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VARIATIONAL BAYES FOR HIGH-DIMENSIONAL
STRUCTURED MIXTURE MODEL

Rugian Zhang and Juan Shen

Fudan University

Abstract: Bayesian methods are widely employed for variable selection; how-
ever, the computational complexity associated with Markov Chain Monte Carlo
(MCMC) techniques often limits their scalability in high-dimensional contexts.
The computation becomes more challenging in mixture models with a substantial
number of latent variables. We propose a variational Bayesian (VB) approach
for high-dimensional structured mixture models to identify important variables
for subgroup analysis. Our method enables efficient and simultaneous variable
selection and parameter estimation by approximating the posterior distribution.
We establish model selection consistency and derive contraction rates for esti-
mation errors, advancing existing VB theoretical results. Additionally, a coordi-
nate ascent variational inference algorithm with data augmentation is developed.
Numerical studies illustrate that our method achieves accuracy comparable to
MCMC while significantly improving computational efficiency. The effectiveness

of our method is validated through real-world applications.

Key words and phrases: Model selection consistency, spike-and-slab prior, varia-

tional Bayes.



1. INTRODUCTION

1. Introduction

Mixture models are widely used to capture heterogeneous subgroups within
a population, as seen in applications such as precision medicine (van der
Vliet et al., 2020) and recommendation systems (Van Dat et al., 2022).
In such models, responses from distinct subgroups follow different distri-
butions based on mixture proportions (McLachlan et al., 2019). Usually,
mixture proportions are modeled as functions of observed variables, as in
structured mixture models (Shen and He, 2015; Shen and Qu, 2020). The
baseline variables associated with subgroup memberships are referred to
as “predictive” variables (Loh, 2002), while those directly influencing the
response are termed “prognostic” variables (Italiano, 2011).

When a large number of covariates are available, identifying the active
ones is important for improving interpretability and obtaining a parsimo-
nious model. This step becomes crucial in high-dimensional settings, where
redundant covariates complicate model estimation and increase uncertainty
in subgroup identification (Ghosh et al., 2011). For mixture models, vari-
able selection is often achieved through penalization (Khalili and Chen,
2007; Stéadler et al., 2010). However, the non-convexity of the penalized
objective poses challenges for high-dimensional structured mixture models

in both computational implementation and theoretical justification (Wang,
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2016). These issues motivate the adoption of Bayesian variable selection
(Narisetty and He, 2014). Zhang et al. (2025) uses the spike-and-slab prior
to select important covariates in high-dimensional structured mixture mod-
els. Bayesian methods avoid the complexities of non-convex optimization
by using sampling strategies like Markov chain Monte Carlo (MCMC).
Although Bayesian approaches provide a flexible framework, they often
incur high computational costs when MCMC is used, especially in high-
dimensional settings. This difficulty is exacerbated in large-sample mixture
models, where latent subgroup indicators are introduced. To overcome the
computational difficulty, variational Bayes (VB) has emerged as a scalable
alternative (Blei et al., 2017). VB approximates the exact posterior by
finding the closest distribution within a tractable variational family, mea-
sured by the Kullback-Leibler (KL) divergence. This transforms the prob-
lem from sampling to optimization, substantially reducing computational
burden while maintaining much of the accuracy of MCMC. VB has been
widely applied to variable selection in high-dimensional linear regression
Carbonetto and Stephens (2012), logistic regression (Zhang et al., 2019),
and proportional hazards models (Komodromos et al., 2022). In this pa-
per, we tackle a more challenging scenario of structured mixture models,

in which the hierarchical layer of subgroup memberships brings additional
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theoretical and computational complexity.

Theoretical developments in variational inference have gained increas-
ing attention. In low-dimensional settings, the consistency of VB estimation
has been analyzed from a frequentist perspective (Westling and McCormick,
2019), and Bernstein-von Mises type theorems for variational approxima-
tion have been established (Wang and Blei, 2019). In high-dimensional and
nonparametric settings, general results on variational posterior contraction
have been derived through the prior mass and testing approach (Zhang and
Gao, 2020; Yang et al., 2020). Recent advances in model selection priors
have shown near-optimal contraction rates for parameter estimation in lin-
ear regression (Ray and Szabd, 2022). It is also shown that the variational
posterior concentrates on models of sizes at most a multiple of the true
model size. These results have been extended to logistic models (Ray et al.,
2020) and group sparse regression (Ge et al., 2025).

Nevertheless, model selection consistency in high-dimensional settings
remains relatively underexplored for variational Bayesian variable selection.
In this paper, we develop a VB approach that performs variable selection of
prognostic and predictive covariates and estimates model parameters with-
out post hoc analysis. Our work advances previous theoretical results in two

aspects. First, we establish model selection consistency under an adjusted
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beta-min condition, proving VB’s ability to identify the true model in high-
dimensional scenarios. Second, we show that the VB posterior achieves
near-optimal contraction rates for parameter estimation in the challeng-
ing mixture model setting, where the concave log-likelihood condition in
Atchadé (2017) and Ray et al. (2020) no longer applies.

We develop a scalable coordinate ascent variational inference (CAVI)
algorithm to optimize the variational posterior distribution. Data augmen-
tation techniques are used to ensure model conjugacy and efficient compu-
tation. Extensive simulations demonstrate that the VB method achieves
accuracy comparable to MCMC in both variable selection and parameter
estimation, while significantly reducing computational cost.

