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Exploratory Hierarchical Factor Analysis

EXPLORATORY HIERARCHICAL FACTOR ANALYSIS

WITH AN APPLICATION TO PSYCHOLOGICAL MEASUREMENT

Jiawei Qiao', Yunxiao Chen? and Zhiliang Ying?

Abstract: Hierarchical factor models, which include the bifactor model as a special case, are useful in
social and behavioural sciences for measuring hierarchically structured constructs. Specifying a hier-
archical factor model involves imposing hierarchically structured zero constraints on a factor loading
matrix, which is often challenging. Therefore, an exploratory analysis is needed to learn the hier-
archical factor structure from data. Unfortunately, there does not exist an identifiability theory for
the learnability of this hierarchical structure, nor a computationally efficient method with provable
performance. The method of Schmid-Leiman transformation, which is often regarded as the default
method for exploratory hierarchical factor analysis, is flawed and likely to fail. The contribution of
this paper is three-fold. First, an identifiability result is established for general hierarchical factor
models, which shows that the hierarchical factor structure is learnable under mild regularity condi-
tions. Second, a computationally efficient divide-and-conquer approach is proposed for learning the
hierarchical factor structure. Finally, asymptotic theory is established for the proposed method, show-
ing that it can consistently recover the true hierarchical factor structure as the sample size grows to
infinity. The power of the proposed method is shown via simulation studies and a real data appli-
cation to a personality test. The computation code for the proposed method is publicly available at

https://github.com/EmetSelch97 /EHFA /.

Key words and phrases: Hierarchical factor model, augmented Lagrangian method, exploratory hier-

archical factor analysis

1 Introduction

Many constructs in social and behavioural sciences are conceptualized to be hierarchically
structured, such as psychological traits (e.g., Carroll, 1993; DeYoung, 2006), economic factors
(e.g., Kose et al., 2008; Moench et al., 2013), health outcomes measures (e.g., Chen et al.,

2006; Reise et al., 2007), and constructs in marketing research (e.g., Sharma et al., 2022).
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Hierarchical factor models (Brunner et al., 2012; Schmid and Leiman, 1957; Thomson, 1939;
Yung et al., 1999), which include the bi-factor model (Holzinger and Swineford, 1937) as a
special case with two factor layers, are commonly used to measure hierarchically structured
constructs. In these models, hierarchically structured zero constraints are imposed on factor
loadings to define the hierarchical factors. When the hierarchical factor structure is known
or hypothesized a priori, the statistical inference of a hierarchical factor model only requires
standard confirmatory factor analysis techniques (Brunner et al., 2012). However, for many
real-world scenarios, little prior information about the hierarchical factor structure is avail-
able, so we need to learn this structure from data. This analysis is referred to as exploratory
hierarchical factor analysis.

Exploratory hierarchical factor analysis is a structured extension of classical exploratory
factor analysis (e.g., Anderson, 2003; Chen et al., 2019). In conventional exploratory factor
analysis, rotation methods (e.g., Browne, 2001) are typically employed to achieve a sparse
loading structure (Thurstone, 1947) for interpreting the factors. Exploratory hierarchical
factor analysis builds on this principle but imposes a hierarchical sparsity pattern on the
loading matrix, requiring that zero loadings be placed nonarbitrarily and follow a hierarchi-
cal structure. Compared with classical exploratory factor analysis, exploratory hierarchical
factor analysis faces theoretical and computational challenges. First, we lack a theoretical
understanding of its identifiability, i.e., the conditions under which the hierarchical factor
structure is uniquely determined by the distribution of manifest variables. This is an impor-
tant question, as learning a hierarchical factor structure is only sensible when it is identifiable.
Although identifiability theory has been established for exploratory bi-factor analysis in Qiao
et al. (2025), to our knowledge, no results are available under the general hierarchical fac-
tor model. Second, learning the hierarchical factor structure is a model selection problem,
which is computationally challenging due to its combinatorial nature. For a moderately large

number of manifest variables, it is computationally infeasible to compare all the possible hi-
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erarchical factor structures using relative fit measures. However, it is worth noting that a
computationally efficient method is available and commonly used for this problem, known
as the Schmid-Leiman transformation (Schmid and Leiman, 1957). This method involves
constructing a constrained higher-order factor model by iteratively applying an exploratory
factor analysis method with oblique rotation and, further, performing orthogonal transforma-
tions to turn the higher-order factor model solution into a hierarchical factor model solution.
However, as shown in Yung et al. (1999), the Schmid-Leiman transformation imposes unnec-
essary proportionality constraints on the factor loadings. As a result, it may not work well
for more general hierarchical factor models. Jennrich and Bentler (2011) gave an example in
which the Schmid-Leiman transformation fails to recover a bi-factor loading structure. Not
only theoretically flawed, the implementation of the Schmid-Leiman transformation can also
be a challenge for practitioners due to several decisions one needs to make, including the
choice of oblique rotation method for the exploratory factor analysis and how the number of
factors is determined in each iteration.

This paper fills these gaps. Specifically, we establish an identifiability result for ex-
ploratory hierarchical factor analysis, showing that the hierarchical factor structure is learn-
able under mild regularity conditions. We also propose a computationally efficient divide-
and-conquer approach for learning the hierarchical factor structure. This approach divides
the learning problem into many subtasks of learning the factors nested within a factor, also
known as the child factors of this factor. It conquers these subtasks layer by layer, starting
from the one consisting only of the general factor. Our method for solving each subtask
has two building blocks — (1) a constraint-based continuous optimization algorithm and (2)
a search algorithm based on an information criterion. The former is used to explore the
number and loading structure of the child factors, and the latter serves as a refinement step
that ensures the true structure of the child factors is selected with high probability. Finally,

asymptotic theory is established for the proposed method, showing that it can consistently
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recover the true hierarchical factor structure as the sample size grows to infinity.

The proposed method is closely related to the method proposed in Qiao et al. (2025) for
exploratory bi-factor analysis, which can be seen as a special case of the current method when
the hierarchical factor structure is known to have only two layers. However, we note that the
current problem is substantially more challenging as the complexity of a hierarchical factor
structure grows quickly as the number of factor layers increases. Nevertheless, the constraint-
based continuous optimization algorithm that serves as a building block of the proposed
method is similar to the algorithm used for exploratory bi-factor analysis in Qiao et al.
(2025). This algorithm turns a computationally challenging combinatorial model selection
problem into a relatively easier-to-solve continuous optimization problem, enabling a more
efficient global search of the factor structure.

The rest of the paper is organized as follows. In Section 2, we establish the identifiability
of the general hierarchical factor model and, further, propose a divide-and-conquer approach
for exploratory hierarchical factor analysis and establish its consistency. In Section 3, the
computation of the divide-and-conquer approach is discussed. Simulation studies and a real
data example are presented in Sections 4 and 5, respectively, to evaluate the performance of

the proposed method. We conclude with discussions in Section 6.

2 Exploratory Hierarchical Factor Analysis

2.1 Constraints of hierarchical factor model

Consider a factor model for J observed variables, with K orthogonal factors. The population
covariance matrix can be decomposed as ¥ = AAT + U, where A = (\jz) sxx is the loading
matrix and VU is a J x J diagonal matrix, which is typically referred as the unique variance

matrix (see, e.g., Fabrigar and Wegener, 2012), with diagonal entries tq,...,%; > 0 that
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record the unique variances. We say this factor model is a hierarchical factor model if the
loading matrix A satisfies certain zero constraints that encode a factor hierarchy.
Specifically, let vy = {j : Ajz # 0} be the variables loading on the kth factor. The factor

model becomes a hierarchical factor model if vy, ..., vk satisfy the following constraints:

Cl. vy ={1,...,J} corresponds to a general factor that is loaded on by all the items.

C2. For any k < [, it holds that either v; C vy or v; C {1,...,J}\ vx. That is, the variables
that load on factor [ are either a subset of those that load on factor k£ or do not overlap
with them. When v; C v, we say factor [ is a descendant factor of factor k. If further
that there does not exist &’ such that k < k¥ <[ and v; C v C v, we say factor [ is a

child factor of factor k, and factor k is a parent factor of factor [.

