bootstrap Weight). The bootstrap weights {ξbi}ni=1 satisfy

that for the constant η > 0 of q in (3.6), we have

E[ξbi] = 1, E[(ξbi − 1)2] = 1, and E[|1− ξbi|1/η] < ∞.

In the following, we assume the process W is a Weiner process on DT

with covariance function

cov (W (x1, y1, z1) ,W (x2, y2, z2)) = R′ (x1 ∧ x2, y1 ∧ y2, z1 ∧ z2) , (3.12)

where ∞∧∞ := ∞. We now establish the asymptotic property of B-STEP.

Theorem 1. Under Assumptions 1-5, we have as n → ∞,

√
kFn ⇝ W/q and

√
kFb

n
P⇝
ξb

W/q. (3.13)
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3.1 Bivariate Sequential Tail Empirical Process

To prove Theorem 1, we first establish the weak convergence of the

simple bivariate sequential tail empirical process in Propositions S1 and S2.

Then, under Assumptions 1-5, we prove that the ℓ∞ distance between the

B-STEP and the simple B-STEP converges in probability to 0, thereby es-

tablishing the weak convergence of the B-STEP. The definition of the simple

B-STEP, Propositions S1 and S2, and the detailed proof of Theorem 1 are

provided in Section S1 of the supplementary material.

As Uj is typically unknown, empirical quantiles are used to provide a

data-driven approximation for tail thresholds. Specifically, we define the

empirical version of R̃′ by

R̂′(x, y, z) =
1

k

⌊nz⌋∑
i=1

1
(
X

(n)
i > Xn−⌊kx⌋,n, Y

(n)
i > Yn−⌊ky⌋,n

)
. (3.14)

The process R̂′ can be derived from the process R̃′ by applying a functional

Φ and the delta method to the process Fn, such that Φ(R̃′/q)−Φ (R′/q) =

R̂′−R′. For a function θ on DT satisfying θ(0+,∞, 1) = 0, θ(∞, 0+, 1) = 0,

where θ(x,∞, 1) and θ(∞, y, 1) are non-decreasing on [0, T ], Φ is given by

Φ(θ)(x, y, z) =



(q · θ) ((q · θ)←(x,∞, 1), (q · θ)←(∞, y, 1), z) if x, y 6= ∞,

(q · θ) ((q · θ)←(x,∞, 1),∞, z) if y = ∞,

(q · θ) (∞, (q · θ)←(∞, y, 1), z) if x = ∞.

(3.15)
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3.1 Bivariate Sequential Tail Empirical Process

Notice for R′, it holds that R′←(x,∞, 1) = x, and R′←(∞, y, 1) = y. More-

over, the inverse of R̃′(x,∞, 1) and R̃′(∞, y, 1) satisfy that

R̃′←(x,∞, 1) =
n

k
{1−G1(Xn,n−⌊kx⌋)}, R̃′←(∞, y, 1) =

n

k
{1−G2(Yn,n−⌊ky⌋)}.

Similarly for the bootstrap process Fb
n, we have Φ(R̃b′/q) − Φ(R̃′/q) =

R̂b′ − R̂′ on DT , where R̂b′(x, y, z) is defined as

R̂b′(x, y, z) :=
1

k

⌊nz⌋∑
i=1

ξbi1

{
X

(n)
i > U

(1)
b

( n

kx

)
, Y

(n)
i > U

(2)
b

(
n

ky

)}
.

We then apply the functional delta method to derive the asymptotic result

of R̂′. We further define WR as

WR(x, y, z) := W (x, y, z)−R′1(x, y, z)W (x,∞, 1)−R′2(x, y, z)W (∞, y, 1) ,

where we denote the partial derivatives of R′ as

R′1(x, y, z) =


0, {(x, y, z) ∈ DT | x = 0 or x = ∞},

∂R′(x, y, z)/∂x, {(x, y, z) ∈ DT | 0 < x < ∞, 0 ≤ y ≤ ∞},

R′2(x, y, z) =


0, {(x, y, z) ∈ DT | y = 0 or y = ∞},

∂R′(x, y, z)/∂y, {(x, y, z) ∈ DT | 0 ≤ x ≤ ∞, 0 < y < ∞}.

