Statistica Sinica Preprint No: SS-2025-0187

Title

Inference for A Two-Step Joint Model of Extreme

Quantile and Expected Shortfall Regression

Manuscript ID

SS-2025-0187

URL

http://www.stat.sinica.edu.tw/statistica/

DOI

10.5705/s5.202025.0187

Complete List of Authors

Qingzhao Zhong,
Jingyu Ji,

Liujun Chen,
Yanxi Hou and

Deyuan Li

Corresponding Authors

Jingyu Ji

E-mails

jingyuji@cueb.edu.cn

Notice: Accepted author version.




Statistica Sinica

INFERENCE FOR A TWO-STEP JOINT MODEL
OF EXTREME QUANTILE AND

EXPECTED SHORTFALL REGRESSION

Qingzhao Zhong!, Jingyu Ji%, Liujun Chen®, Yanxi Hou!, and Deyuan Li*

1School of Data Science, Fudan University
2School of Statistics and Data Science, Capital University of Economics and Business
3School of Management, University of Science and Technology of China

4School of Management, Fudan University

Abstract: As a coherent risk measure, Expected Shortfall (ES) has garnered in-
creasing attention due to its merits in quantitative risk management, particularly
its ability to capture tail risks. Consequently, the Expected Shortfall regression
model has recently been proposed in conjunction with quantile regression to in-
vestigate the conditional effect of predictors on a response variable of interest.
However, existing approaches have encountered challenges in effectively estimat-
ing the conditional expected shortfall regression at extreme levels, primarily due
to the scarcity of observations in the tails. To address this issue, this paper

first fits a joint regression model of conditional quantile and conditional ES at
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an intermediate level using a two-step procedure. Subsequently, three extrapola-
tive approaches are proposed to study the extreme conditional ES estimation.
We also develop the asymptotic properties of all proposed estimators within a
conditional heteroscedastic extreme framework. Furthermore, simulations are
conducted to examine the finite sample performance of our methods. Finally, a
real-world example underscores the practical advantages of extreme conditional

ES regression.

Key words and phrases: quantile regression; expected shortfall regression; het-

eroscedastic extremes; tail risk.

1. Introduction

Value-at-Risk (VaR) and Expected Shortfall (ES) are two popular mea-
sures of quantitative risk management that have gained widespread adop-
tion. VaR is favored by practitioners for its simplicity and interpretability;
it represents a specific quantile of a loss distribution, making it accessible
for practical use. Despite its robustness in statistical terms, VaR suffers
from a significant limitation: it fails to account for tail risks beyond a
certain threshold of a loss distribution. This shortcoming is particularly
pronounced with heavy-tailed distributions, where VaR tends to underes-
timate the tail risk. To address this issue, ES was introduced. It provides

a more accurate representation of potential tail risks under extreme con-



ditions. A profound contribution by |Artzner et al.| (1999) introduced the
concept of “coherent risk measures”, which emphasizes the clear advantage
of ES as a coherent measure for assessing tail risk compared to VaR.
Given that practitioners and regulators often have access to extensive
datasets that can capture a more comprehensive set of tail risk characteris-
tics, it is both theoretically intriguing and practically significant to explore
inference methods for VaR and ES within the context of regression models.
VaR’s straightforward representation as a quantile of a loss distribution fa-
cilitates the direct application of quantile regression (QR) models, where
the conditional quantiles of the loss distribution are modeled as a function
of risk factors under specific scenarios. Numerous researchers have con-
ducted fruitful studies in this area, such as Gutenbrunner and Jureckova:
(1992), He, (1997)), Koenker| (2005)), Zhou and Shao| (2013)), He et al.| (2020).
Upon these studies, (Chernozhukov| (2005) first considered a QR model at
an extreme level but failed to achieve asymptotic normality. |Wang et al.
(2012) and |Wang and Li (2013) derived the normal limit distribution using
an extrapolation approach based on extreme value theory. Xu et al.| (2022))
studied the extreme expectile regression model by extrapolating an interme-
diate QR model. Girard et al. (2022) further considered the nonparametric

extreme conditional expectile estimator in the context of conditional heavy-
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tailed distributions. Hou et al.| (2024) employed a two-step procedure to
estimate extreme conditional quantiles based on an extreme QR model with
panel data. These studies collectively transition the classical QR model to
the extreme QR model, facilitating applications in tail risk measurement.
In contrast, the ES estimation necessitates fundamentally different ap-
proaches due to its inherent non-elicitability, as formally established by
Gneiting| (2011). This property implies that ES cannot be directly esti-
mated through conventional loss minimization frameworks. This character-
istic poses a challenge in developing statistical inference methods for con-
ditional ES within a regression framework. Recent studies have addressed
this issue by proposing innovative approaches, such as multi-objective elic-
itability, which involves jointly modeling the quantile and expected short-
fall through a minimization problem. Fissler and Ziegel (2016 showed
that it is jointly elicitable with the quantile using a class of strictly con-
sistent joint loss functions, enabling joint regression modeling for quantile
and ES. Then, |Dimitriadis and Bayer| (2019) and [Patton et al.| (2019)) pro-
posed M-estimators (and Z-estimators) defined as the global minimum of
these joint loss functions. However, the resulting optimization problem is
computationally challenging due to the lack of differentiability and con-

vexity in the loss function, despite established statistical properties. To



mitigate the computational burden, [Barendse (2020) introduced a two-step
modeling procedure, bypassing the non-convexity problems, to tackle the
non-eliciability of ES. In the first step, a (linear) QR model is fitted, and
in the second step, a (linear) ES regression model is fitted by employing an
Neyman-orthogonal score with substituting the unknown parameters of the
fitted QR model. Consequently, the ES minimization problem in the sec-
ond step incorporates the statistical uncertainty from the QR model in the
first step. This two-step approach is more straightforward to implement in
practice compared to the first, making its statistical properties particularly
intriguing for further investigation.