C3. For a given factor k, we denote all its child factors as Chg. Then its cardinality |Chy|
satisfies that |Chg| = 0 or |Chy| > 2. That is, a factor either does not have any
child factor or at least two child factors. Moreover, when a factor k has two or more
child factors, these child factors satisfy that v; Nvy = 0, for any [,I’ € Ch, and
UieCh, vt = Vk- That is, the sets of variables that load on the child factors of a factor
are a partition of the variables that load on this factor. We note that one child node
is not allowed due to identification issues. To avoid ambiguity in the labelling of the

factors, we further require that

(a) k < [ if factors k and [ are the child factors of the same factor and min{v,} <
min{v;}. That is, we label the child factors of the same factor based on the labels

of the variables that load on each factor.

(b) k < [ if factors k and [ do not have the same parent factor, and the parent factor

of k£ has a smaller label than the parent factor of [.
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The requirement |Chy| = 0 or |Chg| > 2 in constraint C3 is necessary for the hierarchical
factor model to be identifiable. When a factor &k has a unique child factor (i.e. |Chy| = 1), it
is easy to show that the two columns of the loading matrix that correspond to factor k and
its single child factor are not determined up to an orthogonal rotation.

We note that when the above constraints hold, the hierarchical factor structure can
be visualized as a tree, where each internal node represents a factor, and each leaf node
represents an observed variable. In this tree, factor [ being a child factor of factor k, is
represented by node [ being a child node of node k. The variables that load on each factor
are indicated by its descendant leaf nodes.

When the factors follow a hierarchical structure, we can classify the factors into layers.
The first factor layer only includes the general factor, denoted by L; = {1}. The rest of
the layers can be defined recursively. That is, if a factor k£ is in the tth layer, then its child
factors are in the (¢ 4+ 1)th layer. Let T be the total number of layers and Lq,..., Ly be
the sets of factors for the T layers. It is worth noting that the way the layers are labelled
here is opposite to how they are labelled in the literature. That is, we label the layers from
the top to the bottom of the hierarchy of the factors. In contrast, they are labelled from
the bottom to the top in the literature (see, e.g., Yung et al., 1999). We adopt the current
labelling system because it is more convenient for the proposed method in Section 2.2 that
learns the factor hierarchy from top to bottom.

An illustrative example of a three-layer hierarchical factor model is given in Figure 1,
where Panel (a) shows the variables that load on each factor from the top layer to the bottom
layer, and Panel (b) shows the corresponding path diagram. In this example, J = 16, K = 6,
v ={1,2,...,16}, vo ={1,...,8}, v3 =49,...,12}, vy, = {13,...,16}, v5; = {1,...,4} and
ve = {b,...,8}. The factors are labeled following the constraints C3(a) and C3(b). Based
on this hierarchical structure, we have T'= 3, Ly = {1}, Ly = {2,3,4} and L3 = {5,6}. The
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a) The hierarchical factor structure of a three-layer hierarchical factor model.

(b) The path diagram corresponding to the hierarchical factor model in Panel (a).

Figure 1: The illustrative example of a three-layer hierarchical factor model.
loading matrix A under the hierarchical structure takes the form

A1 A2r Az A Ast Ader A7 Ast Aer Awogr Arr Aizgr Aizr Awar Aisin Ase
A2 A22 A3z A4z As2 A2 Az Ase 0 0 0 0 0 0 0

0

A 0 0 0 0 0 0 0 0 Aoz Az A3 Ai23 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 A134 A144 A4 Aiea

Ais A2s A3z Az O 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 MXs6 Xes A6 Asg O 0 0 0 0 0 0 0

(1)
Under a confirmatory setting, the number of factors K and the variables associated with

each factors, vy, vs, ..., vk, are known. In that case, estimating the hierarchical factor model

is a relatively simple problem, which involves solving an optimization problem with suitable
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zero constraints on the loading parameters. However, in many real-world applications, we
do not have prior knowledge about the hierarchical structure of the loading matrix. In
these cases, we are interested in exploratory hierarchical factor analysis, i.e., simultaneously
learning the hierarchical structure from data and estimating the corresponding parameters.

Before presenting a method for exploratory hierarchical factor analysis, we first show
that the true factor hierarchy is unique under mild conditions, which is essential for the
true structure to be learnable. Suppose that we are given a true covariance matrix »* =
A*(A*)T + U*, where the true loading matrix A* satisfies the constraints of a hierarchical
factor model. Theorem 1 below shows that the true loading matrix A* is unique up to column
sign-flips and thus yields the same hierarchical structure.

The following notation is needed in the rest of the paper. Given a hierarchical factor
structure with loading sets v;, let D; = {j : v; C v;} be the set of all descendent factors
of factor ¢. For example, in the hierarchical structure shown in Figure 1, Dy = {5,6}. For
any matrix A = (a;;)mxn and sets S C {1,...,m} and S; C {1,...,n}, let A s,) =
(a;;)ies jes, be the submatrix of A consisting of elements that lie in rows belonging to set
S1 and columns belonging to set S, where the rows and columns are arranged in ascending
order based on their labels in §; and S,, respectively. For example, consider the loading

matrix in (1), where v = {1,2,...,8}. Then, A, 11,9}] takes the form

-
At Ao Azt A Ast Aet A Ast
Afengr2n =
A2 A2z Az A A2 Aez Az Ase
For any vector @ = (ay,...,a,)" and set & C {1,...,n}, we similarly define ajs] = (a;);cs

be the subvector of a consisting of the elements belonging to S, where the elements in ajg
are arranged in ascending order based on their labels in S. For any set §; C {1,2,...,n},

let vec(S1) be a mapping that maps the set S; to a vector whose elements are the same as S
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and arranged in ascending order. For two sets §; C {1,2,...,n} and S, C {1,2,...,|S1]},

we denote S;[Ss] as the subset of Sy, consisting of elements in vec(S;)[Sa].

Condition 1 The population covariance matriz can be expressed as the form ¥* = A*(A*) T+
U™ where the true loading matrix A* is of rank K and the loading sets v, and child factors

Chy, defined by N* satisfy the constraints C1-C3 of a hierarchical factor model.

Condition 2 Given another J x K matriz A and J x J diagonal matriz V such that ¥* =
A (AT +U* = AAT + U, we have AAT = A*(A*)" and ¥ = U~

Condition 3 Let Dj be the corresponding true set of descendant factors of factor k. For

any factor i with Chi # 0 and any j € Ch;, it satisfies that (1) any two rows of N i

are linearly independent, (2) for any k € v}, Aj .\ 1y ;. jyup+) has full column rank, and (3)
J A J

if |Ch:| > 2, then, for any si,s2 € Ch;, ki, ky € V5, and k3, ky € Vg, Af{kl7'”7,64}7{1.’].’51752}] 18
of full rank.

Theorem 1 Suppose that Conditions 1-3 hold. If there exists some hierarchical factor struc-
ture with K factors such that its loading matriz A and unique variance matriz V satisfy
¥* = AAT + U, there exists some sign flip matriz Q € Q such that A = A*Q, where Q

consists of all K x K diagonal matrices () whose diagonal entries take values 1 or —1.

Remark 1 As far as we know, Theorem 1 is the first identifiability result for exploratory
hierarchical factor analysis. This theorem establishes mild reqularity conditions under which
the true hierarchical factor model is identifiable when we do not know the true hierarchical
factor structure. Condition 1 assumes that the true model is a hierarchical factor model.
Under this model assumption, the identifiability result of Theorem 1 has two parts. The
first part involves identifying the column space of the loading matriz based on the population
covariance matriz, and the second part entails identifying the factors based on this column

space. The identifiability result in the first part, which is assumed in Condition 2, has already

9
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been well studied in the literature. For example, Condition 4 below is a result in Theorem
5.1, Anderson and Rubin (1956), which gives a sufficient condition for Condition 2 to hold.
On the other hand, the second part is more challenging and relies more on the hierarchical

factor structure. Theorem 1 focuses on proving the second part.

Condition 4 For each j € {1,...,J}, there exist two disjoint set Ey, Eo C {1,...,J}\ {j}

with |Ey| = |Es| = K such that Al | and Afy, | are of full rank, where Ay | and Afy, | are

9

the submatrices of A* consisting of the rows belonging to E; and Es.

