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Exploratory Hierarchical Factor Analysis

EXPLORATORY HIERARCHICAL FACTOR ANALYSIS

WITH AN APPLICATION TO PSYCHOLOGICAL MEASUREMENT

Jiawei Qiao1, Yunxiao Chen2 and Zhiliang Ying3

Abstract: Hierarchical factor models, which include the bifactor model as a special case, are useful in

social and behavioural sciences for measuring hierarchically structured constructs. Specifying a hier-

archical factor model involves imposing hierarchically structured zero constraints on a factor loading

matrix, which is often challenging. Therefore, an exploratory analysis is needed to learn the hier-

archical factor structure from data. Unfortunately, there does not exist an identifiability theory for

the learnability of this hierarchical structure, nor a computationally efficient method with provable

performance. The method of Schmid-Leiman transformation, which is often regarded as the default

method for exploratory hierarchical factor analysis, is flawed and likely to fail. The contribution of

this paper is three-fold. First, an identifiability result is established for general hierarchical factor

models, which shows that the hierarchical factor structure is learnable under mild regularity condi-

tions. Second, a computationally efficient divide-and-conquer approach is proposed for learning the

hierarchical factor structure. Finally, asymptotic theory is established for the proposed method, show-

ing that it can consistently recover the true hierarchical factor structure as the sample size grows to

infinity. The power of the proposed method is shown via simulation studies and a real data appli-

cation to a personality test. The computation code for the proposed method is publicly available at

https://github.com/EmetSelch97/EHFA/.

Key words and phrases: Hierarchical factor model, augmented Lagrangian method, exploratory hier-

archical factor analysis

1 Introduction

Many constructs in social and behavioural sciences are conceptualized to be hierarchically

structured, such as psychological traits (e.g., Carroll, 1993; DeYoung, 2006), economic factors

(e.g., Kose et al., 2008; Moench et al., 2013), health outcomes measures (e.g., Chen et al.,

2006; Reise et al., 2007), and constructs in marketing research (e.g., Sharma et al., 2022).
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Hierarchical factor models (Brunner et al., 2012; Schmid and Leiman, 1957; Thomson, 1939;

Yung et al., 1999), which include the bi-factor model (Holzinger and Swineford, 1937) as a

special case with two factor layers, are commonly used to measure hierarchically structured

constructs. In these models, hierarchically structured zero constraints are imposed on factor

loadings to define the hierarchical factors. When the hierarchical factor structure is known

or hypothesized a priori, the statistical inference of a hierarchical factor model only requires

standard confirmatory factor analysis techniques (Brunner et al., 2012). However, for many

real-world scenarios, little prior information about the hierarchical factor structure is avail-

able, so we need to learn this structure from data. This analysis is referred to as exploratory

hierarchical factor analysis.

Exploratory hierarchical factor analysis is a structured extension of classical exploratory

factor analysis (e.g., Anderson, 2003; Chen et al., 2019). In conventional exploratory factor

analysis, rotation methods (e.g., Browne, 2001) are typically employed to achieve a sparse

loading structure (Thurstone, 1947) for interpreting the factors. Exploratory hierarchical

factor analysis builds on this principle but imposes a hierarchical sparsity pattern on the

loading matrix, requiring that zero loadings be placed nonarbitrarily and follow a hierarchi-

cal structure. Compared with classical exploratory factor analysis, exploratory hierarchical

factor analysis faces theoretical and computational challenges. First, we lack a theoretical

understanding of its identifiability, i.e., the conditions under which the hierarchical factor

structure is uniquely determined by the distribution of manifest variables. This is an impor-

tant question, as learning a hierarchical factor structure is only sensible when it is identifiable.

Although identifiability theory has been established for exploratory bi-factor analysis in Qiao

et al. (2025), to our knowledge, no results are available under the general hierarchical fac-

tor model. Second, learning the hierarchical factor structure is a model selection problem,

which is computationally challenging due to its combinatorial nature. For a moderately large

number of manifest variables, it is computationally infeasible to compare all the possible hi-
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erarchical factor structures using relative fit measures. However, it is worth noting that a

computationally efficient method is available and commonly used for this problem, known

as the Schmid–Leiman transformation (Schmid and Leiman, 1957). This method involves

constructing a constrained higher-order factor model by iteratively applying an exploratory

factor analysis method with oblique rotation and, further, performing orthogonal transforma-

tions to turn the higher-order factor model solution into a hierarchical factor model solution.

However, as shown in Yung et al. (1999), the Schmid-Leiman transformation imposes unnec-

essary proportionality constraints on the factor loadings. As a result, it may not work well

for more general hierarchical factor models. Jennrich and Bentler (2011) gave an example in

which the Schmid–Leiman transformation fails to recover a bi-factor loading structure. Not

only theoretically flawed, the implementation of the Schmid–Leiman transformation can also

be a challenge for practitioners due to several decisions one needs to make, including the

choice of oblique rotation method for the exploratory factor analysis and how the number of

factors is determined in each iteration.

This paper fills these gaps. Specifically, we establish an identifiability result for ex-

ploratory hierarchical factor analysis, showing that the hierarchical factor structure is learn-

able under mild regularity conditions. We also propose a computationally efficient divide-

and-conquer approach for learning the hierarchical factor structure. This approach divides

the learning problem into many subtasks of learning the factors nested within a factor, also

known as the child factors of this factor. It conquers these subtasks layer by layer, starting

from the one consisting only of the general factor. Our method for solving each subtask

has two building blocks – (1) a constraint-based continuous optimization algorithm and (2)

a search algorithm based on an information criterion. The former is used to explore the

number and loading structure of the child factors, and the latter serves as a refinement step

that ensures the true structure of the child factors is selected with high probability. Finally,

asymptotic theory is established for the proposed method, showing that it can consistently
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recover the true hierarchical factor structure as the sample size grows to infinity.

The proposed method is closely related to the method proposed in Qiao et al. (2025) for

exploratory bi-factor analysis, which can be seen as a special case of the current method when

the hierarchical factor structure is known to have only two layers. However, we note that the

current problem is substantially more challenging as the complexity of a hierarchical factor

structure grows quickly as the number of factor layers increases. Nevertheless, the constraint-

based continuous optimization algorithm that serves as a building block of the proposed

method is similar to the algorithm used for exploratory bi-factor analysis in Qiao et al.

(2025). This algorithm turns a computationally challenging combinatorial model selection

problem into a relatively easier-to-solve continuous optimization problem, enabling a more

efficient global search of the factor structure.

The rest of the paper is organized as follows. In Section 2, we establish the identifiability

of the general hierarchical factor model and, further, propose a divide-and-conquer approach

for exploratory hierarchical factor analysis and establish its consistency. In Section 3, the

computation of the divide-and-conquer approach is discussed. Simulation studies and a real

data example are presented in Sections 4 and 5, respectively, to evaluate the performance of

the proposed method. We conclude with discussions in Section 6.

2 Exploratory Hierarchical Factor Analysis

2.1 Constraints of hierarchical factor model

Consider a factor model for J observed variables, with K orthogonal factors. The population

covariance matrix can be decomposed as Σ = ΛΛ⊤ + Ψ, where Λ = (λjk)J×K is the loading

matrix and Ψ is a J × J diagonal matrix, which is typically referred as the unique variance

matrix (see, e.g., Fabrigar and Wegener, 2012), with diagonal entries ψ1, . . . , ψJ > 0 that
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record the unique variances. We say this factor model is a hierarchical factor model if the

loading matrix Λ satisfies certain zero constraints that encode a factor hierarchy.

Specifically, let vk = {j : λjk ̸= 0} be the variables loading on the kth factor. The factor

model becomes a hierarchical factor model if v1, . . . , vK satisfy the following constraints:

C1. v1 = {1, . . . , J} corresponds to a general factor that is loaded on by all the items.

C2. For any k < l, it holds that either vl ⊊ vk or vl ⊂ {1, . . . , J}\vk. That is, the variables

that load on factor l are either a subset of those that load on factor k or do not overlap

with them. When vl ⊊ vk, we say factor l is a descendant factor of factor k. If further

that there does not exist k′ such that k < k′ < l and vl ⊊ vk′ ⊊ vk, we say factor l is a

child factor of factor k, and factor k is a parent factor of factor l.

C3. For a given factor k, we denote all its child factors as Chk. Then its cardinality |Chk|

satisfies that |Chk| = 0 or |Chk| ≥ 2. That is, a factor either does not have any

child factor or at least two child factors. Moreover, when a factor k has two or more

child factors, these child factors satisfy that vl ∩ vl′ = ∅, for any l, l′ ∈ Chk, and

∪
l∈Chk

vl = vk. That is, the sets of variables that load on the child factors of a factor

are a partition of the variables that load on this factor. We note that one child node

is not allowed due to identification issues. To avoid ambiguity in the labelling of the

factors, we further require that

(a) k < l if factors k and l are the child factors of the same factor and min{vk} <

min{vl}. That is, we label the child factors of the same factor based on the labels

of the variables that load on each factor.

(b) k < l if factors k and l do not have the same parent factor, and the parent factor

of k has a smaller label than the parent factor of l.

5
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The requirement |Chk| = 0 or |Chk| ≥ 2 in constraint C3 is necessary for the hierarchical

factor model to be identifiable. When a factor k has a unique child factor (i.e. |Chk| = 1), it

is easy to show that the two columns of the loading matrix that correspond to factor k and

its single child factor are not determined up to an orthogonal rotation.