Theorem 2. Under Assumptions 1-5, we have as n → ∞

√
k
(
R̂′ −R′

)
⇝ WR, and

√
k
(
R̂b′ − R̂′

)
P⇝
ξb

WR. (3.16)
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3.2 Estimator for the Integrated Scedasis Functions.

Remark 2. Specifically, we calculate R′ on DT as:

R′(x, y, z) =



∫ z

0
R(c1(t)x, c2(t)y, t) dt, 0 ≤ x, y < ∞, 0 ≤ z ≤ 1,

∫ z

0
R(c1(t)x,∞, t) dt = xC1(z), y = ∞, 0 < x < ∞, 0 ≤ z ≤ 1,

∫ z

0
R(∞, c2(t)y, t) dt = y C2(z), x = ∞, 0 < y < ∞, 0 ≤ z ≤ 1.

Since for every fixed z, R is a tail copula, the definition of R′ aligns with∫ z

0
R(c1(t)x, c2(t)y, t) dt when extended to DT .

R′(x, y, z) serves as a key component in the limit theory. For instance,

we will see in the later sections that the function is related to the asymp-

totic covariance of the Hill estimators. The quality also has practical ap-

plications in risk modeling. For instance, R′(x, y, z) quantifies the limiting

probability that two assets simultaneously exceed intermediate thresholds,

U1(n/(kx)) and U2(n/(ky)), during the time interval [0, z] as n → ∞. This

characteristic makes R′(x, y, z) a dynamic index of extreme co-movements.

3.2 Estimator for the Integrated Scedasis Functions.

We estimate the integrated scedasis functions Cj(z) for z ∈ [0, 1] by

Ĉ1(z) :=
1

k1

⌊nz⌋∑
i=1

1
(
X

(n)
i > Xn−k1,n

)
,

Ĉ2(z) :=
1

k2

⌊nz⌋∑
i=1

1
(
Y

(n)
i > Yn−k2,n

)
.
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3.3 Estimators for the Extreme Value Indices.

Notice that the intermediate orders for the two margins are different. By

plugging (k1/k,∞, z) into the process R̂′, we have that

R̂′(k1/k,∞, z) =
1

k

⌊nz⌋∑
i=1

1
(
X

(n)
i > Xn−k1,n

)
− k1

k
C1(z).

Similarly, by plugging (k1/k,∞, z) into the process R̂b′, we derive
∑⌊nz⌋

i=1 ξbi1(X
(n)
i >

U
(1)
b (n/k1))/k1, and

∑⌊nz⌋
i=1 ξbi1(Y

(n)
i > U

(2)
b (n/k2))/k2. Notice the two pro-

cesses do not equal 1 when z = 1, so we modify and derive the following

bootstrap estimators.

Ĉb
1(z) :=

∑⌊nz⌋
i=1 ξbi1

(
X

(n)
i > U

(1)
b (n/k1)

)
∑n

i=1 ξbi1
(
X

(n)
i > U

(1)
b (n/k1)

) ,

Ĉb
2(z) :=

∑⌊nz⌋
i=1 ξbi1

(
Y

(n)
i > U

(2)
b (n/k2)

)
∑n

i=1 ξbi1
(
Y

(n)
i > U

(2)
b (n/k2)

) .

We then establish the asymptotic results for the integrated scedasis

function. Define W (1)
C and W

(2)
C by W

(1)
C (z) = s1WR(s

−1
1 ,∞, z), and W

(2)
C (z) =

s2WR(∞, s−12 , z).

