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Abstract: Bayesian methods are widely employed for variable selection; how-

ever, the computational complexity associated with Markov Chain Monte Carlo

(MCMC) techniques often limits their scalability in high-dimensional contexts.

The computation becomes more challenging in mixture models with a substantial

number of latent variables. We propose a variational Bayesian (VB) approach

for high-dimensional structured mixture models to identify important variables

for subgroup analysis. Our method enables efficient and simultaneous variable

selection and parameter estimation by approximating the posterior distribution.

We establish model selection consistency and derive contraction rates for esti-

mation errors, advancing existing VB theoretical results. Additionally, a coordi-

nate ascent variational inference algorithm with data augmentation is developed.

Numerical studies illustrate that our method achieves accuracy comparable to

MCMC while significantly improving computational efficiency. The effectiveness

of our method is validated through real-world applications.

Key words and phrases: Model selection consistency, spike-and-slab prior, varia-

tional Bayes.
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1. INTRODUCTION

1. Introduction

Mixture models are widely used to capture heterogeneous subgroups within

a population, as seen in applications such as precision medicine (van der

Vliet et al., 2020) and recommendation systems (Van Dat et al., 2022).

In such models, responses from distinct subgroups follow different distri-

butions based on mixture proportions (McLachlan et al., 2019). Usually,

mixture proportions are modeled as functions of observed variables, as in

structured mixture models (Shen and He, 2015; Shen and Qu, 2020). The

baseline variables associated with subgroup memberships are referred to

as “predictive” variables (Loh, 2002), while those directly influencing the

response are termed “prognostic” variables (Italiano, 2011).

When a large number of covariates are available, identifying the active

ones is important for improving interpretability and obtaining a parsimo-

nious model. This step becomes crucial in high-dimensional settings, where

redundant covariates complicate model estimation and increase uncertainty

in subgroup identification (Ghosh et al., 2011). For mixture models, vari-

able selection is often achieved through penalization (Khalili and Chen,

2007; Städler et al., 2010). However, the non-convexity of the penalized

objective poses challenges for high-dimensional structured mixture models

in both computational implementation and theoretical justification (Wang,
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1. INTRODUCTION

2016). These issues motivate the adoption of Bayesian variable selection

(Narisetty and He, 2014). Zhang et al. (2025) uses the spike-and-slab prior

to select important covariates in high-dimensional structured mixture mod-

els. Bayesian methods avoid the complexities of non-convex optimization

by using sampling strategies like Markov chain Monte Carlo (MCMC).

Although Bayesian approaches provide a flexible framework, they often

incur high computational costs when MCMC is used, especially in high-

dimensional settings. This difficulty is exacerbated in large-sample mixture

models, where latent subgroup indicators are introduced. To overcome the

computational difficulty, variational Bayes (VB) has emerged as a scalable

alternative (Blei et al., 2017). VB approximates the exact posterior by

finding the closest distribution within a tractable variational family, mea-

sured by the Kullback-Leibler (KL) divergence. This transforms the prob-

lem from sampling to optimization, substantially reducing computational

burden while maintaining much of the accuracy of MCMC. VB has been

widely applied to variable selection in high-dimensional linear regression

Carbonetto and Stephens (2012), logistic regression (Zhang et al., 2019),

and proportional hazards models (Komodromos et al., 2022). In this pa-

per, we tackle a more challenging scenario of structured mixture models,

in which the hierarchical layer of subgroup memberships brings additional
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1. INTRODUCTION

theoretical and computational complexity.

Theoretical developments in variational inference have gained increas-

ing attention. In low-dimensional settings, the consistency of VB estimation

has been analyzed from a frequentist perspective (Westling and McCormick,

2019), and Bernstein-von Mises type theorems for variational approxima-

tion have been established (Wang and Blei, 2019). In high-dimensional and

nonparametric settings, general results on variational posterior contraction

have been derived through the prior mass and testing approach (Zhang and

Gao, 2020; Yang et al., 2020). Recent advances in model selection priors

have shown near-optimal contraction rates for parameter estimation in lin-

ear regression (Ray and Szabó, 2022). It is also shown that the variational

posterior concentrates on models of sizes at most a multiple of the true

model size. These results have been extended to logistic models (Ray et al.,

2020) and group sparse regression (Ge et al., 2025).

Nevertheless, model selection consistency in high-dimensional settings

remains relatively underexplored for variational Bayesian variable selection.

In this paper, we develop a VB approach that performs variable selection of

prognostic and predictive covariates and estimates model parameters with-

out post hoc analysis. Our work advances previous theoretical results in two

aspects. First, we establish model selection consistency under an adjusted
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1. INTRODUCTION

beta-min condition, proving VB’s ability to identify the true model in high-

dimensional scenarios. Second, we show that the VB posterior achieves

near-optimal contraction rates for parameter estimation in the challeng-

ing mixture model setting, where the concave log-likelihood condition in

Atchadé (2017) and Ray et al. (2020) no longer applies.

We develop a scalable coordinate ascent variational inference (CAVI)

algorithm to optimize the variational posterior distribution. Data augmen-

tation techniques are used to ensure model conjugacy and efficient compu-

tation. Extensive simulations demonstrate that the VB method achieves

accuracy comparable to MCMC in both variable selection and parameter

estimation, while significantly reducing computational cost.

The remainder of this paper is organized as follows. Section 2 intro-

duces the structured mixture model and the variational Bayesian method.

Section 3 establishes the theoretical guarantees for the VB posterior. Sec-

tion 4 details the computational algorithm and implementation specifics.

Section 5 provides extensive simulation studies to evaluate the performance

of the proposed method, followed by two real data applications in Section 6.

Finally, Section 7 concludes the paper with a discussion.
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2. PROBLEM SETUP

2. Problem Setup

In this section, we introduce the structured mixture model and specify the

prior distributions used for variable selection. We then propose a varia-

tional Bayesian method for simultaneous model selection and parameter

estimation in high-dimensional structured mixture models.

2.1 Structured mixture model

Let Y be a continuous response variable, z ∈ RpZ be the prognostic co-

variates directly influencing Y , and t ∈ {0, 1} be the treatment indicator.