Remark 2 Condition 2 implicitly imposes some minimum requirements on the parameter
space for identifiable hierarchical factor models. In fact, Proposition 1 below tmplies a nec-

essary condition for Condition 2. This necessary condition leads to the following constraint:

C4. Forallk=1,...,K, |vg] > 3, and |vg| > 7 if factor k has two or more child factors.

Proposition 1 There exists another J x K matriz A following the same hierarchical factor
structure as the true model and a J x J diagonal matriz ¥ such that ¥* = A*(A*)T + U* =

AANT + U, if there exists a factor k such that (1) |v}] <2 or (2) |Chi| > 2 and |vi| < 6.
Proposition 1 follows directly from Theorem 1 in Fang et al. (2021).

Remark 3 Condition 3 imposes three requirements. First, it requires that there do not exist
two variables loading on factor j such that their loadings on any factor i and its child node
j are linearly dependent. This is a mild assumption satisfied by almost all the models in
the full parameter space of hierarchical factor models. Second, it requires that the submatrix
A’[“U;7{i’j}UD;}, which corresponds to variables in v; and factors i, j, j’s descendants, are still of
full column rank after deleting any row. This condition mainly imposes a restriction on the

number of descendant factors each factor can have. That is, the full-column-rank requirement

implies that |v}| > 3+|Dj|. As shown via Proposition 2 below, this requirement automatically

10
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holds for all the identifiable hierarchical factor models that satisfy constraints C1-C4. Other
than that, the full-column-rank requirement is easily satisfied by most hierarchical factor
models. These two requirements can be seen as an extension of Condition 2 of Qiao et al.
(2025) to hierarchical factor models, where Qiao et al. (2025) consider a bi-factor model
with possibly correlated bi-factors. Third, we require that when factor 7 has child factors s;
and sq, for any two variables ki, ko loading on factor s; and any variables ks, ks loading on
factor sa, the sub-loading matrixz corresponding to variables k1, ..., ks and factors i, j, s1, So
s of full rank. Although the requirements in Condition 3 are quite mild, we acknowledge that
they may be further weakened. For example, instead of requiring any two roles of Af‘v}{i’j}]
to be linearly independent, we may only need to require a sufficient number pair of the rows
of ATU;‘,{M}] to be linearly independent; see Appendix S3 for further discussions. We leave the

refinement of the condition for future investigation.

Proposition 2 Suppose that the hierarchical factor structure satisfies constraints C1-C4.

Then |vi| > 3 + |D}| holds for each factor j.

2.2 An Overview of Proposed Method

As the proposed method is quite sophisticated, we start with an overview of the proposed
method to help readers understand it. Consider a dataset with N observation units from
a certain population and J observed variables. Let S be the sample covariance matrix of

observed data. The proposed method takes S as the input and outputs estimators:

1. T and K for the number of layers T and the number of factors K.

2. El, e Ef for the factor layers Ly,..., Ly and Uy, vs,..., V5 for the sets of variables

loading on the K factors, vy,...,vk.

3. A and U for the loading matrix A and unique variance matrix .

11



Exploratory Hierarchical Factor Analysis

As shown in Theorem 2 below, with the sample size N going to infinity, these estimates will
converge to their true values.

The proposed method learns the hierarchical factor structure from the top to the bottom
of the factor hierarchy. It divides the learning problem into many subproblems and conquers
them layer by layer, starting from the first layer L, = {1} with v; = {1,...,J}. For each
step ¢, t = 2,3,..., suppose the first to the (¢ — 1)th layers have been learned. These layers
are denoted by L; = {kioi+1,... k},i=1,...,t — 1, where kp = 0 and k; = 1, and the
associated sets of variables are denoted by vy, ..., 0k,_,. We make the following decisions in

the tth step:

1. For each factor k € Et_l, learn its child factors under the constraints C3 and C4. This
is achieved by an Information-Criterion-Based (ICB) method described in Section 2.3
below. The labels of the child factors are denoted by @k When é?lk # (), we denote

the associated sets of variables as Uy, € @k

2. If éﬁk = () for all k € Zt_l, stop the learning algorithm and conclude that the factor

o~

hierarchy has 7' =t — 1 layers.

3. Otherwise, let L, = {kimi+1,... k) = Ukeit,lalk and proceed to the (¢ + 1)th step.

We iteratively learn the structure of each layer until the preceding stopping criterion
is met. Then we obtain the estimates A and W by maximum likelihood estimation given

K:kf, V1,.. ., UR:

(A, U) =argmin [(AAT + U; 5),

AW

sty =0,i¢0,i=1,....0,j=1,....K, (2)

Vign gy 2 0,y gn=0i=1,....J,j #1,

12
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where [(AAT +¥; S) = N (log(det(AAT 4+ W) + tr(S(AAT + ¥)~1) —log(det(S)) — J) equals

twice the negative log-likelihood of the observed data up to a constant. We output f, K,
El, cee Zf, Ui, ..., VR, A and U as our final estimate of the hierarchical factor model.

To illustrate, consider the example in Figure 1. In the first step, we start with L, = {1}
and v; = {1,...,16}. In the second step, we learn the child factors of Factor 1. If they are
correctly learned, then we obtain Ch; = {2,3,4} with v, = {1,...,8}, v3 ={9,...,12} and
vy = {13,...,16}. This leads to Ly = {2,3,4}. In the third step, we learn the child factors
of Factors 2, 3 and 4, one by one. If correctly learned, we have @2 = {5,6}, alg = 0,
Chy =0, Ly = {5,6}, 05 = {1,...,4} and v = {5,...,8}. In the fourth step, if correctly
learned, we have @5 = @6 = (), and the learning algorithm stops. We then have T = 3,

K= 6, Zl, . ,Eg, v1,...,0¢ and further obtain A and ¥ using (2) given K and 1, ..., Vs

We summarise the steps of the proposed method in Algorithm 1 below.

Algorithm 1 A Divide-and-Conquer method for learning the hierarchical factor structure

Input: Sample covariance matrix S € R7*J.
1: Set L, = {1} with vy ={1,...,J}.
2: Determine Ch17 the child factors of Factor 1, and v; for all 7 € Chl, the sets of variables
loading on_these child factors, by the ICB method in Algorithm 2.
Set L2 Ch1 and t = 2,
while L, # 0 do
for k € Lt do
Determine Chk and v; for all i € Chk by the ICB method in Algorithm 2.
end for .
Set L1 = Uz, Chy.
t=t+1.
10: end while R L
1: Set T =t—1, K =L |L|.
12: Obatin A and ¥ using (2) given K and U1,..., Up.
Output: f, [?, El,...,Zf, U1,...,Ug, A and V.

13
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2.3 ICB Method for Learning Child Factors

From the overview of the proposed method described above, we see that the proposed method
solves the learning problem by iteratively applying an ICB method to learn the child factors
of each given factor. We now give the details of this method. We start with the ICB method
for learning the child factors of Factor 1, i.e., the general factor. In this case, the main
questions the ICB method answers are: (1) how many child factors does Factor 1 have? and
(2) what variables load on each child factor? It is worth noting that when learning these from
data, we need to account for the fact that each child factor can have an unknown number of
descendant factors. However, with a divide-and-conquer spirit, we do not learn the structure
of the descendant factors (i.e., the hierarchical structure of these descendant factors and
the variables loading on them) of each child factor in this step because this structure is too
complex to learn at once.

The ICB method answers the two questions above by learning a loading matrix A, with
zero patterns that encode the number and loading structure of the child factors of Factor
1. More specifically, A, is searched among the space of loading matrices that satisfy certain

zero constraints that encode a hierarchical factor model. This space is defined as

1
Al - UCE{Oagv---vcmax}ydl7---7dce{17---7dmax}A <C7 dl? st 7dc)7

where, if ¢ > 2, for a pre-specified constant 7 > 0,

Al(e,dy,. .., d,) ={A= (@ij) 7x (14-dy+-td.) © there exists a partition of {1,...,J}, denoted

by vi,..., v}, satisfying min{v{} < min{vl} < --- < min{v!}, such that

e

Aprn =0, foralls=1,... ¢, andjgé{1,2—|—Zd5/,3—|—2ds/,...,

s'<s s'<s
C
1+ dy}and |ag| <7, foralli=1,... . Jandj=1,...,1+> dc.},
s=1

- 3)

14
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and, if ¢ = 0, A*(0) = {A = (aij)yx1 : |aij] < 7} Here, ¢pax and dyax are pre-specified con-
stants typically decided by domain knowledge. 7 is a universal upper bound for the loading
parameters, which is needed for technical reasons for our theory. The space A'(c,dy, ..., d.)
includes all possible loading matrices for a hierarchical factor structure, where Factor 1 has ¢
child factors, and each child factor has d, — 1 descendant factors. The space A; is the union
of all the possible A'(c,dy,...,d.) for different combinations of the numbers of child factors
and their descendant factors.