Theorem 3. Under Assumptions 1–5, we have for j = 1, 2 and as n → ∞,

√
k
(
Ĉj − Cj

)
⇝ W

(j)
C and

√
k
(
Ĉb

j − Ĉj

)
P⇝
ξb

W
(j)
C . (3.17)

3.3 Estimators for the Extreme Value Indices.

The well-known Hill estimators for γj are given by

γ̂1 =
1

k1

k1∑
i=0

log(Xn−i,n)− log(Xn−k1,n),
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3.3 Estimators for the Extreme Value Indices.

γ̂2 =
1

k2

k2∑
i=0

log(Yn−i,n)− log(Yn−k2,n).

To study the joint asymptotic properties of γ̂j with other estimators and to

propose the bootstrap estimators, it is necessary to rewrite γ̂j as a functional

of the tail empirical process. We start by taking (n(1−G1(U1(n/k1)x
−γ1))/k,∞, 1)

into the process (3.10) and derive the following tail empirical process

F1n(x) :=
1

q1(x)k1

n∑
i=1

1
(
X

(n)
i > x−γ1U1(n/k1)

)
.

We then define the functional for a non-decreasing function θ on R with

θ(0+) = 0,

Ψ(θ) :=

∫ (q1·θ)←(1)

0

θ(t)q1(t)
dt

t
. (3.18)

Notice that for Π(x) = x/q1(x), it holds that Ψ(Π) = 1. Thus, the Hill

estimators can be written as

γ̂1 = γ1

∫ (Xn−k1,n
/U1(n/k1))

−1/γ1

0

1

k1

n∑
i=1

1
(
X

(n)
i > s−γ1U1(n/k1)

)ds
s

= γ1Ψ(F1n) .

Based on this functional, the bootstrap Hill estimator for γ̂1 is given by

γ̂b
1 :=γ1 Ψ

(
Fb

1n

)
=

1

k1

n∑
i=1

ξbi

(
log(X

(n)
i )− log(U

(1)
b (n/k1))

)
1
(
X

(n)
i > U

(1)
b (n/k1)

)
.

with the bootstrap tail empirical process

Fb
1n(x) :=

1

q1(x)k1

n∑
i=1

ξbi1
{
X

(n)
i > x−γ1U1(n/k1)

}
,
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Similarly, the bootstrap estimator for γ̂2 is given by

γ̂b
2 :=

1

k2

n∑
i=1

ξbi

(
log(Y

(n)
i )− log(U

(2)
b (n/k2))

)
1
(
Y

(n)
i > U

(2)
b (n/k2)

)
.

Next, we prove the asymptotic result of the bootstrap Hill estimator.

Denote

Γ1 := s1γ1

(∫ 1

0

W
(
ts−11 ,∞, 1

) dt
t
−W

(
s−11 ,∞, 1

))
,

Γ2 := s2γ2

(∫ 1

0

W
(
∞, ts−12 , 1

) dt
t
−W

(
∞, s−12 , 1

))
.

Theorem 4. Under Assumptions 1-5, we have that for j = 1, 2 and as

n → ∞,
√
k(γ̂j − γj)⇝Γj, and

√
k(γ̂b

j − γ̂j)
P⇝
ξb

Γj. (3.19)

Remark 3. The asymptotic covariance of (
√
k(γ̂1 − γ1),

√
k(γ̂2 − γ2)) is

given by  s1γ
2
1 R′(s2, s1, 1)γ1γ2

R′(s2, s1, 1)γ1γ2 s2γ
2
2

 .

In applications, we estimate R′(s2, s1, 1) by k2R̂′(k1/k, k2/k, 1)/(k1k2).

4. Bootstrap-Based Tests

In this section, we formally define two hypothesis testing problems and sub-

sequently propose a bootstrap-based approach for conducting these tests.
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4.1 Test for Equal Tail Heaviness.

Following this, we design comprehensive simulation experiments to evaluate

the performance of the proposed tests.For each realization of {(X(n)
i , Y

(n)
i )}ni=1,

we simulate ξb and γ̂b
j , Ĉb

j , R̂b′ for b = 1, 2, . . . , B as defined in Section 3.

We denote the significance level as α in this section.

