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Abstract: Modern biomedical research increasingly relies on integrating multiple
cohort studies, yet faces a critical challenge: indicator covariates such as smoking
status, vaccination records, or diagnostic codes that are entirely absent in some
cohorts due to differences in data collection protocols. This cohort-level missing-
ness violates the assumptions underlying traditional missing data methods, as
the complete absence of covariates across entire populations fundamentally dif-
fers from sporadic individual-level missingness. To address this gap, we develop
a doubly robust transfer learning framework based on a novel sub-group shift
assumption, which posits that the conditional distribution of the missing indica-
tor given other variables remains stable across cohorts while allowing marginal
distributions to vary. Our approach combines importance weighting with im-
putation in augmented estimating equations, achieving robustness to misspecifi-

cation of either the density ratio model or the imputation model. We establish
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that the proposed estimator is n'/2-consistent and asymptotically normal under
mild regularity conditions. Through extensive simulations and an application to
UK Biobank data, we demonstrate superior performance compared to existing
approaches. This work provides a rigorous framework for handling cohort-level
missing indicators, addressing a pervasive challenge in large-scale biomedical data

integration.

Key words and phrases: Completely missing, distribution shift, importance weight-

ing, model heterogeneity.

1. Introduction

With the emergence of large-scale biomedical research programs, such as
the Million Veteran Program (Gaziano et all, 2016), the UK Biobank (By-
croft et alf, 2018), and the All of Us Research Program (Denny et al|, 2019),
researchers have unprecedented resources to explore complex relationships
among genetics, lifestyle, environment, and health outcomes. Despite a
shared goal of advancing scientific discovery, these initiatives vary consid-
erably in their data collection priorities and protocols, creating substantial
heterogeneity in the availability and types of information gathered (Schulz
et all, 2020; ILi and Zhang, 2025). Some initiatives emphasize lifestyle or be-
havioral factors, others prioritize wearable-device data, and still others focus

on specific clinical outcomes. Such heterogeneity often results in datasets



with systematically missing covariates, impeding focused analyses.

Binary indicator variables constitute a substantial portion of poten-
tial covariates in contemporary biomedical datasets. In the UK Biobank’s
phenome catalogue, for instance, about 31% (836 out of 2687 analyzable
variables) are simple binary indicators (Millard et al), 2019). Similarly,
the OMOP standardized vocabularies, foundational to numerous electronic
health record (EHR) systems, encompass over 10 million concepts, nearly
two million of which represent medications or clinical conditions encoded as
binary presence/absence flags (Reich et al], 2024). Crucially, binary covari-
ates frequently suffer from structured, cohort-level missingness arising from
administrative barriers, linkage limitations, or incompatible data standards,
rather than random, individual-level gaps. We refer to this phenomenon
as completely missing at the cohort level. For example, the UK Biobank
provides linkage to primary-care records (e.g., diagnoses and prescriptions
captured as binary read or SNOMED codes) for roughly 45% of partici-
pants, leaving 55% of the cohort systematically missing these GP-derived
indicators due to differing coding systems (Allen et al), 2024). Similarly,
U.S. Medicare claims databases lack direct measures of smoking status,
relying instead on ICD-code-based proxies whose sensitivity compared to

self-report is extremely low (<10%), effectively rendering smoking status



entirely absent for most beneficiaries (Desai et al., 2016).

This structural absence of key binary covariates is particularly prob-
lematic since indicators such as smoking status, alcohol consumption, and
clinical diagnoses are known critical confounders in epidemiological studies
(Reinau et al), 2014). Without proper handling of these cohort-level missing
covariates, predictions, estimations, and causal inferences regarding treat-
ment effects or disease progression may be substantially biased (Varewyck
et al), 2016). Traditional missing data methods typically depend on par-
tial covariate availability and assumptions like missing at random or not at
random (Bang and Robins, 2005; Kennedy et al), 2019). These methods,
however, become ineffective when an entire cohort lacks the covariate of
interest, violating essential identifying assumptions. To our knowledge, no
existing method explicitly addresses scenarios involving cohort-level missing
binary covariates, representing a crucial methodological gap.

External data sources suggest transfer learning as a potential solution.
Recent work has successfully applied transfer learning to missing outcome
problems (Liu et al), 2023; Zhou et al), 2024; Cai et al), 2025). However,
these methods fail for missing covariates due to fundamental differences
in problem structure. First, under standard covariate shift assumptions,

adapting between populations requires density ratios involving the miss-



ing covariate that cannot be estimated without target population observa-
tions. Second, while missing outcomes enter regression models additively
and permit direct imputation, missing covariates appear multiplicatively
with parameters (e.g., X, in linear models), creating non-separable esti-
mation problems. This coupling between imputation and parameter esti-
mation prevents the augmentation strategies that enable double robustness
in existing frameworks. Moreover, Zhai and Han (2022) consider leveraging
information from external studies that contain only a subset of the covari-
ates available in the internal study of interest. We refer interested readers
to Zhai and Han (2022); ILi et al| (2024) and their references for a compre-
hensive overview of data integration and transfer-learning frameworks that
leverage external populations to improve parameter estimation and handle
blockwise missing problems in the target population.