We note that when the above constraints hold, the hierarchical factor structure can

be visualized as a tree, where each internal node represents a factor, and each leaf node

represents an observed variable. In this tree, factor l being a child factor of factor k, is

represented by node l being a child node of node k. The variables that load on each factor

are indicated by its descendant leaf nodes.

When the factors follow a hierarchical structure, we can classify the factors into layers.

The first factor layer only includes the general factor, denoted by L1 = {1}. The rest of

the layers can be defined recursively. That is, if a factor k is in the tth layer, then its child

factors are in the (t + 1)th layer. Let T be the total number of layers and L1, . . . , LT be

the sets of factors for the T layers. It is worth noting that the way the layers are labelled

here is opposite to how they are labelled in the literature. That is, we label the layers from

the top to the bottom of the hierarchy of the factors. In contrast, they are labelled from

the bottom to the top in the literature (see, e.g., Yung et al., 1999). We adopt the current

labelling system because it is more convenient for the proposed method in Section 2.2 that

learns the factor hierarchy from top to bottom.

An illustrative example of a three-layer hierarchical factor model is given in Figure 1,

where Panel (a) shows the variables that load on each factor from the top layer to the bottom

layer, and Panel (b) shows the corresponding path diagram. In this example, J = 16, K = 6,

v1 = {1, 2, . . . , 16}, v2 = {1, . . . , 8}, v3 = {9, . . . , 12}, v4 = {13, . . . , 16}, v5 = {1, . . . , 4} and

v6 = {5, . . . , 8}. The factors are labeled following the constraints C3(a) and C3(b). Based

on this hierarchical structure, we have T = 3, L1 = {1}, L2 = {2, 3, 4} and L3 = {5, 6}. The

6
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v1

v2 v3 v4

v5 v6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L1

L2

L3

(a) The hierarchical factor structure of a three-layer hierarchical factor model.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

F1

F4

F5

F3F2

F6

(b) The path diagram corresponding to the hierarchical factor model in Panel (a).

Figure 1: The illustrative example of a three-layer hierarchical factor model.

loading matrix Λ under the hierarchical structure takes the form

Λ =



λ11 λ21 λ31 λ41 λ51 λ61 λ71 λ81 λ91 λ10,1 λ11,1 λ12,1 λ13,1 λ14,1 λ15,1 λ16,1

λ12 λ22 λ32 λ42 λ52 λ62 λ72 λ82 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 λ93 λ10,3 λ11,3 λ12,3 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 λ13,4 λ14,4 λ15,4 λ16,4

λ15 λ25 λ35 λ45 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 λ56 λ66 λ76 λ86 0 0 0 0 0 0 0 0



⊤

.

(1)

Under a confirmatory setting, the number of factors K and the variables associated with

each factors, v1, v2, . . . , vK , are known. In that case, estimating the hierarchical factor model

is a relatively simple problem, which involves solving an optimization problem with suitable
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zero constraints on the loading parameters. However, in many real-world applications, we

do not have prior knowledge about the hierarchical structure of the loading matrix. In

these cases, we are interested in exploratory hierarchical factor analysis, i.e., simultaneously

learning the hierarchical structure from data and estimating the corresponding parameters.

Before presenting a method for exploratory hierarchical factor analysis, we first show

that the true factor hierarchy is unique under mild conditions, which is essential for the

true structure to be learnable. Suppose that we are given a true covariance matrix Σ∗ =

Λ∗(Λ∗)⊤ + Ψ∗, where the true loading matrix Λ∗ satisfies the constraints of a hierarchical

factor model. Theorem 1 below shows that the true loading matrix Λ∗ is unique up to column

sign-flips and thus yields the same hierarchical structure.

The following notation is needed in the rest of the paper. Given a hierarchical factor

structure with loading sets vi, let Di = {j : vj ⊊ vi} be the set of all descendent factors

of factor i. For example, in the hierarchical structure shown in Figure 1, D2 = {5, 6}. For

any matrix A = (ai,j)m×n and sets S1 ⊂ {1, . . . ,m} and S2 ⊂ {1, . . . , n}, let A[S1,S2] =

(ai,j)i∈S1,j∈S2 be the submatrix of A consisting of elements that lie in rows belonging to set

S1 and columns belonging to set S2, where the rows and columns are arranged in ascending

order based on their labels in S1 and S2, respectively. For example, consider the loading

matrix in (1), where v2 = {1, 2, . . . , 8}. Then, Λ[v2,{1,2}] takes the form

Λ[v2,{1,2}] =

 λ11 λ21 λ31 λ41 λ51 λ61 λ71 λ81

λ12 λ22 λ32 λ42 λ52 λ62 λ72 λ82

⊤

.

For any vector a = (a1, . . . , an)
⊤ and set S ⊂ {1, . . . , n}, we similarly define a[S] = (ai)

⊤
i∈S

be the subvector of a consisting of the elements belonging to S, where the elements in a[S]

are arranged in ascending order based on their labels in S. For any set S1 ⊂ {1, 2, . . . , n},

let vec(S1) be a mapping that maps the set S1 to a vector whose elements are the same as S1
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and arranged in ascending order. For two sets S1 ⊂ {1, 2, . . . , n} and S2 ⊂ {1, 2, . . . , |S1|},

we denote S1[S2] as the subset of S1, consisting of elements in vec(S1)[S2].

Condition 1 The population covariance matrix can be expressed as the form Σ∗ = Λ∗(Λ∗)⊤+

Ψ∗, where the true loading matrix Λ∗ is of rank K and the loading sets v∗k and child factors

Ch∗k defined by Λ∗ satisfy the constraints C1–C3 of a hierarchical factor model.

Condition 2 Given another J ×K matrix Λ and J × J diagonal matrix Ψ such that Σ∗ =

Λ∗(Λ∗)⊤ +Ψ∗ = ΛΛ⊤ +Ψ, we have ΛΛ⊤ = Λ∗(Λ∗)⊤ and Ψ = Ψ∗.

Condition 3 Let D∗
k be the corresponding true set of descendant factors of factor k. For

any factor i with Ch∗i ̸= ∅ and any j ∈ Ch∗i , it satisfies that (1) any two rows of Λ∗
[v∗j ,{i,j}]

are linearly independent, (2) for any k ∈ v∗j , Λ∗
[v∗j \{k},{i,j}∪D∗

j ]
has full column rank, and (3)

if |Ch∗j | ≥ 2, then, for any s1, s2 ∈ Ch∗j , k1, k2 ∈ v∗s1, and k3, k4 ∈ v∗s2, Λ
∗
[{k1,...,k4},{i,j,s1,s2}] is

of full rank.

Theorem 1 Suppose that Conditions 1–3 hold. If there exists some hierarchical factor struc-

ture with K factors such that its loading matrix Λ and unique variance matrix Ψ satisfy

Σ∗ = ΛΛ⊤ + Ψ, there exists some sign flip matrix Q ∈ Q such that Λ = Λ∗Q, where Q

consists of all K ×K diagonal matrices Q whose diagonal entries take values 1 or −1.

Remark 1 As far as we know, Theorem 1 is the first identifiability result for exploratory

hierarchical factor analysis. This theorem establishes mild regularity conditions under which

the true hierarchical factor model is identifiable when we do not know the true hierarchical

factor structure. Condition 1 assumes that the true model is a hierarchical factor model.

Under this model assumption, the identifiability result of Theorem 1 has two parts. The

first part involves identifying the column space of the loading matrix based on the population

covariance matrix, and the second part entails identifying the factors based on this column

space. The identifiability result in the first part, which is assumed in Condition 2, has already

9
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been well studied in the literature. For example, Condition 4 below is a result in Theorem

5.1, Anderson and Rubin (1956), which gives a sufficient condition for Condition 2 to hold.

On the other hand, the second part is more challenging and relies more on the hierarchical

factor structure. Theorem 1 focuses on proving the second part.

Condition 4 For each j ∈ {1, . . . , J}, there exist two disjoint set E1, E2 ⊂ {1, . . . , J} \ {j}

with |E1| = |E2| = K such that Λ∗
[E1,:]

and Λ∗
[E2,:]

are of full rank, where Λ∗
[E1,:]

and Λ∗
[E2,:]

are

the submatrices of Λ∗ consisting of the rows belonging to E1 and E2.

Remark 2 Condition 2 implicitly imposes some minimum requirements on the parameter

space for identifiable hierarchical factor models. In fact, Proposition 1 below implies a nec-

essary condition for Condition 2. This necessary condition leads to the following constraint:

C4. For all k = 1, . . . , K, |vk| ≥ 3, and |vk| ≥ 7 if factor k has two or more child factors.

Proposition 1 There exists another J ×K matrix Λ following the same hierarchical factor

structure as the true model and a J × J diagonal matrix Ψ such that Σ∗ = Λ∗(Λ∗)⊤ +Ψ∗ =

ΛΛ⊤ +Ψ, if there exists a factor k such that (1) |v∗k| ≤ 2 or (2) |Ch∗k| ≥ 2 and |v∗k| ≤ 6.

Proposition 1 follows directly from Theorem 1 in Fang et al. (2021).