4.1 Test for Equal Tail Heaviness.

The first test examines whether {X(n)
i } and {Y (n)

i } exhibit the same tail

heaviness without assuming a prior knowledge of the changing dependence

structure Cn,i and the scedasis functions c1 and c2. This hypothesis test is

H10 : γ1 = γ2 vs. H11 : γ1 6= γ2. (4.20)

To formulate the bootstrap-based test, we define

TH10 = k (γ̂1 − γ̂2)
2 , T b

H10 = k
(
γ̂b
1 − γ̂b

2 − γ̂1 + γ̂2
)2

.

The empirical distribution of the bootstrap samples is defined as FH10(x) :=

1
B

∑B
b=1 1(T

b
H10 ≤ x), and its inverse function is defined as û10(α) = F←H10(α).

We reject the null hypothesis if TH10 ≥ û10(1− α).

The bootstrap method can effectively address cases where the two sam-

ples exhibit asymptotically tail independence. Given that the covariance

between W (x,∞, z) and W (∞, y, z) is 0 for x, y ∈ [0, 1]2, the two Hill

estimators become asymptotically independent under asymptotically tail
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4.2 Test for Equal Scedasis Functions.

independence. Consequently, the functional delta method and continuous

mapping theorem remain applicable to the marginal statistics, thereby en-

suring the validity of the asymptotic results presented in Theorem 4. This

finding indicates the potential effectiveness and conciseness of the bootstrap

method as an inference tool under heteroscedastic extremes.

4.2 Test for Equal Scedasis Functions.

The second hypothesis test evaluates whether the two marginal distribu-

tions have the same scedasis function, i.e.,

H20 : c1 = c2, ∀ t ∈ [0, 1] vs. H21 : c1 6= c2, ∃ t ∈ [0, 1]. (4.21)

In financial applications, this test helps to determine whether two assets

undergo identical crises. Variations in the scedasis function, which capture

the impact of financial crises, play a crucial role in this assessment (Einmahl

et al., 2014). Specifically, we define the test statistics,

T20(z) = Ĉ1(z)− Ĉ2(z), T b
20(z) = Ĉb

1(z)− Ĉb
2(z).

The KS and Cramér-von Mises (CVM) statistics are defined as

T
(KS)
H20 = sup

z∈[0,1]

√
k |T20(z)| , T

b(KS)
H20 = sup

z∈[0,1]

√
k
∣∣T b

20(z)− T20(z)
∣∣ ,

T
(CVM)
H20 = k

∫ 1

0

(T20(z))
2 dz, T

b(CVM)
H20 = k

∫ 1

0

(
T b
20(z)− T20(z)

)2
dz,
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4.2 Test for Equal Scedasis Functions.

respectively, with the bootstrap distributions given by

F
(KS)
H20 (x) :=

1

B

B∑
b=1

1(T
b(KS)
H20 ≤ x), F

(CVM)
H20 (x) :=

1

B

B∑
b=1

1(T
b(CVM)
H20 ≤ x).

The corresponding quantile function is denoted as û(KS)
20 , û(CVM)

20 . We reject

the null hypothesis when T
(KS)
H20 ≥ û

(KS)
20 (α) and T

(CVM)
H20 ≥ û

(CVM)
20 (α) for KS

and CVM tests, respectively.

Note that when C1 = C2 and the copula changes across sample, the

process Ĉ1 − Ĉ2 does not converge to a Brownian bridge. For example, if

we examine the covariance structure of W (1)
C − W

(2)
C for 0 ≤ z1 ≤ z2 ≤ 1,

by assuming s1 = s2 = 1, we find that

cov
(
W

(1)
C (z1)−W

(2)
C (z1),W

(1)
C (z2)−W

(2)
C (z2)

)
=2C1(z1)(1− C1(z2)) + 2 [C1(z2)R

′(1, 1, z1) + C1(z1)R
′(1, 1, z2)]

− 2 [R′(1, 1, z1) + C1(z1)C1(z2)R
′(1, 1, 1)] .

