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1 Introduction

We congratulate Nabi et al. (2022) on their impressive and insightful paper, which illustrates
the benefits of using causal/counterfactual perspectives and tools in missing data problems.
This paper represents an important approach to missing-not-at-random (MNAR) problems,
exploiting nonparametric independence restrictions for identification, as opposed to paramet-
ric/semiparametric models, or resorting to sensitivity analysis. Crucially, the authors represent
these restrictions with missing data directed acyclic graphs (m-DAGs), which can be useful
to determine identification in complex and interesting MNAR models. In this discussion we
consider (i) how/whether other tools from causal inference could be useful in missing data
problems, (ii) problems that combine missing data and causal inference together, and (iii)
some work on estimation in one of the authors’ example MNAR models.

2 Other causal identification tools

The graphical arguments used in Nabi et al. (2022) stem from a powerful analogy to a widely
used set of tools in the causal inference literature. In drawing this connection, their work raises
the question: which other tools and methodologies can be borrowed from the causal literature
and bear fruit for missing data problems?

The focus of Nabi et al. (2022) is—for the most part—on characterizing identification of the
full data law, p(L(1), R), under sets of (factual and counterfactual) conditional independence
relations implied by a directed acyclic graph and its associated structural model. However, it
is often sufficient for practical purposes to identify and estimate certain functions or function-
als of this distribution, say the marginal “target” data mean functional E(L(1)), rather than
the entire full law. Moreover, although nonparametric structural models and conditional inde-
pendence relations represent a large and important set of possible restrictions on the full data
law, other plausible structural restrictions may partially or point identify certain estimands
of interest. Indeed, both missing data instrumental variables and shadow variables are ideas
born out of the causal inference literature—the latter analogous to a negative control outcome
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variable—which move beyond conditional independence restrictions and can yield partial or
full identification of certain functionals of the target law.

Instrumental variables (IVs), while being much more widely adopted as tools for causal
inference, have been increasingly studied in recent years for use in missing data problems (Tch-
etgen Tchetgen and Wirth, 2017; Sun et al., 2018), having been proposed for such purposes
at least as early as Heckman (1979). Just as IVs can help identify causal effects in the pres-
ence of unmeasured exposure-outcome confounding, IVs for missing data can help identify
aspects of the target law when the data are missing not at random (MNAR), i.e., missing-
ness status is related to the missing variables themselves, such that adjusting for measured
covariates is not sufficient. Specifically, an IV for a partially missing outcome is a completely
observed cause of missingness that is unrelated to the outcome conditional on measured co-
variates (Tchetgen Tchetgen and Wirth, 2017). In the statistical causal inference literature,
IVs have been used to partially identify causal effects (Balke and Pearl, 1997; Swanson et al.,
2018; Levis et al., 2025). Point identification of the average treatment effect is possible under
additional homogeneity assumptions, which rule out certain kinds of effect modification by
the unmeasured confounders (Wang and Tchetgen Tchetgen, 2018; Hernán and Robins, 2020;
Levis et al., 2024). Alternatively, under a monotonicity assumption, the average treatment
effect among compliers—subjects who would be exposed under encouragement from the IV
but not otherwise—is nonparametrically identified (Imbens and Angrist, 1994). In the miss-
ing data context, while the homogeneity approach has been employed (Tchetgen Tchetgen and
Wirth, 2017), the types of nonparametrically identified local subgroup effects that result from
monotonicity seem to not yet have been explored. More broadly, ideas from principal strati-
fication (Frangakis and Rubin, 2002) may be interesting to consider for missing data problems.

As a parallel notion to IVs, the idea of negative control outcomes (Tchetgen Tchetgen, 2014;
Park et al., 2024) for handling unmeasured confounding in causal inference has been recently
proposed as a strategy for MNAR outcomes, under the name of “shadow variables” (Miao et al.,
2015; Miao and Tchetgen Tchetgen, 2016; Li et al., 2023). A shadow variable is a completely
measured predictor of the outcome that is independent of missingness status conditional on
measured covariates and the potentially missing outcome. These structural requirements of
course could be encoded in a DAG as in Nabi et al. (2022), but on their own are not sufficient
for identification of the full law, i.e., the algorithms in Nabi et al. (2022) would (rightfully) fail.
Instead, the shadow variable conditions imply certain moment restrictions on the missingness
mechanism, which guarantee identification of the means of functions of the missing variable
only when brought together with “bridge” or “representer” assumptions (Li et al., 2023). In-
terestingly, recent advances in the proximal causal inference literature make use of a pair
of negative control variables to identify causal effects under unmeasured confounding (Miao
et al., 2018; Cui et al., 2024). It would be interesting to consider such exploitation of multiple
negative controls in the missing data context.