The remainder of this paper is organized as follows. Section 2 intro-
duces the structured mixture model and the variational Bayesian method.
Section 3 establishes the theoretical guarantees for the VB posterior. Sec-
tion 4 details the computational algorithm and implementation specifics.
Section 5 provides extensive simulation studies to evaluate the performance
of the proposed method, followed by two real data applications in Section 6.

Finally, Section 7 concludes the paper with a discussion.
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2. Problem Setup

In this section, we introduce the structured mixture model and specify the
prior distributions used for variable selection. We then propose a varia-
tional Bayesian method for simultaneous model selection and parameter

estimation in high-dimensional structured mixture models.

2.1 Structured mixture model

Let Y be a continuous response variable, z € RPZ be the prognostic co-
variates directly influencing Y, and ¢ € {0,1} be the treatment indicator.
We assume the presence of heterogeneous treatment effects across two sub-
groups. For example, in one subgroup, the treatment effect is negligible,
whereas in the other subgroup, the treatment effect is significant. Within
each subgroup, Y, conditional on z and ¢, follows a linear model with Gaus-

sian noise from N(0,07). The density of Y is given by

2
Tk 1 T 2
fly| z,t,m,m) = exp{——(y—z B — tayg) }, (2.1)
; V2mo, 205

where 3 € RPZ represents the shared prognostic effects, a = (aq, ay) de-
notes the subgroup-specific treatment effects, and 7, denotes the mixture
proportions, with 7 + 71 = 1 and 0 < 7, < 1 for £ = 1,2. We assume

that the subgroup identity follows a hierarchical structure determined by
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predictive covariates & € RPX | modeled with logistic regression:

T
™ :1_W2:M7 (2.2)
1 + exp(xT)

where v € RPX are the coefficients for subgroup identification. The un-

known parameters are 0 := (3, o, 7y, 0,) € RP™ with p = py + px.

2.2 Bayesian variable selection

We assume both z and @ are high-dimensional with a sparse true model. To
identify the true model, we apply spike-and-slab priors on 3 and - to select
active covariates with nonzero coefficients(George and McCulloch, 1993).
We introduce binary model indicators [ f forj=1,...,pz where [ f =1

indicates that the jth prognostic covariate is active and [ ]B = 0 otherwise.
Similarly, for predictive covariates, we define I, € {0,1} for £ =1,...,px.
Let the model structure indicator be I = (1P, . .. P TV, 1) € {0, 17
Given I, the model selection prior follows a hierarchical form

I? ~ Bern(qga), B | I7 ~ IPN(0,0273,) + (1 — I7)d,

I} ~Bern(gyn), e | I} ~IJN(0,73,) + (1= 1})d,
where dy denotes the Dirac mass at 0, 73, and 72, are the variances of slab

distributions, and gg, and ¢, are the prior inclusion probabilities. The

subscript n indicates that their choices may depend on the sample size,
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which is omitted later for conciseness. We set Gaussian priors N (0, 0503)

on «aj and an inverse gamma prior 1G(ag,by) on o2, with 02, ag, and by

v
being the hyperparameters.

Let {(y;, zi, @i, t;) }1_; be a sample of n independent observations, where
Y = (y1,...,Yn) denotes the response and L, (@) the likelihood function.
Given the prior 7(8), the joint posterior satisfies 7(0 | Y') o m(0)L,(0),
and MCMC methods are typically used to estimate 8. However, despite re-
cent improvements in sampling efficiency, MCMC remains computationally

expensive for large sample sizes and high-dimensional models. To overcome

this scalability limitation, we adopt variational Bayes as an alternative.

2.3 Variational Bayesian approximation

Variational Bayes aims to approximate the exact posterior distribution with
a tractable variational distribution. We consider a mean-field variational

family, which assumes a factorized structure as

Q= {q(0) =[] a03) x [T av) x [ ] alew) x Q(Gi)} : (2.3)
=1 =1 k=1

where ¢(-) denotes the variational density for each parameter. Variational

distributions of {;},Z, and {v,}}X, are assumed in a spike-and-slab form:
17 ~Bem(if), B [ 17 ~ IPN (5, 07) + (1 = 17)d,

I} ~Bern(n)), |1 ~IJN(uj,0)?) + (1 —1I))d.
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The variational distributions of aq, as, and 05 are assumed as N (uq,0?),
N (s, 02), and IG(ay, by ), respectively.
The desired VB posterior distribution @*(0) within the family Q min-

imizes the KL divergence from the exact posterior distribution I1(0 | Y'),

Q"(0) = arg min KLIQ(0)([T1(6 | Y')],
Q)eQ

which replaces MCMC sampling with an optimization task. Since directly
calculating the KL divergence involves the intractable marginal distribution
of Y, we instead optimize the evidence lower bound (ELBO), which is

equivalent to the KL divergence up to a constant,

£6) - [ m%

Although @Q is fully factorized for 8, the dependence of B and ~ on [ in

de. (2.4)

the hierarchical structure prevents direct derivation of variational posterior
distributions via conjugacy. To overcome this difficulty, we explicitly com-
pute the ELBO £(8), allowing for efficient optimization using CAVI (Blei

et al., 2017). Algorithmic details are provided in Section 4.