To this end, we propose a Doubly Robust Transfer Learning method
to correct the bias caused by completely missing binary covariates, referred

to as “DRTL-comb”. Our contributions are three-fold:

1. Cohort-level completely missing binary covariates are often overlooked
in the literature, leading to biased inferences for other variables. To
address this gap, we propose a novel transfer learning framework that

incorporates imputation terms for missing covariates into importance-



weighted estimating equations, achieving double robustness. This
work offers a fresh perspective on missing data studies, and advances

transfer learning methodologies for addressing missing data issues.

2. We introduce a new sub-group shift assumption, allowing us to effec-
tively use complete data from the source population. Unlike conven-
tional covariate and label shifts (Kpotufe and Martinet, 2021; Plassier
et all, 2023; LLee et al), 2025), our sub-group shift assumes the con-
ditional distribution of covariates X given (Y, Z) remains invariant,
while allowing shifts in the joint distribution of outcomes Y and sub-
covariates Z. This assumption is less restrictive than label shift and

provides an innovative perspective on transfer learning.

3. To correct biases caused by sub-group shifts, we augment our esti-
mating equations with both importance sampling weights and impu-
tation terms, forming an enhanced transfer learning algorithm. We
prove that the DRTL-comb estimator is n'/?-consistent, asymptoti-
cally normal, and doubly robust when either the density ratio model

or the imputation model is correctly specified.

While our methodological framework explicitly addresses the important

scenario of cohort-level missing binary covariates, the fundamental princi-



ples and estimating equations readily extend to continuous covariates. Such
generalizations are conceptually straightforward but require further theo-
retical elaboration; see Section B for additional discussion.

The rest of the paper is organized as follows: Section E introduces
the problem setup and details the proposed method and algorithm. Sec-
tion E establishes the consistency and asymptotic normality of the proposed
method. The method’s performance is demonstrated through simulation
studies (Section @) and an application using UK Biobank data (Section E)

Finally, Section a concludes with a discussion.

2. Methodology

2.1 Problem statement

For brevity, we hereafter use completely missing to refer specifically to
completely missing at the cohort level, as discussed in Section m Since our
methodology exclusively addresses covariates that are systematically absent
for entire populations rather than sporadically missing at the individual
level, this terminology is unambiguous in our context.

The source population (S) consists of response Y, a binary covariate
X, and a set of p-dimensional covariates Z = (1,Zy,---, 7, 1)". While

the target population (7) consists of Y and Z = (1,Z,-++,Z,-1)" only.



2.1 Problem statement

The binary covariate X is completely missing in the target population. For

L € {T,S}, we propose the sub-group shift assumption,

Wy g2, 2) = Yy (Y, 2)pxvz(z |y, 2), (2.1)

where pgﬁ?z represents the joint probability density of (Y, Z) in the popu-

lation ¢« and pxjy,z is the density of X conditional on (Y, Z), which is the
same across the two populations. The assumption of a shared px|y, z across
populations is plausible in practice. For example, the target data include
dietary intake, sex, age (Z), and body mass index (BMI, Y'), but lack in-
formation on smoking status (X). In contrast, the source data contain all
variables (X,Y, Z). Compared with the assumption of a shared pxy in Lee
et al) (2025), it is more reasonable to assume that p(z | y, z) is shared across
the two datasets because conditioning on additional covariates Z accounts
for relevant demographic and behavioral differences, thereby reducing the

variability in the distribution of X across populations.

Remark 1. From the transfer learning perspective, our assumption (@) is
weaker and less restrictive than the commonly used label shift assumption
in the literature in the context of completely missing outcomes (Lee et al,,
2025), which assumes p%)xz(y,m,z) = pg)(y)px,z‘y(x,z | y), « € {T,S}.

Here, pgﬁ) denotes the probability density of Y in the population ¢, and



2.1 Problem statement

Px,zly is the joint density of (X, Z) conditional on Y, which remains con-
sistent across the two populations. From a practical perspective, our sub-
group shift assumption is therefore more robust than label shift, because
any setting that satisfies label shift automatically satisfies our weaker sub-
group shift assumption, as px|y,z = px,z|y/Pz|y-

From the missing data perspective, our assumption (Ell) aligns with
the missing at random (MAR) mechanism (X L S | Y, Z) by treating X
as observed when S = 1 and missing when S = 0. However, the tradi-
tional MAR assumption focuses on the overall population of interest, often
overlooking potential distributional shifts in (Y, Z). In contrast, our sub-
group shift assumption accommodates heterogeneity by allowing distinct

joint distributions of (Y, Z) across sub-populations.

We are interested in inferring the coefficients of Y regressing on the

covariates X, Z in the target population 7 under a working linear model
Er(Y |X,Z)=XB,+Z'B., (2.2)

where E, is the expectation operator on the population ¢ for ¢« € {T,S},
B € R and 3, € RP are the coefficients of X and Z respectively. Our goal

is to estimate (3,0, 3.0), the solution to the estimating equation in T,

Er{(X,Z")(Y - X3, - Z'B.)} = 0. (2.3)



2.2 Two preliminary methods

Let {(Y;, Z;),i € Z7} and {(Y;, X;, Z;),i € Zs} denote the observed
data from the target and source populations with ny = |Z7| and ns =
|Zs|, respectively. A simple approach to estimate (5,0, 8.0) is to directly
solve an empirical estimating equation for Eq (@) using the source data.
However, it will lead to inconsistent estimation because of the potential

misspecification of model (@) and the sub-group shift, which means that

even if Eq (@) holds, Es{(X,Z")"(Y — X3, — Z"3.)} may not be zero.