Remark 3 Condition 3 imposes three requirements. First, it requires that there do not exist

two variables loading on factor j such that their loadings on any factor i and its child node

j are linearly dependent. This is a mild assumption satisfied by almost all the models in

the full parameter space of hierarchical factor models. Second, it requires that the submatrix

Λ∗
[v∗j ,{i,j}∪D∗

j ]
, which corresponds to variables in v∗j and factors i, j, j’s descendants, are still of

full column rank after deleting any row. This condition mainly imposes a restriction on the

number of descendant factors each factor can have. That is, the full-column-rank requirement

implies that |v∗j | ≥ 3+|D∗
j |. As shown via Proposition 2 below, this requirement automatically
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holds for all the identifiable hierarchical factor models that satisfy constraints C1–C4. Other

than that, the full-column-rank requirement is easily satisfied by most hierarchical factor

models. These two requirements can be seen as an extension of Condition 2 of Qiao et al.

(2025) to hierarchical factor models, where Qiao et al. (2025) consider a bi-factor model

with possibly correlated bi-factors. Third, we require that when factor j has child factors s1

and s2, for any two variables k1, k2 loading on factor s1 and any variables k3, k4 loading on

factor s2, the sub-loading matrix corresponding to variables k1, . . . , k4 and factors i, j, s1, s2

is of full rank. Although the requirements in Condition 3 are quite mild, we acknowledge that

they may be further weakened. For example, instead of requiring any two roles of Λ∗
[v∗j ,{i,j}]

to be linearly independent, we may only need to require a sufficient number pair of the rows

of Λ∗
[v∗j ,{i,j}]

to be linearly independent; see Appendix S3 for further discussions. We leave the

refinement of the condition for future investigation.

Proposition 2 Suppose that the hierarchical factor structure satisfies constraints C1–C4.

Then |v∗j | ≥ 3 + |D∗
j | holds for each factor j.

2.2 An Overview of Proposed Method

As the proposed method is quite sophisticated, we start with an overview of the proposed

method to help readers understand it. Consider a dataset with N observation units from

a certain population and J observed variables. Let S be the sample covariance matrix of

observed data. The proposed method takes S as the input and outputs estimators:

1. T̂ and K̂ for the number of layers T and the number of factors K.

2. L̂1, . . . , L̂T̂ for the factor layers L1, . . . , LT and v̂1, v̂2, . . . , v̂K̂ for the sets of variables

loading on the K factors, v1, . . . , vK .

3. Λ̂ and Ψ̂ for the loading matrix Λ and unique variance matrix Ψ.

11
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As shown in Theorem 2 below, with the sample size N going to infinity, these estimates will

converge to their true values.

The proposed method learns the hierarchical factor structure from the top to the bottom

of the factor hierarchy. It divides the learning problem into many subproblems and conquers

them layer by layer, starting from the first layer L̂1 = {1} with v̂1 = {1, . . . , J}. For each

step t, t = 2, 3, . . . , suppose the first to the (t− 1)th layers have been learned. These layers

are denoted by L̂i = {ki−1 + 1, . . . , ki}, i = 1, . . . , t − 1, where k0 = 0 and k1 = 1, and the

associated sets of variables are denoted by v̂1, . . . , v̂kt−1 . We make the following decisions in

the tth step:

1. For each factor k ∈ L̂t−1, learn its child factors under the constraints C3 and C4. This

is achieved by an Information-Criterion-Based (ICB) method described in Section 2.3

below. The labels of the child factors are denoted by Ĉhk. When Ĉhk ̸= ∅, we denote

the associated sets of variables as v̂l, l ∈ Ĉhk.

2. If Ĉhk = ∅ for all k ∈ L̂t−1, stop the learning algorithm and conclude that the factor

hierarchy has T̂ = t− 1 layers.

3. Otherwise, let L̂t = {kt−1 + 1, . . . , kt} = ∪k∈L̂t−1
Ĉhk and proceed to the (t+ 1)th step.

We iteratively learn the structure of each layer until the preceding stopping criterion

is met. Then we obtain the estimates Λ̂ and Ψ̂ by maximum likelihood estimation given

K̂ = kT̂ , v̂1, . . . , v̂K̂ :

(Λ̂, Ψ̂) = argmin
Λ,Ψ

l(ΛΛ⊤ +Ψ;S),

s.t. λij = 0, i /∈ v̂j, i = 1, . . . , J, j = 1, . . . , K̂,

Ψ[{i},{i}] ≥ 0,Ψ[{i},{j}] = 0, i = 1, . . . , J, j ̸= i,

(2)

12
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where l(ΛΛ⊤+Ψ;S) = N
(
log(det(ΛΛ⊤+Ψ))+ tr(S(ΛΛ⊤+Ψ)−1)− log(det(S))−J

)
equals

twice the negative log-likelihood of the observed data up to a constant. We output T̂ , K̂,

L̂1, . . . , L̂T̂ , v̂1, . . . , v̂K̂ , Λ̂ and Ψ̂ as our final estimate of the hierarchical factor model.

To illustrate, consider the example in Figure 1. In the first step, we start with L̂1 = {1}

and v̂1 = {1, . . . , 16}. In the second step, we learn the child factors of Factor 1. If they are

correctly learned, then we obtain Ĉh1 = {2, 3, 4} with v̂2 = {1, . . . , 8}, v̂3 = {9, . . . , 12} and

v̂4 = {13, . . . , 16}. This leads to L̂2 = {2, 3, 4}. In the third step, we learn the child factors

of Factors 2, 3 and 4, one by one. If correctly learned, we have Ĉh2 = {5, 6}, Ĉh3 = ∅,

Ĉh4 = ∅, L̂3 = {5, 6}, v̂5 = {1, . . . , 4} and v̂6 = {5, . . . , 8}. In the fourth step, if correctly

learned, we have Ĉh5 = Ĉh6 = ∅, and the learning algorithm stops. We then have T̂ = 3,

K̂ = 6, L̂1, . . . , L̂3, v̂1, . . . , v̂6 and further obtain Λ̂ and Ψ̂ using (2) given K̂ and v̂1, . . . , v̂6.

We summarise the steps of the proposed method in Algorithm 1 below.

Algorithm 1 A Divide-and-Conquer method for learning the hierarchical factor structure
Input: Sample covariance matrix S ∈ RJ×J .
1: Set L̂1 = {1} with v̂1 = {1, . . . , J}.
2: Determine Ĉh1, the child factors of Factor 1, and v̂i for all i ∈ Ĉh1, the sets of variables

loading on these child factors, by the ICB method in Algorithm 2.
3: Set L̂2 = Ĉh1 and t = 2,
4: while L̂t ̸= ∅ do
5: for k ∈ L̂t do
6: Determine Ĉhk and v̂i for all i ∈ Ĉhk by the ICB method in Algorithm 2.
7: end for
8: Set L̂t+1 = ∪k∈L̂t

Ĉhk.
9: t = t+ 1.

10: end while
11: Set T̂ = t− 1, K̂ = ΣT̂

l=1|L̂l|.
12: Obatin Λ̂ and Ψ̂ using (2) given K̂ and v̂1, . . . , v̂K̂ .
Output: T̂ , K̂, L̂1, . . . , L̂T̂ , v̂1, . . . , v̂K̂ , Λ̂ and Ψ̂.
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2.3 ICB Method for Learning Child Factors

From the overview of the proposed method described above, we see that the proposed method

solves the learning problem by iteratively applying an ICB method to learn the child factors

of each given factor. We now give the details of this method. We start with the ICB method

for learning the child factors of Factor 1, i.e., the general factor. In this case, the main

questions the ICB method answers are: (1) how many child factors does Factor 1 have? and

(2) what variables load on each child factor? It is worth noting that when learning these from

data, we need to account for the fact that each child factor can have an unknown number of

descendant factors. However, with a divide-and-conquer spirit, we do not learn the structure

of the descendant factors (i.e., the hierarchical structure of these descendant factors and

the variables loading on them) of each child factor in this step because this structure is too

complex to learn at once.

The ICB method answers the two questions above by learning a loading matrix Λ̃1 with

zero patterns that encode the number and loading structure of the child factors of Factor

1. More specifically, Λ̃1 is searched among the space of loading matrices that satisfy certain

zero constraints that encode a hierarchical factor model. This space is defined as

A1 = ∪c∈{0,2,...,cmax},d1,...,dc∈{1,...,dmax}A1(c, d1, . . . , dc),

where, if c ≥ 2, for a pre-specified constant τ > 0,

A1(c, d1, . . . , dc) ={A = (aij)J×(1+d1+···+dc) : there exists a partition of {1, . . . , J}, denoted

by v11, . . . , v
1
c , satisfying min{v11} < min{v12} < · · · < min{v1c}, such that

A[v1s ,{j}] = 0, for all s = 1, . . . , c, and j /∈ {1, 2 +
∑
s′<s

ds′ , 3 +
∑
s′<s

ds′ , . . . ,

1 +
∑
s′≤s

ds′} and |aij | ≤ τ, for all i = 1, . . . , J and j = 1, . . . , 1 +

c∑
s=1

dc.},

(3)
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and, if c = 0, A1(0) = {A = (aij)J×1 : |aij| ≤ τ}. Here, cmax and dmax are pre-specified con-

stants typically decided by domain knowledge. τ is a universal upper bound for the loading

parameters, which is needed for technical reasons for our theory. The space A1(c, d1, . . . , dc)

includes all possible loading matrices for a hierarchical factor structure, where Factor 1 has c

child factors, and each child factor has ds − 1 descendant factors. The space A1 is the union

of all the possible A1(c, d1, . . . , dc) for different combinations of the numbers of child factors

and their descendant factors.