Another challenge lies in the prediction of high-risk conditional ES
within a regression framework. As ES provides a more precise assessment
of tail risk under extreme conditions, there is significant interest in devel-
oping an extreme conditional ES model within a regression setting. To the
best of our knowledge, no existing literature has yet addressed this specific
issue. As suggested in [He et al.| (2023)), current joint loss optimization and
two-step methods perform poorly at extreme levels, as they are designed
for fixed quantile levels. The main contribution of this paper lies in the
integration of joint quantile and ES regression with extreme risk model-

ing — an area that remains largely unexplored and presents statistically



intriguing properties worthy of further investigation. Moreover, we adopt
the heteroscedastic extreme framework introduced by Einmahl et al.| (2016)
for modeling extreme risk, which provides an appropriate characterization
of conditional distributions in regression settings. To be specific, let Y be
a univariate response variable, X be a p-dimensional design vector, and
denote Fy () and Fy (-|x) as the unconditional distribution of ¥ and the
conditional distribution of Y given X = x. The first-order condition of
heteroscedastic extreme is that, there exists a distribution Fy(-) such that

. 1= Fy(tx)
].lm —_—

= 9(x), (1.1)
uniformly for all x in a compact set, where g is a continuous and posi-
tive function (scedastic function). To analyse the asymptotic properties,
Einmahl et al.| (2016) presented a second-order regular variation condi-
tion (Assumption (1.b)) for the heteroscedastic extremes quantifying the
rate of convergence in ([1.1]). Under this second-order condition, Xu et al.
(2022) has shown that the conditional distribution Fy(:|x) and uncondi-
tional distribution Fy(-) fall in the same maximum domain of attraction
with a uniform extreme value index . This allows for Hill estimator-based
extrapolation in extreme conditional ES regression.

Upon the foundations of heteroscedastic extremes, we implement the

extreme conditional ES regression as follows. First, we conduct the two-step
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procedure in (2.11)) and (2.12) to fit conditional quantile and ES regression

models at an intermediate level. Since the intermediate level varies with
the sample size, replacing a fixed level with an intermediate one makes the
theoretical analysis significantly more challenging and complex. This con-
stitutes the main technical challenge. Stronger joint asymptotic normalities
for the resulting estimators are presented in Proposition [2] and Theorem [I]
which highlight the relevance between the quantile and ES regression com-
ponents in the two-step procedure. Second, we develop several different
approaches to extrapolate the extreme conditional ES estimators by exam-
ining the relationship between extreme ES and intermediate ES/quantile.
Additionally, motivated by PELVE of [Li and Wang (2023), we also develop
an extrapolation method via level selection. Prior to our work, Xu et al.
(2022) employed a similar approach to extrapolate the extreme expectile
estimator using quantile regression via level selection. However, it fails to
derive the asymptotic property. In contrast, we address this problem by se-
lecting two intermediate orders and establish the corresponding asymptotic
properties, which serve as another theoretical improvement of our work.
We organize this paper as follows. In Section [2| we first present the
basic description for conditional quantile and conditional ES models and

then studied the joint regression model at an intermediate level. The pro-



posed methods for estimating the extreme conditional ES within a linear
regression framework are discussed comprehensively in Section |3| Section
provides simulation evidence of the good finite-sample properties of our
methods to predict the conditional ES at extreme levels. An empirical ap-

plication in Section [5| further illustrates the effectiveness of our proposals.

2. A joint model for intermediate quantile and ES regression

Recall that the sample {(y;,x;)}?, are drawn independently from the dis-
tribution of a random vector (Y, X), where Y € R is the response variable
and X € RP? is the predictor. In this paper, we consider X includes the
unit as the first coordinate. We denote Fy (-) and Fy (+|x) to represent the
unconditional distribution of Y and the conditional distribution of Y given
X = x, respectively. Besides, the generalized inverse functions of Fy(-)
and Fy(-|x) are denoted as F}-'(-) and Fy'(-|x), respectively. We denote
(a)+ := max(a,0) and (a)_ := min(a, 0).

The conditional quantile of Fy(:|x) given X = x at a (fixed) level

7 € (0,1) is defined as

Qv(7x) == Fy ! (7]x) = inf{y | Fy (y[x) > 7},
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or, equivalently, via an optimization such that

Qy(7]x) = argminE[p, (Y — ¢) | X = x], (2.2)

geR
where p,(u) = (7 — I(u < 0))u = |7 — I(u < 0)] |ul.
The conditional (right-tail) expected shortfall of Fy(:|x) given X = x

at a level 7 € (0,1) is defined as
1 1
ESy(7]x) := 1—/ FyU(tx)dt = E[Y|Y > Qy(r|x),X =x]. (2.3)

One can see that ESy (7|x) refers to the expectation of Y given X = x condi-
tional on the event {Y > Qy (7|x)} of its distribution, indicating ESy (7]x)
can describe the tail behavior of Y. Following Barendse (2020), He et al.

(2023)), ES can be characterized jointly with the conditional quantile by

ESy(7]x) = argmin E[¢.(Y —e,Y — Qy(7]x)) | X = %], (2.4)
ecR
where ¢ (u,v) == ((u—v) + 7=1(v > 0))2. Moreover, one can derive the

relationship between Qy (7]x) and ESy (7|x) by,
By (r[x) = Qv (r[x) + —=—B[(Y ~Quv(rh0)c X =x].  (25)

The detailed derivations of (2.4]), (2.5), as well as (2.10) below, are all

contained in Supplement S3.
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2.1 Tail behavior of conditional Expected Shortfall

To estimate conditional ES ESy (7/|x) at an extreme level 7/, we are mo-
tivated by to propose extrapolation methods utilizing extreme value
theory. More specifically, we investigate the regular variation conditions of
the extreme conditional ES; taking into account the tail behavior of the
conditional distribution Fy(:|x). We impose the following assumptions on

the right tail of Fy (-|x).
Assumption 1.