3. Variational Bayes Model Selection and Estimation

In this section, we establish theoretical guarantees for the proposed VB

method concerning model selection and parameter estimation.
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3.1 Notations for theoretical analysis

For each model indicator, we define an active set S C {1,...,p} to include
all indices j where I; = 1, with its size denoted as |S|. The considered model
space is denoted as S, and let the true active set corresponding to Iy be Sy
with size so. For any S, we define 85 = ((53;) es, (V¢)ees, @, 0,) € RISH3 ag
the coefficient vector for model S. We assume that (73, 73) and (gg, ¢) are
of the same order, respectively, and without loss of generality, we omit the
subscripts and denote them as 72 and q. We denote the treatment vector
as T = (ty,...,t,) and design matrices as Z € R"*?PZ and X € R"*Px_ For
any matrix A € R"*PA  the sub-matrix containing columns indexed by S'is

denoted as Ag. We define the norm ||Al| = maxjepA(ATA)]l-]/-Q.

3.2 Asymptotic properties under known variance case

We now establish theoretical properties of the VB posterior Q* with the
proofs deferred to Section S1 in the supplementary materials. To simplify
technicalities, we first study the case of known noise variance a; = 1, which
is commonly considered in VB literature (Ray and Szabd, 2022; Komodro-
mos et al., 2025). The parameter is adjusted to 8 = (3,7, a) € RP™? with
its true value denoted as 8y = (3, vy, @0). We assume that the covariate

spaces Z and X are bounded, and consider the ¢/;-norm bounded parameter
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space O(M) := {0 : |0 — 0y||; < M}, where M is a fixed constant. We

require the following regularity conditions.

Condition 1. (i) (Model dimension) The dimension satisfies log p, = o(n)

asn — oo. (ii) (True parameter) The true parameter satisfies 6pse = 0.

Condition 1(i) is common in high-dimensional literature (Lee and Cao,
2021). Condition 1(ii) assumes that inactive signals are negligible (Yang
et al., 2016). Although 6ys: = 0 is required for simplicity, it can be relaxed
to | Zs;Buss13 = o(| ZsuBas, I13) and X 5705 B = (11X 5,705, 12), under

which we obtain L, (0os,)/Ln(00) = O(1) as needed in the proof.

Condition 2 (Restricted eigenvalue). For all X € X and Z € Z, in the

considered model space S, there exist constants \y and Ay such that
0< M\ < minmin (A (~XTXs ) A (~252
minmin [ Apin [ — Amin [ =
1= SeS n §5 n 545
< N (XX 6 ) e (2725 ) ) < A
maxmax max | y \max | = )
— Ses n S n §<S 2
where Zg = (Zs,T) combines prognostic variables and the treatment.
Condition 2 ensures that the eigenvalues of the Gram matrix corre-

sponding to model S are bounded, which is satisfied if, for any S € S,

|S| < my, + so with m,, := (v/n/logp A p) (Narisetty et al., 2019).

Condition 3 (Prior distribution). (i) For some constant ¢ > 0, 72 satisfies

nt? ~ (nV p*)'*te. (i) The prior inclusion probability satisfies ¢ ~ 1/p.
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Condition 3 specifies the rates of the hyperparameters in the spike-and-
slab priors, ensuring posterior concentration on sparse models and enabling

consistent variable selection (Narisetty and He, 2014).

Lemma 1. Under Conditions 1-3, there exists some constant Ly > 2 such

that, for any sequence L, > Lgy, as n — oo, the VB posterior Q* satisfies

Eo [Q°(0 € O(M) : S| > Luso)] < O (f—) +o(1)

n

with some constant Cr, > 0.

Lemma 1 shows that the variational posterior distribution puts most
of the mass on models of size at most a multiple of sy, ensuring bounded
false positives. If L,, — oo at any arbitrarily slow rate, the VB posterior

probability on the right-hand side converges to 0.

Theorem 1. Under the conditions in Lemma 1, there exists some constant
My > 0 such that, for any sequence M, > M, growing more slowly than L,

i Lemma 1, as n — 00, the VB posterior Q* satisfies

\/Mnsologp)} <O (C’_M

Ee [Q (" < OUN) 16 =0l 25z Mn) +old)

with some constant Cyy > 0.

Theorem 1 shows the VB posterior concentrates in an f>-ball around

the true 0,. If M,, — oo at a slow rate, the VB posterior probability tends
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to 0 as n — 0o. By combining Lemma 1 and Theorem 1, the VB posterior

achieves estimation consistency without selecting excessively large models.

Remark 1. For the exact posterior, we can replace the sequences L, and
M,, with constants Ly and M, and prove similar results without the terms
O(Cy/L,) and O(Cy/M,). These terms quantify the approximation errors
between the VB and exact posterior, unveiling a trade-off between compu-
tational efficiency and accuracy in the variational approach. As L, and M,
grow with the sample size n, the approximation errors vanish asymptoti-

cally, which is supported by empirical evidence in Section S4.2.

In the following, we introduce additional conditions to strengthen the

model selection guarantees in Lemma 1.

Condition 4. There exists some constant kg > 0 such that, for any se-
quence Ky, > Ko, (i) (Refined prior specification) For the constant ¢ in Con-
dition 3, 7% satisfies nt? ~ (n V p?)tTemso (4i) (Beta-min) For all j € S,

the true signals satisfy |6o;| > Knr/Sologp/n.