We assume the presence of heterogeneous treatment effects across two sub-

groups. For example, in one subgroup, the treatment effect is negligible,

whereas in the other subgroup, the treatment effect is significant. Within

each subgroup, Y , conditional on z and t, follows a linear model with Gaus-

sian noise from N(0, σ2
y). The density of Y is given by

f(y | z, t, π1, π2) =
2󰁛

k=1

πk√
2πσy

exp

󰀝
− 1

2σ2
y

(y − zTβ − tαk)
2

󰀞
, (2.1)

where β ∈ RpZ represents the shared prognostic effects, α = (α1,α2) de-

notes the subgroup-specific treatment effects, and πk denotes the mixture

proportions, with π1 + π2 = 1 and 0 < πk < 1 for k = 1, 2. We assume

that the subgroup identity follows a hierarchical structure determined by
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2. PROBLEM SETUP

predictive covariates x ∈ RpX , modeled with logistic regression:

π1 = 1− π2 =
exp(xTγ)

1 + exp(xTγ)
, (2.2)

where γ ∈ RpX are the coefficients for subgroup identification. The un-

known parameters are θ := (β,α,γ, σy) ∈ Rp+3 with p = pZ + pX .

2.2 Bayesian variable selection

We assume both z and x are high-dimensional with a sparse true model. To

identify the true model, we apply spike-and-slab priors on β and γ to select

active covariates with nonzero coefficients(George and McCulloch, 1993).

We introduce binary model indicators Iβj for j = 1, . . . , pZ where Iβj = 1

indicates that the jth prognostic covariate is active and Iβj = 0 otherwise.

Similarly, for predictive covariates, we define Iγℓ ∈ {0, 1} for ℓ = 1, . . . , pX .

Let the model structure indicator be I = (Iβ1 , . . . , I
β
pZ
, Iγ1 , . . . , I

γ
pX
) ∈ {0, 1}p.

Given I, the model selection prior follows a hierarchical form

Iβj ∼ Bern(qβn), βj | Iβj ∼ Iβj N(0, σ2
yτ

2
βn) + (1− Iβj )δ0,

Iγℓ ∼ Bern(qγn), γℓ | Iγℓ ∼ Iγℓ N(0, τ 2γn) + (1− Iγℓ )δ0,

where δ0 denotes the Dirac mass at 0, τ 2βn and τ 2γn are the variances of slab

distributions, and qβn and qγn are the prior inclusion probabilities. The

subscript n indicates that their choices may depend on the sample size,
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2. PROBLEM SETUP

which is omitted later for conciseness. We set Gaussian priors N(0, σ2
yσ

2
α)

on αk and an inverse gamma prior IG(a0, b0) on σ2
y , with σ2

α, a0, and b0

being the hyperparameters.

Let {(yi, zi,xi, ti)}ni=1 be a sample of n independent observations, where

Y = (y1, . . . , yn) denotes the response and Ln(θ) the likelihood function.

Given the prior π(θ), the joint posterior satisfies π(θ | Y ) ∝ π(θ)Ln(θ),

and MCMC methods are typically used to estimate θ. However, despite re-

cent improvements in sampling efficiency, MCMC remains computationally

expensive for large sample sizes and high-dimensional models. To overcome

this scalability limitation, we adopt variational Bayes as an alternative.

2.3 Variational Bayesian approximation

Variational Bayes aims to approximate the exact posterior distribution with

a tractable variational distribution. We consider a mean-field variational

family, which assumes a factorized structure as

Q =

󰀫
q(θ) =

pZ󰁜

j=1

q(βj)×
pX󰁜

ℓ=1

q(γℓ)×
2󰁜

k=1

q(αk)× q(σ2
y)

󰀬
, (2.3)

where q(·) denotes the variational density for each parameter. Variational

distributions of {βj}pZj=1 and {γℓ}pXℓ=1 are assumed in a spike-and-slab form:

Iβj ∼ Bern(ηβj ), βj | Iβj ∼ Iβj N(µβ
j , σ

β2
j ) + (1− Iβj )δ0,

Iγℓ ∼ Bern(ηγℓ ), γℓ | Iγℓ ∼ Iγℓ N(µγ
ℓ , σ

γ2
ℓ ) + (1− Iγℓ )δ0.
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3. VARIATIONAL BAYES MODEL SELECTION AND ESTIMATION

The variational distributions of α1, α2, and σ2
y are assumed as N(µ1, σ

2
1),

N(µ2, σ
2
2), and IG(a1, b1), respectively.

The desired VB posterior distribution Q∗(θ) within the family Q min-

imizes the KL divergence from the exact posterior distribution Π(θ | Y ),

Q∗(θ) = argmin
Q(θ)∈Q

KL[Q(θ)󰀂Π(θ | Y )],

which replaces MCMC sampling with an optimization task. Since directly

calculating the KL divergence involves the intractable marginal distribution

of Y , we instead optimize the evidence lower bound (ELBO), which is

equivalent to the KL divergence up to a constant,

L(θ) =
󰁝

q(θ) log
π(θ)Ln(θ)

q(θ)
dθ. (2.4)

Although Q is fully factorized for θ, the dependence of β and γ on I in

the hierarchical structure prevents direct derivation of variational posterior

distributions via conjugacy. To overcome this difficulty, we explicitly com-

pute the ELBO L(θ), allowing for efficient optimization using CAVI (Blei

et al., 2017). Algorithmic details are provided in Section 4.

3. Variational Bayes Model Selection and Estimation

In this section, we establish theoretical guarantees for the proposed VB

method concerning model selection and parameter estimation.
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3. VARIATIONAL BAYES MODEL SELECTION AND ESTIMATION

3.1 Notations for theoretical analysis

For each model indicator, we define an active set S ⊆ {1, . . . , p} to include

all indices j where Ij = 1, with its size denoted as |S|. The considered model

space is denoted as S, and let the true active set corresponding to I0 be S0

with size s0. For any S, we define θS = ((βj)j∈S, (γℓ)ℓ∈S,α, σy) ∈ R|S|+3 as

the coefficient vector for model S. We assume that (τ 2β, τ
2
γ) and (qβ, qγ) are

of the same order, respectively, and without loss of generality, we omit the

subscripts and denote them as τ 2 and q. We denote the treatment vector

as T = (t1, . . . , tn) and design matrices as Z ∈ Rn×pZ and X ∈ Rn×pX . For

any matrix A ∈ Rn×pA , the sub-matrix containing columns indexed by S is

denoted as AS. We define the norm 󰀂A󰀂 = maxj∈pA(A
TA)

1/2
jj .

