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Abstract: As a coherent risk measure, Expected Shortfall (ES) has garnered in-

creasing attention due to its merits in quantitative risk management, particularly

its ability to capture tail risks. Consequently, the Expected Shortfall regression

model has recently been proposed in conjunction with quantile regression to in-

vestigate the conditional effect of predictors on a response variable of interest.

However, existing approaches have encountered challenges in effectively estimat-

ing the conditional expected shortfall regression at extreme levels, primarily due

to the scarcity of observations in the tails. To address this issue, this paper

first fits a joint regression model of conditional quantile and conditional ES at
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an intermediate level using a two-step procedure. Subsequently, three extrapola-

tive approaches are proposed to study the extreme conditional ES estimation.

We also develop the asymptotic properties of all proposed estimators within a

conditional heteroscedastic extreme framework. Furthermore, simulations are

conducted to examine the finite sample performance of our methods. Finally, a

real-world example underscores the practical advantages of extreme conditional

ES regression.

Key words and phrases: quantile regression; expected shortfall regression; het-

eroscedastic extremes; tail risk.

1. Introduction

Value-at-Risk (VaR) and Expected Shortfall (ES) are two popular mea-

sures of quantitative risk management that have gained widespread adop-

tion. VaR is favored by practitioners for its simplicity and interpretability;

it represents a specific quantile of a loss distribution, making it accessible

for practical use. Despite its robustness in statistical terms, VaR suffers

from a significant limitation: it fails to account for tail risks beyond a

certain threshold of a loss distribution. This shortcoming is particularly

pronounced with heavy-tailed distributions, where VaR tends to underes-

timate the tail risk. To address this issue, ES was introduced. It provides

a more accurate representation of potential tail risks under extreme con-
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ditions. A profound contribution by Artzner et al. (1999) introduced the

concept of “coherent risk measures”, which emphasizes the clear advantage

of ES as a coherent measure for assessing tail risk compared to VaR.

Given that practitioners and regulators often have access to extensive

datasets that can capture a more comprehensive set of tail risk characteris-

tics, it is both theoretically intriguing and practically significant to explore

inference methods for VaR and ES within the context of regression models.

VaR’s straightforward representation as a quantile of a loss distribution fa-

cilitates the direct application of quantile regression (QR) models, where

the conditional quantiles of the loss distribution are modeled as a function

of risk factors under specific scenarios. Numerous researchers have con-

ducted fruitful studies in this area, such as Gutenbrunner and Jurecková

(1992), He (1997), Koenker (2005), Zhou and Shao (2013), He et al. (2020).

Upon these studies, Chernozhukov (2005) first considered a QR model at

an extreme level but failed to achieve asymptotic normality. Wang et al.

(2012) and Wang and Li (2013) derived the normal limit distribution using

an extrapolation approach based on extreme value theory. Xu et al. (2022)

studied the extreme expectile regression model by extrapolating an interme-

diate QR model. Girard et al. (2022) further considered the nonparametric

extreme conditional expectile estimator in the context of conditional heavy-
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tailed distributions. Hou et al. (2024) employed a two-step procedure to

estimate extreme conditional quantiles based on an extreme QR model with

panel data. These studies collectively transition the classical QR model to

the extreme QR model, facilitating applications in tail risk measurement.

In contrast, the ES estimation necessitates fundamentally different ap-

proaches due to its inherent non-elicitability, as formally established by

Gneiting (2011). This property implies that ES cannot be directly esti-

mated through conventional loss minimization frameworks. This character-

istic poses a challenge in developing statistical inference methods for con-

ditional ES within a regression framework. Recent studies have addressed

this issue by proposing innovative approaches, such as multi-objective elic-

itability, which involves jointly modeling the quantile and expected short-

fall through a minimization problem. Fissler and Ziegel (2016) showed

that it is jointly elicitable with the quantile using a class of strictly con-

sistent joint loss functions, enabling joint regression modeling for quantile

and ES. Then, Dimitriadis and Bayer (2019) and Patton et al. (2019) pro-

posed M-estimators (and Z-estimators) defined as the global minimum of

these joint loss functions. However, the resulting optimization problem is

computationally challenging due to the lack of differentiability and con-

vexity in the loss function, despite established statistical properties. To
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mitigate the computational burden, Barendse (2020) introduced a two-step