Condition 4(i) requires a flatter slab prior than Condition 3(i) to en-
hance signal capture accuracy. Condition 4(ii) ensures the minimal signal
strength of true nonzero coefficients to be sufficiently large, as typically

assumed in modeling sparsity (Bithlmann, 2013).
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Theorem 2. Under Conditions 1-4, for any k, growing more slowly than

L, defined in Lemma 1, as n — oo, the VB posterior QQ* satisfies

Eg, [Q" (0 € O(M): § # 5,)] < O (9) T o(1),

n

with some constant C,, > 0.

Theorem 2 establishes that, under certain conditions, the VB posterior
of the true model converges to 1, achieving model selection consistency
within the VB framework. Our results extend beyond existing VB literature
on model selection (Ray et al., 2020; Ray and Szabd, 2022), and differ from

Narisetty et al. (2019) by relaxing the restrictions on the model space.

3.3 Extension to unknown variance case

Recent studies on VB have relaxed the assumption of a known variance (Ge
et al., 2025). In this subsection, we extend our analysis to the more general
case with an unknown ¢ and consider 8 = (3, a,7,0,) € R?*? with true
00 = (By, o, Yo, 0y0). Following Ge et al. (2025), we modify the priors of
B and « to be independent of o, to avoid coupling between (3, o) and o,

Obtaining the asymptotic results under an unknown af/ introduces ad-
ditional technical challenges beyond the known-variance setting. First, ex-
isting theoretical results for mixture of regressions often rely on a repa-

rameterization to establish posterior contraction rates (Zhang et al., 2025).
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However, this transformation induces a non-equivalent variational family,
leading to a mismatch between the parameters in exact and variational pos-
teriors. To address this, we refine the theoretical arguments in Stadler et al.
(2010) to avoid reparameterization. Furthermore, o7 follows an inverse
gamma distribution instead of a Gaussian, inducing a more complicated
variational family than that in Ray and Szabé (2022).

Under the same conditions in Section 3.2, we extend the variational
posterior contraction properties under the unknown variance case. The
detailed theoretical results and their derivations are provided in Section S2

of the supplementary materials to avoid repetition.

4. Numerical Algorithm for Variational Inference

In this section, we introduce a coordinate ascent variational inference algo-

rithm to optimize the evidence lower bound.



4. NUMERICAL ALGORITHM FOR VARIATIONAL INFERENCE

4.1 Data augmentation

To facilitate computation, we introduce latent subgroup indicators {0;}7, €

{0,1}". The joint likelihood of {(y;,d;)}"; can be rewritten as

1

L.(0,A) = (2m02)" 3 ——
0.8) = @n) Fewn {51,

Y — ZB — ay, AT — o (I — A)T||§}

y ﬁ exp(a] )%

el 2 exp(zly)’

where A = D(dy,...,9d,), with D(-) reshaping a vector into a diagonal ma-
trix. Since the logistic model does not exhibit direct conjugacy, a straight-
forward CAVI approach is intractable (Durante and Rigon, 2019). To ad-
dress this, we introduce Pdlya-Gamma (PG) latent variables {w;}! , for
data augmentation (Polson et al., 2013), which induces conjugacy with the

Gaussian prior on «. The joint likelihood involving (d;,w;) is given by

L,(6,6) = (270%)~% exp {—zi IY — 28— AT — ay(1 - A>T||§}
o
y
1 1 "
—n T T 5T
x 27" exp {1 <A — 51) X'y} exp {—57 X QX')/)} Hp(wz-),

=1

(4.5)
where ¢ = (A,Q), @ = D(wy,...,w,), and p(w;) denotes the density of

PG(1,0) variable. The variational family with A and €2 is factorized as

Q= {q(ﬂ, ¢) = H 9(8) [ Ta(v) [ T alew)a(oy) H [Q(éi)Q<wi)]} , (4.6)

where ¢(d;) and ¢(w;) are the densities of Bern(7;) and PG(1,¢;), respec-

tively, with {m;}?_, and {¢;}}_, being variational parameters.
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4.2 Coordinate ascent variational inference

The CAVI updates are derived by optimizing the ELBO as

m(60)Ln(0, )
q(0,9)

For each factor, to obtain its variational posterior distribution, we fix the

L£(0,¢) = /q(0,¢) log d@dae. (4.7)

distributions of other factors and maximize the ELBO in (4.7). The updates

for non-hierarchical factors are directly derived from

Q(ej) X exp {]E—q(Gj) log [W(H)Ln<07 ¢)]} ’ (48)

where the subscript —g(¢,) indicates the expectation is taken over all other

factors except ;. In details, updates for g(o;) and g(ay) are given by

= (T"EAT + ;%) [(Y = Z(n® © 4°))"EA] T,

(4.9)
o} = [ay (TTEAT +032) /b] ",
where EA = D(my,...,m,) and ® denotes element-by-element product, and
py = (TT(I-EA)T +0.%) " (Y — Z(n® © u?))"(1 - EA)| T,
(4.10)