For example, consider the hierarchical factor model example in Figure 1, for which

v̂1 = {1, . . . , 16}. Then, the matrix

Λ1 =



λ11 λ21 λ31 λ41 λ51 λ61 λ71 λ81 λ91 λ10,1 λ11,1 λ12,1 λ13,1 λ14,1 λ15,1 λ16,1

λ12 λ22 λ32 λ42 λ52 λ62 λ72 λ82 0 0 0 0 0 0 0 0

λ13 λ23 λ33 λ43 λ53 λ63 λ73 λ83 0 0 0 0 0 0 0 0

λ14 λ24 λ34 λ44 λ54 λ64 λ74 λ84 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 λ95 λ10,5 λ11,5 λ12,5 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 λ13,6 λ14,6 λ15,6 λ16,6



⊤

(4)

lies in space A1(3, 3, 1, 1). This loading matrix is what the ICB method aims to find, as it

has the same blockwise zero pattern (ignoring the zero constraints implied by the lower-layer

factors) as the true loading pattern in (1) after reordering the columns of Λ in (1).

We search for the best possible loading matrix in A1 using the information criterion

defined as:

IC1(c, d1, . . . , dc) = min
Λ1,Ψ1

l
(
Λ1Λ

⊤
1 +Ψ1, S

)
+ p1(Λ1) logN,

s.t. Λ1 ∈ A1(c, d1, . . . , dc), κ1 ≤ (Ψ1)[{i},{i}] ≤ κ2,

(Ψ1)[{i},{j}] = 0, i = 1, . . . , |v̂1|, j ̸= i,

(5)
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where κ1 and κ2 are pre-specified lower and upper bounds for the unique variance, and

p1(Λ1) =

 Σc
s=1(|v1s |ds − ds(ds − 1)/2) if ds ≤ |v1s | for all s = 1, . . . c,

∞, otherwise,
(6)

is a penalty on the number of free parametersfor a matrix Λ1 in A1(c, d1, . . . , dc). The penalty

ensures that in the selected factor loadings, one plus the number of descendant factors of each

child factor of Factor 1 will not exceed the number of items loading on the corresponding

child factor.

Ideally, we hope to find the loading matrix in A1 that minimises IC1(c, d1, . . . , dc) among

all c ∈ {0, 2, . . . , cmax} and d1, . . . , dc ∈ {1, . . . , dmax}. More specifically, we define

(c̄1, d̄
1
1, . . . , d̄

1
c̄1
) = argmin

c∈{0,2,...,cmax},1≤ds≤dmax,s=1,...,c

IC1(c, d1, . . . , dc) (7)

and further

(Λ̄1, Ψ̄1) = argmin
Λ1,Ψ1

l
(
Λ1Λ

⊤
1 +Ψ1, S

)
s.t. Λ1 ∈ A1(c̄1, d̄

1
1, . . . , d̄

1
c̄1
), κ1 ≤ (Ψ1)[{i},{i}] ≤ κ2

(Ψ1)[{i},{j}] = 0, i = 1, . . . , |v̂1|, j ̸= i.

(8)

We determine the variables loading on each child factor of Factor 1 based on the zero pattern

of Λ̄1.

However, we note that A1 is highly complex, and thus, enumerating all the possible

loading matrices in A1 is computationally infeasible. In other words, while the quantities in

(7) and (8) are well-defined mathematically, they cannot be computed within a reasonable

time. In this regard, we develop a greedy search method, presented in Algorithm 2, for

searching over the space A1. This greedy search method will output ĉ1 and v̂11, . . . , v̂
1
ĉ1

.
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As shown in Theorem 2, with probability tending to 1, they are consistent estimates of

the corresponding true quantities for the factors in this layer. In other words, this greedy

search is theoretically guaranteed to learn the correct hierarchical factor structure. Moreover,

Algorithm 2 also solves a similar optimization as (8) for loading matrices in A1(ĉ1, d̂1, . . . , d̂ĉ1),

from which we obtain a consistent estimate of the first column of the loading matrix, denoted

by λ̃1. So far, we have learned the factors in the second layer of the factor hierarchy.

For t ≥ 3, suppose that the first to the (t − 1)th layers have been successfully learned,

and we now need to learn the factors in the tth layer. This problem can be decomposed into

learning the child factors of each factor k in L̂t−1 = {kt−2+1, . . . , kt−1}. At this moment, we

have the estimated variables loading on Factor k, denoted by v̂k, and a consistent estimate

of the loading parameters for the factors in the first to the (t − 2)th layer, denoted by λ̃i,

i = 1, . . . , kt−2, which are obtained as a by-product of the ICB method in the previous steps.

We define Σ̃k,0 :=
∑kt−2

i=1 (λ̃i)[v̂k](λ̃i)
⊤
[v̂k]

and Sk := S[v̂k,v̂k]. Similar to the learning of child

factors of Factor 1, we define the possible space for the loading submatrix associated with

the descendant factors of Factor k as

Ak = ∪c∈{0,2,...,cmax},d1,...,dc∈{1,...,dmax}Ak(c, d1, . . . , dc),

where, if c ≥ 2, for the same constant τ > 0 as in A1

Ak(c, d1, . . . , dc)

={A = (aij)|v̂k|×(1+d1+···+dc) : there exists a partition of {1, . . . , |v̂k|}, denoted

by vk1 , . . . , v
k
c , satisfying min{vk1} < min{vk2} < · · · < min{vkc }, such that

A[vks ,{j}] = 0, for all s = 1, . . . , c, and j /∈ {1, 2 +
∑
s′<s

ds′ , 3 +
∑
s′<s

ds′ , . . . ,

1 +
∑
s′≤s

ds′} and |aij| ≤ τ for all i = 1, . . . , |v̂k| and j = 1, . . . , 1 +
c∑

s=1

ds},

(9)
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and, if c = 0, Ak(0) = {A = (aij)|v̂k|×1 : |aij| ≤ τ}. Here, c and d1, . . . , dc have similar

meanings as in A1(c, d1, . . . , dc). That is, Ak(c, d1, . . . , dc) includes the corresponding loading

submatrices when Factor k has c child factors, and each child factor has ds − 1 descendant

factors. It should be noted that, however, each matrix in Ak(c, d1, . . . , dc) has only |v̂k| rows,

while those in A1(c, d1, . . . , dc) have J rows. This is because, given the results from the

previous steps, we have already estimated that factor k and its descendant factors are only

loaded by the variables in v̂k. Therefore, we only focus on learning the rows of the loading

matrix that correspond to the variables in v̂k in the current task. Similar to IC1(c, d1, . . . , dc),

we define

ICk(c, d1, . . . , dc) = min
Λk,Ψk

l
(
Σ̃k,0 + ΛkΛ

⊤
k +Ψk, Sk

)
+ pk(Λk) logN,

s.t. Λk ∈ Ak(c, d1, . . . , dc), κ1 ≤ (Ψk)[{i},{i}] ≤ κ2,

(Ψk)[{i},{j}] = 0, i = 1, . . . , |v̂k|, j ̸= i,

(10)

where

pk(Λk) =

 Σc
s=1(|vks |ds − ds(ds − 1)/2) if ds ≤ |vks | for all s = 1, . . . c,

∞, otherwise
(11)

is a penalty term.

Again, we use the greedy search algorithm, Algorithm 2, to search for the best possible

Λk in Ak. It outputs ĉk and v̂k1 , . . . , v̂
k
ĉk

, and an estimate of the kth column of the loading

matrix, λ̃k. Under some regularity conditions, Theorem 2 shows that ĉk, v̂k1 , . . . , v̂kĉk , and λ̃k

are consistent estimates of the corresponding true quantities.

Remark 4 The penalty term in the proposed information criterion is essential for learning

the correct hierarchical factor structure that satisfies the constraints in C1-C4. It avoids

asymptotically rank-degenerated solutions for the loading matrix and, thus, avoids selecting
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v1

v2 v3

v4 v5 v6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L1

L2

L3

Figure 2: A correctly specified model with a redundant factor corresponding to v2.

an over-specified hierarchical factor model with redundant parameters in the loading matrix

and redundant factors, which affects the interpretation of the estimated factors. Consider

the example in Figure 1. Without the penalty in the proposed information criterion, we may

select the structure in Figure 2, which is still a correctly specified model but has a redundant

factor (corresponding to v2) that is not very interpretable.

We present the proposed greedy search algorithm for efficiently searching over the space

Ak for each k. Recall that Σ̃k,0 :=
∑kt−2

i=1 (λ̃i)[v̂k](λ̃i)
⊤
[v̂k]

when k ∈ L̂t−1 for t ≥ 3. We further

define Σ̃k,0 as a J × J zero matrix to cover the case when t = 2 and k = 1. We divide the

search into two cases.