Consequently, the bootstrap method becomes essential for conducting the

test. A similar result is also observed in the CVM test for k
∫ 1

0

(
Ĉ1(z)− Ĉ2(z)

)2
dz.

The asymptotic result for our test statistic is established as follows.

Proposition 1. Under Assumptions 1-5, as n → ∞ and B → ∞, we have

for M ∈ {KS,CVM},

(a) If H10 holds, then P(TH10 ≥ û10(1− α)) → α;
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4.3 Simulation Results

(b) If |γ1 − γ2| = δ > 0, then P(TH10 ≥ û10(1− α)) → 1;

(c) If H20 holds, P(T
(M)
H20 ≥ û

(M)
20 (1− α)) → α;

(d) If there exists a constant z such that |C1(z) − C2(z)| = δ > 0, then

P(T
(M)
H20 ≥ û

(M)
20 (1− α)) → 1.

4.3 Simulation Results

We now turn to the finite sample performance of the two proposed tests.

The simulation study comprises 1000 replications for each setting, with each

replicate undergoing 200 bootstrap iterations. We set the sample size n =

1000 and the intermediate order k = 50, 100, 200. All tests are conducted at

α = 0.05 and 0.01. The random weights ξbi are generated from a standard

exponential distribution.

The two marginal scedasis functions for z ∈ [0, 1] are chosen from the

following options:

a1(z) = 0.8 + 0.4z, a2(z) = 0.6 + 0.8z,

a3(z) = 1 + 0.5 sin(2πz), a4(z) = 1 + 0.2 sin(2πz),

a5(z) =


0.5 + 2z, z ∈

[
0, 1

2

]
2.5− 2z, z ∈

(
1
2
, 1
] , a6(z) =


0.25 + 3z, z ∈

[
0, 1

2

]
3.25− 3z, z ∈

(
1
2
, 1
] .

These functions have been utilized in prior research, such as Einmahl and
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4.3 Simulation Results

Zhou (2024) and Drees (2023). Among them, a1 and a2 are linear functions,

a3 and a4 follow sinusoidal patterns, while a5 and a6 are piecewise linear

functions. For j = 1, 2, 3, the even-indexed functions a2j display volatility

characteristics akin to their odd-indexed counterparts a2j−1. However, the

fluctuation behavior of a1, a3, and a5 differs markedly. In our experiment,

we examine how these similarities and differences in scedasis functions im-

pact the two-sample test.

In all cases, the marginal distributions follow a Fréchet distribution

such that

F
(j)
n,i (x) = exp(−cj(i/n)x

−λj),

where cj is the scedasis function and λj is a shape parameter. The Fréchet

distribution with shape parameter λj has an EVI of 1/λj. Since the test

statistics of H20 is rank-based, the marginal distributions do not influence

their results. Therefore, for these tests, we fix λj = 2. For the test assessing

the equivalence of EVIs, the values of λj are provided in Table 1.

On the other hand, we construct the changing copula by combining

the t copula and the Gumbel Copula. Denote the bivariate t-copula as

Ct(u, v; ν, ρ) with degrees of freedom ν and correlation ρ, and the Gumbel

copula with a dependence parameter θ ≥ 1 as Cg(u, v; θ), which is given by

Cg(u, v; θ) = exp
[
−
{
(− ln u)θ + (− ln v)θ

}1/θ]
, u, v ∈ R+,
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4.3 Simulation Results

Based on these two copula families, we define six changing (survival) copula

for our tests. For j = 1, 2, 5, we define

Cj(x, y, z) = pj(z)·Ct(x, y; 2, 0)+(1−pj(z))·Cg(x, y; 2), x, y ∈ R+, z ∈ [0, 1],

where p1(z) = 0.5 + 0.5 cos(2πz), p2(z) = 0.5 + 0.2 cos(2πz), p5 ≡ 0.5 for

z ∈ [0, 1]. These copulas possess the characteristic that the mixture weight

pj(t) changes smoothly across z. For j = 3, 4, 6, we define

Cj(x, y, z) = Cg(x, y; θ = pj(z)), x, y ∈ R+, z ∈ [0, 1],

where p3(z) = 2+3z, p4(z) = 2+z, and p6 ≡ 2 for z ∈ [0, 1]. These copulas

possess the characteristic that the dependence parameter θ of the Gumbel

copula varies as a function of z.