(1.a) The distribution of X has a compact support X and E[XX"] is posi-

tive definite.

(1.b) There ezist a positive and eventually decreasing function A with lim;_,, A(t) =
0, and a positive continuous function g(x) on X with E[g(X)] = 1,

such that as t — oo,

(1.c) There exist some v > 0,p < 0, and a positive and eventually decreas-

sup
xeX

ing function Ay with limy_,o A1(t) = 0 such that: for all x > 0,

im 1 1-— F()(tl') B x_% _ xfl/’yﬁ
M 0 = Fo®) < = Fold) ) = (27




11 2.1 Tail behavior of conditional Expected Shortfall

(1.d) Ast — 0o, A(t) = o(A(t)). It also satisfies lim, .o VKA (n/k) = 0

with k := k, such that k — oo, k/n — 0 as n — oco.

Assumption [I] characterizes the heteroscedastic extremes for the condi-
tional distribution Fy (-|x). Specifically, Assumption (1.a) regarding predic-
tors is a typical condition for the asymptotic theory of quantile regression.
Assumption (1.b) introduces a second-order condition for heteroscedastic
extremes (see Einmahl et al. (2016)), indicating that the conditional distri-
bution Fy (:|x) has an equivalent tail to some Fy(+), but scaled by a function
g(x), where both Fpy(-) and g(-) are defined in (L.1). Assumption (1.c) is
a conventional second-order regular varying condition for Fy(-), while As-
sumption (1.d) specifies the convergence rate of two related auxiliary func-
tions A(t) and A;(t), with A(t) converging slightly faster than A;(¢). Note
that Fy(-) can be replaced by the unconditional distribution Fy(-). It is
because, as shown in Lemmas S1 and S2, the conditional and unconditional
distributions satisfy the same second-order regular variation as Fy(-) with
a uniform extreme value index v under Assumption [I} It suggests that the
Hill estimator for v can be constructed by directly using the samples
of response variable and applied it in extrapolations, regardless of the val-
ues of the predictors. Therefore, Assumptions (1.b) - (1.c) are milder, more

general and more tractable, as extreme value index is usually conditional on
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x if we assume regular variation on Fy (-|x), which makes the extrapolation
challenging to implement.

The following proposition shows the limiting behavior between ESy (7]x)
and Qy (7|x) and provides an important relationship to obtain the extrap-

olative approaches below.

Proposition 1. Under Assumption (1] with 0 < v < 1, we have that as

o i T v’ =o(a () @)

As indicated by Proposition [1, the ratio of ESy (7]x) and Qy (7|x) con-

T—1,

verges to a constant 1/(1—+) uniformly with a convergence rate dominated

by A;(1/(1—7)) as 71 1.

Remark 1. The first conclusion stems from Proposition 1 in |Cai et al.

(2015)), which shows the limit of ratio between marginal expected shortfall
E[Y|X > Qx(7)] and Qy(7) as 7 1 1:

TTI

It is straightforward to check that the integral [~ R(z~'/7,1)dz = ﬁ

with R(z,y) = & Ay when X =Y for univariate case, agreeing with ({2.8)).

The second one below stems from Proposition 3 in [Li and Wang (2023)),

hm ESy(l —té-:) _ 1 tiﬂn
B Qv(l—2) 1-7
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for some ¢ > 0, which can be treated as an unconditional version of (2.8)

when we take a fixed value for ¢ = 1.

2.2 Joint inference for intermediate quantile and ES regression

In this subsection, we study a joint model for intermediate conditional quan-
tile regression and conditional ES regression, explicitly incorporating the
tail behavior of the conditional ES. Throughout the article, we focus on the
right-tailed conditional ES defined in ({2.3) with a divergent risk level 7 1 1
to be either intermediate or extreme. More specifically, an intermediate
level 7, is a sequence of n satisfying n(1 —7,) = oo and 7,, — 1 as n — oo,
while an extreme level 7/ is a sequence of n satisfying n(1—7") — ¢ € [0, )
and 7/, — 1 asn — oo. In this paper, we focus on (conditional) linear regres-
sion models to simultaneously estimate both the intermediate conditional

quantile and ES by
Qv (T.]x) = By(1) 'x and ESy(7,[x) = 0o(7,) "x, (2.9)
where the true values B,(7,) and 0y(7,) are solutions to (2.2)) and ([2.4)),

Bo(mn) = arg;nin E [an (Y — ,BTX)} ,

0o(7,) :=argmin F [¢,, (Y — 0'X,Y — Bo(ra)'X)] .
0
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The models given by equation are referred to as intermediate quan-
tile and ES regression models because the risk level 7, is not a fixed level
but an intermediate one. This distinction sets them apart from the models
proposed in Dimitriadis and Bayer (2019), Patton et al. (2019), He et al.
(2023). Consequently, the B,(7,) and 6y(7,,) are both sequences of param-

eter vectors. Based on the relationship ({2.5)), we derive that

00(r) = Bo(m) + 1—

(BXXT)™HE[(Y = Bo(ra) ' X)+ - X], (2.10)

n
which plays an important role in the two-step estimation procedure.