1. For c = 0, we simply compute

ĨCk,0 = min
Λk,Ψk

l
(
Σ̃k,0 + ΛkΛ

⊤
k +Ψk, Sk

)
,

s.t. Λk ∈ Ak(0), κ1 ≤ (Ψk)[{i},{i}] ≤ κ2,

(Ψk)[{i},{j}] = 0, i = 1, . . . , |v̂k|, j ̸= i

(12)

and use (Λ̃k,0, Ψ̃k,0) to denote the solution to (12). This is a relatively simple continuous

optimization problem that a standard numerical solver can solve.

2. Set d = dmax + 2− t. For each c ∈ {2, . . . , cmax}, we perform the following steps:

(a) Solve the optimization in ICk(c, d, . . . , d). It is easy to check that the penalty term in
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ICk(c, d, . . . , d) equals to |v̂k|d − cd(d − 1)/2, which does not depend on the loading

matrix Λk as long as the number of item within each of the corresponding partition is

no less than d. Therefore, the optimization problem becomes

min
Λk,Ψk

l
(
Σ̃k,0 + ΛkΛ

⊤
k +Ψk, Sk

)
,

s.t. Λk ∈ Ak(c, d, . . . , d), κ1 ≤ (Ψk)[{i},{i}] ≤ κ2,

(Ψk)[{i},{j}] = 0, i = 1, . . . , |v̂k|, j ̸= i.

(13)

Let vk,c1 , . . . , vk,cc be the partition of 1, . . . , |v̂k| given by the solution to (13). We note

that (13) is a discrete optimization problem, due to the combinatorial nature of the

space Ak(c, d, . . . , d). The theoretical properties in Theorem 2 are established under

the ideal scenario that this optimization is solved exactly for all k. In reality, however,

exactly solving (13) is computationally infeasible when J and c are large. To search for

the solution to (13), we cast it into a continuous optimization problem with nonlinear

zero constraints and solved by an augmented Lagrangian method; see Section 3 for the

relevant details.

(b) Given the partition vk,c1 , . . . , vk,cc from the previous step, we define the space for all

d1, . . . , dc ∈ {1, . . . , dmax}

Ãk(c, d1, . . . , dc)

={A = (aij)|v̂k|×(1+d1+···+dc) : A[vk,cs ,{j}] = 0, for all s = 1, . . . , c, and

j /∈ {1, 2 +
∑
s′<s

ds′ , 3 +
∑
s′<s

ds′ , . . . , 1 +
∑
s′≤s

ds′}, and |aij| ≤ τ for

all i = 1, . . . , |v̂k|, j = 1, . . . , 1 +
c∑

s=1

ds}

(14)

for the same constant τ as in Ak(c, d1, . . . , dc). We note that the space of Ãk(c, d1, . . . , dc)
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is substantially smaller than Ak(c, d1, . . . , dc) as the partition of the variables is fixed.

Based on Ãk(c, d1, . . . , dc), we define information criterion

ĨCk(c, d1, . . . , dc) = min
Λk,Ψk

l
(
Σ̃k,0 + ΛkΛ

⊤
k +Ψk, Sk

)
+ pk(Λk) logN,

s.t. Λk ∈ Ãk(c, d1, . . . , dc), κ1 ≤ (Ψk)[{i},{i}] ≤ κ2,

(Ψk)[{i},{j}] = 0, i = 1, . . . , |v̂k|, j ̸= i.

(15)

As the space Ãk(c, d1, . . . , dc) is relatively simple, the optimization in (15) is a relatively

simple continuous optimization problem that a standard numerical solver can solve.

(c) We then search for the best values for d1, . . . , dc for the given c. They are determined

sequentially, one after another. More specifically, we first determine d1 by

d̃c1 = argmin
1≤d1≤min(|vk,c1 |,d)

ĨCk(c, d1,min(|vk,c2 |, d), . . . ,min(|vk,cc |, d)), (16)

where we fix the value of d2, . . . , dc at min(|vk,c2 |, d), . . . ,min(|vk,cc |, d) and only vary

the value of d1. Solving (16) involves solving min(|vk,c1 |, d) relatively simple continuous

optimization problems. Then we proceed to d2 and so on. For s ≥ 2, suppose that we

have learned d̃c1, . . . , d̃cs−1, then ds is determined by

d̃cs = argmin
1≤ds≤min(|vk,cs |,d)

ĨCk(c, d̃
c
1, . . . , d̃

c
s−1, ds,min(|vk,cs+1|, d), . . . ,min(|vk,cc |, d)),

where we fix d1, . . . , ds−1 at their learned values and further fix ds+1, . . . , dc at the value

of min(|vk,cs+1|, d),. . . ,min(|vk,cc |, d).

(d) Given d̃c1, . . . , d̃cc, we define

ĨCk,c = ĨCk(c, d̃
c
1, . . . , d̃

c
c) (17)
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and Λ̃k,c, Ψ̃k,c as the solution to (17).

The above steps yield ĨCk,c, c ∈ {0, 2, . . . , cmax}. Then, we estimate the number of child

factors of Factor k by the value of c that minimises the modified information criterion ĨCk,c.

That is, we let

ĉk = argmin
c∈{0,2,...,cmax}

ĨCk,c.

Moreover, we define

v̂ks = v̂k[v
k,ĉk
s ], s = 1, . . . , ĉk,

where vk,ĉks , s = 1, . . . , ĉk, is the partition of {1, . . . , |v̂k|} learned above for c = ĉk. Then v̂ks ,

s = 1, . . . , ĉk, give a partition of v̂k, and we estimate that the sth child factor of Factor k is

loaded by the variables in v̂ks . As a by-product, we obtain an estimate of the kth column of

the loading matrix, denoted by λ̃k, satisfying that (λ̃k)[v̂k] equals to the first column of Λ̃k,ĉk

and (λ̃k)[{1,...,J}\v̂k] is a zero vector.

We summarise the steps described previously in Algorithm 2.

Remark 5 c ∈ {0, 2, . . . , cmax} represents the number of child factors of Factor k. In other

words, cmax is an upper bound on the possible number of child factors of Factor k. On the

one hand, we need to ensure that cmax is not too small so that Condition 9 is satisfied. On

the other hand, we want to avoid cmax being too large to reduce the computational cost. Since

the true value of c should satisfy constraints C3 and C4 in Section 2.1, cmax should be no

more than ⌊|v̂k|/3⌋ when |v̂k| ≥ 7 and cmax = 0, when |v̂k| ≤ 6, where ⌊·⌋ is the floor function

that returns the greatest integer less than or equal to the input. In the simulation study in

Section 4, we set cmax = min(4, ⌊|v̂k|/3⌋) when |v̂k| ≥ 7 and cmax = 0 when |v̂k| ≤ 6, which,

according to the data generation model, is an upper bound for the value of c. For the real data

analysis in Section 5, since the true structure is unknown, we set cmax = min(6, ⌊|v̂k|/3⌋)

when |v̂k| ≥ 7 and cmax = 0 when |v̂k| ≤ 6 as a more conservative choice than that of cmax
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Algorithm 2 Information-Criterion-based method

Input: v̂k, cmax, dmax ∈ N+, Σ̃k,0, Sk and layer t.
1: Set d = min(|v̂k|, dmax + 2− t).
2: Solve ĨCk,0 defined in (12). Let (Λ̃k,0, Ψ̃k,0) as the solution to ĨCk,0.
3: for c = 2, 3, . . . , cmax do
4: Solve the optimization problem (13). Set vk,c1 , . . . , vk,cc as the partition of {1, . . . , |v̂k|}

by the solution to (13).
5: for s = 1, . . . , c do
6: Compute

d̃cs = argmin
1≤ds≤min(|vk,cs |,d)

ĨCk(c, d̃
c
1, . . . , d̃

c
s−1, ds,min(|vk,cs+1|, d), . . . ,min(|vk,cc |, d)),

where ĨCk is defined in (15).
7: end for
8: Define ĨCk,c = ĨCk(c, d̃

c
1, . . . , d̃

c
c) and (Λ̃k,c, Ψ̃k,c) as the solution to ĨCk,c.

9: end for
10: Define ĉk = argminc∈{0,2,3,...,cmax} ĨCk,c.
11: Set ṽk1 , . . . , ṽkĉk be the partition of {1, . . . , |v̂k|} associated with Λ̃k,ĉk . Define the partition

of v̂k by v̂k1 = v̂k[ṽ
k
1 ], . . . , v̂

k
ĉk

= v̂k[ṽ
k
ĉk
].

12: Define λ̃k following that (λ̃k)[v̂k] equals to the first column of Λ̃k,ĉk and (λ̃k)[{1,...,J}\v̂k] is
a zero vector.

Output: ĉk, v̂k1 , . . . , v̂kĉk and λ̃k.
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for the simulation study. In practice, we may adjust our choice based on prior knowledge

about the hierarchical factor structure.

Remark 6 The input hyperparameter dmax is an upper bound of one plus the number of

descendant factors of the factors in the second layer. When learning the factors on the tth

layer for t ≥ 3, we use dmax +2− t as an upper bound of one plus the number of descendant

factors of the factors in the (t+ 1)th layer, as the number of descendant factors each factor

has tends to decrease as t increases. Similar to the choice of cmax, we want to choose a dmax

that is neither too large nor too small. In the simulation study in Section 4, we start with

dmax = 6 when learning the factors in the second layer. In the real data analysis in Section 5,

we start with dmax = 10. In practice, we may adjust this choice based on the problem size

(e.g., the number of variables) and prior knowledge of the hierarchical factor structure.