02 = [ay (TT(1—EA)T +0°%) /by] .
Updates for (a1, b1) in g(oy), m; in q(6;), and ¢; in g(w;) for i =1,...,n can
be derived similarly, and for conciseness, are deferred to Section S3.2.
The updates for hierarchical factors including 7, I/, §;, and I f cannot

be directly obtained from (4.8). However, we can leverage the hierarchical
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structure in the variational posterior distribution to calculate the ELBO.
For example, the updates of 7, for ¢ = 1,...,px can be divided into two
cases. When I,) = 0, the variational posterior of v, is dy, while conditional

on I} =1, the maximizers of the ELBO are
P 1"(EA — 1/2).25; - (n7, Qf‘ze)TXTEEQW
zy EQxy + 75 2
1
r EQuy + 752

where the subscript —¢ excludes the fth component or column in a vector

)

(4.11)

Y2 _
o, =

or matrix, and EQ2 = D(tanh(c,/2)/2¢, ..., tanh(c,/2)/2¢,). The updates

of I for { =1,...,px are given by solving
94 2 vy
Mg oy 49y
log N + log . 4.12
A L (e )

For the updates of 3; for j = 1,...,pz, conditional on Ijﬁ = 0, the varia-
tional posterior of f3; is dp, while conditional on I ]ﬁ = 1, the maximizers of

the ELBO are given by
Y — mBAT — 151 - EAVT) 2 — (n®, 0 p? ) 27 2

B _
Hj = T —2 ’
Zj2j +17g (4.13)
8 1
o, = T —5 ,
Toa(z z+T57) /b
The updates of I ]ﬁ can be obtained as
B8 B2 B
7; I 489
lo I =2 _(logh — ¥(ay)) + log ——L—, 4.14

where 1(-) is the digamma function. The detailed derivation and updates

can be found in Section S3.2 of the supplementary materials.
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4.3 Implementation details

Initialization. Since the VB method optimizes a non-convex objective, its
performance can be sensitive to initialization. We initialize v and 3 in two
steps. For ~, we first use subgroup methods to identify an active predic-
tive covariate set. Specifically, we adopt GUIDE (Loh, 2002) for efficient
variable screening. As 3 is less sensitive, we randomly select prognostic co-
variates based on a predetermined size of p;. We then run an EM algorithm
using the selected I7 and I® to obtain initial parameter values.
Hyperparameters. Hyperparameters are chosen based on prior assump-
tions. We set gg = min(0.2,20/pz), 73 = max(pz/(10y/n),1.3), and 7, =
max(px/(104/n),1.3). Since subgroup signal strength is often weak, we
recommend a larger predictive inclusion probability of ¢, = 0.5 for finite
samples. For other hyperparameters, we use ag = 2, by = 1, and o2 = 1.
Updating process. We adopt the prioritized scheme from Ray and Szabd
(2022), where updates for 3 and « begin with the component having the
largest absolute value and proceed to the smallest. The iteration stops
when the maximum difference in the entropies of posterior inclusion proba-
bilities, Ay, falls below a threshold e, which is calculated as max; |H (n]ﬁ ) —
H (1] ) | Vmasy [ H (n)) = H (1] )| with H(p) = —plog p— (1—p) log(1—p).

The algorithm is summarized in Algorithm 1, where order(|u|) returns the
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indices of |p| in descending order.

Algorithm 1 Variational Bayes for structured mixture models

Input: observations {(y;, zi, x;, t;) }i
Output: p?, n°, pu?, 07, , po, {mi}i,
Initialize p?, oP% 0P, uY, o7, 07, p1, po, 02, o2, {m ", Ay.
while Ay > € do
R = order(|p)), RY = order(|7]), = 0P, Wy = n°
for j€{1,...,pz} do
m = RJ@
Update p2 and oP? for the prognostic coefficient f3,, via Eq.(4.13),
and its variational posterior inclusion probability 72 via Eq.(4.14).
end for
for (€ {1,...,px} do
m:= R]
Update p), and o7? for the predictive coefficient ~,, via Eq.(4.11),
and its variational posterior inclusion probability 77, via Eq.(4.12).
end for
Update y; and 0% for the treatment effect o via Eq.(4.9), and py and
o3 for the treatment effect ap via Eq.(4.10).
forie{1,...,n} do
Update m; for the subgroup indicator d; via Eq.(S3.1) and ¢; for the
latent Pélya-Gamma variable w; via Eq.(S3.2).
end for
Update ay =n/2 +1+ %%, 77?/2 + ag and by for o7 via Eq.(S3.3).
Compute Ag = mass [H (1) — H(nfy)| v maxe [H(7) = H(i)

end while
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5. Simulation Studies

We evaluate the proposed Variational Structured Mixture models (VSM)
using comprehensive simulations. Variable selection performance is assessed

using true positive rate (TPR), false discovery rate (FDR), and the F1

2 TPR(1-FDR)

TPR + (I_FDR)" The F1 score offers a trade-off be-

score calculated as F1 =
tween TPR and FDR. We also introduce Ext as the probability of selecting
the exact true model when the size is restricted to |Io|, which reflects the

ability of ranking variable importance and is independent of thresholds on

posterior inclusion probabilities.