The optimization problem for 6¢(7,) is complicated by the presence
of the unknown true value B3,(7,), which precludes direct minimization of
00(7,,) based on the available data. To address this challenge and conduct
inference for both the linear quantile regression and linear ES regression
models at the intermediate level 7,,, we employ a two-step approach. In the
first step, we fit an intermediate quantile regression model to obtain the
estimator Bn(Tn) In the second step, we fit an intermediate ES regression
model by substituting the unknown parameter B3,(7,) with the estimator
B, (7). The procedures are given as follows:

Stage 1: Solve the following optimization to derive Bn(Tn) by

~

Bu(ra) = arg min > pr (i — B xi) 5 (2.11)
=1
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Stage 2: Given Bn(Tn) in the first stage, solve the following optimization

to derive 0,,(7,) by

én(Tn) = arggminz O, <yZ — OTX,-, Yi — Bn(Tn)TXi> , (2.12)
i=1

which yields a closed expression,

n

1—m7, n

=1

én(Tn) = /Bn(Tn)+ ! <% ZXZXZT> (l Z(yz - Bn(Tn)TXi)[(% > Bn(Tn>Txi) 'Xi> .

(2.13)
Note that (2.13) exhibits an empirical counterpart of (2.10). Then, we

derive the predictions of both intermediate conditional quantile and ES by

~

Qv (%) = B, (1) 'x and  ESy(r,|x) = 0.(7) "x. (2.14)

It is worthy noting that are not well-suited for estimation at
extreme levels due to the scarcity of observations in the tail regions. We
have implemented and compared with other proposed extrapolative
methods in simulations to highlight the necessity of extrapolation tech-
niques. The asymptotic normality for Bn(Tn) has already been established
in Proposition S1. The proposition below provides a stronger result by es-
tablishing joint normality for Bn (1) and én(Tn), which serves as a key step
in deriving the asymptotic properties of Qy (7,,|x) and E/’J\Sy(rn|x). Denote

Uy := (1/(1 — Fy))~" as the tail quantile function of Fy(-).



16 2.2 Joint inference for intermediate quantile and ES regression

Proposition 2. Suppose Assumptz’on holds with 0 < vy < 1/2. Then, we

have that as n — 00,

Bn(Tn) - Bo(Tn) én(Tn) - eo(Tn) ! d Op Y11 22
Uo(1/(1 —1)) " Uo(1/(1 —1,)) 0, SR

(2.15)
Here, 0, denotes p-dimensional zero vector and X1, Y12, Y91, Moo are all

p X p-dimensional matrizes, satisfying

1

Sio=42 (E[XXTg(X)7]) T E[XXT] (B [XXTg(X)7]) ",

1

S = B(2,1/y = 1) (B [XXTg(X)™]) " EXX g(X)"] (BXXT)) ",

-1

S =Sy = B, 1/y — 1) (EXXT)) " BXXTg(X)7] (B [XX g(X)7]) ",

Sy = PO (pIXXT)) T EXXTg(X)2] (E[XXT])

\ ’Y
where B(-,-) denotes the Beta function, B(a,b) = fol t2 (1 — t)>= L dt with

a>0,b>0.

Note that the asymptotic properties of @y(Tn]X) alone have been well
established in previous literature. It is also worth noting that a stronger
condition v € (0,1/2) is required to ensure the existence of the asymptotic
variances, involving the calculation of second-order moments, see Lemma
S4. Next, we can provide a jointly bivariate asymptotic normality for

Qy (T,|x) and E/léy(Tn\x) at an intermediate level 7,.
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Theorem 1. Suppose Assumption (1| holds with 0 < ~v < 1/2. Then, we

have that as n — 00,

— (@ By
n(l—1,) (Qy(mx) 1,Esy(Tn‘x) 1) L4 N(0y,%).  (2.16)

Here, ¥o = (07;) is a 2 X 2-dimensional matriz with elements

-1

0% =+%(x)"0x" (E[XXTg(X)]) " E[XXT] (E[XXTg(X)]) ' x,

0% = (1=7)B(2,1/y - 1)g(x)>x" (E[XX g(X)]) " EXX g(X)"] (E[XXT]) " x,

-1

03 =(1-7)B(2,1/y - 1g(x)>x" (EXXT]) " E[XXT¢(X)] (E [XX ¢(X)]) 'x,

(03, = R g () 0 (BIXXT)) T B[XXT (X)) (B[XXT]) ' x,

where B(-,-) denotes the Beta function, B(a,b) = fol t2= (1 =)o~ dt with

a>0,b>0.

3. Estimation for Extreme Conditional Expected Shortfall

In this section, we propose three distinct extrapolation methods for estimat-
ing conditional ES at an extreme level. After fitting a joint regression model
by using two-step procedure at an intermediate level, we first extrapolate an
extreme conditional ES based on the intermediate ES estimator; secondly,
we extrapolate an extreme conditional ES based on an intermediate condi-

tional quantile regression; additionally, we consider a third approach that
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extrapolates an extreme conditional ES regression from an intermediate
conditional quantile regression, with the quantile level determined through

a level selection method.

3.1 Extrapolation based on intermediate quantile and ES

In order to apply the extrapolation technique, we first need to estimate the
extreme value index . According to Lemmas S1 and S2, Fy (- |x;) contains
a common <, which is not affected by the predictor x; in the estimators.
Therefore, it is natural to use the Hill estimator for heteroscedastic extremes

by utilizing only the data {y;}";:

2>
I

k
1
E Z(lOg Yn—j+imn — ]~Og yn—k:,n>7 (317)
J=1

where y;, < yon < -+ < Yy, are the order statistics of the data {y;}7;.
We assume the intermediate level 7, :== 1 — k/n, or equivalently k& = n(1 —
Tn). A common method for selecting an appropriate k is to plot the Hill
estimator 4 against k& and choose a k that corresponds to the first stable
segment of the Hill plot. We will employ this method to select k£ in both

our subsequent simulation studies and real data analysis. Moreover, the

extrapolative relation between Qy (7)|x) and Qy (7,,|x) (see Lemma S2 in
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Supplement S2), gives

Qv(mx) U1/ -7)x) ( k >7
Qy (1 = k/n|x) Uy (n/k|x) n(l-m)) "’

which accordingly implies that the extreme conditional quantile can be

estimated by:

k-
n(l—7")

where Qy (7, | x) is well estimated by the two-step procedure (2.14)).