Table 1 provides a summary of the simulated rejection frequencies for

the test (4.20). The first two columns specify the λj; the third and fourth

columns represent the scedasis functions selected from a1, a3, a5; the fifth

column identifies the changing copula structures. For cases with equivalent

EVIs (rows 1-3), the rejection frequencies at k = 200 closely match the

significance levels (0.05 and 0.10), demonstrating that the test effectively

controls Type I errors. When k = 50 or k = 100, the rejection frequencies

are lower than the significance levels. Thus, in our experiment settings,

k = 200 is necessary to achieve accurate performance. For cases with
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4.3 Simulation Results

Table 1: Simulated rejection frequency for testing H10.

EVIs Scedasis Copula k 50 100 200

λ1 λ2 c1 c2 α 0.05 0.1 0.05 0.1 0.05 0.1

2.5 2.5 a1 a3 C1 0.03 0.07 0.04 0.08 0.05 0.10

2 2 a1 a5 C2 0.03 0.07 0.04 0.08 0.05 0.10

3 3 a3 a5 C3 0.02 0.06 0.03 0.07 0.03 0.06

2.5 2 a1 a3 C4 0.34 0.47 0.69 0.79 0.95 1.00

2.5 2.2 a1 a5 C1 0.11 0.19 0.20 0.31 0.38 0.53

2.5 2.4 a3 a5 C2 0.04 0.10 0.06 0.12 0.07 0.13

2.5 2.6 a1 a3 C3 0.04 0.08 0.05 0.09 0.07 0.12

2.5 2.8 a1 a5 C4 0.10 0.19 0.22 0.33 0.41 0.53

2.5 3 a3 a5 C1 0.17 0.28 0.34 0.47 0.64 0.76

differing EVIs (rows 4-9), the rejection frequencies increase with larger k.

For example, in row 4 (where λ1 = 2.5 and λ2 = 2), the rejection frequency

reaches 95% at α = 0.05 when k = 200, compared to only 34% at k = 50.

Table 2 summarizes the simulated rejection frequencies for the test

(4.21). The first six rows correspond to scenarios under the null hypothesis,

where we observe consistently low rejection frequencies. The subsequent six

rows assess the power of the proposed methods under alternative hypothe-

ses. When k = 50, 100, the rejection frequencies are relatively low for the
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4.3 Simulation Results

Table 2: Simulated rejection frequency for testing H20.
Distribution k 50 100 200