Lastly, while mentioned in Appendix S3 of Nabi et al. (2022), their work more broadly
motivates the potential utility of single world intervention graphs (SWIGs; Richardson and
Robins (2013)) in the presence of missing data. What appears particularly underexplored is
the extent to which SWIGs can be used not only to elicit identification conditions for the
distribution of full data variables, but also the effects of (perhaps partially missing) exposure
variables. We briefly entertain this possibility in the next section.
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3 Simultaneous intervention on treatment and missingness

To confine our discussion within the limits of a concrete example, consider the observational
point exposure setting with partially missing exposures. Namely, suppose we observe O =
(X,R,RA, Y ), where X are a set of baseline confounders, A is a partially missing exposure
variable with R = 1(A observed), and Y is an outcome of interest. This setting was considered
in Williamson et al. (2012) and Kennedy (2020). Adopting the notational conventions of Nabi
et al. (2022), we can equivalently posit the existence of A(1), the exposure variable under an
intervention that sets R = 1, and write O = (X,R,A, Y ) where A = RA(1) + (1 − R)“?”.
Suppose interest lies in identifying and estimating E(Y a(1)), i.e., the mean potential outcome
under intervention that sets A(1) to a(1). Moreover, suppose that we are in the missing at
random (MAR) setting where

R ⊥⊥ A(1) | X,Y, (1)

a particular example for which is illustrated in Figure 1a, adopting the graphical conventions
used in Nabi et al. (2022).

X A(1) Y

R

A

(a)

X A(1) a(1) Y a(1)

Ra(1) r = 1

a(1)

(b)

Figure 1: m-DAG and m-SWIG for missing point exposure

Under either the nonparametric structural equation model with independent errors (Pearl,
2009) or the finest fully randomized causally interpretable structured tree graph (Robins and
Richardson, 2010), the m-DAG in Figure 1a implies

A(1) ⊥⊥ Y a(1) | X. (2)

Combining this no unmeasured confounding (NUC) condition with the MAR condition (1),
Kennedy (2020) shows via Bayes’ rule that

E(Y a(1) | X) =
E(Y λa(1)(X,Y ) | X)

E(λa(1)(X,Y ) | X)
, (3)

where λa(X,Y ) = P[A = a | X,Y,R = 1].

Note that whereas (1) can be read off from the m-DAG immediately via d-separation,
the NUC condition (2) cannot. In fact, this is a key innovation of SWIGs, in that under
the above-mentioned causal models, this conditional independence on counterfactuals can be
determined via d-separation after a node-splitting operation (Richardson and Robins, 2013).
Consider the intervention that sets treatment to a(1) and the missingness indicator to 1. In
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this case, to draw the corresponding SWIG, the node A(1) is split into random (A(1)) and
fixed (a(1)) components, with the former retaining all incoming arrows from the original DAG,
and the latter retaining all outgoing arrows; any (non-deterministic) descendant of the fixed
node gets the counterfactual label a(1). The SWIG (or, perhaps, “m-SWIG”) corresponding
to this intervention is displayed in Figure 1b, where we performed the same operation for the
missingness indicator.

A couple of observations are worth noting. First, we can apparently in this example say
more than (2), namely that A(1) ⊥⊥ (Y a(1) , Ra(1)) | X, since X is the only parent of A(1) in
the SWIG. Interestingly, although we are in a MAR setting, the missingness indicator R is a
descendant of A(1) (through the path A(1) → Y → R) and thus the counterfactual missingness
indicator Ra(1) appears on the SWIG. Second, by construction, m-DAGs and corresponding
m-SWIGs contain deterministic relationships that follow from consistency, e.g., the variable
A is a non-random function of A(1) and R. Thus, we could follow Nabi et al. (2022) and
collapse (A(1), A) as a single variable when the missingness indicator is equal to 1, though in
Figure 1b we keep the deterministic AA(1)=a(1),r=1 ≡ a(1) for clarity. Such deterministic rela-
tionships can subtly complicate the characterization of target law identification. For instance,
the “twin networks” of Balke and Pearl (1994) and Pearl (2009) were an earlier graphical at-
tempt to represent counterfactual independence relations, but for which d-separation failed
to be complete due to the presence of deterministic relationships (Richardson and Robins,
2013; Shpitser et al., 2022). It is plausible that such complications will not arise under the
convention adopted by the authors whereby L(1) cannot be descendants of R and L. More
generally, whether non-random variable dependencies have an impact on d-separation state-
ments in m-SWIGs may be an important avenue for future inquiry.