Qv(m|x) = ( )ﬁ@yu —k/n|x), (3.18)

We introduce three extrapolation approaches E/)SS)(TMX), i =1,2,3,
to estimate ESy (7/|x) by employing the relationships between ESy (7 |x)
and one of ESy(7,|x), Qy(7,|x), and Qy(7)|x), respectively. First, by

Proposition [1| and extrapolative relation of extreme quantile, it follows that,

ESy(rplx) _ ESy(x)/Qv (%)  Qv(mx) (1-7\’
ESy (1a|x)  ESy(7,]x)/Qy (7.]x) < Qy (7,]x) <1 _ 7.7/1) . (3.19)

This suggests us the estimator

_TTL

—~(1), , 1 ¥
ESy (1,]x) = ESy (1,|x), (3.20)

1—7)
where ESy (Tn]Xx) is estimated by the two-step procedure ([2.14]).
Next, we derive the second extrapolation estimator by using Proposition

and the extrapolative relation of extreme quantile. Specifically, we have

ESy(r,lx) _ ESy(rx) Qv(mlx) ([ 1 1—7.\"
Ol ~ Qv(mk)  Qrlmlx) (1—7) (1_74) B2
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We then obtain the second estimator for ESy (7],|x):

— _— ’3/ ~
B - (125 ) (122) ko, 62

where @y(Tn|x) is estimated via ([2.14)).

Finally, the third extrapolation approach is based on the relationship

between ESy (7] |x) and Qy (7,|x),

ESy(r]x) 1
Qv(Tilx)  1—n

, (3.23)

which is a direct application of Proposition [T} Thus the third estimator for

ESy (7],|x) can be given by

_ 1 ~ 1 k "5
B ) = 1= O - (1 _ﬁ> <n<1 _T,)) Oy (1 kn ).

(3.24)

— (2 —~ (3
It is evident that ES;)(TMX) and ES(Y)(THX) are essentially the same
estimator because of 1 — 7, = k/n. Therefore, in simulation and empirical
. . ), ) .
analysis, we only implement ESy-"(7/,|x) and ES, " (7],|x) for comparison, by
choosing a suitable k instead of 7,,. Moreover, we establish the asymptotic

relationships between Eﬁg) (1/]x) (i =1,2,3) and @y(T,,/Z | x) as follows.

Proposition 3. Under the conditions of Theorem[1], we have that,

By (rx) 1 ( 1
—~ + op
Or(rlx) 1-7

- ﬁ) , fori=1,23. (3.25)
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It is worth noting that the ratios E/gg)(n@]x)/@y(ﬂﬂx) (i =1,2,3)
tend to 1/(1 — =) in probability as n — oo, aligning with the limit given
in (2.8). In the subsequent theorem, we further analyze the asymptotic

properties of E/Eiﬁ) (1) |x) with i = 1,2, 3.

Theorem 2. Under the conditions of Theorem we suppose d,, := ﬁ —
oo and \/E/ logd,, — o0 as n — oo. Then, we have that, as n — oo,
Vi (B8 (%)

d 2 .
-1 N (0 =1,2,3. 3.26
log dn ESY(TT/L’X) — ( » Y ) ) fOT ? y 4y ( )

At an extreme level, the influence of the intermediate parts Eéy(rn\x)
and Qy(7,|x) diminishes under the standard extreme convergence rate
\/E/ logd,,, despite their differences. Consequently, all the proposed es-

timators ES@ (1]]x) (i = 1,2, 3) share the same asymptotic normality.

3.2 Extrapolation based on level selection method

Alternatively, PELVE proposed by Li and Wang (2023), motivates us to ex-
trapolate an extreme conditional ES estimator via a level selection method.

Specifically, we can select an ES level 7 and a quantile level w such that
ESy (7]x) = Qy (w|x), (3.27)

conditional on x. The levels 7 and w are closely related and can be expressed

as w = w(7) or 7 = 7(w). Unlike PELVE, (3.27) does not emphasize
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the uniqueness or size relationship, although it does imply that w > 7.
Rather, it only requires the existence of 7 and w that satisfies (3.27)). The
proposition below states that the two levels are of the same type. Even if
multiple values of 7 or w may satisfy , they are functionally equivalent

in extrapolation, and therefore it suffices to select any one of them.

Proposition 4. Under Assumption[l] with 0 < v <1 and (3.27)), we have,

o 1/v
lim —— T = <L) . (3.28)

=11 — w(T) 1—7
This implies 7 and w share the same extremeness (intermediate or ex-
treme). We can also interpret as a variant of Theorem 3 in |Li and
Wang| (2023), which shows that ¢(¢) tends to the same limit as in (3.28)).