For example, consider the hierarchical factor model example in Figure 1, for which

v ={1,...,16}. Then, the matrix

-
A1l 21 A31 A1 As1 A6l A7i A81 Ag1 A10,1 A11,1 A12,1 0 A13,1 0 A14,1 A15,1 0 Ale,l
A1z A2z A3z Mgz As2 Ae2 Arz As2 O 0 0 0 0 0 0 0
A13 A23 A33 M43 As3 Ae3 Arz Ass 0 0 0 0 0 0 0 0
A = 4)
A4 A24 A34 A4 M54 Aes A4 Asa 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0  Xos A5 A11,5 A12s 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 A13,6  M4,6 A15,6 A16,6

lies in space A'(3,3,1,1). This loading matrix is what the ICB method aims to find, as it
has the same blockwise zero pattern (ignoring the zero constraints implied by the lower-layer
factors) as the true loading pattern in (1) after reordering the columns of A in (1).

We search for the best possible loading matrix in 4; using the information criterion

defined as:

ICl(Cv dla s 7dc) = /{nl‘lIlll (‘/Xl*/xlT + ‘Illas) +p1(A1) IOgN,
S.t. A1 € AI(C, dl, ceey dc), K1 S (Ql)[{i},{i}] S Ko, (5>

(U)angy = 0,4 =1,..., 1], j #1,

15
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where k; and ko are pre-specified lower and upper bounds for the unique variance, and

Yo (Jol|ds — dy(ds — 1)/2) if dg < |v}| forall s=1,...c,
n) =9 (6)

00, otherwise,

is a penalty on the number of free parametersfor a matrix A; in A'(c,dy, ..., d.). The penalty
ensures that in the selected factor loadings, one plus the number of descendant factors of each
child factor of Factor 1 will not exceed the number of items loading on the corresponding
child factor.

Ideally, we hope to find the loading matrix in .4; that minimises 1C; (¢, ds, . .., d.) among
all c € {0,2,..., Cmaxt and dy, ..., d. € {1, ..., dnax}. More specifically, we define

(er,dy,...,dL) = arg min ICy(c,dy, . ... d.) (7)

)y Ugy
c€{0,2,...,cmax },1<ds <dmax,5=1,...,c

and further
(/_\1, \I/l) = argmin l (AIAI + \111, S)
Ay, ¥y

st Ay € ANer,dy, . dy), m < (U gy gy < ko (8)

recy

(U)o = 0.0 =1,...,[0h], 7 #i.

We determine the variables loading on each child factor of Factor 1 based on the zero pattern
of A;.

However, we note that A; is highly complex, and thus, enumerating all the possible
loading matrices in A; is computationally infeasible. In other words, while the quantities in
(7) and (8) are well-defined mathematically, they cannot be computed within a reasonable
time. In this regard, we develop a greedy search method, presented in Algorithm 2, for

searching over the space A;. This greedy search method will output ¢; and o}, ... ,6%1.
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As shown in Theorem 2, with probability tending to 1, they are consistent estimates of
the corresponding true quantities for the factors in this layer. In other words, this greedy
search is theoretically guaranteed to learn the correct hierarchical factor structure. Moreover,
Algorithm 2 also solves a similar optimization as (8) for loading matrices in A*(¢y, dy, ..., C/Z\gl),
from which we obtain a consistent estimate of the first column of the loading matrix, denoted
by Ar. So far, we have learned the factors in the second layer of the factor hierarchy.

For ¢ > 3, suppose that the first to the (¢ — 1)th layers have been successfully learned,
and we now need to learn the factors in the ¢th layer. This problem can be decomposed into
learning the child factors of each factor k in Et_l ={ki_o+1,...,k_1}. At this moment, we
have the estimated variables loading on Factor k, denoted by v, and a consistent estimate
of the loading parameters for the factors in the first to the (¢ — 2)th layer, denoted by j\i,
1=1,...,ki_s, which are obtained as a by-product of the ICB method in the previous steps.

We define Sy := ijf()\i)[gk]()\i)T and Sy := S5, 5,]- Similar to the learning of child

[0k]

factors of Factor 1, we define the possible space for the loading submatrix associated with

the descendant factors of Factor k as

k
A = Uc€{0,2,...,cmax},d1,.‘.,dce{l,.‘.,dmax}A (C, di,. .. 7dc)7

where, if ¢ > 2, for the same constant 7 > 0 as in A,

Af(e,dy,. .., d,)
={A = (@) [5u|x(1+di+-+d.) - there exists a partition of {1,...,|vj|}, denoted
by vf, ..., 0¥ satisfying min{vf} < min{v}} < --- < min{v*}, such that
Apr gy =0, foralls=1,... ¢, and j ¢ {1,2+st/,3+2d81,...,

s'<s s'<s

1+ de}and |ag| <7foralli=1,. [0andj=1,...,14+ d},
s=1

s'<s
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and, if ¢ = 0, A*(0) = {A = (aij)mx1 : |ay| < 7}. Here, ¢ and dy, ..., d. have similar
meanings as in A(c, dy, . ..,d.). Thatis, A*(c,dy, ..., d.) includes the corresponding loading

submatrices when Factor k has ¢ child factors, and each child factor has d, — 1 descendant

factors. It should be noted that, however, each matrix in A*(c, ds, ..., d.) has only |v;| rows,
while those in A'(c,dy,...,d.) have J rows. This is because, given the results from the

previous steps, we have already estimated that factor k£ and its descendant factors are only
loaded by the variables in 7. Therefore, we only focus on learning the rows of the loading
matrix that correspond to the variables in 7y, in the current task. Similar to ICy (¢, dy, .. ., d.),
we define

ICk(C, dl, . ,dc) = min/ (i}mo + Ak/\; + \Ifk, Sk) + pk<Ak) IOg N,

Ag, Vg

s.t. Ay € Ak(c, dy, ... ,dc), K1 < (\Pk)[{i},{i}] < Ko, (1())

(U) iy = 0,0 =1,..., [0], 7 # 4,
where

Y ([v¥|ds — dy(ds — 1)/2) if dy < |0F| forall s=1,...¢,
(M) = ' (11)
oo, otherwise

is a penalty term.

Again, we use the greedy search algorithm, Algorithm 2, to search for the best possible

Ay in Ag. It outputs ¢, and oF,. .. ,@éﬁk, and an estimate of the kth column of the loading
matrix, A;. Under some regularity conditions, Theorem 2 shows that &, 0%, ... , 0% , and by

are consistent estimates of the corresponding true quantities.

Remark 4 The penalty term in the proposed information criterion is essential for learning
the correct hierarchical factor structure that satisfies the constraints in C1-CJj. It avoids

asymptotically rank-degenerated solutions for the loading matriz and, thus, avoids selecting
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Figure 2: A correctly specified model with a redundant factor corresponding to wvs.

an over-specified hierarchical factor model with redundant parameters in the loading matrix
and redundant factors, which affects the interpretation of the estimated factors. Consider
the example in Figure 1. Without the penalty in the proposed information criterion, we may
select the structure in Figure 2, which is still a correctly specified model but has a redundant

factor (corresponding to vy) that is not very interpretable.

We present the proposed greedy search algorithm for efficiently searching over the space

Ay for each k. Recall that ik,o = Zf;f(Ai)[@k](Xi)gk} when k € Zt—l for t > 3. We further
define im as a J x J zero matrix to cover the case when ¢t = 2 and £ = 1. We divide the
search into two cases.