scedasis α 0.05 0.1 0.05 0.1 0.05 0.1

c1 c2 M KS CVM KS CVM KS CVM KS CVM KS CVM KS CVM

a1 a1 C1 0.03 0.04 0.06 0.07 0.04 0.03 0.07 0.07 0.05 0.05 0.09 0.10

a2 a2 C2 0.03 0.04 0.07 0.07 0.03 0.04 0.08 0.09 0.05 0.05 0.10 0.10

a3 a3 C3 0.01 0.01 0.04 0.04 0.01 0.01 0.03 0.04 0.03 0.02 0.06 0.06

a4 a4 C4 0.01 0.02 0.03 0.03 0.01 0.02 0.03 0.04 0.03 0.03 0.06 0.06

a5 a5 C5 0.03 0.03 0.06 0.06 0.04 0.04 0.08 0.08 0.05 0.05 0.11 0.10

a6 a6 C6 0.01 0.02 0.04 0.04 0.02 0.03 0.05 0.06 0.03 0.03 0.07 0.06

a1 a2 C1 0.07 0.09 0.12 0.15 0.10 0.14 0.18 0.22 0.22 0.26 0.32 0.35

a3 a4 C2 0.13 0.16 0.22 0.24 0.30 0.32 0.44 0.42 0.60 0.58 0.70 0.70

a5 a6 C3 0.02 0.02 0.05 0.07 0.05 0.06 0.11 0.15 0.14 0.20 0.27 0.39

a1 a3 C4 0.86 0.90 0.94 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

a1 a5 C5 0.14 0.13 0.25 0.27 0.32 0.32 0.45 0.47 0.68 0.68 0.79 0.80

a3 a5 C6 0.64 0.68 0.76 0.79 0.96 0.97 0.98 0.99 1.00 1.00 1.00 1.00

seventh and ninth experiments. However, the rejection frequencies improve

when k = 200, indicating that larger intermediate thresholds enhance the

test’s ability to detect differences in scedasis functions. Additionally, in

most scenarios, the CVM test exhibits slightly higher rejection frequencies

than the KS test.

The simulation results are sensitive to the choice of k. When k is

small, many studies have shown that the bootstrap may fail to approxi-
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mate the correct asymptotic distribution; see, for example, Chernozhukov

and Fernández-Val (2011). Consequently, the empirical rejection frequen-

cies can fall below α. In a more recent contribution, Zhang (2018) rec-

ommend employing the bootstrap procedure of Bickel and Sakov (2008) to

better approximate the limiting distribution under extreme quantile set-

tings. Several alternative approaches have also been proposed to improve

bootstrap accuracy. For instance, Li et al. (2011) (Figure 1) document that

the bootstrap-based coverage tends to be lower than the nominal confidence

level when k is small, and they introduce a bootstrap calibration procedure

to correct this bias. Enhancing the finite-sample reliability of bootstrap

methods for small k remains an open and challenging research problem.

5. Empirical Study

We collect 2516 daily stock return data of 8 companies from the S&P in-

dex, from January 4th, 2010 to January 3rd, 2020. We use the negative

daily return to indicate the loss for each company, which follows a similar

modeling approach in Einmahl et al. (2014). Our data analysis conducts

tests on the problems (4.20) and (4.21) for each pair of the 8 companies.

Table 3 lists the basic data information of each stock. We implement

the two tests in Einmahl et al. (2014) for each univariate loss; one is the
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Table 3: Stock Symbol, company name, k and hill estimator of 8 stocks. A

validation test and a test for c ≡ 1 are conducted by the methodologies in

Einmahl et al. (2014).

p-value

Company Name kj Hill Estimator Validation Test Test for c ≡ 1

EXPE Expedia Group, Inc. 173 0.391 0.144 0.002

RMD ResMed Inc. 191 0.402 0.447 0.000

AKAM Akamai Technologies, Inc. 248 0.421 0.701 0.000

IT Gartner, Inc. 159 0.400 0.769 0.000

ILMN Illumina, Inc. 151 0.385 0.797 0.216

LDOS Leidos Holdings, Inc. 236 0.422 0.649 0.354

QCOM Qualcomm Incorporated 151 0.420 0.926 0.236

HSY The Hershey Company 192 0.352 0.149 0.698
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validation test T4 from Einmahl et al. (2014) and the other is T1 in Einmahl

et al. (2014) to test whether c ≡ 1 or not. The p-values of the two tests are

summarized in Table 3. We conclude that the heteroscedastic extremes are

fit for the marginal distribution of each stock loss data. The tests for the

first four stocks reject the c ≡ 1, while the tests for the other stocks do not

reject the hypothesis that cj ≡ 1.