Based on , we can estimate the level w(7) by using the Hill estimator:
O(r)=1-=(1—-7)(1 -4, (3.29)

as T — 1, or conversely, we can estimate 7(w) by, as w — 1,
Fw)=1-(1-w)(1-4)". (3.30)

We now introduce another novel extrapolative method based on ([3.29)).
Specifically, we first select an intermediate ES level 7,, and define the cor-

responding intermediate quantile level w(7,) using (3.29)). We then extrap-
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olate the extreme ES estimator as follows:

B0 = (122 ) By = (122 ) @vletrlb. 630
This method provides a unique way to extrapolate the ES estimator by
leveraging the relationship between the intermediate levels 7, and @&(7,),
offering a distinct approach from and . As the quantile level
is an estimator, the asymptotic normality of ]?:\ng) (7/|x) may have compli-
cated uncertainty and limiting distribution. To establish the asymptotic
normality, we select two intermediate orders £ and E, where k is used for
the Hill estimator %, and k is used for the intermediate level 7, := 1 — E/ n
in the quantile regression. It is worth noting that in the first three ex-

trapolation methods (3.20)), (3.22), and (3.24)), we use 7, = 1 — k/n as the

intermediate level in the regression, while in the fourth extrapolation ap-
proach (3.31)) based on the level selection method, we use 7, = 1 — k/n as
the intermediate level. In addition, we study the asymptotic relationships

between ]:]\ng) (7 |x) and Qy (7, | x) as follows.

Proposition 5. Let 7, = 1 — %/n Suppose k- 00, %/n — 0, k= o(k)

and \/ZAl(n/%) = o(1), under the conditions of Theorem we have that,

ESy (7)|x) 1 1
- nl®/ _ Op | — |. 3.32
Grlmlx)  1-7 ( ) .
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While the ratio converges to 1/(1 — =) as established in Proposition
, its convergence rate differs notably from those of Eg;) (1]1x)/ va(ﬂll | x)
(¢ =1,2,3) in Proposition . The slower convergence of the fourth estimator
stems from the additional estimation uncertainty in @(7,), which reduces
the convergence rate from 1/vk to 1/ VE (see Proposition S2). Subse-
quently, we delve into a more detailed analysis of the asymptotic properties

of ESv (7/]x).

Theorem 3. Recall that 7, =1 — E/n Under the conditions of Theorem

and Proposition@ we further suppose d, = —*—— 5 o0, (k/k)?log d,, —

n(1—77)
oo, and \/E/ log Jn — 00 as n — oo. Then, we have that as n — oo,

Vi [ESY (%)
ogd, \ ESy(m[x)

1| &N (0,4?). (3.33)

The extrapolation method described in (3.31)) is also implemented in

the subsequent simulation to facilitate practical comparison.

4. Simulation

In this section, we conduct Monte Carlo simulations to compare the per-

formance of our proposed methods (3.20)), (3.24)), and (3.31)) with that of

direct estimator at extreme levels. We consider the following multivariate
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predictors as our potential model:
Yi = Ty +xip + (L +rw35)0y, fori=1,2,... n.

Here, x;; and z;, are independent standard uniform random variables, and
the errors o;’s are also independent random variables, which are also inde-
pendent of z;; and x;5. These errors are generated from the following three

populations with v = 0.2,0.3, and 0.4:
e Student-t distribution with degree of freedom 1/7;
e Pareto distribution with CDF: F(z) =1 — 277, 2 > 1;
e Fréchet distribution with CDF: F(x) = exp {—xil/“’}, x> 0.

In addition, the coefficient 7 is a constant that controls the degree of het-
eroscedasticity. We set » = 0, 0.5, and 0.9 in this study. Therefore, the

7-th true conditional expected shortfall of Y is given by
ESy (7|x;) = 0(7) 'x;,

where x; = (1,251, 2i2) ", 0(7) = (0o(7),0:(7) ") " with 0y(7) = ES,(7) and
0,(7) = (1 +rES,(7),1)". Here, ES,(7) denotes the expected shortfall of
error variable o at level 7. In this study, we consider three extreme ES

levels 7/, = 0.99,0.995,0.999 and repeat the simulation m = 500 times with
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sample size n = 1000, 2000, and 3000. Moreover, we will implement the

following four methods to compare their finite-sample performance:

e Method I: a direct estimator E/)Sy(TMX) obtained by applying the two-
step procedure (2.14) without any extrapolation. This serves as a
benchmark to demonstrate the necessity of employing extrapolative

techniques in the estimation of extreme conditional ES.

—~(
e Method II: our proposed method ES;)(TMX) in (3.20)), which utilizes

the first extrapolative approach.

—~(3
e Method III: our proposed method ES;)(TMX) in (3.24)), which employs
the third extrapolative approach. Note that this method is equivalent

to B8\ (7/|x) in (B22).

—~ (4
e Method IV: our proposed method ES;)(TMX) in (3.31)), which incorpo-

rates the fourth extrapolative approach via a level selection method.

Both the Hill estimators and the extrapolation techniques necessitate
the selection of an intermediate order k (and k). To determine the appro-
priate k, we plot the Hill estimator 4 against k£ and identify the first stable
segment of the plot, from which we select the corresponding k. Following

the approach in Wang et al.| (2012), we choose k= [k/(log n)l/ﬂ for the
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extrapolation techniques employed in Method IV. For each case, we ini-
tially use one replication to determine the optimal &, which is then applied
consistently across all m = 500 replications for extrapolation. To assess the
performance of each method, we compute the integrated square error (ISE)
using L = 100 new data points. The ISE serves as a metric to evaluate
the average prediction accuracy of each method. Specifically, for the j-th

simulation, we estimate ESy(TMXE’() and calculate the ISE as follows:
2

|Xz) :
ISE; = E Tn -1 fi =1,2, ..
L ESY ‘Xl) Y Or] Y ) 7m

where x7, ..., x} are independent random replications of X for each simula-
tion, and ESy (7, |x}) is the true conditional ES derived from the simulation
models. Tables S1-S9 (see Supplement S1) provide a comprehensive sum-
mary of the mean and standard error of {ISE; : j = 1,2,...,m} for r = 0,
0.5, and 0.9 across all models with varying sample sizes and tail indices.
Our analysis reveals several key insights. When the random error term
follows a Pareto or a Fréchet distribution, both the mean and variance of
the ISE for all four methods consistently increase as the level 7 approaches
1. This trend indicates that the estimation becomes more challenging as
we move towards more extreme quantiles, due to the sparsity of data in the
tail regions. In contrast, when the random error term follows a Student-¢