3.2 Asymptotic properties under known variance case

We now establish theoretical properties of the VB posterior Q∗ with the

proofs deferred to Section S1 in the supplementary materials. To simplify

technicalities, we first study the case of known noise variance σ2
y = 1, which

is commonly considered in VB literature (Ray and Szabó, 2022; Komodro-

mos et al., 2025). The parameter is adjusted to θ = (β,γ,α) ∈ Rp+2 with

its true value denoted as θ0 = (β0,γ0,α0). We assume that the covariate

spaces Z and X are bounded, and consider the ℓ1-norm bounded parameter

Statistica Sinica: Newly accepted Paper 



3. VARIATIONAL BAYES MODEL SELECTION AND ESTIMATION

space Θ(M) := {θ : 󰀂θ − θ0󰀂1 ≤ M}, where M is a fixed constant. We

require the following regularity conditions.

Condition 1. (i) (Model dimension) The dimension satisfies log pn = o(n)

as n → ∞. (ii) (True parameter) The true parameter satisfies θ0Sc
0
= 0.

Condition 1(i) is common in high-dimensional literature (Lee and Cao,

2021). Condition 1(ii) assumes that inactive signals are negligible (Yang

et al., 2016). Although θ0Sc
0
= 0 is required for simplicity, it can be relaxed

to 󰀂ZSc
0
β0Sc

0
󰀂22 = o(󰀂ZS0β0S0

󰀂22) and 󰀂XSc
0
γ0Sc

0
󰀂22 = o(󰀂XS0γ0S0

󰀂22), under

which we obtain Ln(θ0S0)/Ln(θ0) = O(1) as needed in the proof.

Condition 2 (Restricted eigenvalue). For all X ∈ X and Z ∈ Z, in the

considered model space S, there exist constants λ1 and λ2 such that

0 < λ1 ≤ min
S∈S

min

󰀕
λmin

󰀕
1

n
XT

SXS

󰀖
,λmin

󰀕
1

n
Z̃

T

S Z̃S

󰀖󰀖

≤ max
S∈S

max

󰀕
λmax

󰀕
1

n
XT

SXS

󰀖
,λmax

󰀕
1

n
Z̃

T

S Z̃S

󰀖󰀖
≤ λ2,

where Z̃S = (ZS,T ) combines prognostic variables and the treatment.

Condition 2 ensures that the eigenvalues of the Gram matrix corre-

sponding to model S are bounded, which is satisfied if, for any S ∈ S,

|S| ≤ mn + s0 with mn := (
√
n/ log p ∧ p) (Narisetty et al., 2019).

Condition 3 (Prior distribution). (i) For some constant c > 0, τ 2 satisfies

nτ 2 ∼ (n ∨ p2)1+c. (ii) The prior inclusion probability satisfies q ∼ 1/p.
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3. VARIATIONAL BAYES MODEL SELECTION AND ESTIMATION

Condition 3 specifies the rates of the hyperparameters in the spike-and-

slab priors, ensuring posterior concentration on sparse models and enabling

consistent variable selection (Narisetty and He, 2014).

Lemma 1. Under Conditions 1-3, there exists some constant L0 > 2 such

that, for any sequence Ln ≥ L0, as n → ∞, the VB posterior Q∗ satisfies

Eθ0 [Q
∗(θ ∈ Θ(M) : |S| ≥ Lns0)] ≤ O

󰀕
CL

Ln

󰀖
+ o(1),

with some constant CL > 0.

Lemma 1 shows that the variational posterior distribution puts most

of the mass on models of size at most a multiple of s0, ensuring bounded

false positives. If Ln → ∞ at any arbitrarily slow rate, the VB posterior

probability on the right-hand side converges to 0.

Theorem 1. Under the conditions in Lemma 1, there exists some constant

M0 > 0 such that, for any sequence Mn ≥ M0 growing more slowly than Ln

in Lemma 1, as n → ∞, the VB posterior Q∗ satisfies

Eθ0

󰀗
Q∗

󰀕
θ ∈ Θ(M) : 󰀂θ − θ0󰀂2 ≥

√
Mns0 log p

󰀂X󰀂 ∨ 󰀂Z̃󰀂

󰀖󰀘
≤ O

󰀕
CM

Mn

󰀖
+ o(1),

with some constant CM > 0.

Theorem 1 shows the VB posterior concentrates in an ℓ2-ball around

the true θ0. If Mn → ∞ at a slow rate, the VB posterior probability tends
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3. VARIATIONAL BAYES MODEL SELECTION AND ESTIMATION

to 0 as n → ∞. By combining Lemma 1 and Theorem 1, the VB posterior

achieves estimation consistency without selecting excessively large models.

Remark 1. For the exact posterior, we can replace the sequences Ln and

Mn with constants L0 and M0 and prove similar results without the terms

O(CL/Ln) and O(CM/Mn). These terms quantify the approximation errors

between the VB and exact posterior, unveiling a trade-off between compu-

tational efficiency and accuracy in the variational approach. As Ln and Mn

grow with the sample size n, the approximation errors vanish asymptoti-

cally, which is supported by empirical evidence in Section S4.2.

In the following, we introduce additional conditions to strengthen the

model selection guarantees in Lemma 1.

Condition 4. There exists some constant κ0 > 0 such that, for any se-

quence κn ≥ κ0, (i) (Refined prior specification) For the constant c in Con-

dition 3, τ 2 satisfies nτ 2 ∼ (n ∨ p2)1+cκns0. (ii) (Beta-min) For all j ∈ S0,

the true signals satisfy |θ0j| ≥ κn

󰁳
s0 log p/n.

Condition 4(i) requires a flatter slab prior than Condition 3(i) to en-

hance signal capture accuracy. Condition 4(ii) ensures the minimal signal

strength of true nonzero coefficients to be sufficiently large, as typically

assumed in modeling sparsity (Bühlmann, 2013).
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3. VARIATIONAL BAYES MODEL SELECTION AND ESTIMATION

Theorem 2. Under Conditions 1-4, for any κn growing more slowly than

Ln defined in Lemma 1, as n → ∞, the VB posterior Q∗ satisfies

Eθ0 [Q
∗ (θ ∈ Θ(M) : S ∕= S0)] ≤ O

󰀕
Cκ

κn

󰀖
+ o(1),

with some constant Cκ > 0.