Remark 7 Efficiently learning the hierarchical structure from data is challenging due to

the super-exponential growth of the search space with the number of items J , which creates

a significant computational bottleneck. To overcome the computational issue, we convert

the combinatorial optimization problems in (5) and (10) into the continuous optimization

problems in (13). A similar constraint-based continuous optimization method is proposed for

learning directed acyclic graphs (DAGs) in Zheng et al. (2018) and the bi-factor model in Qiao

et al. (2025). By integrating continuous optimization techniques with a breadth-first search

strategy, our approach (presented in Algorithms 1 and 2) requires solving only O(Jc2maxdmax)

continuous optimization problems, thus significantly improving the computational efficiency.

2.4 Theoretical Results

We now provide theoretical guarantees for the proposed method based on Algorithms 1 and

2. We start with introducing some notation. We use ∥ · ∥F to denote the Frobenius norm

of any matrix and ∥ · ∥ as the Euclidean norm of any vector. We also use the notation
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aN = OP(bN) to denote that aN/bN is bounded in probability. In addition to the conditions

required for the identifiability of the true hierarchical factor model, we additionally require

Conditions 5–9 to ensure the proposed method is consistent.

Condition 5 For any factor i with Ch∗i ̸= ∅ and any j ∈ v∗i , there exist E1, E2 ⊂ v∗i \ {j}

with |E1| = |E2| = 1 + |D∗
i | and E1 ∩ E2 = ∅, such that Λ∗

[E1,{i}∪D∗
i ]

and Λ∗
[E2,{i}∪D∗

i ]
are of

full rank.

Condition 6 For any factor i with Ch∗i ̸= ∅ and any k ∈ Ch∗i , there exist E1, E2 ⊂ v∗k with

|E1| = 2+ |D∗
k|, |E2| = 1+ |D∗

k| and E1 ∩E2 = ∅ such that Λ∗
[E1,{i,k}∪D∗

k]
and Λ∗

[E2,{k}∪D∗
k]

are

of full rank.

Condition 7 ∥S − Σ∗∥F = OP(1/
√
N).

Condition 8 The true loading parameters and unique variance parameters satisfy |λ∗ij| ≤ τ

and κ1 ≤ ψ∗
i ≤ κ2 for all i, j, where τ , κ1 and κ2 are constraints used in the ICB method.

Condition 9 When learning the child factors of each true factor k, the constants cmax and

dmax are chosen such that cmax ≥ |Ch∗k| and dmax ≥ maxs∈Ch∗k |D
∗
s |+ 1.

Theorem 2 Suppose that Conditions 1,3, and 5–9 hold. Then, the outputs from Algorithm 1

are consistent. That is, as N goes to infinity, the probability of T̂ = T , K̂ = K, L̂t = Lt,

t = 1, . . . , T , and v̂i = v∗i , i = 1, . . . , K goes to 1, and ∥Λ̂ − Λ∗Q̂∥F = OP(1/
√
N) and

∥Ψ̂−Ψ∗∥F = OP(1/
√
N), where Q̂ ∈ Q is the diagonal matrix with diagonal entries consisting

of the signs of the corresponding entries of Λ̂⊤Λ∗.

Theorem 2 guarantees that the true hierarchical factor structure can be consistently

learned from data and its parameters can be consistently estimated after adjusting the sign

for each column of the loading matrix by Q̂.
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Remark 8 It should be noted that in Theorem 2, Algorithm 1 applies Algorithm 2, which in-

volves some nontrivial optimization problems, including a discrete optimization problem (13).

The theorem is established under the oracle scenario that these optimizations are always

solved successfully. However, we should note that this cannot be achieved by polynomial-time

algorithms due to the complexity of these optimizations.

Remark 9 Theorem 2 does not explicitly require Condition 2, because Condition 5 is a

stronger condition that implies Condition 2, as shown in Lemma 4 in the Appendix S4.

In fact, Condition 5 is sufficient for Condition 4, which further implies Condition 2. We

need a stronger condition (i.e., Condition 5) here, for distinguishing between the loading

structure and the unique variance at each stage of recursion. Similar to Condition 3, this

condition imposes further requirements on the number of child factors and the number of

descendant factors a factor can have. More specifically, for such a partition to exist, we

need |v∗i | ≥ 2|D∗
i | + 3. Other than that, the full-rank requirement is easily satisfied by most

hierarchical factor models. Similar to Condition 5, Condition 6 also requires |v∗i | ≥ 2|D∗
i |+3.

This condition plays a central role in ensuring that Step 6 in Algorithm 2 is valid. Condition

7 is very mild. It is automatically satisfied when the sample covariance matrix is constructed

using independent and identically distributed observations from the true model, and all the

fourth-order moments of the i.i.d. data are finite. Condition 8 requires the true loading

and unique variance parameters to satisfy the same boundedness constraints as in the ICB

method in Algorithm 2. Theoretically, these constraints ensure that the parameter space is

compact, which is needed for bounding the differences in the loss function of different models.

Empirically, we notice that the ICB method works well even without these constraints, and

thus omit these constraints in the computation. Condition 9 requires that cmax and dmax are

chosen sufficiently large so that the search space covers the true model.
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3 Computation

As mentioned previously, the optimization problem in ICk(c, d, . . . , d) in Algorithm 2 can

be cast into a continuous optimization problem and solved by an augmented Lagrangian

method(ALM). In what follows, we provide the details.

With slight abuse of notation, we use the reparameterization of the unique variance ma-

trix such that Ψk = diag(ψ2
k), where diag(·) is a function that converts a vector to a diagonal

matrix with the diagonal entries filled by the vector. Here, ψ2
k = {ψ2

k1, . . . , ψ
2
k,|v̂k||} is a |v̂k|-

dimensional vector for ψk1, . . . , ψk,|v̂k| ∈ R. We further let Bs = {2+ (s− 1)d, . . . , 1+ sd} for

s = 1, . . . , c. We note that, up to a relabelling of the partition sets or, equivalently, dropping

the label ordering constraint min{vk1} < min{vk2} < · · · < min{vkc }, the set Ak(c, d, . . . , d)

can be rewritten as

{A = (aij)|v̂k|×(1+cd) : aijaij′ = 0 for i = 1, . . . , |v̂k|, j ∈ Bs, j
′ ∈ Bs′ , s ̸= s′, |aij| ≤ τ}.

Therefore, we can solve ICk(c, d, . . . , d) by solving the following continuous optimization

problem with nonlinear zero constraints:

Λ̄k,c, ψ̄k,c =argmin
Λk,ψk

l
(
Σ̃k,0 + Λk(Λk)

⊤ + diag(ψ2
k), Sk

)
s.t. λk,ijλk,ij′ = 0 for i = 1, . . . , |v̂k|, j ∈ Bk

s , j
′ ∈ Bk

s′ , s ̸= s′.

(18)

Here, the constraints on the loading and unique variance parameters are omitted for sim-

plicity, as these constraints are always satisfied when we set τ and κ2 to be sufficiently large

and κ1 to be sufficiently small. Once this optimization is solved, then for each i, there is one

and only one Bs such that (Λ̄k,c)[{i},Bs] ̸= 0. Therefore, we obtain a partition of 1, . . . , |v̂k| by

the sets

{i : (Λ̄k,c)[{i},Bs] ̸= 0}, s = 1, . . . , c.
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We obtain vk,c1 , . . . , vk,cc by reordering {i : (Λ̄k,c)[{i},Bs] ̸= 0}, s = 1, . . . , c to satisfy the

constraint on the labels of these sets.

We solve (18) by the ALM algorithm (see, e.g., Bertsekas, 2014), which is a standard

approach to such problems. This method finds a solution to (18) by solving a sequence of

unconstrained optimization problems. More specifically, in the tth iteration, t = 1, 2, . . ., the

ALM minimizes an augmented Lagrangian function that is constructed based on the result

of the previous iteration. Details of the ALM are given in Algorithm 3 below, where the

function h(·) returns the second largest values of a vector. The updating rule of β(t)
jii′ and

c(t) follows equations (1) and (47) in Chapter 2.2 of Bertsekas (2014), and the convergence

of Algorithm 3 to a stationary point of (18) is guaranteed by Proposition 2.7 of Bertsekas

(2014). We follow the recommended choices of cθ = 0.25 and cσ = 10 in Bertsekas (2014) for

the tuning parameters in Algorithm 3.

We remark on the stopping criterion in the implementation of Algorithm 3. We monitor

the convergence of the algorithm based on two criteria: (1) the change in parameter values

in two consecutive steps, measured by

(
∥Λ(t)

k − Λ
(t−1)
k ∥2F + ∥ψ(t)

k −ψ(t−1)
k ∥2

)1/2

/ (|v̂k|(2 + d))1/2 ,

and (2) the distance between the estimate and the space Ak(c, d, . . . , d) measured by

max
i∈{1,...,|v̂k|}

h(max
j∈B1

|λ(t)k,ij|,max
j∈B2

|λ(t)k,ij| . . . ,max
j∈Bc

|λ(t)k,ij|).