2.2 Two preliminary methods

To motivate our DRTL-comb method, we first present two preliminary
methods: the importance weighting method (IW) and the imputation method
(IM).

The first method is to use the complete data information in the source

population. We define the density ratio as

w(Y,Z) = pl.z(Y, 2) /3.2 (Y. Z). (2.4)

Based on our sub-group shift assumption, an intuitive method is to incorpo-
rate importance sampling weighting and estimate (.9, 3.0) using (B;B,IW, B\z,IW)

respectively, the solution to the weighted estimating equation

—Z (Yi, Z:)(Xi, Z21) (Y — XiBo — Z] B.) = 0, (2.5)

%
ZEZS



2.2 Two preliminary methods

where ©(y, z) is the estimator of w(y, z), a working model for the density
ratio w(y, ).

Another intuitive method is to impute the absent X in the target data
and then plug it into the estimating equation (@) Denote the imputation

m(y,z): RxRP — R as
m(y,z) = E(X | Y =y, Z = 2), (2.6)

which is well defined because of Eg(X |Y =y, Z = 2) = Ef(X | Y =
y,Z = z) based on Eq (@) It is also natural to estimate (5.0, 8.0)

using (BMM, BZ,IM) respectively, the solution to the imputation estimating

equations
1
nT €Lt
1
— > Z{Y; — Y. Z:)B, — Z[B.} =0, (28)
T €T

where m(y, z) is the estimator of m(y, z), a working model for the impu-
tation m(y, z). Here, we use the fact that X? = X;, which allows us to
simplify X;(Y; — X;8, — Z;' B.) to X;(Y; — 8. — Z B.), yielding a clearer
form of Eq (@)

However, the validity of the IW estimator (B\%IW, Bz,IW) heavily relies
on the model specification of w(y, z) for w(y, z). Similarly, the validity

of the IM estimator (BI,IM, B\ZJM) heavily relies on the model specification



2.3 The DRTL-comb method

of m(y, z) for m(y, z). Our simulation results show that both preliminary
estimators perform poorly when the working models w(y, z) or m(y, z) are

misspecified or poorly estimated, respectively (see Tables EI—E)

2.3 The DRTL-comb method

To overcome the limitations of the IW and IM methods, we propose a novel
DRTL-comb method. The key is to effectively integrate the importance
weighting equation (@) and the imputation estimating equations (@)—
(@), and to avoid the deficiency of using only the IW or IM method. We
first exploit the imputation model to impute the missing X in the target
population and then augment the importance weighting equation (@) with

the imputed X, leading to the following augmented estimating equations,

1

Upr(Bs, B:) = E; w(Y;, Z:)(Y; - B — Z; B.)
" %Zm Z){X, — (Ve Z)WYi — B, — ZB.) = 0.
(2.9)
Von(6 ) 1= 12 37 24000 0,20 - 7.}
+ % > OYi, Z2) ZAW(Y;, Z:) — X}, = 0. (2.10)

1€Ls



2.3 The DRTL-comb method

A key observation used in the construction of Eq (@) is that X? = X;
which can simplify X;(V; — X;8, — Z,'3.) as X;(Y; — 8, — Z B.), leading
to a clear and meaningful form of Eq (@) We denote the solution to
Eqgs (@)—() as the DRTL-comb estimator (B\m, BZ) for (5.0, Bz0)-

The idea of the construction of Eqs (@)—() aligns with the existing
literature on doubly robust estimators for the average treatment effect in
causal inference studies (Bang and Robins, 2005), as well as doubly robust
estimators in transfer learning settings with missing outcomes or labels in
the target data (Liu et all, 2023; Zhou et al), 2025). It is worth emphasizing
that the scenario of completely missing binary covariates is more challenging
than that of missing outcomes, due to the distinct roles that covariates and
outcomes play in the estimating equations, which significantly adds more
challenges to constructing our estimating equations (@)—() to achieve
desirable double robustness. Moreover, compared to the scenarios of Liu
et al) (2023); Zhou et al. (2025), the establishment of our asymptotic the-
oretical results becomes more challenging due to: the differing statuses of
the covariates X (completely missing) and Z (observed) in the target pop-
ulation, which requires solving two estimating equations simultaneously to
determine the coefficients of X and Z, and the complexity of the estimating

equations (@)—(), which introduces additional terms that need to be



2.4 Algorithm

bounded.

2.4 Algorithm

In this section, we first provide the estimation strategies for nuisance mod-
els: density ratio model w(Y, Z) and imputation model m(Y, Z). Then we
present the DRTL-comb algorithm.