While the above example may not be particularly interesting from an identification per-
spective (since (3) can be obtained by elementary means), it raises the question of whether
SWIGs can provide insight into more complicated problems at the intersection of causal infer-
ence and missing data—say with partially missing confounders, treatments, and outcomes—or
even problems purely in the missing data realm. The simplicity of SWIGs has made them in-
creasingly popular in applied causal settings, and we hope to see them more fully investigated
for missing data.

4 Statistical estimation considerations

Moving away from the usual missing at random assumptions can yield non-standard identifi-
cation formulas for target parameters. As a result, efficient nonparametric estimation in these
alternative paradigms often remains unexplored. We briefly illustrate some interesting chal-
lenges by considering estimation of mean outcomes in the permutation model first proposed
by Robins (1997) and used by Nabi et al. (2022) as a primary example.

We relabel Y ≡ L1 and X ≡ L2, so that in the authors’ motivating example, Y (1) is the
(possibly unmeasured) HIV status and X(1) denotes HIV risks and fears. The missing data
DAG for this model is reproduced in Figure 2 below.

Under this model we have R1 ⊥⊥ Y (1) | X(1) and R2 ⊥⊥ (Y (1), X(1)) | Y,R1; Nabi et al.
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Y (1)

R1

Y

X(1)

R2

X

Figure 2: Directed acyclic graph for the permutation missingness model.

(2022) show how this implies that the joint distribution of X(1) and Y (1) is identified as

pX(1),Y (1)(x, y)

=
p(x, y,R1 = 1, R2 = 1)

{
p(x | R1 = 0, R2 = 1)P[R1 = 0] +

∫
Y p(x | R1 = 1, Y = y′, R2 = 1)p(R1 = 1, y′) dy′

}
P[R2 = 1 | R1 = 1, Y = y]

∫
Y p(x | R1 = 1, Y = y′, R2 = 1)p(R1 = 1, y′) dy′

= p(R1 = 1, y)p(x | R1 = 1, Y = y,R2 = 1)

{
1 +

p(x | R1 = 0, R2 = 1)P[R1 = 0]∫
Y p(x | R1 = 1, Y = y′, R2 = 1)p(R1 = 1, y′) dy′

}
.

Suppose we do not wish to estimate the entire joint distribution, but instead ψ = E(Y (1)),
e.g., the proportion of HIV-positive subjects in the previous example. The next proposition
gives the identifying expression for this parameter under the permutation model.

Proposition 1. Assume the permutation missing model in Figure 2. Then ψ = E(Y (1)) is
given by

ψ = P(R1 = 1)E(Y | R1 = 1) + P(R1 = 0)θ,

where

θ = E(Y (1) | R1 = 0) = E
(
E {Y/ζ(Y ) | R1 = 1, R2 = 1, X}
E {1/ζ(Y ) | R1 = 1, R2 = 1, X}

∣∣∣∣R1 = 0, R2 = 1

)
for ζ(Y ) = P[R2 = 1 | R1 = 1, Y ].

Proof. By identification of the full law above, we have

ψ =

∫
Y
y

∫
X
pX(1),Y (1)(x, y) dx dy

=

∫
Y
y p(R1 = 1, y) dy

+ P[R1 = 0]

∫
X
p(x | R1 = 0, R2 = 1)

∫
Y y p(y | R1 = 1)p(x | R1 = 1, Y = y,R2 = 1) dy∫
Y p(y | R1 = 1)p(x | R1 = 1, Y = y,R2 = 1) dy

dx

= P[R1 = 1] · E(Y | R1 = 1)