Theorem 2 establishes that, under certain conditions, the VB posterior

of the true model converges to 1, achieving model selection consistency

within the VB framework. Our results extend beyond existing VB literature

on model selection (Ray et al., 2020; Ray and Szabó, 2022), and differ from

Narisetty et al. (2019) by relaxing the restrictions on the model space.

3.3 Extension to unknown variance case

Recent studies on VB have relaxed the assumption of a known variance (Ge

et al., 2025). In this subsection, we extend our analysis to the more general

case with an unknown σ2
y and consider θ = (β,α,γ, σy) ∈ Rp+3 with true

θ0 = (β0,α0,γ0, σy0). Following Ge et al. (2025), we modify the priors of

β and α to be independent of σy to avoid coupling between (β,α) and σy.

Obtaining the asymptotic results under an unknown σ2
y introduces ad-

ditional technical challenges beyond the known-variance setting. First, ex-

isting theoretical results for mixture of regressions often rely on a repa-

rameterization to establish posterior contraction rates (Zhang et al., 2025).
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4. NUMERICAL ALGORITHM FOR VARIATIONAL INFERENCE

However, this transformation induces a non-equivalent variational family,

leading to a mismatch between the parameters in exact and variational pos-

teriors. To address this, we refine the theoretical arguments in Städler et al.

(2010) to avoid reparameterization. Furthermore, σ2
y follows an inverse

gamma distribution instead of a Gaussian, inducing a more complicated

variational family than that in Ray and Szabó (2022).

Under the same conditions in Section 3.2, we extend the variational

posterior contraction properties under the unknown variance case. The

detailed theoretical results and their derivations are provided in Section S2

of the supplementary materials to avoid repetition.

4. Numerical Algorithm for Variational Inference

In this section, we introduce a coordinate ascent variational inference algo-

rithm to optimize the evidence lower bound.
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4. NUMERICAL ALGORITHM FOR VARIATIONAL INFERENCE

4.1 Data augmentation

To facilitate computation, we introduce latent subgroup indicators {δi}ni=1 ∈

{0, 1}n. The joint likelihood of {(yi, δi)}ni=1 can be rewritten as

Ln(θ,∆) = (2πσ2
y)

−n
2 exp

󰀝
− 1

2σ2
y

󰀂Y −Zβ − α1∆T − α2(I−∆)T 󰀂22
󰀞

×
n󰁜

i=1

exp(xT
i γ)

δi

1 + exp(xT
i γ)

,

where ∆ = D(δ1, . . . , δn), with D(·) reshaping a vector into a diagonal ma-

trix. Since the logistic model does not exhibit direct conjugacy, a straight-

forward CAVI approach is intractable (Durante and Rigon, 2019). To ad-

dress this, we introduce Pólya-Gamma (PG) latent variables {ωi}ni=1 for

data augmentation (Polson et al., 2013), which induces conjugacy with the

Gaussian prior on γ. The joint likelihood involving (δi,ωi) is given by

Ln(θ,φ) = (2πσ2
y)

−n
2 exp

󰀝
− 1

2σ2
y

󰀂Y −Zβ − α1∆T − α2(I−∆)T 󰀂22
󰀞

× 2−n exp

󰀝
1T

󰀕
∆− 1

2
I

󰀖
Xγ

󰀞
exp

󰀝
−1

2
γTXTΩXγ)

󰀞 n󰁜

i=1

p(ωi),

(4.5)

where φ = (∆,Ω), Ω = D(ω1, . . . ,ωn), and p(ωi) denotes the density of

PG(1, 0) variable. The variational family with ∆ and Ω is factorized as

Q =

󰀫
q(θ,φ) =

pZ󰁜

j=1

q(βj)

pX󰁜

ℓ=1

q(γℓ)
2󰁜

k=1

q(αk)q(σ
2
y)

n󰁜

i=1

[q(δi)q(ωi)]

󰀬
, (4.6)

where q(δi) and q(ωi) are the densities of Bern(πi) and PG(1, ci), respec-

tively, with {πi}ni=1 and {ci}ni=1 being variational parameters.

Statistica Sinica: Newly accepted Paper 



4. NUMERICAL ALGORITHM FOR VARIATIONAL INFERENCE

4.2 Coordinate ascent variational inference

The CAVI updates are derived by optimizing the ELBO as

L(θ,φ) =
󰁝

q(θ,φ) log
π(θ)Ln(θ,φ)

q(θ,φ)
dθdφ. (4.7)

For each factor, to obtain its variational posterior distribution, we fix the

distributions of other factors and maximize the ELBO in (4.7). The updates

for non-hierarchical factors are directly derived from

q(θj) ∝ exp
󰀋
E−q(θj) log [π(θ)Ln(θ,φ)]

󰀌
, (4.8)

where the subscript −q(θj) indicates the expectation is taken over all other

factors except θj. In details, updates for q(α1) and q(α2) are given by

µ1 =
󰀃
T TE∆T + σ−2

α

󰀄−1 󰀅
(Y −Z(ηβ ⊙ µβ))TE∆

󰀆
T ,

σ2
1 =

󰀅
a1

󰀃
T TE∆T + σ−2

α

󰀄
/b1

󰀆−1
,

(4.9)

where E∆ = D(π1, . . . , πn) and ⊙ denotes element-by-element product, and

µ2 =
󰀃
T T (I− E∆)T + σ−2

α

󰀄−1 󰀅
(Y −Z(ηβ ⊙ µβ))T (I− E∆)

󰀆
T ,

σ2
2 =

󰀅
a1

󰀃
T T (I− E∆)T + σ−2

α

󰀄
/b1

󰀆−1
.

(4.10)

Updates for (a1, b1) in q(σ2
y), πi in q(δi), and ci in q(ωi) for i = 1, . . . , n can

be derived similarly, and for conciseness, are deferred to Section S3.2.

The updates for hierarchical factors including γℓ, I
γ
ℓ , βj, and Iβj cannot

be directly obtained from (4.8). However, we can leverage the hierarchical
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4. NUMERICAL ALGORITHM FOR VARIATIONAL INFERENCE

structure in the variational posterior distribution to calculate the ELBO.