For the estimation of the density ratio, the working density ratio model

for w(y, z) can be modeled as

w(y, 2) = exp(yn, + z' n.),

where 7, € R and 1, € RP are nuisance parameters. When w(y, z) is cor-
rectly specified, we have Es{w(Y,Z)(Y,Z")"} = E-{(Y,Z")"}. Hence,
we can estimate 7 := (7),,7,) )" by

n = arg nyegriz?emp {ngl ZGZI;S exp(Yiny + Z'n.) - ny iEXZ:T(me + ZZTT’Z)}'
Then,

&(Y;, Zi) = exp(Yil), + Z/7.), (2.11)

For the estimation of the imputation model, the working imputation

model for m(y,z) = E(X | Y =y, Z = z) can be modeled as

m(y, z) = g(yy, + z'7.),



2.4 Algorithm

where the link function g(a) = 1/(14+e7%), and 7, € R, ~, € R? are nuisance

parameters. We can estimate 5 := (3,7, )" by

=arg min_ng' Y {-Xi(Yiy, + Z[v.)+ Gy, + Zv.)},

€R,v.€RP
T v i€ls

where G(a) = [ g(u)du. Then,
RV, Z) = 4(YA, + Z75.) (2.19)

The finite-sample estimators 77 and 4 converge to well-defined popu-
lation values under our model specifications. To establish the theoretical
properties of the DRTL-comb estimator, we formally define two population-
level parameters 1 := (7,,m,) )" and 7 := (7,,9) )" as

N =arg min [Eg{exp(Yny +Z™m.)} - Er(Yn, + ZTnz)],

Ny ER, M, ERP

4 =arg min ES{ — X (Y, + Z'v,) + G(Yry, + ZT'YZ)}-

7y ER,~zERP

Then, denote &(Y, Z) = exp(Y7), + Z'0.) and m(Y, Z) = g(Yy, + Z"7.).

Based on the doubly robust estimating equations (@)—() and the
estimation of nuisance models ()—(), we summarize the DRTL-comb
method as Algorithm EI

Further, we discuss some alternative working nuisance models for w(y, z)
and m(y, z), and we provide the cross-fitted version of the DRTL-comb
method when these nuisance functions are estimated using flexible non-

parametric or machine learning methods; see Supplement S1 for details.



Algorithm 1 The DRTL-comb algorithm
Input: Target data {(Y;, Z;),i € Zr} and source data {(Y;, X, Z;),i € Is}.

Step 1: Compute the estimated density ratio {&(Y;, Z;),i € Zs} using
both target and source data via Eq ()

Step 2: Compute the estimated imputation {m(Y;, Z;),i € Zs U Zr}
using the source data only via Eq ()

Step 3: Solve the augmented estimating equations (@)—(), and ob-
tain the DRTL-comb estimators (Bx, ,@z)

Output: The DRTL-comb estimators (Ex, ,@Z) for (8.0, B20)-

3. Theoretical Properties

In this section, we establish the consistency and asymptotic validity of the
DRTL-comb estimator under mild assumptions. For any vector a, let ||al|2
represent its ¢, norm. Assume that the dimensionality of Z, p, is fixed,
and ns/ny = O(1). Define g(a) = ¢(g~*(a)), and define the (1 + p)-order

information matrix

JanBz = OV (5u.8 OV (.. )
B d;/} EX agj}



where

B {M} = Eslo(Y, Z){m(Y, Z) — X}] - Er{m(Y, Z)},

o6
B {%f;};ﬂz)} _ [E {%H L Es[o(Y, Z)Z{m(Y, Z) — X}| — E{Zm(Y, Z)},
E {—avgﬁgz’@)} = -FEr(ZZ").

Let [, J.) = J; ', with J, € R™? and J, € RO, Thus, Jy, 6., Ju, J,

are independent of (., 3..

Assumption 1 (Regularity conditions). There exists a constant C, > 0
such that |g(a) — ¢(b)| < Cpla — b| for any a,b € R. (B0, B.0) belongs to a
compact space. (Y;, Z;) has a continuous differential density on populations
S and 7. There exists a constant Cy > 0 such that F,{0*(Y, Z) + Y* +
Y+ Z|3+1Z]3°} < Cy for v € {T,S}. The information matrix Jg,, .,

has its all eigenvalues bounded away from 0 and oco.

Assumption 2 (Specification of the nuisance models). At least one of the
following two conditions holds: (i) w(Y, Z) = exp(Yn,0 + Z " n.0) for some

nyo and .05 or (i1) m(Y, Z) = g(Yyy0 + Z420) for some 7,0 and ~.o.

Assumption EI is reasonable and commonly used for asymptotic analysis
of M-estimation such as logistic regression (Van der Vaart, 2000, Chapter

5). Assumption m on the compactness of the domain of (Y;, Z;) could be



relaxed to accommodate unbounded covariates with regular tail behaviors.
Assumption E assumes that at least one nuisance model is correctly speci-
fied, which provides the conditions for the double robustness of the proposed
method.

We first establish the consistency of the DRTL-comb estimator as fol-

lows. All proofs are presented in Supplement S3.

Theorem 1. Under Assumptions B—B, it holds that
Be = B = 0p(1), [1B: — Buollz = 0,(1).

Theorem m establishes the consistency of the DRTL-comb estimator
and reveals its double robustness property. Unlike the preliminary IW and
IM methods, which require correct specification of their respective nuisance
models, our estimator remains consistent as long as either the density ratio
model w(Y, Z) or the imputation model m(Y, Z) is correctly specified. This
double robustness is crucial in practice, as it provides protection against
model misspecification, a common challenge in transfer learning applica-
tions.