1. For ¢ = 0, we simply compute

iék,o = mi\I{ll <§k,0 + AAL + Uy, Sk) ;
ky*k

st Ap € A¥(0), k1 < (W) gy < Ko, (12)

(W) gy = 0,0 =1, U], # 1

and use (Kk,(), {f’kp) to denote the solution to (12). This is a relatively simple continuous
optimization problem that a standard numerical solver can solve.
2. Set d = dpax + 2 — t. For each ¢ € {2,..., ¢pax }, we perform the following steps:

(a) Solve the optimization in ICy(c,d, ..., d). It is easy to check that the penalty term in
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ICk(c,d, . ..,d) equals to |Ug|d — cd(d — 1)/2, which does not depend on the loading
matrix Ay as long as the number of item within each of the corresponding partition is
no less than d. Therefore, the optimization problem becomes

min [ (ik@ + AkA;— + \Pk, Sk> >

Ag, Vg

s.t. Ay € Ak(c, d,...,d),k < (‘Ijk)[{z‘}{i}] < Ko, (13)

(W) gy = 0,0 =1, [Ukl], 5 # 1.

Let vi°, ..., v%¢ be the partition of 1,...,|0;| given by the solution to (13). We note
that (13) is a discrete optimization problem, due to the combinatorial nature of the
space A*(c,d,...,d). The theoretical properties in Theorem 2 are established under
the ideal scenario that this optimization is solved exactly for all k. In reality, however,
exactly solving (13) is computationally infeasible when J and ¢ are large. To search for
the solution to (13), we cast it into a continuous optimization problem with nonlinear

zero constraints and solved by an augmented Lagrangian method; see Section 3 for the

relevant details.

(b) Given the partition v]f’c, ..., v8¢ from the previous step, we define the space for all

di,...,d. € {1,... dyax}

A (c,dy, ..., d.)
={A = (aij) 5| x A+d1+-+dy) : A[vg,c’{j}] =0, foralls=1,...,¢, and

JE{L2+) dy, 3+ dy,... .1+ Y dy}, and |ay| < 7 for (14)

s'<s s'<s s'<s

alli=1.. [0),j=1,....1+) d}
s=1

for the same constant 7 as in A*(c, dy, . .., d.). We note that the space of jk(c, di,...,d.)
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(d)

is substantially smaller than A¥(c, dy, ..., d.) as the partition of the variables is fixed.
Based on .Zk(c, di,...,d.), we define information criterion
f(jk(c, dl, “e ,dc) = I{Ill\lllll (iho + AkAl—lc— + \I/k, Sk> + pk(Ak) 10g N,
ky»*k

s.t. Ak S jk(c, dl, c ,dc), K1 S (\I’k)[{z},{z}] S Ko, (15>

(TR iy =0, =1,...,[0k|,j #i.

As the space A* (c,dy, ..., d.) is relatively simple, the optimization in (15) is a relatively

simple continuous optimization problem that a standard numerical solver can solve.

We then search for the best values for dy, ..., d. for the given c¢. They are determined

sequentially, one after another. More specifically, we first determine d; by

dS = argmin  ICy(c,dy, min(|vf°],d), ... min(|v*°], d)), (16)

1<d; <min(|v}*|,d)

where we fix the value of dy,...,d, at min(|v5°[,d), ..., min(jv*¢|,d) and only vary
the value of d;. Solving (16) involves solving min(|v}|, d) relatively simple continuous

optimization problems. Then we proceed to dy and so on. For s > 2, suppose that we

have learned aAZ%, - Ng_l, then dg is determined by

d°= argmin  ICy(e,dS, ..., d°,, dy,min(|o"¢|, d), ... min(|v"], ),
1<ds<min(|v®°|,d)

where we fix dy, ..., ds_ 1 at their learned values and further fix ds,1, ..., d. at the value
of min(|ol,|,d),. .., min(|v*<|, d).
Given CE, e ,(ié, we define

ICh. = ICk(c, dS, ..., d°) (17)
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and Kkyc, \AIVJIQC as the solution to (17).

The above steps yield f(jk,c, c€{0,2,...,Cmax}- Then, we estimate the number of child
factors of Factor k by the value of ¢ that minimises the modified information criterion i\ék,c.
That is, we let

¢, = argmin [Cy..
CG{O:Qw--acmax}

Moreover, we define

i)\f = Ak[vf’ck], S = 1, . . ,/C\k,
where v%% s =1,...,C, is the partition of {1,..., |0;|} learned above for ¢ = ¢. Then ¥,
s=1,...,¢C, give a partition of vy, and we estimate that the sth child factor of Factor k is

loaded by the variables in 7*. As a by-product, we obtain an estimate of the kth column of
the loading matrix, denoted by Xk, satisfying that (Xk)[gk] equals to the first column of Kkgk
and (Xk)[{lyl_'”]}\ﬁk} is a zero vector.

We summarise the steps described previously in Algorithm 2.

Remark 5 ¢ € {0,2,..., cnax} represents the number of child factors of Factor k. In other
words, Cmax 1S an upper bound on the possible number of child factors of Factor k. On the
one hand, we need to ensure that cmay s not too small so that Condition 9 is satisfied. On
the other hand, we want to avoid cpay being too large to reduce the computational cost. Since
the true value of ¢ should satisfy constraints C3 and C4 in Section 2.1, Cpax Should be no
more than ||[Ug|/3] when [Ug] > 7 and cpax = 0, when |0 < 6, where |-| is the floor function
that returns the greatest integer less than or equal to the input. In the simulation study in
Section 4, we set Cymax = min(4, ||[Ux]/3]) when |vg| > 7 and cpax = 0 when |vx| < 6, which,
according to the data generation model, is an upper bound for the value of c. For the real data
analysis in Section 5, since the true structure is unknown, we set Cpax = min(6, | |[vk|/3])

when [Ug| > 7 and cpax = 0 when |0 < 6 as a more conservative choice than that of Ciax
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Algorithm 2 Information-Criterion-based method

Input: 0y, Cmax, dmax € NT, iho, Sy and layer ¢.

1: Set d = min(|Vk|, dmax + 2 — t).
2: Solve fék,o defined in (12). Let (Ago, Up) as the solution to fCJk,o.
3: for c=2,3,..., Cpax do
4: Solve the optimization problem (13). Set v}°, ..., v/ as the partition of {1, ..., [T/}
by the solution to (13).
5: for s=1,...,cdo
6: Compute
gg: arg min IACJ;C(C,JE,...,cjg_l,ds,min(\vf_fl\,d),...,min(]vf’c\,d)),
1<d,s <min(jo°,d)
where IC;, is defined in (15).
: end for L _ D .
8: Define ICy . = ICy (e, df, ..., d5) and (A, Vi) as the solution to ICy .
9: end for .
10: Define ¢ = argmingcgg23 .3 [Che-
11: Set o, ..., 0% be the partition of {1,...,[0|} associated with Kkgk Define the partition
12: Define :\k following that (Xk)m] equals to the first column of Kkgk and (:\k)[{le}\gk] is
a zero vector. ~
Output: ¢, 0%, ... ,@f:ﬁk and \g.
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for the simulation study. In practice, we may adjust our choice based on prior knowledge

about the hierarchical factor structure.

Remark 6 The input hyperparameter dy.. is an upper bound of one plus the number of
descendant factors of the factors in the second layer. When learning the factors on the tth
layer for t > 3, we use dpax +2 —t as an upper bound of one plus the number of descendant
factors of the factors in the (t + 1)th layer, as the number of descendant factors each factor
has tends to decrease as t increases. Similar to the choice of cnax, we want to choose a dyay
that is neither too large nor too small. In the simulation study in Section 4, we start with
dmax = 6 when learning the factors in the second layer. In the real data analysis in Section 5,
we start with dy.e = 10. In practice, we may adjust this choice based on the problem size

(e.g., the number of variables) and prior knowledge of the hierarchical factor structure.