5.1 Accuracy and time comparison with MCMC

We assess the finite sample performance of VSM for both p < n and p > n,
with n € {200,300}, p € {100, 500,2000}, and p; = px = p/2. Data
are generated based on the structured mixture model in (2.1) and (2.2),
with z; and x; independently drawn from the standard normal distribution.
Intercept columns are included in Z and X. The true values of 3, and «,
are (1,—1.5,2,-2.5,3,0,...,0), and the true treatment effects are a9 = 40
and agg = 0. The responses y;’s are independently sampled according to
model (2.1) with variance equal to 1.

We compare VSM with a scalable MCMC method, BVSA (Zhang et al.,
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2025). For BVSA, we set the Gibbs chain length to 20000 with a burn-in of
5000, and select hyperparameters as recommended. Both methods employ
a posterior inclusion probability threshold of 0.5. Results are summarized
from 100 independent trials and presented in Table 1. We additionally
examine scenarios with correlated covariates in Section S4.1 in the supple-

mentary materials, and discuss estimation errors in Section S4.2.

Table 1: Performance on variable selection under structured mixture model

settings with different p and n. All metrics are averaged over 100 trials.

3 g
p.n  Method "TpR™FDR F1 Ext TPR FDR Fl  Ext

VSM 1 0 1 100% 0958 0.044 0953 90%

2000 BySA 1 0 1 100% 0.970 0.066 0.946 92%
100 VSM 1 0 1 100% 0995 0.041 0.974 98%
3000 BysA 1 0 1 100% 0.998 0.071 0.958 97%
VSM 1 0 1 100% 0.903 0.140 0.873 64%

2000 BySA 1 0 1 100% 0.885 0.045 0911 73%
200 VSM 1 0 1 100% 0983 0.141 0911 90%
3000 BysSA 1 0 1 100% 0.968 0.029 0.966 92%
VSM 1 0 1 100% 0758 0.200 0.755 40%

2000 BysSA 1 0 1 100% 0.670 0.104 0.744 29%
2000 VSM 1 0 1 100% 0955 0.113 0.910 88%
3000 BysA 1 0 1 100% 0.873 0.054 0.898 69%

From the results of B in Table 1, we observe that VSM achieves accu-
rate prognostic variable selection, with TPR of 1 across all settings. For
both p = 100 and p = 500, VSM and BVSA identify most of the active pre-

dictive covariates, with a small sample size of n = 200. The performance
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of VSM is comparable to BVSA, suggesting that VB approximation retains
high accuracy. As n increases to 300, the performance of VSM improves,
reducing the difference between VSM and BVSA to negligible levels.

As p increases to 2000, the performance of both methods declines, but
they remain effective. When n = 200, VSM achieves higher F1 scores than
BVSA, highlighting its capability when p > n. The threshold-free measure
Ext results suggest that VSM ranks variable importance more effectively.
When n = 300, the advantage of VSM in Ext becomes more pronounced.
These findings confirm the consistency of variable selection and demonstrate
the improved accuracy of VB approximation with larger sample sizes.

To showcase the scalability of VSM, we consider n = 300 with varying
model dimensions p € {100,200,...,2000}, using the same true parame-
ter values as before. We compare VSM with BVSA, which is specifically
designed for high-dimensional models and offers computational improve-
ments over traditional MCMC algorithms. All experiments are conducted
on a single core of a MacBook Pro with an Apple M2 chip and 16 GB of
memory, utilizing the Repp interface and the Armadillo library.

For each p, we record the average running time in seconds from 10
random trials. As shown in Figure 1, VSM computes substantially faster

than BVSA, even though BVSA is designed for scalable MCMC inference.
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The results highlight the computational advantage of the VB methods over

MCMC methods when handling high-dimensional problems.
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1000 =

Running time in seconds
»

1 1 1 1 1 1 1 1 1 1
200 400 600 800 1000 1200 1400 1600 1800 2000
Dimension of covariates
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Figure 1: Running time in seconds with varying p when n = 300.

5.2 Results under traditional subgroup settings

We assess the robustness of VSM in a traditional subgroup setting, where
subgroups are determined by splitting rules based on certain covariates. We

consider two settings used in the subgroup literature (Loh et al., 2019):

S]. . Y = 1 -+ Z2 -+ 40tI(X1>0,X4<1,X6:2) -+ g,
S2: Y =1+ Zl + ZQ + Z4 + I(Z6:2) + Z7 + 40tI(X1>07X4<1,X5:2) + ¢,

with € ~ N(0,1). We consider two scenarios with n = 200 and px = 10

or px = 100. For px = 10, predictive covariates are generated according
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to X7 ~ N(0,1), (X2,X3) ~ N(0,%) with 317 = ¥y = 1 and X5 =
Y91 = 0.5, Xy ~ Exp(1), X5 ~ Bern(0.5), Xg ~ Multinomial(3,1/3), and
(X7, X5, X9, X10) ~ N(0,%) with diagonal elements of 1 and nondiagonal
elements of 0.5. For px = 100, covariates X, ..., Xigo are independently
sampled from N (0, 1). The prognostic covariates z; are set to be identical to
x;, leading to a total dimension p of 20 and 200. We simulate independent
testing datasets with n = 5000 to estimate subgroup prediction error (PE).
We further include a setting without true subgroups to examine whether
VSM may incorrectly identify subgroups, as discussed in Section S4.3.