0.84

0.5

0.86

0.89

0.46

0.58

0.37

0.84

0.63

0.99

0.71

0.63

0.75

0.24

0.5

0.63

0.62

0.43

0.97

0.99

0.09

0.86

0.99

0.62

0.74

0.64

0.7

0.23

0.89

0.71

0.43

0.74

0.44

0.53

0.48

0.46

0.63

0.97

0.64

0.44

0.99

0.08

0.58

0.75

0.99

0.7

0.53

0.99

0.15

0.37

0.24

0.09

0.23

0.48

0.08

0.15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1EXPE
RM

D
AKAM

IT IL
M

N
LD

OS
QCOM

HSY

EXPE

RMD

AKAM

IT

ILMN

LDOS

QCOM

HSY

0.18

0.5

0.24

0

0.01

0

0

0.18

0.68

0.84

0

0.02

0.01

0

0.5

0.68

0.69

0

0

0

0

0.24

0.84

0.69

0

0

0

0

0

0

0

0

0.63

0.03

0.37

0.01

0.02

0

0

0.63

0.28

0.53

0

0.01

0

0

0.03

0.28

0.61

0

0

0

0

0.37

0.53

0.61

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1EXPE
RM

D
AKAM

IT IL
M

N
LD

OS
QCOM

HSY

EXPE

RMD

AKAM

IT

ILMN

LDOS

QCOM

HSY

Figure 1: P-values of the pair two sample tests of H10(the equivalence of

extreme value index, left) and H20(the equivalence of scedasis functions,

right), for 8 stocks from January 4th, 2010, to January 3rd, 2020.

We then apply the testing procedures outlined in Section 4 to each pair

of stock returns. For each test, we implement the bootstrap method with

B = 500 replications. The resulting p-values are presented in Figure 1.
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In the test for H10, we find that most stocks exhibit similar tail heavi-

ness, with Hill estimators ranging from 0.34 to 0.43, as reported in Table 3.

However, when testing the equality of scedasis functions, the stocks ap-

pear to cluster into two distinct groups, suggesting that certain stocks may

be subject to common underlying factors and therefore exhibit similar re-

sponses to extreme events. This clustering further highlights the presence

of co-movement in extreme quantiles across the market, offering empirical

evidence for recent developments in quantile factor models (Chen et al.,

2021; Ando and Bai, 2020; Ando et al., 2022).

To further investigate the differing trends in scedasis functions across

the two clusters, Figure 2 presents the estimated scedasis functions for each

group. For each company, we estimate ĉj(s) using the kernel method pro-

posed by Einmahl et al. (2014), employing a biweight kernel with bandwidth

0.3. The group-level estimator ĉ(s) is defined as 1
g

∑
j = 1g ĉj(s), where g

denotes the number of companies in the group. The scedasis functions for

EXPE, RMD, AKAM, and IT exhibit a pronounced structural change be-

tween 2010 and 2012, whereas those for ILMN, LDOS, QCOM, and HSY

remain relatively smooth and stable over time. These clustering patterns

and differing scedasis trends offer potential insights for risk management.

In particular, researchers may cluster the estimated scedasis functions to
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identify latent factors driving tail risk and investigate the underlying eco-

nomic sources of their variation. The p-values from our proposed tests can

serve as a natural similarity measure for such clustering, highlighting an

avenue for future research in identifying and modeling common drivers of

tail risk across assets.
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Figure 2: Estimation of ĉ of EXPE, RMD, AKAM, IT (top), and ILMN,

LDOS, QCOM, HSY(bottom). The dashed lines are bootstraped 90% con-

fidence interval.
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6. Conclusion

This paper proposes a copula-based model for independent but not identi-

cally distributed data with bivariate heteroscedastic extremes. The model

allows both the copula structure and marginal distributions to vary across

samples. We develop a comprehensive framework to derive bootstrap esti-

mators via the B-STEP process, using the functional delta method. Sim-

ulation results validate the robustness of our bootstrap approach. Other

bootstrap techniques (de Haan and Zhou (2024); Jentsch and Kulik (2021))

are not covered in our framework, and their asymptotic validity under bi-

variate heteroscedastic extremes remains unexplored. Extending our frame-

work to time-series settings with mild dependence (e.g., mixing conditions

as in Bücher and Segers (2018); Zou et al. (2021)) is a potential next step,

but the asymptotic analysis under such conditions is left as an open problem

due to the need for a separate theoretical framework.

Supplementary Materials

This supplement collects the proofs of the theoretical results in the article.
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