Having established consistency, we now derive the asymptotic distribu-
tion of the DRTL-comb estimator. We consider general linear combinations

of the parameter vector to accommodate various inferential goals. For any



c € RYP_ we establish the asymptotic normality of CT(B;B, BZT)T in Theo-

rem E Let |lc||2 = 1, and denote ng = n for brevity.
Theorem 2. Under Assumptions B—@, it holds that

Bx_ﬂx
JreT ’ :Z_fZF,M%ZF5+ﬁsm—a>+¢ﬁs;<ﬁ—ﬁ>+op<1>,

B\ZT _ ;) i€lr i€Ls
where
ET = CTJuﬁ’L(Y;, Zz)(K - Ba:O - ZzT/BzO) + CTJin{Y:i - m(Y;v ZZ)BOCO N ZZTIBZO}’
FS =w(Y;, Zy)e" T AX: — m(Y:, Z)}Yi — Buo — Z] Bro) + €' T, Z{m(Yi, Z:) — X:}Baol,
and &, =&+ &, & =&, + & with
& = Er{c"J, g(m)(Y,ZT)(Y = B — Z7Buo)} = Es{we I, g(m)(Y, ZT) (Y = B0 — Z7Ba0)},
& = ~Er{c JZim)(Y. 27) Buo} + Es{we’ 1, Zg(m)(Y. Z7)" B},
& = Es{oc' Ju(X =m)(Y,Z7) (Y = B — 27 B0},
55 — ES{(DCTJUZ(Y, ZT)T(m — X)Bro},
where m(Y, Z) and (Y, Z) are abbreviated as m and w for brevity. Con-

sequently, \/ne’ (B\x — Bzo, ﬁz — Bl " weakly converges to a Gaussian dis-

tribution with mean zero and variance of order one.

Theorem @ establishes that the DRTL-comb estimator (B\x,,@j)T is

n'/2-consistent and asymptotically normal under the specified modest as-



sumptions, a result further supported by our subsequent numerical ex-
periments. The asymptotic expansion reveals the distinct contributions
from each data source and the double robustness property. The first and
second terms on the right-hand side represent the influence from the tar-
get and source populations, respectively. Under Assumption E, the sum
VI ez, ET /ng + D ieTs F¥/\/n converges to zero in probability. The
remaining terms in the expansion capture the effect of estimating the nui-
sance parameters and also reveal the double robustness property. When
Assumption P (i) holds (correct density ratio specification), we have &, = 0,
eliminating the contribution from 77 — 7. Conversely, when Assumption E
(ii) holds (i.e., correct imputation model specification), we have &, = 0,
removing the effect of 4 — 4. Thus, the DRTL-comb estimator achieves
n'/2-consistency when either nuisance model is correctly specified, confirm-

ing its double robustness.

4. Simulation Studies

4.1 Data generation

We evaluate the finite sample performance of the proposed estimator with
respect to estimation accuracy. Similar as Cai et al] (2025) regarding data

generation and model specification, we fix the sum of the sample sizes of the



4.1 Data generation

source population (ng) and the target population (ny) such that ns+nr =
2000, and our generating mechanisms of S; ensure that the sample size
ratio of two populations nr/ns remains within the range (0.7,0.9). We
consider Z = (1,7y,7,)", that is, p = 3. We generate Y; ~ N(1,1.5%)
and (Z14, Za;) ~ N2(0,%) for i € Zs UZr, where ¥ = (0;) € R**? with

oj = 0.3=4. We consider two models to generate X;:

Mcor . lOglt{P(XZ =1 | Y;, Zz)} =—-12+ OSY; + 3.22172' - 3.222’/L"

where logit(a) = log (a/(1 — a)) for given a € (0,1). The imputation model
m(y, z) = (y,1, 21, 22) T~ is correctly specified under Meo, but misspecified
under Mpis, as Mpis includes the interaction term. We consider two models
to generate a membership variable S; to assign the ith observation to the

source population when S; = 1 and to the target data when S; = 0:

Wcor . lOglt{P(SZ = ’ }/;', Zl)} =1- 06}/; — 0.52171' -+ O.3Z2’i,

The density ratio model w(y, 2) = exp{(y, 1, 21, 22) "0} is correctly specified
under W, but misspecified under W,;s, as Whis includes the interaction
term. Then, we have three different sets of configurations: (I) Mco, and

Weor, (IT) Mpis and Weer, and (I11) Meor and Wpps.



4.2 Results

For each setting, we require benchmark values of the true parameters
(Bzo, B20) to evaluate the performance of our estimators. Since these pa-
rameters are defined as the solution to the estimating equation (@) in the
target population, we approximate them using a large-scale dataset. Specif-
ically, we generate a dataset with 10° observations from the target popu-
lation following the data-generating processes described above, and obtain
(B;mda ,@;’mde) by solving Eq () with fully observed X. These oracle esti-
mates serve as the ground truth for calculating bias and root mean squared
error, as they represent what we could achieve with unlimited target data
and no missing covariates. Then, 500 bootstrap samples for variance esti-
mation and 500 simulation replications are generated to summarize the av-
erage performance measures. For the given estimators BO, Bm, B\Zl, @2 which
correspond to the coefficients of the intercept and X, Z1, Z, respectively, we
report the empirical average bias, root mean square error (RMSE), stan-

dard error, and coverage rate of the nominal 95% confidence interval results
for 8, and B. = (B, B-,,B-,) " in Tables E—B
4.2 Results

We compare the DRTL-comb estimator with the Naive estimator, which is

obtained by directly regressing Y on Z while ignoring completely missing



4.2 Results

X in the target population, thus, there are no inference results for f,.
We also present the preliminary IW and IM estimators as two benchmark
estimators. As mentioned in Section E], there are no existing methods for
handling completely missing binary covariates. Therefore, we do not include
comparisons with other approaches. For the variance estimator of the Naive
method, we use the standard error of linear regression. For the variance
estimators of the IW, IM, and DRTL-comb methods, we use bootstrap in
practice, which appears to have better numerical performance than using
the asymptotic variance estimated directly by the moment estimators as
suggested by [Liu et al) (2023).