Comparison methods include BVSA and subgroup identification ap-
proaches. We consider splitting-rule-based methods, including GUIDE (Loh,
2002), PRIM (Chen et al., 2015), MOB (Seibold et al., 2016), and SeqBT
(Huang et al., 2017), as well as the penalized SVM-based FindIt (Imai and
Ratkovic, 2013). Details on their implementations are provided in Sec-
tion S4.3. All methods are evaluated across 100 random trials.

In the low-dimensional setting, the results of predictive variable selec-
tion are presented in the left panel of Table 2. VSM selects covariates more
accurately than other subgroup methods and achieves lower prediction er-
rors. The performance of VSM is comparable to BVSA, indicating that VB

achieves computational efficiency without sacrificing much accuracy.
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Table 2: Predictive variable selection results with different p when n = 200.
p=20 p = 200

(a) S1: Y =1+ 25+ 4OtI(X1>O,X4<1,X6:2) +e

TPR FDR F1 Ext PE TPR FDR F1 Ext PE
VSM 0.883 0.021 0.904 77% 0.074 0.707 0.265 0.669 38% 0.091
BVSA 0.917 0.013 0.941 93% 0.105 0.783 0.198 0.781 50% 0.106
GUIDE 0.657 0.138 0.726 14% 0.226 0.517 0.119 0.610 1% 0.215
FindIt 0.997 0.656 0.507 61% 0.288 - - - - -
PRIM 0.383 0.324 0.455 0 0.328 0.097 0.771 0.129 0 0.245
MOB 0.250 0.689 0.274 0 0.312 0.147 0.810 0.164 0 0.302
SeqBT 0.343 0.010 0.507 0 0.236 0.333 0.050 0.490 0 0.234

(b) S2: Y =141+ 2+ Z4 + 1(26:2) + Z7+ 40tI(X1>0,X4<1,X6:2) 415
TPR FDR F1 Ext PE TPR FDR F1 Ext PE
VSM  0.873 0.027 0.896 77% 0.132 0.710 0.272 0.664 37% 0.090
BVSA 0.907 0.012 0.934 93% 0.106 0.810 0.182 0.802 51% 0.106
GUIDE 0.703 0.240 0.703 29% 0.227 0.507 0.124 0.602 1% 0.213
FindIt 0.997 0.657 0.507 25% 0.151 - - - - -
PRIM 0.353 0.409 0.406 0 0.302 0.077 0.845 0.094 0 0.220
MOB  0.760 0.399 0.662 8% 0.287 0.620 0.348 0.624 10% 0.282
SeqBT 0.347 0.000 0.512 0 0.235 0.327 0.060 0.482 0 0.237

In the high-dimensional setting, Findlt is excluded from the comparison
because it includes all covariate interactions and becomes computationally
infeasible. As shown in the right panel of Table 2, the performance of all
methods declines as the dimensionality increases. However, VSM signifi-
cantly outperforms other subgroup methods. Although VB approximation
experiences some loss in accuracy, the results remain comparable to BVSA,

highlighting the reliability of VSM under model misspecification.
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6. Real Data Application

In this section, we apply our proposed method to two datasets: the In-
ternational Warfarin Pharmacogenetics Consortium dataset and the AIDS

Clinical Trials Group 320 study.

6.1 Application to IWPC dataset

The International Warfarin Pharmacogenetics Consortium (IWPC) dataset
(International Warfarin Pharmacogenetics Consortium, 2009) includes clin-
ical and genetic information from over 5700 warfarin-treated patients, cov-
ering demographic characteristics, therapeutic dose, and genotype variants
of CYP2C9 and VKORCI, which are well-established factors influencing
warfarin sensitivity and dose requirements (Sconce et al., 2005).

Although warfarin’s effectiveness has been studied at the population
level (Anderson et al., 2007; Pirmohamed et al., 2013), increasing focus has
been placed on subgroup analysis to identify patients who benefit more from
the therapy (Stack and Maurice, 2016; Liu et al., 2025). This motivates the
investigation of treatment effect heterogeneity based on baseline covariates
to improve dosing decisions across patient subpopulations.

In our study, the response variable is the post-treatment international

normalized ratio (INR), a common measure of blood coagulation. Predic-
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tors include demographic variables (age, gender, weight, height, BMI, race),
clinical covariates (use of aspirin, amiodarone, enzyme inducers), and ge-
netic factors (CYP2C9 and VKORC1 genotypes). We follow the prepro-
cessing steps in Liu et al. (2025) and further include pairwise interactions
among predictors. The same set of 136 covariates is used for both prognostic
and predictive components, resulting in p = 272. To adapt to our model, we
define a binary warfarin treatment indicator by dichotomizing the dosage
at its median value into high and low dose groups. After excluding subjects
with missing records, the sample consists of n = 2836 patients.