Remark 7 Efficiently learning the hierarchical structure from data is challenging due to
the super-exponential growth of the search space with the number of items J, which creates
a significant computational bottleneck. To overcome the computational issue, we convert
the combinatorial optimization problems in (5) and (10) into the continuous optimization
problems in (13). A similar constraint-based continuous optimization method is proposed for
learning directed acyclic graphs (DAGSs) in Zheng et al. (2018) and the bi-factor model in Qiao
et al. (2025). By integrating continuous optimization techniques with a breadth-first search
strategy, our approach (presented in Algorithms 1 and 2) requires solving only O(Jc2,,. dmax)

continuous optimization problems, thus significantly improving the computational efficiency.

2.4 Theoretical Results

We now provide theoretical guarantees for the proposed method based on Algorithms 1 and
2. We start with introducing some notation. We use || - ||z to denote the Frobenius norm

of any matrix and || - || as the Euclidean norm of any vector. We also use the notation
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ay = Op(by) to denote that ay /by is bounded in probability. In addition to the conditions
required for the identifiability of the true hierarchical factor model, we additionally require

Conditions 59 to ensure the proposed method is consistent.

Condition 5 For any factor i with Chi # 0 and any j € v}, there exist E1, By C v\ {j}
with |Ey| = |Eqy] = 14 |D;| and E; N Ey = 0, such that A, tqupr) and Mg, (hops are of
full rank.

Condition 6 For any factor i with Chi # 0 and any k € Ch, there exist Ey, Es C vy with
|E1| =2+ |Dj|, |Es] = 14 |Dj| and Ey N Ey = () such that AfEl,{i,k}uD;;] and ATEQ,{k}UD;;] are
of full rank.

Condition 7 ||S — ¥*||r = Op(1/VN).

Condition 8 The true loading parameters and unique variance parameters satisfy |\j;| < 7

and k1 <Y < Ko for all i,j, where T, kK1 and ko are constraints used in the ICB method.

Condition 9 When learning the child factors of each true factor k, the constants cpax and

dmax are chosen such that cyax > |Chi| and dyayx > maxeecny |Di| + 1.

Theorem 2 Suppose that Conditions 1,3, and 5-9 hold. Then, the outputs from Algorithm 1
are consistent. That is, as N goes to infinity, the probability off =T, K = K, Et = Ly,
t=1,....,7, and v; = vf, i = 1,..., K goes to 1, and ||K—A*@||F = Op(1/V/'N) and
||\TJ—\IJ*||F = Op(1/V/N), where Q € Q is the diagonal matriz with diagonal entries consisting

of the signs of the corresponding entries of ATA*

Theorem 2 guarantees that the true hierarchical factor structure can be consistently
learned from data and its parameters can be consistently estimated after adjusting the sign

for each column of the loading matrix by @
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Remark 8 It should be noted that in Theorem 2, Algorithm 1 applies Algorithm 2, which in-
volves some nontrivial optimization problems, including a discrete optimization problem (13).
The theorem 1is established under the oracle scenario that these optimizations are always
solved successfully. However, we should note that this cannot be achieved by polynomial-time

algorithms due to the complexity of these optimizations.

Remark 9 Theorem 2 does not explicitly require Condition 2, because Condition 5 is a
stronger condition that tmplies Condition 2, as shown in Lemma 4 in the Appendiz S/.
In fact, Condition 5 is sufficient for Condition 4, which further implies Condition 2. We
need a stronger condition (i.e., Condition 5) here, for distinguishing between the loading
structure and the unique variance at each stage of recursion. Similar to Condition 3, this
condition imposes further requirements on the number of child factors and the number of
descendant factors a factor can have. More specifically, for such a partition to exist, we
need |vf| > 2|Df| + 3. Other than that, the full-rank requirement is easily satisfied by most
hierarchical factor models. Similar to Condition 5, Condition 6 also requires |v}| > 2|D}|+3.
This condition plays a central role in ensuring that Step 6 in Algorithm 2 is valid. Condition
7 is very mild. It is automatically satisfied when the sample covariance matriz is constructed
using independent and identically distributed observations from the true model, and all the
fourth-order moments of the i.i.d. data are finite. Condition 8 requires the true loading
and unique variance parameters to satisfy the same boundedness constraints as in the ICB
method in Algorithm 2. Theoretically, these constraints ensure that the parameter space is
compact, which is needed for bounding the differences in the loss function of different models.
Empirically, we notice that the ICB method works well even without these constraints, and
thus omit these constraints in the computation. Condition 9 requires that cpayx and dya. are

chosen sufficiently large so that the search space covers the true model.
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3 Computation

As mentioned previously, the optimization problem in ICk(c,d,...,d) in Algorithm 2 can
be cast into a continuous optimization problem and solved by an augmented Lagrangian
method(ALM). In what follows, we provide the details.

With slight abuse of notation, we use the reparameterization of the unique variance ma-
trix such that ¥, = diag(v;), where diag(-) is a function that converts a vector to a diagonal
matrix with the diagonal entries filled by the vector. Here, 97 = {¢2,,... Ui} 18 @ [Tkl
dimensional vector for ¥y, ..., ¥k 5, € R. We further let B, = {24 (s —1)d, ..., 1+ sd} for
s=1,...,c. We note that, up to a relabelling of the partition sets or, equivalently, dropping
the label ordering constraint min{v¥} < min{v§} < .- < min{v*}, the set A*(c,d,...,d)

can be rewritten as

{A = (aij)|ﬁk|x(1+cd) L Qi Qa5 = 0 for ¢« = 1, c ey |®\k|,j € Bs,j/ € BSI,S 7£ S,, |6Lij| S 7'}.
Therefore, we can solve ICx(c,d, . .., d) by solving the following continuous optimization

problem with nonlinear zero constraints:

Age, ﬂzk’c =arg min/ (im + Ap(Ag) T + diag(eh3), Sk)
Ay, (18)

St Mgy =0 fori=1,... |[04],7 € BY j € BE s # 5.
Here, the constraints on the loading and unique variance parameters are omitted for sim-
plicity, as these constraints are always satisfied when we set 7 and k, to be sufficiently large
and k1 to be sufficiently small. Once this optimization is solved, then for each ¢, there is one
and only one B, such that (Ay.)giy,5,] # 0. Therefore, we obtain a partition of 1,...,|0,| by

the sets
{i: (Ake)np) #0}s=1,....c
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We obtain v ..., v by reordering {i : (/_\k,c)[{i},zss] # 0},s = 1,...,c to satisfy the
constraint on the labels of these sets.

We solve (18) by the ALM algorithm (see, e.g., Bertsekas, 2014), which is a standard
approach to such problems. This method finds a solution to (18) by solving a sequence of
unconstrained optimization problems. More specifically, in the tth iteration, t = 1,2, ..., the
ALM minimizes an augmented Lagrangian function that is constructed based on the result
of the previous iteration. Details of the ALM are given in Algorithm 3 below, where the
function h(-) returns the second largest values of a vector. The updating rule of 5](2/ and
c®) follows equations (1) and (47) in Chapter 2.2 of Bertsekas (2014), and the convergence
of Algorithm 3 to a stationary point of (18) is guaranteed by Proposition 2.7 of Bertsekas
(2014). We follow the recommended choices of ¢y = 0.25 and ¢, = 10 in Bertsekas (2014) for
the tuning parameters in Algorithm 3.

We remark on the stopping criterion in the implementation of Algorithm 3. We monitor
the convergence of the algorithm based on two criteria: (1) the change in parameter values

in two consecutive steps, measured by

(1A — AL+ o — 9 2) o2 + )2,
and (2) the distance between the estimate and the space A*(c,d, ..., d) measured by

max h(max |\, ) max /\ max A\
i€{1,...,| vk} (]EB | | | | | k7,]|)

When both criteria are below their pre-specified thresholds, §; and d,, respectively, we stop

the algorithm. Let M be the last iteration number. Then the selected partition of {1, ..., U},

(M)
)\k K%

k:c

) C Y

denoted by v"°, . .. is given by v%¢ = {j : | | < 0y for all j ¢ Bs}. For the analyses

in Sections 4 and 5, we choose d; = d, = 0.01.
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Algorithm 3 An augmented Lagrangian method for solving ICy(c,d, ..., d)

Input: Initial value A© and ¢ initial Lagrangian parameters 51(30]), fori = 1,...,|vk,
j € B, j' € By and s # &', initial penalty coefficient ¢*) > 0, constants ¢, € (0,1) and
¢y > 1, tolerances 91, 09 > 0, maximal iteration number M.
1: fort=1,2,..., M., do
2: Solve the following problem:

A,(C), ,(:) —argmin [ (Eko + Ax( Ak + diag(vy,), Sk>
Ak7¢k

[0 |

oY B i

i=1 jEBs,j'€Byr,s57#s"

[T |

Y D Cwagdea)’?