distribution, the mean of the ISE for Methods I, III, and IV, as well as the
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variance for all four methods, also increase as 7 approaches 1. However,
under moderate and heavy tails (y = 0.3 and 0.4), an interesting phe-
nomenon emerges: only when the random error term follows the Student-¢
distribution does the mean of Method II decrease as 7 increases. This
unique behavior can be attributed to the fact that Method II extrapolates
the ES from an intermediate level to an extreme level based on the ES re-
gression, leveraging the heterogeneity information above the intermediate
quantiles more effectively. In contrast, Methods III and IV are based on
quantile regression at intermediate levels, which only account for thresh-
old values without considering the heterogeneity information from points
above the tails. This distinction is crucial, as it highlights the importance
of the extrapolation techniques in capturing the tail behavior accurately.
Furthermore, while bias and standard deviation generally decrease with in-
creasing sample size, practical constraints often limit our ability to obtain
sufficiently large samples. This limitation implies the necessity of employing
extrapolation techniques to estimate the extreme conditional ES; especially
when data in the tail region are scarce.

In the comparison of the four methods, we observe that, owing to the
lack of sufficient sample size for tail data, Method I is generally less effective

than the other three methods in estimating the extreme conditional ES and
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the corresponding variance. This further underscores the importance of
extrapolation techniques in the practical estimation of extreme conditional
ES, consistent with the observations from previous studies.

To compare Methods II, III, and IV under the same level of heavy-
tailedness, we present the results in Tables S1-S9. For both Student-t and
Pareto-distributed errors, the optimal method exhibits a consistent pat-
tern across varying degrees of tail heaviness. Under the weak tail heaviness
(v = 0.2, Table S1 and S4), both Methods I and IV demonstrate strong
performance. Specifically, Method IV is slightly preferable under low het-
eroscedasticity (r = 0,0.5), whereas Method III performs better under high
heteroscedasticity (r = 0.9). Under the moderate tail heaviness (v = 0.3,
Table S2 and S5), Methods IIT and IV continue to outperform others, with
Method III holding a slight advantage. However, under the strong tail heav-
iness (y = 0.4, Table S3 and S6), Method II clearly emerges as the best
performer. For Fréchet-distributed errors, a distinct pattern is observed.
Method IV significantly outperforms the other three methods, particularly
in scenarios with no data heterogeneity and in cases of high data hetero-
geneity at more extreme levels for the estimation of conditional ES. In a
few instances, where data exhibits heterogeneity but the extreme level is

not exceedingly high, Method III performs slightly better than Method IV.
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The relative merits of Methods II, I and IV hinge on both heteroscedas-
ticity and sample size. Method III dominates in most heteroscedastic
regimes, yet Method II retains its edge under heavy tails even when het-
eroscedasticity is pronounced. With small samples, the best choice fur-
ther varies with error distribution, tail weight and heteroscedastic degree.
Method IV leads when 7 = 0.2 (Table S7) and stays competitive for
v = 0.3 (Table S8), especially under no or extreme-level heteroscedastic-
ity; Method III edges it out for intermediate heteroscedasticity. Method II
dominates under v = 0.4 (Table S9) and records the smallest variance.

Overall, there is no single dominant method, but a clear logic for selec-
tion emerges: Method II is the most robust for heavy-tailed data. Method
IIT offers the best overall performance for Student-¢t and Pareto-distributed
errors under light and moderate tails with high heteroscedasticity. Method
IV excels for Fréchet-distributed error under light tail and moderate tail

with limited sample size.

5. Real Data Analysis

In this section, we apply the four proposed methods to estimate the ex-
treme conditional ES for the weekly market loss (negative return) of the

Dow Jones Industrial Average (DJI130). The dataset spans from January 1,
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1993, to June 30, 2013, comprising 1,066 observations, sourced from Yahoo
Finance. This dataset captures two significant recessions (in 2001 and 2008-
2009) as well as several financial crises (in 1994, 1997, 1998, 2000, 2008, and
2011). Given that weekly returns exhibit much weaker autocorrelation, we
treat the weekly observations as approximately independent for modeling
purposes. The variables included in the dataset are ret (weekly market re-
turn), yield3m (three-month yield change), credit (credit spread change),
term (term spread change), ted (short-term TED spread), and housing
(real estate excess return). Specifically, the variables in our models are de-
fined as follows: 1) Y: the negative weekly return of DJI30 index; 2) x;:
the change in the three-month yield from the Federal Reserve Board’s H.15
release; 3) xo: the change in the credit spread between Moody’s Baarated
bonds and the ten-year Treasury rate from the Federal Reserve Board’s H.15
release; 4) x3: the change in the slope of the yield curve, measured by the
spread between the composite long-term bond yield and the three-month
bill rate obtained from the Federal Reserve Board’s H.15 release; 5) x4: a
short-term TED spread, defined as the difference between the three-month
LIBOR rate and the three-month secondary market treasury bill rate; 6)
x5: the weekly real estate sector return in excess of the market financial

sector return (from the real estate companies with SIC code 65-66).
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We focus on estimating the extreme conditional ES of the weekly loss of
DJI30 at the levels 7, = 0.99 and 0.999, utilizing extrapolation techniques.
For comparative purposes, we employ the direct estimator E/Ey(n’l]x) by
implementing a two-step procedure, as detailed in (2.14)), without any ex-
trapolation. This approach, referred to as Method I in Section {4} serves as
our baseline. Additionally, we apply the three proposed Methods II, III,
and IV, to estimate the extreme conditional ES, leveraging extrapolation
techniques to enhance the accuracy and robustness of our estimators.