As shown in Tables m—a, the Naive method performs poorly in all con-
figurations because it ignores the binary covariate X, which is related to
Y, Z under Mo, or M. Specifically, the Naive estimators for B, exhibit
significantly larger bias and RMSE, with coverage rates almost approaching
zero, compared to other methods in all configurations. This demonstrates
that even when interest lies solely in inference for Z, ignoring a completely
missing binary covariate X that is associated with both Y and Z can lead
to biased estimates. When both nuisance models are correct (configura-
tion (I)), the two preliminary methods (IW and IM) and the DRTL-comb

method demonstrate similar performance in terms of bias and root mean



4.2 Results

Table 1: Point estimator results for 3, and 3..

Bias RMSE

True Naive IW IM DRTL-comb Naive IW IM  DRTL-comb

Configuration (I): Moy and Weer

Bo = 1.105 0.572  -0.003 0.003 0.000 0.572 0.114 0.079 0.090
Bz = 1.103 / 0.000  0.000 0.005 / 0.204 0.112 0.140
B, = —0437 0.313 -0.007 -0.005 -0.007 0.313 0.117 0.061 0.064
B, =0.392  -0.319 0.006 0.003 0.004 -0.319 0.120 0.059 0.063

Configuration (II): Mp,is and Weey

Bo = 1.263 0.413 -0.002 0.120 0.045 0.416 0.127 0.146 0.116
Bz = 0.854 / -0.003 -0.235 -0.089 / 0.210 0.268 0.199
B., = —0.427 0.304 -0.007 0.132 0.047 0.308 0.124 0.146 0.096
B., =0.219  -0.147 0.011 -0.005 -0.002 0.156 0.101 0.058 0.059

Configuration (II1): Meor and Wppis

Bo = 0.618 0.471 -0.036 0.005 0.005 0.474 0.080 0.071 0.073
Bz = 0.999 / 0.027 -0.004 -0.004 / 0.121 0.115 0.119
B., =—1.004 0.252 1.486 0.002 0.002 0.256 1.487 0.054 0.056

B =0.339  -0.310 -0.040 0.001 0.001 0.314 0.071 0.063 0.063




4.2 Results

Table 2: Variance estimator results for 3, and 3..

Standard Error Coverage Rate

True Naive IW IM  DRTL-comb Naive IW IM  DRTL-comb

Configuration (I): Meor and Weer
Bo = 1.105 0.049 0.107 0.079 0.089 0.000 0.942 0.950 0.944
B, = 1.103 / 0.186 0.114 0.134 / 0.920 0.960 0.940
B., = —0.437 0.061 0.104 0.061 0.064 0.000 0.930 0.954 0.948
B., = 0.392 0.0561 0.103 0.060 0.064 0.000 0.920 0.964 0.950

Configuration (II): Mpyis and Weey
Bo = 1.263 0.049 0.111 0.080 0.097 0.000 0.910 0.642 0.934
B, = 0.854 / 0.187 0.124 0.161 / 0.932 0.498 0.918
B., = —0.427 0.051 0.107 0.062 0.079 0.000 0.908 0.422 0.908
B., = 0.219 0.051 0.091 0.057 0.057 0.188 0.922 0.944 0.942

Configuration (II1): Meor and Wppis
Bo = 0.618 0.048 0.076 0.074 0.077 0.000 0.930 0.962 0.968
B = 0.999 / 0.122 0.120 0.128 / 0.950 0.966 0.966
B., = —1.004 0.048 0.062 0.054 0.056 0.000 0.000 0.958 0.946
B., = 0.339 0.047 0.058 0.062 0.063 0.000 0.878 0.944 0.944




4.3 Additional simulation results

square error. When the imputation model is misspecified (configuration
(I)), IM exhibits a larger bias and root mean square error than IW and
DRTL-comb for most coefficients, whereas with a misspecified density ratio
model (configuration (III)), IW shows a greater bias and root mean square
error than IM and DRTL-comb. However, DRTL-comb achieves almost un-
biased point estimators for £, and 3, in three configurations, showing its
double robustness. For the variance estimator, DRTL-comb typically falls
between the IW and IM methods, which indicates DRTL-comb will not in-
troduce a larger standard error. Regarding the coverage rate, IW has poor
coverage rates for f,,, ., in configuration (III), and IM also has unsatis-
factory coverages in configuration (II). However, DRTL-comb maintains a

nominal coverage rate in most cases.

4.3 Additional simulation results

To better illustrate the robustness of the proposed method under three
non-ideal settings, we also conduct additional simulations that consider (i)
unbalanced two labels of binary X, (ii) reduced overlap between the target
and source populations, and (iii) smaller sample size ratios between the tar-
get and source data. For case (i), we use a larger intercept (4 instead of the

previous value of 1.2) in models M¢o, and My in Section @ This modi-
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fication increases the proportion of 1’s in X to the range (0.75,0.90), com-
pared with the earlier range of (0.40,0.50). For case (ii), we remove source
samples with negative values of Y to create scenarios with reduced overlap
in the marginal distributions of Y across the two populations compared
to the settings in Section El] This modification also results in reduced
overlap in the joint distributions of (Y, Z) between the two populations.
For case (iii), we adopt two new models for generating S; compared to the
data generation mechanism described in Section El] See Supplement S4
for details.