For example, the updates of γℓ for ℓ = 1, . . . , pX can be divided into two

cases. When Iγℓ = 0, the variational posterior of γℓ is δ0, while conditional

on Iγℓ = 1, the maximizers of the ELBO are

µγ
ℓ =

1T (E∆− 1/2)xℓ − (ηγ
−ℓ ⊙ µγ

−ℓ)
TXT

−ℓEΩxℓ

xT
ℓ EΩxℓ + τ−2

γ

,

σγ2
ℓ =

1

xT
ℓ EΩxℓ + τ−2

γ

,

(4.11)

where the subscript −ℓ excludes the ℓth component or column in a vector

or matrix, and EΩ = D(tanh(c1/2)/2c1, . . . , tanh(cn/2)/2cn). The updates

of Iγℓ for ℓ = 1, . . . , pX are given by solving

log
ηγℓ

1− ηγℓ
=

µγ2
ℓ

2σγ2
ℓ

+ log
qγσ

γ
ℓ

(1− qγ)τγ
. (4.12)

For the updates of βj for j = 1, . . . , pZ , conditional on Iβj = 0, the varia-

tional posterior of βj is δ0, while conditional on Iβj = 1, the maximizers of

the ELBO are given by

µβ
j =

[Y − µ1E∆T − µ2(I− E∆)T ]T zj − (ηβ
−j ⊙ µβ

−j)Z
T
−jzj

zTj zj + τ−2
β

,

σβ
j =

1

a1(zTj zj + τ−2
β )/b1

,

(4.13)

The updates of Iβj can be obtained as

log
ηβj

1− ηβj
=

µβ2
j

2σβ2
j

− 1

2
(log b1 − ψ(a1)) + log

qβσ
β
j

(1− qβ)τβ
, (4.14)

where ψ(·) is the digamma function. The detailed derivation and updates

can be found in Section S3.2 of the supplementary materials.
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4.3 Implementation details

Initialization. Since the VB method optimizes a non-convex objective, its

performance can be sensitive to initialization. We initialize γ and β in two

steps. For γ, we first use subgroup methods to identify an active predic-

tive covariate set. Specifically, we adopt GUIDE (Loh, 2002) for efficient

variable screening. As β is less sensitive, we randomly select prognostic co-

variates based on a predetermined size of pZ . We then run an EM algorithm

using the selected Iγ and Iβ to obtain initial parameter values.

Hyperparameters. Hyperparameters are chosen based on prior assump-

tions. We set qβ = min(0.2, 20/pZ), τβ = max(pZ/(10
√
n), 1.3), and τγ =

max(pX/(10
√
n), 1.3). Since subgroup signal strength is often weak, we

recommend a larger predictive inclusion probability of qγ = 0.5 for finite

samples. For other hyperparameters, we use a0 = 2, b0 = 1, and σ2
α = 1.

Updating process. We adopt the prioritized scheme from Ray and Szabó

(2022), where updates for β and γ begin with the component having the

largest absolute value and proceed to the smallest. The iteration stops

when the maximum difference in the entropies of posterior inclusion proba-

bilities, ∆H , falls below a threshold 󰂃, which is calculated as maxj |H(ηβj )−

H(ηβj,old)|∨maxℓ |H(ηγℓ )−H(ηγℓ,old)| with H(p) = −p log p−(1−p) log(1−p).

The algorithm is summarized in Algorithm 1, where order(|µ|) returns the
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indices of |µ| in descending order.

Algorithm 1 Variational Bayes for structured mixture models

Input: observations {(yi, zi, xi, ti)}ni=1

Output: µβ, ηβ, µγ , ηγ , µ1, µ2, {πi}ni=1

Initialize µβ, σβ2, ηβ, µγ , σγ2, ηγ , µ1, µ2, σ
2
1, σ

2
2, {πi}ni=1, ∆H .

while ∆H ≥ 󰂃 do

Rβ := order(|µβ|), Rγ := order(|µγ |), ηβ
old = ηβ, ηγ

old = ηγ

for j ∈ {1, . . . , pZ} do

m := Rβ
j

Update µβ
m and σβ2

m for the prognostic coefficient βm via Eq.(4.13),

and its variational posterior inclusion probability ηβm via Eq.(4.14).

end for

for ℓ ∈ {1, . . . , pX} do

m := Rγ
ℓ

Update µγ
m and σγ2

m for the predictive coefficient γm via Eq.(4.11),

and its variational posterior inclusion probability ηγm via Eq.(4.12).

end for

Update µ1 and σ2
1 for the treatment effect α1 via Eq.(4.9), and µ2 and

σ2
2 for the treatment effect α2 via Eq.(4.10).

for i ∈ {1, . . . , n} do

Update πi for the subgroup indicator δi via Eq.(S3.1) and ci for the

latent Pólya-Gamma variable ωi via Eq.(S3.2).

end for

Update a1 = n/2 + 1 +
󰁓pZ

j=1 η
β
j /2 + a0 and b1 for σ2

y via Eq.(S3.3).

Compute ∆H = maxj |H(ηβj )−H(ηβj,old)| ∨maxℓ |H(ηγℓ )−H(ηγℓ,old)|.
end while
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5. Simulation Studies

We evaluate the proposed Variational Structured Mixture models (VSM)

using comprehensive simulations. Variable selection performance is assessed

using true positive rate (TPR), false discovery rate (FDR), and the F1

score calculated as F1 = 2TPR(1−FDR)
TPR+(1−FDR)

. The F1 score offers a trade-off be-

tween TPR and FDR. We also introduce Ext as the probability of selecting

the exact true model when the size is restricted to |I0|, which reflects the

ability of ranking variable importance and is independent of thresholds on

posterior inclusion probabilities.

5.1 Accuracy and time comparison with MCMC

We assess the finite sample performance of VSM for both p < n and p ≥ n,

with n ∈ {200, 300}, p ∈ {100, 500, 2000}, and pZ = pX = p/2. Data

are generated based on the structured mixture model in (2.1) and (2.2),

with zi and xi independently drawn from the standard normal distribution.