1=1 jEBs,j'€Byr,s#s"

l\')lr—t

3: Update ﬂwt;, and ¢ according to equations (19) and (20)

1
/Bljj /B’L(;] )+ |\ /\kt)m)\;ftz]/’ (19>
and
1/2
0 () ()
coclt™) <E| K Zjess,j'ess,,s;és/()‘k,zj)‘k,ij/)2>
) — 1/2
c = o (t—1)y (t=1) 2 20
<z| o ZjGBs,j’EBS/,sis ()‘k Jij )\k i’ ) ) ) ( )
=1 otherwise.
4. if 12
t t—1 t t—1 ~ 1/2
(1AL = ALT20Z + Yl = V1) (8l 2+ ) < 0y
and
ie{gr}%k‘}h(%ﬂkm m‘aLXIA;“]I r]naXMmJ!) < b,
then
5 return Ag), ¢,(f).
6: Break
7 end if
8: end for

Output: Ak, k .
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Algorithm 3 can suffer from slow convergence when the penalty terms become large,
resulting in an ill-conditioned optimization problem. When the algorithm does not converge
within M., iterations, we suggest restarting the algorithm, using the current parameter
value as a warm start. We set M,.x = 100 in the simulation study in Section 4 and the
real data analysis in Section 5 and keep the maximum number of restarting times to be
five. In addition, since the optimization problem (18) is non-convex, Algorithm 3 may only
converge to a local optimum and this local solution may not satisfy condition C4. Therefore,
we recommend running it with multiple random starting points and then finding the best
solution that satisfies condition C4. In our implementation, each time to solve (18), we start
by running Algorithm 3 100 times, each with a random starting point. If more than 50 of
the solutions satisfy C4, then we stop and proceed to Steps 58 in Algorithm 2. Otherwise,
we rerun Algorithm 3 100 times with random starting points, until either 50 solutions satisfy

C4 or the algorithm has been restarted five times.

4 Simulation Study

In this section, we examine the recovery of the hierarchical structure as well as the accuracy
in estimating the loading matrix and the unique variance matrix of the proposed method.
Suppose that vy,...,0z are the estimated sets of variables loading on each factor, where K
is the estimated number of factors, A is the estimated loading matrix and U is the estimated
unique variance matrix. To examine the recovery of the hierarchical factor structure, we
measure the matching between the true sets of variables loading on each factor and the

estimated sets of variables. More specifically, the following evaluation criteria are considered:

1. Exact Match Criterion (EMC): 1(K = K) [ 1(3, = v?), which equals to 1

when the hierarchical structure is fully recovered and 0 otherwise.

2. Layer Match Criterion (LMC): 1({Uk},cz, = {vj}ker,), which is defined for each layer
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t. It equals 1 if the sets of variables loading on the factors in the tth layer are correctly

learned and 0 otherwise for t =1,...,T.

We then examine the accuracy in estimating the loading matrix and the unique variance
matrix. We calculate the mean square error(MSE) for A and \Tl, after adjusting for the sign
indeterminacy shown in Theorem 1. More specifically, recall that Q is the set of sign flip
matrices defined in Theorem 1. When the proposed method outputs a correct estimate of
the hierarchical structure (i.e. EMC = 1), we define the MSEs for A and ¥ as MSE, =
mingeo 1A — A*Q|[3/(JK), and MSEy = ¥ — w2/

We consider the following hierarchical factor structure shown in Figure 3 with the number
of variables J € {36,54}, the number of layers T" = 4, the number of factors K = 10,
Li={1}, Ly ={2,3}, Ly ={4,...,8}, Ly = {9,10} and v = {1, ..., J}, vs ={1,...,J/3},
vi={1+J/3,...,J}, v ={1,...,J/6},vi={1+J/6,...,J/3}, vi={1+J/3,...,5J/9},
vi ={1+5J/9,...,7J/9}, vi = {1+ 7J/9,...,J}, v§ = {1+ J/3,...,4J/9}, vi, = {1 +
4J/9,...,5J/9}. In the data generation model, U* is either a J x J identity matrix or ¥* =

diag(y5?, ..., %) with ¢35, 7 =1,...,J, 1.i.d., following a Uniform(0.5, 1.5) distribution, and
A* is generated by
ujp if k=1;
Np=19 0 if k>1,5¢u}; (21)

(1 —=2z,)uy, if k>1,5 €y,
for j=1,...,J,and k =1,..., K. Here, ujs are i.i.d., following a Uniform(0.5,2) distri-
bution and zj;s are i.i.d., following a Bernoulli(0.5) distribution. For each value of J, we
generate the true loading matrix A* and the true unique variance matrix U* once and use it
for all its simulations.
We consider 8 simulation settings, given by the combinations of J = 36, 54, two sample
sizes, N = 500, 2000 and two generating processes of U*. For each setting, 100 independent

simulations are generated. The results of learning the hierarchical factor structure and
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Figure 3: The hierarchical factor structure in the simulation study.

Table 1: The accuracy of the overall estimates of hierarchical structure and parameters.

v J N K T EMC MSE; MSEg
Identity 36 500 10.01 4.00 0.98 2.90x 1073 1.54 x 1072
2000 10.04 4.00 097 0.74x107% 3.99 x 1073
54 500 10.05 4.00 0.97 2.65x107% 6.45 x 1073
2000 10.02 4.00 0.99 0.66 x 1073 1.63 x 1073
Heterogeneous 36 500 10.00 4.00 1.00 3.34 x 107 1.45 x 1072
2000 10.00 4.00 1.00 0.80x 1073 3.15x 1073
54 500 10.01 4.00 0.99 2.69 x 107* 7.99 x 1073
2000 10.04 4.00 098 0.67x 1073 2.10x 1073

estimating the model parameters are shown in Tables 1 and 2. In these tables, K and T
report the average values of K and T, respectively, and |E2|, |23| and |E4| report the average
numbers of factors in Eg, Eg and 24, respectively. As shown in Table 1, the proposed method
can accurately recover the true hierarchical factor structure more than 97% of the time under
all the settings, with the highest accuracy of 100% achieved under the setting with J = 36
and heterogeneous diagonal entries in the unique variance matrix. The MSE of A and U
show that the loading matrix and the unique variance matrix are accurately estimated when

the hierarchical structure is correctly learned.
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Table 2: The accuracy of the estimated hierarchical structure on each layer.

v J N |L LMC, |Ls] LMCs; |Ls LMC,

Identity 36 500 2.00 1.00 499 098 2.02 0.99
2000 2.00 1.00 497 097 2.07 097

54 500 2.00 1.00 497 097 2.08 0.97

2000 2.00 1.00 499 099 2.03 0.99

Heterogeneous 36 500 2.00 1.00 5.00 1.00 2.00 1.00
2000 2.00 1.00 5.00 1.00 2.00 1.00

54 500 2.01 099 5.00 099 2.00 1.00

2000 2.00 099 499 098 2.05 0.98

5 Real Data Analysis

We apply the exploratory hierarchical factor analysis to a personality assessment dataset
based on the International Personality Item Pool (IPIP) NEO 120 personality inventory
(Johnson, 2014). We investigate the structure of the Agreeableness scale based on a sample
of 1655 UK participants aged between 30 and 40 years. This scale consists of 24 items,
which are designed to measure six facets of Agreeableness, including Trust (A1), Morality
(A2), Altruism (A3), Cooperation (A4), Modesty (A5), and Sympathy (A6). The responses
to all the items are recorded on a 1-5 Likert scale and treated as continuous variables. The
reversely worded items have been reversely scored so that a larger score always means a
higher level of agreeableness. There is no missing data. Detailed descriptions of the items
can be found in the Appendix S7. The learned hierarchical factor structure, which has four
layers and ten factors, is shown in Figure 4, and the estimated loading matrix A is shown in
Table 3.