When both criteria are below their pre-specified thresholds, δ1 and δ2, respectively, we stop

the algorithm. LetM be the last iteration number. Then the selected partition of {1, . . . , v̂k},

denoted by vk,c1 , . . . , vk,cc , is given by vk,cs = {j : |λ(M)
k,ij | < δ2 for all j /∈ Bs}. For the analyses

in Sections 4 and 5, we choose δ1 = δ2 = 0.01.
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Algorithm 3 An augmented Lagrangian method for solving ICk(c, d, . . . , d)

Input: Initial value Λ(0) and ψ(0), initial Lagrangian parameters β(0)
ijj′ for i = 1, . . . , |v̂k|,

j ∈ Bs, j′ ∈ Bs′ and s ̸= s′, initial penalty coefficient c(0) > 0, constants cθ ∈ (0, 1) and
cσ > 1, tolerances δ1, δ2 > 0, maximal iteration number Mmax.

1: for t = 1, 2, . . . ,Mmax do
2: Solve the following problem:

Λ
(t)
k ,ψ

(t)
k =argmin

Λk,ψk

l
(
Σ̃k,0 + Λk(Λk)

⊤ + diag(ψk), Sk

)
+

 |v̂k|∑
i=1

∑
j∈Bs,j′∈Bs′ ,s̸=s′

β
(t)
ijj′λk,ijλk,ij′


+

1

2
c(t)

 |v̂k|∑
i=1

∑
j∈Bs,j′∈Bs′ ,s̸=s′

(λk,ijλk,ij′)
2

 .

3: Update β(t)
ijj′ and c(t) according to equations (19) and (20)

β
(t)
ijj′ = β

(t−1)
ijj′ + c(t−1)λ

(t)
k,ijλ

(t)
k,ij′ , (19)

and

c(t) =


cσc

(t−1) if
(∑|v̂k|

i=1

∑
j∈Bs,j′∈Bs′ ,s̸=s′(λ

(t)
k,ijλ

(t)
k,ij′)

2
)1/2

> cθ

(∑|v̂k|
i=1

∑
j∈Bs,j′∈Bs′ ,s̸=s′(λ

(t−1)
k,ij λ

(t−1)
k,ij′ )

2
)1/2

,

c(t−1) otherwise.

(20)

4: if (
∥Λ(t)

k − Λ
(t−1)
k ∥2F + ∥ψ(t)

k −ψ(t−1)
k ∥2

)1/2

/ (|v̂k|(2 + d))1/2 < δ1

and
max

i∈{1,...,|v̂k|}
h(max

j∈B1

|λ(t)k,ij|,max
j∈B2

|λ(t)k,ij| . . . ,max
j∈Bc

|λ(t)k,ij|) < δ2,

then
5: return Λ

(t)
k ,ψ

(t)
k .

6: Break
7: end if
8: end for

Output: Λ
(t)
k ,ψ

(t)
k .
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Algorithm 3 can suffer from slow convergence when the penalty terms become large,

resulting in an ill-conditioned optimization problem. When the algorithm does not converge

within Mmax iterations, we suggest restarting the algorithm, using the current parameter

value as a warm start. We set Mmax = 100 in the simulation study in Section 4 and the

real data analysis in Section 5 and keep the maximum number of restarting times to be

five. In addition, since the optimization problem (18) is non-convex, Algorithm 3 may only

converge to a local optimum and this local solution may not satisfy condition C4. Therefore,

we recommend running it with multiple random starting points and then finding the best

solution that satisfies condition C4. In our implementation, each time to solve (18), we start

by running Algorithm 3 100 times, each with a random starting point. If more than 50 of

the solutions satisfy C4, then we stop and proceed to Steps 5–8 in Algorithm 2. Otherwise,

we rerun Algorithm 3 100 times with random starting points, until either 50 solutions satisfy

C4 or the algorithm has been restarted five times.

4 Simulation Study

In this section, we examine the recovery of the hierarchical structure as well as the accuracy

in estimating the loading matrix and the unique variance matrix of the proposed method.

Suppose that v̂1, . . . , v̂K̂ are the estimated sets of variables loading on each factor, where K̂

is the estimated number of factors, Λ̂ is the estimated loading matrix and Ψ̂ is the estimated

unique variance matrix. To examine the recovery of the hierarchical factor structure, we

measure the matching between the true sets of variables loading on each factor and the

estimated sets of variables. More specifically, the following evaluation criteria are considered:

1. Exact Match Criterion (EMC): 1(K̂ = K)
∏min(K̂,K)

k=1 1(v̂k = v∗k), which equals to 1

when the hierarchical structure is fully recovered and 0 otherwise.

2. Layer Match Criterion (LMC): 1({v̂k}k∈L̂t
= {v∗k}k∈Lt), which is defined for each layer
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t. It equals 1 if the sets of variables loading on the factors in the tth layer are correctly

learned and 0 otherwise for t = 1, . . . , T .

We then examine the accuracy in estimating the loading matrix and the unique variance

matrix. We calculate the mean square error(MSE) for Λ̂ and Ψ̂, after adjusting for the sign

indeterminacy shown in Theorem 1. More specifically, recall that Q is the set of sign flip

matrices defined in Theorem 1. When the proposed method outputs a correct estimate of

the hierarchical structure (i.e. EMC = 1), we define the MSEs for Λ̂ and Ψ̂ as MSEΛ =

minQ∈Q ∥Λ̂− Λ∗Q∥2F/(JK), and MSEΨ = ∥Ψ̂−Ψ∗∥2F/J.

We consider the following hierarchical factor structure shown in Figure 3 with the number

of variables J ∈ {36, 54}, the number of layers T = 4, the number of factors K = 10,

L1 = {1}, L2 = {2, 3}, L3 = {4, . . . , 8}, L4 = {9, 10} and v∗1 = {1, . . . , J}, v∗2 = {1, . . . , J/3},

v∗3 = {1+J/3, . . . , J}, v∗4 = {1, . . . , J/6}, v∗5 = {1+J/6, . . . , J/3}, v∗6 = {1+J/3, . . . , 5J/9},

v∗7 = {1 + 5J/9, . . . , 7J/9}, v∗8 = {1 + 7J/9, . . . , J}, v∗9 = {1 + J/3, . . . , 4J/9}, v∗10 = {1 +

4J/9, . . . , 5J/9}. In the data generation model, Ψ∗ is either a J ×J identity matrix or Ψ∗ =

diag(ψ∗2
1 , . . . , ψ

∗2
J ) with ψ∗

j , j = 1, . . . , J , i.i.d., following a Uniform(0.5, 1.5) distribution, and

Λ∗ is generated by

λ∗jk =


ujk if k = 1;

0 if k > 1, j /∈ v∗k;

(1− 2xjk)ujk if k > 1, j ∈ v∗k,

(21)

for j = 1, . . . , J , and k = 1, . . . , K. Here, ujks are i.i.d., following a Uniform(0.5, 2) distri-

bution and xjks are i.i.d., following a Bernoulli(0.5) distribution. For each value of J , we

generate the true loading matrix Λ∗ and the true unique variance matrix Ψ∗ once and use it

for all its simulations.

We consider 8 simulation settings, given by the combinations of J = 36, 54, two sample

sizes, N = 500, 2000 and two generating processes of Ψ∗. For each setting, 100 independent

simulations are generated. The results of learning the hierarchical factor structure and
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Figure 3: The hierarchical factor structure in the simulation study.

Table 1: The accuracy of the overall estimates of hierarchical structure and parameters.

Ψ J N K̄ T̄ EMC MSEΛ̂ MSEΨ̂

Identity 36 500 10.01 4.00 0.98 2.90× 10−3 1.54× 10−2

2000 10.04 4.00 0.97 0.74× 10−3 3.99× 10−3

54 500 10.05 4.00 0.97 2.65× 10−3 6.45× 10−3

2000 10.02 4.00 0.99 0.66× 10−3 1.63× 10−3

Heterogeneous 36 500 10.00 4.00 1.00 3.34× 10−3 1.45× 10−2

2000 10.00 4.00 1.00 0.80× 10−3 3.15× 10−3

54 500 10.01 4.00 0.99 2.69× 10−3 7.99× 10−3

2000 10.04 4.00 0.98 0.67× 10−3 2.10× 10−3

estimating the model parameters are shown in Tables 1 and 2. In these tables, K̄ and T̄

report the average values of K̂ and T̂ , respectively, and |L̂2|, |L̂3| and |L̂4| report the average

numbers of factors in L̂2, L̂3 and L̂4, respectively. As shown in Table 1, the proposed method

can accurately recover the true hierarchical factor structure more than 97% of the time under

all the settings, with the highest accuracy of 100% achieved under the setting with J = 36

and heterogeneous diagonal entries in the unique variance matrix. The MSE of Λ̂ and Ψ̂

show that the loading matrix and the unique variance matrix are accurately estimated when

the hierarchical structure is correctly learned.
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Table 2: The accuracy of the estimated hierarchical structure on each layer.