+ P[R1 = 0] · E

(∫
Y y p(y | R1 = 1)p(X | R1 = 1, Y = y,R2 = 1) dy∫
Y p(y | R1 = 1)p(X | R1 = 1, Y = y,R2 = 1) dy

∣∣∣∣∣R1 = 0, R2 = 1

)

Now by Bayes’ rule p(X | R1 = 1, Y = y,R2 = 1) = p(y|R1=1,R2=1,X)p(X|R1=1,R2=1)
p(y|R1=1,R2=1) and

p(y|R1=1)
p(y|R1=1,R2=1) =

P[R2=1|R1=1]
P[R2=1|R1=1,Y ] , which gives the result.
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Remark 1. We use a particular parametrization that ensures all nuisances can be represented
by conditional expectations (at the expense of preserving variation independence); alternative
parametrizations are of course also possible (and later we consider a different parametrization
when Y is binary).

Next we establish the nonparametric influence function of the functional θ, the variance of
which represents a local asymptotic minimax lower bound for estimation of this quantity.

Lemma 1. Let ζ(Y ) = P[R2 = 1 | R1 = 1, Y ] as before and define

α(X) = E (1/ζ(Y ) | R1 = 1, R2 = 1, X)

β(X) = E (Y/ζ(Y ) | R1 = 1, R2 = 1, X)

γ(X) = P[R1 = 1 | R2 = 1, X]

δ(Y ) = E
(

1

α(X)

1− γ(X)

γ(X)

{
Y − β(X)

α(X)

} ∣∣∣∣R1 = 1, R2 = 1, Y

)
.

Then the functional θ = E(β(X)/α(X) | R1 = 0, R2 = 1) satisfies the von Mises expansion

θ(P)− θ(P) =
∫
φ(o;P) d(P− P)(o) +Rθ(P;P),

with influence function

φ(O;P) =
1

P[R1 = 0, R2 = 1]

[
(1−R1)R2

{
β(X)

α(X)
− θ

}
+

R1

α(X)

R2

ζ(Y )

1− γ(X)

γ(X)

{
Y − β(X)

α(X)

}
−R1

(
R2

ζ(Y )
− 1

)
δ(Y )

]
,

and remainder

Rθ(P;P) =
{
1− P[R1 = 0, R2 = 1]

P[R1 = 0, R2 = 1]

}{
θ(P)− θ(P)

}
+

1

P[R1 = 0, R2 = 1]
EP

(
R2

{
β(X)

α(X)
− β(X)

α(X)

}{
[1− γ(X)]− α(X)

α(X)

γ(X)

γ(X)
[1− γ(X)]

}
− R1

α(X)
R2

1− γ(X)

γ(X)

{
β(X)

α(X)
− β(X)

α(X)

}{
1

ζ(Y )
− 1

ζ(Y )

}
−R1R2

{
1

ζ(Y )
− 1

ζ(Y )

}{
δ(Y )− δ(Y )

}
+R1R2

(
Y − β(X)

α(X)

){
1

ζ(Y )
− 1

ζ(Y )

}{
1

α(X)

1− γ(X)

γ(X)
− 1

α(X)

1− γ(X)

γ(X)

})
.

Proof. We omit details, but the result follows from calculations similar to those discussed for
example in Section 4 of Kennedy (2022).

The results above are given for arbitrary real-valued Y . When Y ∈ {0, 1} is binary, e.g.,
HIV status in the motivating example, then many of the expressions simplify substantially.
The following results illustrate this.
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Corollary 1. Define

ρ =
odds(Y = 1 | R1 = R2 = 1)

odds(Y = 1 | R1 = 1)

ξ(x) = odds(Y = 1 | X = x,R1 = R2 = 1).

When Y is binary then the quantity θ from Proposition 1 is given by

θ = E
{

ξ(X)

ρ+ ξ(X)

∣∣∣ R1 = 0, R2 = 1

}
.

The above result aids interpretation of the functional θ in the binary case. Specifically,
first note that the conditional odds in the expression can also be written as a product of a
density ratio and marginal odds, i.e.,

ξ(X) = odds(Y = 1 | X,R1 = R2 = 1)

=
dP(X | R1 = R2 = 1, Y = 1)

dP(X | R1 = R2 = 1, Y = 0)
× odds(Y = 1 | R1 = R2 = 1).