Active prognostic and predictive covariates are selected based on the
variational posterior inclusion probabilities, averaged over five indepen-
dent runs with random initializations. The highest posterior prognostic
inclusion probability is 0.821 for the interaction between amiodarone and
CYP2C9*1/*2, while the probabilities of other covariates are below 0.5.
For predictive covariates, the highest inclusion probability is 1 for the in-
teraction between age and Asian race, followed by 0.614 for the interaction
between age and weight, with other covariates having probabilities below
0.5. The identification of Asian race and age as predictive factors aligns with
previous findings and can be explained by pharmacogenetic and metabolic

differences across patients (Jensen et al., 2012; Gaikwad et al., 2014). Mean-
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while, the discovery of novel predictive interactions offers new directions for
investigating treatment effect heterogeneity and refining personalized dos-
ing strategies in future studies. We present the probabilities of all covariates
in Section S5.1. Using a hard threshold of 0.5 for inclusion probabilities,

the estimated model, omitting inactive covariates, is given by

Y ~ #N(—0.184 — 0.516 amiodarone - CYP2C9* 1/*2 + 0.117¢, 0.985%)
+ (1 — #)N(—0.184 — 0.516 amiodarone - CYP2C9* 1/*2 — 0.421t, 0.985),
log[7/(1 — )] = —8.091 — 2.522 age - weight +0.187 age - Asian,
where the opposite signs of treatment effects suggest that, for patients in
one subgroup, high warfarin dosage may lead to adverse effects.

To validate the identified subgroups, we examine the treatment effects
in two subgroups (Group U and Group L) with the highest and lowest
25% predicted subgroup proportions. Figure 2 illustrates the response un-
der different treatments (1 and 0) in each subgroup. In Group U, the
response is significantly higher under treatment 1, while Group L exhibits
substantial overlap in the box plots, indicating a negligible treatment effect.
This confirms that the identified subgroups reflect meaningful differences

in treatment response.
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Figure 2: Response under treatment and no treatment in two groups with

the highest and lowest 25% predicted subgroup proportions, respectively.

6.2 Application to ACTG 320 study

The AIDS Clinical Trials Group (ACTG) 320 study (Hammer et al., 1997)
evaluated the efficacy of a three-drug regimen of indinavir, zidovudine, and
lamivudine versus a two-drug regimen of zidovudine and lamivudine for
HIV-infected patients. Following Zhao et al. (2013), we define the CD4
count change at week 24 as the response variable to identify patients bene-
fiting from the three-drug regimen. The dataset consists of 852 observations
with 11 pre-treatment covariates. To simulate high-dimensional scenarios,
we add 415 noise covariates from N(0,1) to both the prognostic and pre-
dictive feature sets, resulting in a dimension of p = n = 852.

We identify active covariates based on posterior inclusion probabilities.
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Among prognostic covariates, log baseline HIV-1 RNA concentration (L)
and log baseline CD4 counts (L.) exhibit the highest probabilities of 1
and 0.916, respectively, while all others remain below 0.3. For predictive
covariates, both L, and L. attain probabilities of 1, with the remaining
variables showing probabilities under 0.3. The identification of L, and L.
as predictive variables is consistent with findings in previous studies (Cai
et al., 2010; Zhao et al., 2013). The estimated treatment effects for the two
subgroups are 139.25 and —7.63, respectively, indicating that the three-drug
regimen may have adverse effects for a subset of patients.

We further compare the predictive variable selection results of VSM
with existing subgroup identification methods. We report the selection
frequencies of all covariates as well as the average number of selected noise
variables from 100 random trials. As shown in Table 3, VSM consistently
identifies L, and L., while rarely selecting noise covariates. In contrast,
GUIDE and SeqBT are highly sensitive to noise and fail to distinguish
informative variables. Although PRIM and MOB select L., they fail to
capture L,, resulting in incomplete subgroup identification. These results

highlight the robustness of VSM in high-dimensional settings.



7. DISCUSSION

Table 3: Selection frequencies of predictive covariates and the average num-

ber of selected noises from 100 trials
sex dr hemo wt Ks zido age Lr Lc Afri Hisp num of noises

VSM 0 0 O O 0 O 0 094084 0 0.06 0.06
GUIDE 0 0 0 0 O 0 001 0O 0 001 O 0.07
PRIM 0 O 005 0 0 0O O O 100 O O 0.03
MOB 0 0 O OO O O 0 100 0 O 0.25
Se¢qpfT” 0 O O O O O O O O O O 1.31

7. Discussion

In this paper, we propose VSM, a scalable method for high-dimensional
structured mixture models. By approximating the exact posterior with
a variational distribution, our method enables efficient and simultaneous
inference for both variable selection and parameter estimation. We estab-
lish theoretical guarantees for model selection consistency of both prognos-
tic and predictive variables, as well as for consistency in parameter esti-
mation. A coordinate ascent variational inference algorithm is developed,
and computational scalability is ensured via data augmentation strategies.
Comprehensive simulation studies demonstrate that VSM achieves accuracy
comparable to MCMC methods, while offering substantial improvements in
computational efficiency. Applications to real-world datasets further high-
light the practical utility of VSM in identifying meaningful subgroups and

uncovering treatment heterogeneity.
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Future extensions of our method may consider structured mixture mod-
els with more than two components. Recent advances in variational infer-
ence for multinomial logistic models have introduced sophisticated data
augmentation techniques (Galy-Fajou et al., 2020; Wojnowicz et al., 2022),
which could be utilized to construct surrogate ELBOs that accommodate
latent subgroup memberships beyond the binary case. Furthermore, set-

tings with heteroscedastic noise structures are for future study.

Supplementary Materials

The online supplementary materials contain (1) proofs of the theoretical
results under a known noise variance; (2) extended theoretical results and
proofs under an unknown noise variance; (3) detailed CAVI updates and
their derivation; (4) additional results of simulation studies and sensitivity

analyses; (5) additional information on the real applications.
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