Intercept columns are included in Z and X. The true values of β0 and γ0

are (1,−1.5, 2,−2.5, 3, 0, . . . , 0), and the true treatment effects are α10 = 40

and α20 = 0. The responses yi’s are independently sampled according to

model (2.1) with variance equal to 1.

We compare VSM with a scalable MCMC method, BVSA (Zhang et al.,
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2025). For BVSA, we set the Gibbs chain length to 20000 with a burn-in of

5000, and select hyperparameters as recommended. Both methods employ

a posterior inclusion probability threshold of 0.5. Results are summarized

from 100 independent trials and presented in Table 1. We additionally

examine scenarios with correlated covariates in Section S4.1 in the supple-

mentary materials, and discuss estimation errors in Section S4.2.

Table 1: Performance on variable selection under structured mixture model

settings with different p and n. All metrics are averaged over 100 trials.

p n Method
β γ

TPR FDR F1 Ext TPR FDR F1 Ext

100

200
VSM 1 0 1 100% 0.958 0.044 0.953 90%

BVSA 1 0 1 100% 0.970 0.066 0.946 92%

300
VSM 1 0 1 100% 0.995 0.041 0.974 98%

BVSA 1 0 1 100% 0.998 0.071 0.958 97%

500

200
VSM 1 0 1 100% 0.903 0.140 0.873 64%

BVSA 1 0 1 100% 0.885 0.045 0.911 73%

300
VSM 1 0 1 100% 0.983 0.141 0.911 90%

BVSA 1 0 1 100% 0.968 0.029 0.966 92%

2000

200
VSM 1 0 1 100% 0.758 0.200 0.755 40%

BVSA 1 0 1 100% 0.670 0.104 0.744 29%

300
VSM 1 0 1 100% 0.955 0.113 0.910 88%

BVSA 1 0 1 100% 0.873 0.054 0.898 69%

From the results of β in Table 1, we observe that VSM achieves accu-

rate prognostic variable selection, with TPR of 1 across all settings. For

both p = 100 and p = 500, VSM and BVSA identify most of the active pre-

dictive covariates, with a small sample size of n = 200. The performance
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of VSM is comparable to BVSA, suggesting that VB approximation retains

high accuracy. As n increases to 300, the performance of VSM improves,

reducing the difference between VSM and BVSA to negligible levels.

As p increases to 2000, the performance of both methods declines, but

they remain effective. When n = 200, VSM achieves higher F1 scores than

BVSA, highlighting its capability when p ≫ n. The threshold-free measure

Ext results suggest that VSM ranks variable importance more effectively.

When n = 300, the advantage of VSM in Ext becomes more pronounced.

These findings confirm the consistency of variable selection and demonstrate

the improved accuracy of VB approximation with larger sample sizes.

To showcase the scalability of VSM, we consider n = 300 with varying

model dimensions p ∈ {100, 200, . . . , 2000}, using the same true parame-

ter values as before. We compare VSM with BVSA, which is specifically

designed for high-dimensional models and offers computational improve-

ments over traditional MCMC algorithms. All experiments are conducted

on a single core of a MacBook Pro with an Apple M2 chip and 16 GB of

memory, utilizing the Rcpp interface and the Armadillo library.

For each p, we record the average running time in seconds from 10

random trials. As shown in Figure 1, VSM computes substantially faster

than BVSA, even though BVSA is designed for scalable MCMC inference.
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The results highlight the computational advantage of the VB methods over

MCMC methods when handling high-dimensional problems.
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Figure 1: Running time in seconds with varying p when n = 300.

5.2 Results under traditional subgroup settings

We assess the robustness of VSM in a traditional subgroup setting, where

subgroups are determined by splitting rules based on certain covariates. We

consider two settings used in the subgroup literature (Loh et al., 2019):

S1 : Y = 1 + Z2 + 40tI(X1>0,X4<1,X6=2) + ε,

S2 : Y = 1 + Z1 + Z2 + Z4 + I(Z6=2) + Z7 + 40tI(X1>0,X4<1,X6=2) + ε,

with ε ∼ N(0, 1). We consider two scenarios with n = 200 and pX = 10

or pX = 100. For pX = 10, predictive covariates are generated according

Statistica Sinica: Newly accepted Paper 



5. SIMULATION STUDIES

to X1 ∼ N(0, 1), (X2, X3) ∼ N(0,Σ) with Σ11 = Σ22 = 1 and Σ12 =

Σ21 = 0.5, X4 ∼ Exp(1), X5 ∼ Bern(0.5), X6 ∼ Multinomial(3, 1/3), and

(X7, X8, X9, X10) ∼ N(0,Σ) with diagonal elements of 1 and nondiagonal

elements of 0.5. For pX = 100, covariates X11, . . . , X100 are independently

sampled from N(0, 1). The prognostic covariates zi are set to be identical to

xi, leading to a total dimension p of 20 and 200. We simulate independent

testing datasets with n = 5000 to estimate subgroup prediction error (PE).

We further include a setting without true subgroups to examine whether

VSM may incorrectly identify subgroups, as discussed in Section S4.3.

Comparison methods include BVSA and subgroup identification ap-

proaches. We consider splitting-rule-based methods, including GUIDE (Loh,

2002), PRIM (Chen et al., 2015), MOB (Seibold et al., 2016), and SeqBT

(Huang et al., 2017), as well as the penalized SVM-based FindIt (Imai and

Ratkovic, 2013). Details on their implementations are provided in Sec-

tion S4.3. All methods are evaluated across 100 random trials.