We now examine the learned model. We notice that the loadings on Factor 1 are all
positive, except for item 18, which has a small negative loading. Thus, Factor 1 may be
interpreted as a general Agreeableness factor. Factor 2 is loaded positively by all items

designed to measure the Trust, Altruism, and Sympathy facets. Therefore, it may be inter-
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Figure 4: The hierarchical factor structure from the real data analysis

Table 3: The estimated loading matrix A with four layers and ten factors.

Item Facet Fl F2 F3 F4 F5 Fﬁ F7 Fg Fg FlO
1 Al 0.47 0.14 0 070 0 0 0 0 0 0
2 Al 0.36 0.23 0 0.9 0 0 0 0 0 0
3 Al 0.32 0.22 0 0.69 0 0 0 0 0 0
4 Al 0.59 0.11 0 064 0 0 0 0 0 0
5 A2 0.44 0 0.55 0 0 0 0.61 0 0 0
6 A2 0.46 0 027 0 0 0 0.34 0 0 0
7 A2 0.56 0 042 0 0 0 061 0 0 0
8 A2 045 0 021 0 0 0 0 —-0.10 0.05 0
9 A3 026 0.37 0 0 048 0 0 0 0 0

10 A3 026 0.54 0 0 0.16 0 0 0 0 0
11 A3 046 0.51 0 -0.11 0 0 0 0 0 0
12 A3 0.43 0.34 0 0 0.21 0 0 0 0 0
13 A4 0.21 0 048 0 0 0 0 -0.02 0 042
14 A4 046 0 0.14 0 0 0 0 —0.15 0 0.66
15 A4 0.63 0 021 0 0 0 0 —0.00 0 048
16 A4 057 0 0.34 0 0 0 0 —0.21 0 0.20
17 A5 0.36 0 043 0 0 0 0 068 —0.06 0
18 A5 —0.09 0 0.46 0 0 0 0 070 048 0
19 A5 0.06 0 0.49 0 0 0 0 0.86 0.41 0
20 A5 0.29 0 043 0 0 0 0 0.15 0 013
21 A6 0.23 0.44 0 0 0 0.75 0 0 0 0
22 A6 0.22 0.56 0 0 0 041 0 0 0 0
23 A6 041 057 0 —0.04 0 0 0 0 0 0
24 A6 0.34 0.40 0 0 0 0.38 0 0 0 0

preted as a higher-order factor of these facets. Factors 4-6 are child factors of Factor 2, and
based on the loading patterns, they may be interpreted as the Trust, Altruism, and Sym-
pathy factors, respectively. It is worth noting that items 11 (“Am indifferent to the feelings
of others") and 23 (“Am not interested in other people’s problems"), which are designed to
measure the Altruism and Sympathy facets, now load weakly and negatively on Factor 4

rather than their corresponding factors.

34



Exploratory Hierarchical Factor Analysis

Factor 3 is another child factor of Factor 1. It is loaded with items designed to measure
the facets of Morality, Cooperation, and Modesty. As all the nonzero loadings on Factor 3 are
positive, it can be interpreted as a higher-order factor of morality, cooperation, and modesty.
Factor 7 is the child factor of Factor 3. It is positively loaded by three items designed to
measure the Morality facet, and can be interpreted accordingly. Factor 8 is another child
factor of Factor 3. It is loaded positively by all the items designed to measure the Modesty
facet and negatively, although relatively weakly, by all the items designed to measure the
Cooperation facet, and item 8 (“Obstruct others’ plans") that is designed to measure the
Morality facet, but is closely related in concept to cooperation. Thus, we can treat Factor
8 as a higher-order factor of modesty and weak aggression (the opposite of cooperation).
Finally, Factors 9 and 10 are child factors of Factor 8. Factor 10 may be interpreted as a
cooperation factor, while Factor 9 seems to be a weak modesty factor.

Finally, we compare the learned hierarchical factor model with several alternative models

based on the Bayesian Information Criterion (BIC; Schwarz, 1978), including

1. (CFA) A six-factor confirmatory factor analysis model with correlated factors. Each
factor corresponds to a facet of Agreeableness, loaded by the four items designed to

measure this facet.

2. (CBF) A confirmatory bi-factor model with one general factor and six group factors,
where the group factors are allowed to be correlated. Each group factor corresponds

to a facet of Agreeableness, loaded by the four items designed to measure this facet.

3. (EBF) An exploratory bi-factor model with one general factor and six group factors,
where the group factors are allowed to be correlated. The bi-factor structure is learned
using the method proposed in Qiao et al. (2025). Specifically, exploratory bi-factor
models with 2,3,...,12 group factors are considered, among which the one with six

group factors is selected based on the BIC.
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Table 4 presents the BIC values of all the models, where the model labeled HF is the learned
hierarchical factor model. From the results of BIC, the proposed hierarchical factor model
fits the data best. Detailed results on the estimated loading matrix and the estimated

correlation matrix of the competing models are shown in Appendix S8.

Table 4: The BICs of the hierarchical factor model and the competing models

HF CFA CBF EBF
BIC 102,987.54 103,841.48 103,200.42 103,026.10

6 Discussions

This paper proposes a divide-and-conquer method with theoretical guarantees for exploring
the underlying hierarchical factor structure of the observed data. The method divides the
problem into learning the factor structure from the general factor to finer-grained factors. It
is computationally efficient, achieved through a greedy search algorithm and an augmented
Lagrangian method. To our knowledge, this is the first statistically consistent method for
exploratory hierarchical factor analysis that goes beyond the bifactor setting. Our simulation
study shows that our method can accurately recover models with up to four factor layers, ten
factors, and 54 items under practically reasonable sample sizes, suggesting that it may be
suitable for various applications in psychology, education, and related fields. The proposed
method is further applied to data from an Agreeableness personality scale, which yields a
sensible model with four layers and ten factors that are all psychologically interpretable.

It is worth noting that the current work assumes that all the factors are orthogonal.
Mathematically, it is possible to relax this assumption, though certain constraints are still
needed. Specifically, two factors need to be orthogonal if one is a descendant of the other.

Otherwise, the model is not identifiable due to rotational indeterminacy. For factors without
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such a relationship, correlations may be allowed. For example, in the exploratory bi-factor
analysis in Qiao et al. (2025), which concerns hierarchical factor models with two factor
layers, factors within the second layer are allowed to be correlated. However, we should note
that relaxing the orthogonality assumption can make the model less interpretable. Under the
orthogonality assumption, the dependence between two variables is solely due to the shared
factors. Such simple interpretations are important when the hierarchical factor model has
a complex structure (e.g., with many factor layers), which is probably why all the existing
hierarchical factor models, except for some special bi-factor models, adopt this orthogonality
assumption. Therefore, it may not be worth extending the current theory and method to a
more general setting with correlated factors, even though it is possible.

The current method also assumes that a general factor exists and includes it in the first
factor layer. However, this may not always be the case. For example, in psychology, there
is still a debate about whether a general factor of personality exists (see, e.g., Revelle and
Wilt, 2013). In cases where we are unsure about the presence of a general factor, the current
method can be easily modified to estimate a hierarchical factor model without a general
factor, which can be achieved by modifying the first step of Algorithm 1.

The current method and asymptotic theory consider a relatively low-dimensional setting
where the number of variables J is treated as a constant that does not grow with the sample
size. However, in some large-scale settings, J can be on a scale of hundreds or even larger,
so it may be better to treat it as a diverging term rather than a fixed constant. In that case,
a larger penalty term may be required in the information criterion to account for the larger
parameter space, and the asymptotic analysis needs to be modified accordingly.

Finally, the current work focuses on linear hierarchical factor models, which are suit-
able for continuous variables. In many applications of hierarchical factor models, we often
encounter categorical data (e.g., binary, ordinal, and nominal) that may be better analyzed

with non-linear factor models (see, e.g., Chen et al., 2020). We believe it is possible to extend
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the current framework to the exploratory analysis of non-linear hierarchical factor models.
In particular, building upon recent advances in the generalized latent factor model (e.g.,
Cui and Xu, 2025), our approach can be generalized to non-linear hierarchical factor models
through likelihood-based estimation, subject to appropriate constraints on both factors and

loadings.
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