The simulation results (Tables S4.1-S4.6 in Supplement S4) indicate
that the DRTL-comb method achieves small bias and nominal coverage
rates in three cases, exhibiting performance similar to that in Section [1!
This demonstrates the robustness of DRTL-comb. In case (i), the IM
method shows similar performance to our previous simulation, whereas the
IW method produces larger standard errors for most configurations, which
is potentially due to the unbalanced labels of the binary variable X. In
case (ii), the IM method again shows performance comparable to our previ-
ous simulation, whereas the IW method exhibits substantial bias and poor
coverage across all configurations. This deterioration arises because remov-

ing source samples with negative Y reduces the population overlap, leading



to inaccurate estimation of the density ratio for the distribution of (Y, Z)
across the two populations. In case (iii), the results for the IM and IW

methods are also consistent with those reported in Section El!

5. Real Data Experiments with UK Biobank Data

Although completely missing covariates are common in practice (Section ﬁl),
they pose an empirical-validation challenge: when a covariate is truly ab-
sent, we cannot evaluate the sub-group shift assumption or assess estimator
accuracy. To create an evaluable setting, we adopt a controlled approach by
artificially removing known covariates from a fully observed dataset. This
strategy enables us to indirectly observe evidence supporting our sub-group
shift assumption through meaningful differences in coefficient estimates be-
tween populations. Moreover, because the withheld covariates remain ob-
servable in the original data, we have reliable benchmark estimates against
which we can directly assess the accuracy and robustness of our proposed
method. Such controlled benchmarking would be impossible if these covari-

ates were genuinely absent from the start.



5.1 Data introduction

5.1 Data introduction

In this section, we evaluate the performance of the proposed method using
the UK Biobank dataset, a well-known comprehensive biomedical data re-
source. To simulate a scenario where certain covariates are entirely missing
in the target population but available in the source population, we par-
tition the data into target and source groups, explicitly introducing the
shifts between them. We then exclude a key covariate from the target
population and compare the performance of our method against two base-
line approaches (IW and IM). The Naive method is excluded due to its
poor performance in simulation studies. This artificially missing strategy
ensures that the comparison reflects real-world applications while also pro-
viding benchmark results for the true (S0, 3.0) based on Eq (@), using
fully observed X in the target population to measure bias in this real data
setting.

Our response of interest Y is the body mass index (BMI), which is
closely related to various health problems, such as type 2 diabetes, heart
disease, stroke, and some types of cancer (Guh et al), 2009). We consider
the smoking status as binary X with “never smoking” defined as 0 and
“previous or current smoking” defined as 1. We consider 7909 white British

participants with smoking status recorded. To define the target and source



5.1 Data introduction

populations for our experiment, we treat all individuals with a negative
polygenic risk score for BMI (prs.BMI) as the source population (ng =
4713) and all individuals with a positive prs.BMI as the target population
(nr = 3196). This setup mimics a scenario in which people at higher
genetic risk (positive prs.BMI) have their smoking status collected, whereas
those at lower genetic risk (negative prs.BMI) do not. Such selective data
collection based on disease risk is common in biomedical research. The
covariates Z include total energy, sex, and age, consistent with variables
commonly considered in BMI-related epidemiological studies (Arem et al,,
2013). Smoking status is related to age, sex, and BMI (Dare et al), 2015) and
often missing in most studies due to its sensitive nature, privacy concerns,
cultural differences, and other data collection limitations (Hedeker et al,,
2007; Blankers et al., 2016). We use standardized total energy and age with
zero mean and unit variance in the subsequent analysis, which makes the
empirical column means of total energy and age included in Z zero. To
validate the assumption in Eq (El!), we conduct a Pearson’s Chi-squared
test, which does not reveal significant differences in the distributions of
binary X between the source and target populations at the 0.05 significance
level. The result of the logistic regression of X on Y and Z also reveals no

significant coefficient differences; see results in Table S5.8, Supplement S5.



5.2  Benchmark with observed X: empirical evidence of sub-group shift

These provide evidence to support our sub-group shift assumption.

5.2 Benchmark with observed X: empirical evidence of sub-

group shift

We begin by presenting the linear regression results for two populations sep-
arately, using the observed X in the target data (Table B) Comprehensive
results are available in Table S5.7, Supplement S5. These estimates serve
as benchmarks for assessing the performance of the proposed estimators.
As shown in Table a, there are notable differences in the estimated co-
variate coefficients and p-values across the two populations. The coefficient
of energy for the target population is greater than that of the source pop-
ulation, suggesting an increased effect of energy on BMI among the target
individuals. Furthermore, the effects of X, sex, and age on BMI also differ
between the two populations, with coefficients highlighting significant het-
erogeneity. These differences demonstrate the heterogeneity between the
source and target populations, as well as the limitations of directly analyz-
ing target data using source data. Such disparities highlight the need for

tailored methods to account for population-specific variations.
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Table 3: Benchmark results with X (smoking status) observed in both pop-
ulations. prs.BMI, polygenic risk score for BMI; Estimate, point estimator;

p-value, p-value of hypothesis testing Hy : 5; = 0.