In the low-dimensional setting, the results of predictive variable selec-

tion are presented in the left panel of Table 2. VSM selects covariates more

accurately than other subgroup methods and achieves lower prediction er-

rors. The performance of VSM is comparable to BVSA, indicating that VB

achieves computational efficiency without sacrificing much accuracy.
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Table 2: Predictive variable selection results with different p when n = 200.
p = 20 p = 200

(a) S1: Y = 1 + Z2 + 40tI(X1>0,X4<1,X6=2) + ε

TPR FDR F1 Ext PE TPR FDR F1 Ext PE

VSM 0.883 0.021 0.904 77% 0.074 0.707 0.265 0.669 38% 0.091

BVSA 0.917 0.013 0.941 93% 0.105 0.783 0.198 0.781 50% 0.106

GUIDE 0.657 0.138 0.726 14% 0.226 0.517 0.119 0.610 1% 0.215

FindIt 0.997 0.656 0.507 61% 0.288 - - - - -

PRIM 0.383 0.324 0.455 0 0.328 0.097 0.771 0.129 0 0.245

MOB 0.250 0.689 0.274 0 0.312 0.147 0.810 0.164 0 0.302

SeqBT 0.343 0.010 0.507 0 0.236 0.333 0.050 0.490 0 0.234

(b) S2: Y = 1 + Z1 + Z2 + Z4 + I(Z6=2) + Z7 + 40tI(X1>0,X4<1,X6=2) + ε

TPR FDR F1 Ext PE TPR FDR F1 Ext PE

VSM 0.873 0.027 0.896 77% 0.132 0.710 0.272 0.664 37% 0.090

BVSA 0.907 0.012 0.934 93% 0.106 0.810 0.182 0.802 51% 0.106

GUIDE 0.703 0.240 0.703 29% 0.227 0.507 0.124 0.602 1% 0.213

FindIt 0.997 0.657 0.507 25% 0.151 - - - - -

PRIM 0.353 0.409 0.406 0 0.302 0.077 0.845 0.094 0 0.220

MOB 0.760 0.399 0.662 8% 0.287 0.620 0.348 0.624 10% 0.282

SeqBT 0.347 0.000 0.512 0 0.235 0.327 0.060 0.482 0 0.237

In the high-dimensional setting, FindIt is excluded from the comparison

because it includes all covariate interactions and becomes computationally

infeasible. As shown in the right panel of Table 2, the performance of all

methods declines as the dimensionality increases. However, VSM signifi-

cantly outperforms other subgroup methods. Although VB approximation

experiences some loss in accuracy, the results remain comparable to BVSA,

highlighting the reliability of VSM under model misspecification.
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6. Real Data Application

In this section, we apply our proposed method to two datasets: the In-

ternational Warfarin Pharmacogenetics Consortium dataset and the AIDS

Clinical Trials Group 320 study.

6.1 Application to IWPC dataset

The International Warfarin Pharmacogenetics Consortium (IWPC) dataset

(International Warfarin Pharmacogenetics Consortium, 2009) includes clin-

ical and genetic information from over 5700 warfarin-treated patients, cov-

ering demographic characteristics, therapeutic dose, and genotype variants

of CYP2C9 and VKORC1, which are well-established factors influencing

warfarin sensitivity and dose requirements (Sconce et al., 2005).

Although warfarin’s effectiveness has been studied at the population

level (Anderson et al., 2007; Pirmohamed et al., 2013), increasing focus has

been placed on subgroup analysis to identify patients who benefit more from

the therapy (Stack and Maurice, 2016; Liu et al., 2025). This motivates the

investigation of treatment effect heterogeneity based on baseline covariates

to improve dosing decisions across patient subpopulations.

In our study, the response variable is the post-treatment international

normalized ratio (INR), a common measure of blood coagulation. Predic-
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tors include demographic variables (age, gender, weight, height, BMI, race),

clinical covariates (use of aspirin, amiodarone, enzyme inducers), and ge-

netic factors (CYP2C9 and VKORC1 genotypes). We follow the prepro-

cessing steps in Liu et al. (2025) and further include pairwise interactions

among predictors. The same set of 136 covariates is used for both prognostic

and predictive components, resulting in p = 272. To adapt to our model, we

define a binary warfarin treatment indicator by dichotomizing the dosage

at its median value into high and low dose groups. After excluding subjects

with missing records, the sample consists of n = 2836 patients.

Active prognostic and predictive covariates are selected based on the

variational posterior inclusion probabilities, averaged over five indepen-

dent runs with random initializations. The highest posterior prognostic

inclusion probability is 0.821 for the interaction between amiodarone and

CYP2C9∗1/∗2, while the probabilities of other covariates are below 0.5.

For predictive covariates, the highest inclusion probability is 1 for the in-

teraction between age and Asian race, followed by 0.614 for the interaction

between age and weight, with other covariates having probabilities below

0.5. The identification of Asian race and age as predictive factors aligns with

previous findings and can be explained by pharmacogenetic and metabolic

differences across patients (Jensen et al., 2012; Gaikwad et al., 2014). Mean-
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while, the discovery of novel predictive interactions offers new directions for

investigating treatment effect heterogeneity and refining personalized dos-

ing strategies in future studies. We present the probabilities of all covariates

in Section S5.1. Using a hard threshold of 0.5 for inclusion probabilities,

the estimated model, omitting inactive covariates, is given by

Y ∼ π̂N(−0.184− 0.516 amiodarone ·CYP2C9∗ 1/∗2 + 0.117t, 0.9852)

+ (1− π̂)N(−0.184− 0.516 amiodarone ·CYP2C9∗ 1/∗2− 0.421t, 0.9852),

log[π̂/(1− π̂)] = −8.091− 2.522 age ·weight+0.187 age ·Asian,

where the opposite signs of treatment effects suggest that, for patients in

one subgroup, high warfarin dosage may lead to adverse effects.

To validate the identified subgroups, we examine the treatment effects

in two subgroups (Group U and Group L) with the highest and lowest

25% predicted subgroup proportions. Figure 2 illustrates the response un-

der different treatments (1 and 0) in each subgroup. In Group U, the

response is significantly higher under treatment 1, while Group L exhibits

substantial overlap in the box plots, indicating a negligible treatment effect.

This confirms that the identified subgroups reflect meaningful differences

in treatment response.
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Figure 2: Response under treatment and no treatment in two groups with

the highest and lowest 25% predicted subgroup proportions, respectively.

6.2 Application to ACTG 320 study

The AIDS Clinical Trials Group (ACTG) 320 study (Hammer et al., 1997)

evaluated the efficacy of a three-drug regimen of indinavir, zidovudine, and

lamivudine versus a two-drug regimen of zidovudine and lamivudine for

HIV-infected patients. Following Zhao et al. (2013), we define the CD4

count change at week 24 as the response variable to identify patients bene-

fiting from the three-drug regimen. The dataset consists of 852 observations

with 11 pre-treatment covariates. To simulate high-dimensional scenarios,

we add 415 noise covariates from N(0, 1) to both the prognostic and pre-

dictive feature sets, resulting in a dimension of p = n = 852.