Therefore denoting the density ratio by

λ(x) =
dP(x | R1 = R2 = 1, Y = 1)

dP(x | R1 = R2 = 1, Y = 0)

we can also write

θ = E
{

odds(Y = 1 | R1 = 1)λ(X)

1 + odds(Y = 1 | R1 = 1)λ(X)

∣∣∣ R1 = 0, R2 = 1

}
.

Now note that the term
odds(Y = 1 | R1 = 1)λ(X)

can be interpreted via Bayes’ theorem as a posterior odds, where the prior odds, odds(Y =
1 | R1 = 1), comes from the R1 = 1 group (those initially tested in the HIV example), while
the likelihood ratio λ(x) comes from the R1 = R2 = 1 group (those tested and for whom data
on risks/fears were measured). Then the quantity

odds(Y = 1 | R1 = 1)λ(X)

1 + odds(Y = 1 | R1 = 1)λ(X)

is just this posterior odds converted to the probability scale. Therefore this quantity reflects
the posterior probability of a positive HIV test, combining the prior information from the ini-
tial testing, with the likelihood ratio from the second round of data collection on risks/fears.
Finally the outer expectation standardizes to the R1 = 0, R2 = 1 group (those not tested but
with measured risks/fears).

The next result gives the influence function for θ in the binary case, under a different
parametrization from the influence function result above for the general Y case. For simplic-
ity, and to focus ideas, we also consider the setting where the odds ratio ρ is known. We
discuss how the influence function and corresponding estimators are still useful when the odds
ratio is unknown after the result.
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Corollary 2. Define the odds ratio ρ and conditional odds ξ(x) as in Corollary 1, and let

ϖ(x) =
dP(x | R1 = 0, R2 = 1)

dP(x | R1 = R2 = 1)
.

When Y is binary and ρ is known, the functional θ from Proposition 1 satisfies the von Mises
expansion

θ(P)− θ(P) =
∫
φ(o;P) d(P− P)(o) +Rθ(P;P),

with influence function φ(O;P) equal to

ρ

{
1 + ξ(X)

ρ+ ξ(X)

}2 R1R2ϖ(X)

P[R1 = R2 = 1]

{
Y − ξ(X)

1 + ξ(X)

}
+

(1−R1)R2

P[R1 = 0, R2 = 1]

{
ξ(X)

ρ+ ξ(X)
− θ

}
and remainder Rθ(P;P) given by

E(R1R2)

E(R1R2)

∫ (
ξ

ρ+ ξ
− ξ

ρ+ ξ

)(
ϖ −ϖ

)
dP11 +

E(R1R2)

E(R1R2)

∫ (
S2g +

S2fρ

(ρ+ ξ)2

)
ϖ dP11

+

{
E((1−R1)R2)

E((1−R1)R2)
− E(R1R2)

E(R1R2)

}∫ (
ξ

ρ+ ξ
− ξ

ρ+ ξ

)
dP01

+

{
1− E((1−R1)R2)

E((1−R1)R2)

}(
θ − θ

)
,

for (S2f , S2g) second-order terms defined in the appendix, and dPst = dP(x | R1 = s,R2 = t).

Proof. The influence function can be obtained using the facts that (i) for g(ξ) = ξ
ρ+ξ we have

g′(ξ) = ρ
(ρ+ξ)2

, and (ii) the influence function for ξ(x) when X is discrete is given by

{1 + ξ(X)}21(X = x)R1R2

dP(x | R1 = R2 = 1)P[R1 = R2 = 1]

{
Y − P[Y = 1 | X,R1 = R2 = 1]

}
,

together with calculations similar to those discussed in Section 4 of Kennedy (2022). A deriva-
tion of the remainder expression is given in the appendix.

The above motivates the one-step/double-machine-learning estimator

θ̂ = Pn


(
1 + ξ̂

ρ+ ξ̂

)2
(R1R2)ρϖ̂

Pn(R1 = R2 = 1)

(
Y − ξ̂

1 + ξ̂

)
+

(1−R1)R2

Pn(R1 = 0, R2 = 1)

(
ξ̂

ρ+ ξ̂

) .

When the odds ratio ρ is unknown, one can simply use the above estimator with the plug-in
estimator ρ̂ replacing ρ. Since ρ can be estimated with simple sample averages, the plug-in is√
n-consistent and asymptotically normal, and the resulting estimator of θ will just have an

extra asymptotically linear term.
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