Source (prs.BMI < 0) Target (prs.BMI > 0)
Covariate Estimate  p-value Covariate Estimate p-value
X 0.752 < be—4 X 0.774 < be—4
energy 0.074 0.201  energy 0.242 0.008
sex 0.888 < be—4 sex 1.004 < be—4
age 0.053 0.358 age 0.008 0.927
5.3 Results

We now artificially remove X from the target data to evaluate our method’s
performance. Table @ presents the estimation results, including point es-
timator bias (computed relative to the benchmark estimates from Sec-
tion @ with fully observed X, denoted as “Bias”), bootstrap standard
errors (B = 500, denoted as “SE”), p-values for testing Hy : ; = 0 (de-
noted as “p-value”), and 95% confidence intervals (denoted as “95%CI").
As shown in Table @, the DRTL-comb method achieves the smallest ab-
solute bias for all parameters, demonstrating superior robustness to model

misspecification. In contrast, the preliminary IW and IM methods exhibit
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Table 4: Results for the target population with missing X.

Method Covariate  Bias SE 95%CI p-value
IW Intercept  0.418 0.168 (27.019,27.677) < 5e —4

X 0.081 0.244  (0.214,1.172) 0.005

energy -0.074 0.105  (-0.036,0.373) 0.107

sex 0.750 0.218  (-0.172,0.682) 0.242

age -0.100 0.113  (-0.313,0.129) 0.415

IM Intercept -0.132 0.132 (26.539,27.058) < 5e —4

X 0.413 0.182 (0.830,1.544) < be—4

energy -0.005 0.094  (0.053,0.423) 0.012

sex -0.067 0.176  (0.591,1.283) < 5e —4

age -0.008 0.094 (-0.183,0.184) 0.999

DRTL-comb Intercept -0.004 0.142 (26.647,27.204) < 5e —4
(proposed) X 0.070 0.210  (0.432,1.257) < b5e—4
energy -0.004 0.095  (0.053,0.424) 0.012

sex -0.036 0.178  (0.621,1.317) < 5e—4

age 0.005 0.094 (-0.172,0.197) 0.893




substantial bias for most covariates, likely due to misspecification in the
density ratio model and the imputation model, respectively. Additionally,
the IW method reports a non-significant result for the effect of total en-
ergy on BMI (p-value = 0.107), which contradicts findings in the existing
epidemiological literature (Amatruda et al), 1993).

In summary, as consistently demonstrated in the simulation studies,
our method outperforms other approaches and effectively corrects the bias
caused by data availability for both £, and 3., ensuring valid statistical

inference.

6. Discussion

This paper introduces an innovative approach utilizing transfer learning
techniques to deal with completely missing binary covariates in the target
data, which is a common and crucial challenge that is unaddressed by exist-
ing methods. While extensive methods exist for partially missing covariates
and completely missing outcomes, the scenario of covariates that are sys-
tematically absent for entire populations has been overlooked. This is not
merely a special case of existing methods: the mathematical structure of
missing covariates in estimating equations creates unique challenges that

invalidate standard approaches. Our doubly robust framework, built on a



novel sub-group shift assumption, provides the first rigorous solution to this
prevalent problem in modern biomedical data integration.

While we have presented our theory, algorithm, and simulations explic-
itly for binary covariates, the underlying doubly robust transfer learning
framework can naturally generalize to handle continuous or categorical co-
variates. To extend our approach, one would modify the estimating equa-
tions to accommodate additional conditional moments (e.g., second-order
moments for continuous covariates). However, fully developing theoretical
guarantees in the continuous setting requires additional regularity assump-
tions and more complex derivations. Thus, we leave these important gener-
alizations for future research, prioritizing here conceptual clarity and direct
practical applicability, given the common occurrence and significant impact
of completely missing binary covariates in real-world biomedical datasets.

For notational simplicity, we have focused on a single cohort-level miss-
ing binary covariate X. In practice, multiple binary indicators (e.g., smok-
ing status, medication use, diagnostic codes) may be simultaneously miss-
ing in the target cohort. Under a multivariate sub-group shift assumption
pr(X | Y,Z) = ps(X | Y,Z) with X € {0,1}7, our DRTL-comb frame-
work extends naturally by replacing the scalar X and its conditional mean

m(Y,Z) = E(X | Y, Z) with the vector X and the multivariate conditional



mean F(X | Y,Z) € R%. The corresponding estimating equations and
information matrix increase in dimension and require additional regularity
and overlap conditions, as well as appropriate joint imputation models (e.g.,
multivariate logistic or copula-based approaches). For clarity and space, we
leave a detailed multivariate development to future work.

While extensions to generalized linear models and interaction effects
represent important future directions, they require fundamental modifica-
tions to our framework due to the non-separability of missing covariates
and parameters in non-linear settings. We leave these challenging but im-
portant extensions to future work, noting that our current linear framework
already addresses a substantial portion of epidemiological analyses involv-

ing continuous health outcomes.

Supplementary Materials

Supplemental materials include the potential nuisance models, the cross-
fitted version of the proposed method, detailed proofs of all technical results,
and extended simulation and data analysis results. The R code is provided

on GitHub at: https://github.com/tianyingw/DRTL-comb.
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