We identify active covariates based on posterior inclusion probabilities.
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Among prognostic covariates, log baseline HIV-1 RNA concentration (Lr)

and log baseline CD4 counts (Lc) exhibit the highest probabilities of 1

and 0.916, respectively, while all others remain below 0.3. For predictive

covariates, both Lr and Lc attain probabilities of 1, with the remaining

variables showing probabilities under 0.3. The identification of Lr and Lc

as predictive variables is consistent with findings in previous studies (Cai

et al., 2010; Zhao et al., 2013). The estimated treatment effects for the two

subgroups are 139.25 and −7.63, respectively, indicating that the three-drug

regimen may have adverse effects for a subset of patients.

We further compare the predictive variable selection results of VSM

with existing subgroup identification methods. We report the selection

frequencies of all covariates as well as the average number of selected noise

variables from 100 random trials. As shown in Table 3, VSM consistently

identifies Lr and Lc, while rarely selecting noise covariates. In contrast,

GUIDE and SeqBT are highly sensitive to noise and fail to distinguish

informative variables. Although PRIM and MOB select Lc, they fail to

capture Lr, resulting in incomplete subgroup identification. These results

highlight the robustness of VSM in high-dimensional settings.
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Table 3: Selection frequencies of predictive covariates and the average num-

ber of selected noises from 100 trials
sex dr hemo wt Ks zido age Lr Lc Afri Hisp num of noises

VSM 0 0 0 0 0 0 0 0.94 0.84 0 0.06 0.06

GUIDE 0 0 0 0 0 0 0.01 0 0 0.01 0 0.07

PRIM 0 0 0.05 0 0 0 0 0 1.00 0 0 0.03

MOB 0 0 0 0 0 0 0 0 1.00 0 0 0.25

SeqBT 0 0 0 0 0 0 0 0 0 0 0 1.31

7. Discussion

In this paper, we propose VSM, a scalable method for high-dimensional

structured mixture models. By approximating the exact posterior with

a variational distribution, our method enables efficient and simultaneous

inference for both variable selection and parameter estimation. We estab-

lish theoretical guarantees for model selection consistency of both prognos-

tic and predictive variables, as well as for consistency in parameter esti-

mation. A coordinate ascent variational inference algorithm is developed,

and computational scalability is ensured via data augmentation strategies.

Comprehensive simulation studies demonstrate that VSM achieves accuracy

comparable to MCMC methods, while offering substantial improvements in

computational efficiency. Applications to real-world datasets further high-

light the practical utility of VSM in identifying meaningful subgroups and

uncovering treatment heterogeneity.
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Future extensions of our method may consider structured mixture mod-

els with more than two components. Recent advances in variational infer-

ence for multinomial logistic models have introduced sophisticated data

augmentation techniques (Galy-Fajou et al., 2020; Wojnowicz et al., 2022),

which could be utilized to construct surrogate ELBOs that accommodate

latent subgroup memberships beyond the binary case. Furthermore, set-

tings with heteroscedastic noise structures are for future study.

Supplementary Materials

The online supplementary materials contain (1) proofs of the theoretical

results under a known noise variance; (2) extended theoretical results and

proofs under an unknown noise variance; (3) detailed CAVI updates and

their derivation; (4) additional results of simulation studies and sensitivity

analyses; (5) additional information on the real applications.
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Städler, N., P. Bühlmann, and S. Van De Geer (2010). ℓ1-penalization for mixture regression

models. Test 19 (2), 209–256.

Van Dat, N., P. Van Toan, and T. M. Thanh (2022). Solving distribution problems in content-

based recommendation system with gaussian mixture model. Applied Intelligence 52 (2),

Statistica Sinica: Newly accepted Paper 



REFERENCES

1602–1614.

van der Vliet, R., R. W. Selles, E.-R. Andrinopoulou, R. Nijland, G. M. Ribbers, M. A. Frens,

and et al. (2020). Predicting upper limb motor impairment recovery after stroke: A mixture

model. Annals of Neurology 87 (3), 383–393.

Wang, Y. (2016). Logistic-normal mixtures with heterogeneous components and high dimensional

covariates. Ph. D. thesis, University of Michigan.

Wang, Y. and D. M. Blei (2019). Frequentist consistency of variational Bayes. Journal of the

American Statistical Association 114 (527), 1147–1161.

Westling, T. and T. H. McCormick (2019). Beyond prediction: A framework for inference with

variational approximations in mixture models. Journal of Computational and Graphical

Statistics 28 (4), 778–789.

Wojnowicz, M. T., S. Aeron, E. L. Miller, and M. Hughes (2022). Easy variational inference

for categorical models via an independent binary approximation. Proceedings of the 39th

International Conference on Machine Learning 162, 23857–23896.

Yang, Y., D. Pati, and A. Bhattacharya (2020). α-variational inference with statistical guaran-

tees. The Annals of Statistics 48 (2), pp. 886–905.

Yang, Y., M. J. Wainwright, and M. I. Jordan (2016). On the computational complexity of

high-dimensional Bayesian variable selection. The Annals of Statistics 44 (6), 2497 – 2532.

Zhang, C.-X., S. Xu, and J.-S. Zhang (2019). A novel variational Bayesian method for variable

Statistica Sinica: Newly accepted Paper 



REFERENCES

selection in logistic regression models. Computational Statistics & Data Analysis 133, 1–19.

Zhang, F. and C. Gao (2020). Convergence rates of variational posterior distributions. The

Annals of Statistics 48 (4), 2180 – 2207.

Zhang, R., N. N. Narisetty, X. He, and J. Shen (2025). Bayesian variable selection on struc-

tured logistic-normal mixture models for subgroup analysis. Electronic Journal of Statis-

tics 19 (1), 2876–2922.

Zhao, L., L. Tian, T. Cai, B. Claggett, and L. J. Wei (2013). Effectively selecting a target

population for a future comparative study. Journal of the American Statistical Associa-

tion 108 (502), 527–539.

Ruqian Zhang

Department of Statistics and Data Science, Fudan University, Shanghai, China

E-mail: rqzhang20@fudan.edu.cn

Juan Shen

Department of Statistics and Data Science, Fudan University, Shanghai, China

E-mail: shenjuan@fudan.edu.cn

Statistica Sinica: Newly accepted Paper 