Ψ J N |L̂2| LMC2 |L̂3| LMC3 |L̂4| LMC4

Identity 36 500 2.00 1.00 4.99 0.98 2.02 0.99
2000 2.00 1.00 4.97 0.97 2.07 0.97

54 500 2.00 1.00 4.97 0.97 2.08 0.97
2000 2.00 1.00 4.99 0.99 2.03 0.99

Heterogeneous 36 500 2.00 1.00 5.00 1.00 2.00 1.00
2000 2.00 1.00 5.00 1.00 2.00 1.00

54 500 2.01 0.99 5.00 0.99 2.00 1.00
2000 2.00 0.99 4.99 0.98 2.05 0.98

5 Real Data Analysis

We apply the exploratory hierarchical factor analysis to a personality assessment dataset

based on the International Personality Item Pool (IPIP) NEO 120 personality inventory

(Johnson, 2014). We investigate the structure of the Agreeableness scale based on a sample

of 1655 UK participants aged between 30 and 40 years. This scale consists of 24 items,

which are designed to measure six facets of Agreeableness, including Trust (A1), Morality

(A2), Altruism (A3), Cooperation (A4), Modesty (A5), and Sympathy (A6). The responses

to all the items are recorded on a 1-5 Likert scale and treated as continuous variables. The

reversely worded items have been reversely scored so that a larger score always means a

higher level of agreeableness. There is no missing data. Detailed descriptions of the items

can be found in the Appendix S7. The learned hierarchical factor structure, which has four

layers and ten factors, is shown in Figure 4, and the estimated loading matrix Λ̂ is shown in

Table 3.

We now examine the learned model. We notice that the loadings on Factor 1 are all

positive, except for item 18, which has a small negative loading. Thus, Factor 1 may be

interpreted as a general Agreeableness factor. Factor 2 is loaded positively by all items

designed to measure the Trust, Altruism, and Sympathy facets. Therefore, it may be inter-
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Figure 4: The hierarchical factor structure from the real data analysis

Table 3: The estimated loading matrix Λ̂ with four layers and ten factors.

Item Facet F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

1 A1 0.47 0.14 0 0.70 0 0 0 0 0 0
2 A1 0.36 0.23 0 0.59 0 0 0 0 0 0
3 A1 0.32 0.22 0 0.69 0 0 0 0 0 0
4 A1 0.59 0.11 0 0.64 0 0 0 0 0 0
5 A2 0.44 0 0.55 0 0 0 0.61 0 0 0
6 A2 0.46 0 0.27 0 0 0 0.34 0 0 0
7 A2 0.56 0 0.42 0 0 0 0.61 0 0 0
8 A2 0.45 0 0.21 0 0 0 0 −0.10 0.05 0
9 A3 0.26 0.37 0 0 0.48 0 0 0 0 0

10 A3 0.26 0.54 0 0 0.16 0 0 0 0 0
11 A3 0.46 0.51 0 −0.11 0 0 0 0 0 0
12 A3 0.43 0.34 0 0 0.21 0 0 0 0 0
13 A4 0.21 0 0.48 0 0 0 0 −0.02 0 0.42
14 A4 0.46 0 0.14 0 0 0 0 −0.15 0 0.66
15 A4 0.63 0 0.21 0 0 0 0 −0.00 0 0.48
16 A4 0.57 0 0.34 0 0 0 0 −0.21 0 0.20
17 A5 0.36 0 0.43 0 0 0 0 0.68 −0.06 0
18 A5 −0.09 0 0.46 0 0 0 0 0.70 0.48 0
19 A5 0.06 0 0.49 0 0 0 0 0.86 0.41 0
20 A5 0.29 0 0.43 0 0 0 0 0.15 0 0.13
21 A6 0.23 0.44 0 0 0 0.75 0 0 0 0
22 A6 0.22 0.56 0 0 0 0.41 0 0 0 0
23 A6 0.41 0.57 0 −0.04 0 0 0 0 0 0
24 A6 0.34 0.40 0 0 0 0.38 0 0 0 0

preted as a higher-order factor of these facets. Factors 4–6 are child factors of Factor 2, and

based on the loading patterns, they may be interpreted as the Trust, Altruism, and Sym-

pathy factors, respectively. It is worth noting that items 11 (“Am indifferent to the feelings

of others") and 23 (“Am not interested in other people’s problems"), which are designed to

measure the Altruism and Sympathy facets, now load weakly and negatively on Factor 4

rather than their corresponding factors.
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Factor 3 is another child factor of Factor 1. It is loaded with items designed to measure

the facets of Morality, Cooperation, and Modesty. As all the nonzero loadings on Factor 3 are

positive, it can be interpreted as a higher-order factor of morality, cooperation, and modesty.

Factor 7 is the child factor of Factor 3. It is positively loaded by three items designed to

measure the Morality facet, and can be interpreted accordingly. Factor 8 is another child

factor of Factor 3. It is loaded positively by all the items designed to measure the Modesty

facet and negatively, although relatively weakly, by all the items designed to measure the

Cooperation facet, and item 8 (“Obstruct others’ plans") that is designed to measure the

Morality facet, but is closely related in concept to cooperation. Thus, we can treat Factor

8 as a higher-order factor of modesty and weak aggression (the opposite of cooperation).

Finally, Factors 9 and 10 are child factors of Factor 8. Factor 10 may be interpreted as a

cooperation factor, while Factor 9 seems to be a weak modesty factor.

Finally, we compare the learned hierarchical factor model with several alternative models

based on the Bayesian Information Criterion (BIC; Schwarz, 1978), including

1. (CFA) A six-factor confirmatory factor analysis model with correlated factors. Each

factor corresponds to a facet of Agreeableness, loaded by the four items designed to

measure this facet.

2. (CBF) A confirmatory bi-factor model with one general factor and six group factors,

where the group factors are allowed to be correlated. Each group factor corresponds

to a facet of Agreeableness, loaded by the four items designed to measure this facet.

3. (EBF) An exploratory bi-factor model with one general factor and six group factors,

where the group factors are allowed to be correlated. The bi-factor structure is learned

using the method proposed in Qiao et al. (2025). Specifically, exploratory bi-factor

models with 2, 3, . . . , 12 group factors are considered, among which the one with six

group factors is selected based on the BIC.
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Table 4 presents the BIC values of all the models, where the model labeled HF is the learned

hierarchical factor model. From the results of BIC, the proposed hierarchical factor model

fits the data best. Detailed results on the estimated loading matrix and the estimated

correlation matrix of the competing models are shown in Appendix S8.

Table 4: The BICs of the hierarchical factor model and the competing models

HF CFA CBF EBF

BIC 102,987.54 103,841.48 103,200.42 103,026.10

6 Discussions

This paper proposes a divide-and-conquer method with theoretical guarantees for exploring

the underlying hierarchical factor structure of the observed data. The method divides the

problem into learning the factor structure from the general factor to finer-grained factors. It

is computationally efficient, achieved through a greedy search algorithm and an augmented

Lagrangian method. To our knowledge, this is the first statistically consistent method for

exploratory hierarchical factor analysis that goes beyond the bifactor setting. Our simulation

study shows that our method can accurately recover models with up to four factor layers, ten

factors, and 54 items under practically reasonable sample sizes, suggesting that it may be

suitable for various applications in psychology, education, and related fields. The proposed

method is further applied to data from an Agreeableness personality scale, which yields a

sensible model with four layers and ten factors that are all psychologically interpretable.

It is worth noting that the current work assumes that all the factors are orthogonal.

Mathematically, it is possible to relax this assumption, though certain constraints are still

needed. Specifically, two factors need to be orthogonal if one is a descendant of the other.

Otherwise, the model is not identifiable due to rotational indeterminacy. For factors without
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such a relationship, correlations may be allowed. For example, in the exploratory bi-factor

analysis in Qiao et al. (2025), which concerns hierarchical factor models with two factor

layers, factors within the second layer are allowed to be correlated. However, we should note

that relaxing the orthogonality assumption can make the model less interpretable. Under the

orthogonality assumption, the dependence between two variables is solely due to the shared

factors. Such simple interpretations are important when the hierarchical factor model has

a complex structure (e.g., with many factor layers), which is probably why all the existing

hierarchical factor models, except for some special bi-factor models, adopt this orthogonality

assumption. Therefore, it may not be worth extending the current theory and method to a

more general setting with correlated factors, even though it is possible.

The current method also assumes that a general factor exists and includes it in the first

factor layer. However, this may not always be the case. For example, in psychology, there

is still a debate about whether a general factor of personality exists (see, e.g., Revelle and

Wilt, 2013). In cases where we are unsure about the presence of a general factor, the current

method can be easily modified to estimate a hierarchical factor model without a general

factor, which can be achieved by modifying the first step of Algorithm 1.

The current method and asymptotic theory consider a relatively low-dimensional setting

where the number of variables J is treated as a constant that does not grow with the sample

size. However, in some large-scale settings, J can be on a scale of hundreds or even larger,

so it may be better to treat it as a diverging term rather than a fixed constant. In that case,

a larger penalty term may be required in the information criterion to account for the larger

parameter space, and the asymptotic analysis needs to be modified accordingly.

Finally, the current work focuses on linear hierarchical factor models, which are suit-

able for continuous variables. In many applications of hierarchical factor models, we often

encounter categorical data (e.g., binary, ordinal, and nominal) that may be better analyzed

with non-linear factor models (see, e.g., Chen et al., 2020). We believe it is possible to extend
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the current framework to the exploratory analysis of non-linear hierarchical factor models.

In particular, building upon recent advances in the generalized latent factor model (e.g.,

Cui and Xu, 2025), our approach can be generalized to non-linear hierarchical factor models

through likelihood-based estimation, subject to appropriate constraints on both factors and

loadings.
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