First, we perform a visual analysis to assess the validity of the heavy-tail
assumption for the data and display the results in Figure[I] The visualiza-
tions reveal that the losses exhibit a distribution characterized by a sharp
peak and heavy tails, with the upper tail (large losses) being particularly
pronounced. The selection method for the thresholds k and k is consis-
tent with the approach detailed in Section [dl We plot the Hill estimator ¥
against k in the right panel of Figure [I} Based on this plot, we determine
that k = 45 is an appropriate choice for the weekly loss of DJI30.

We compare the extreme conditional ES under the different proposed
methods and display the results in Figure 2] Figure [2] illustrates the in-
sample ES estimators for the weekly loss of DJI30 from January 1, 1993,

to June 30, 2013, using Methods I, II, III, and IV at the levels 7/, = 0.99
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Figure 1: The left and middle panels depict the density histogram and
boxplot of the weekly losses of DJI30. The right panel presents the Hill
plot for the selection of k: black line is the Hill estimator against k, the
upper red and lower blue dashed lines are the 90% confidence bounds, the

vertical line shows the selected k.

and 0.999, respectively. As shown in Figure [ all four methods exhibit a
similar trend in estimating the conditional extreme ES. The estimates from
Method II are close to those from Method I, whereas the estimates from
Methods IIT and IV are slightly higher than those from Method I. As the
level increases, Figure [2| indicates that the estimates derived from Methods
II, III, and IV exceed those estimated from Method I. This suggests that,
with an increase in the extreme level, estimators without extrapolation may
lead to an underestimation of tail risks, while extrapolation-based methods
can assist financial institutions in more effectively mitigating tail risk. Ad-

ditionally, as the extreme level increases, the trajectory of estimates from
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Method I tends to be flat, while the extrapolation-based Methods II, III,
and IV still maintain volatility. These findings underscore the effectiveness
and necessity of extrapolation in estimating conditional extreme ES.
During periods of economic recessions, the estimates of ES obtained
from all four methods exhibit a significant increase, indicating a rise in
tail risk. This phenomenon is evident during the recession caused by the
bursting of the internet bubble in 2001, the instability in the U.S. mar-
kets resulting from the Asian financial crisis and the collapse of Long-Term
Capital Management in 1998, as well as during the U.S. subprime mortgage
crisis from 2008 to 2009. Notably, during these crisis periods, the estimates
of extreme conditional ES reached their peaks, which is consistent with ac-
tual market conditions. In comparing the three extrapolation-based meth-
ods (Methods II, III, and IV), Figures [2] illustrates that the estimates of
Method II are slightly lower than those from Methods IIT and IV. Moreover,
while the estimates from Methods I1I and IV are relatively close, Method IV
displays greater volatility during crisis periods. These observations suggest
that our proposed extreme conditional ES estimators serve as effective risk
measurement tools for measuring extreme tail risks and exhibit robustness.
Furthermore, we employ a rolling approach to estimate the extreme

conditional ES and compare it with the in-sample estimators. This rolling
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out-of-sample analysis is conducted using expanding windows. We select
a rolling window size of 710 weeks, which constitutes approximately two-
thirds of the entire data period, to forecast the remaining 356 weeks, or
approximately 7 years, in a single step. Figure S1 (in Supplement S1)
illustrates the in-sample and out-of-sample conditional ES estimators of
Methods II, III, and IV at levels 7/, = 0.99,0.999. Overall, the in-sample
and out-of-sample estimators demonstrate similar trends, although the in-
sample estimators exhibit greater volatility. Notably, during the crisis pe-
riod from 2008 to 2009, both out-of-sample estimators, in line with the
in-sample estimators, reveal a pronounced upward trend, indicating an es-
calation in tail risk. Our empirical analysis substantiates that our proposed
methods for extreme conditional ES serve as effective risk metrics for crisis

forecasting, particularly in relation to loss values within the tail regions.

6. Conclusion

In this paper, we focus on the estimation of extreme conditional ES regres-
sion within a joint framework integrating quantile regression, particularly
in view of heteroscedastic extremes. Existing studies have primarily devel-
oped estimation methods for fixed quantile levels, but have not adequately

addressed intermediate or extreme levels, as highlighted in Barendse, (2020)),
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Figure 2: The results of the in-sample conditional ES estimators of Method I
(black curve), Method II (green curve), Method III (red curve) and Method

IV (blue curve) with 7/, = 0.99 (left panel) and 0.999 (right panel).
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Dimitriadis and Bayer| (2019), He et al.| (2023). This limitation arises from
the scarcity of tail observations, which poses significant challenges for ef-
fective estimation. To address this issue, we propose several extrapolative
methods for estimating extreme ES regression based on conditional het-
eroscedastic EVT. Specifically, we first fit intermediate conditional quantile
and ES regression models using a two-step procedure recently introduced
by Barendse| (2020). We then extrapolate an extreme ES by examining
various relationships between ES and quantiles. Simulation results demon-
strate that all proposed methods outperform the direct application of the
two-step method at high levels. A real financial example further highlights
the practical advantages of the ES regression model. Although we restrict
attention to linear models, our underpinning techniques pave the way for
analysing joint non-parameter quantile-ES models and high-dimensional

sparse quantile-ES model. We leave these extensions in future research.

Supplementary Materials

The online Supplementary Material contains some simulation results, aux-

iliary results and all technical proofs.
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