modeling procedure, bypassing the non-convexity problems, to tackle the

non-eliciability of ES. In the first step, a (linear) QR model is fitted, and

in the second step, a (linear) ES regression model is fitted by employing an

Neyman-orthogonal score with substituting the unknown parameters of the

fitted QR model. Consequently, the ES minimization problem in the sec-

ond step incorporates the statistical uncertainty from the QR model in the

first step. This two-step approach is more straightforward to implement in

practice compared to the first, making its statistical properties particularly

intriguing for further investigation.

Another challenge lies in the prediction of high-risk conditional ES

within a regression framework. As ES provides a more precise assessment

of tail risk under extreme conditions, there is significant interest in devel-

oping an extreme conditional ES model within a regression setting. To the

best of our knowledge, no existing literature has yet addressed this specific

issue. As suggested in He et al. (2023), current joint loss optimization and

two-step methods perform poorly at extreme levels, as they are designed

for fixed quantile levels. The main contribution of this paper lies in the

integration of joint quantile and ES regression with extreme risk model-

ing – an area that remains largely unexplored and presents statistically
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intriguing properties worthy of further investigation. Moreover, we adopt

the heteroscedastic extreme framework introduced by Einmahl et al. (2016)

for modeling extreme risk, which provides an appropriate characterization

of conditional distributions in regression settings. To be specific, let Y be

a univariate response variable, X be a p-dimensional design vector, and

denote FY (·) and FY (·|x) as the unconditional distribution of Y and the

conditional distribution of Y given X = x. The first-order condition of

heteroscedastic extreme is that, there exists a distribution F0(·) such that

lim
t→∞

1− FY (t|x)
1− F0(t)

= g(x), (1.1)

uniformly for all x in a compact set, where g is a continuous and posi-

tive function (scedastic function). To analyse the asymptotic properties,

Einmahl et al. (2016) presented a second-order regular variation condi-

tion (Assumption (1.b)) for the heteroscedastic extremes quantifying the

rate of convergence in (1.1). Under this second-order condition, Xu et al.

(2022) has shown that the conditional distribution FY (·|x) and uncondi-

tional distribution FY (·) fall in the same maximum domain of attraction

with a uniform extreme value index γ. This allows for Hill estimator-based

extrapolation in extreme conditional ES regression.

Upon the foundations of heteroscedastic extremes, we implement the

extreme conditional ES regression as follows. First, we conduct the two-step
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procedure in (2.11) and (2.12) to fit conditional quantile and ES regression

models at an intermediate level. Since the intermediate level varies with

the sample size, replacing a fixed level with an intermediate one makes the

theoretical analysis significantly more challenging and complex. This con-

stitutes the main technical challenge. Stronger joint asymptotic normalities

for the resulting estimators are presented in Proposition 2 and Theorem 1,

which highlight the relevance between the quantile and ES regression com-

ponents in the two-step procedure. Second, we develop several different

approaches to extrapolate the extreme conditional ES estimators by exam-

ining the relationship between extreme ES and intermediate ES/quantile.

Additionally, motivated by PELVE of Li and Wang (2023), we also develop

an extrapolation method via level selection. Prior to our work, Xu et al.

(2022) employed a similar approach to extrapolate the extreme expectile

estimator using quantile regression via level selection. However, it fails to

derive the asymptotic property. In contrast, we address this problem by se-

lecting two intermediate orders and establish the corresponding asymptotic

properties, which serve as another theoretical improvement of our work.

We organize this paper as follows. In Section 2, we first present the

basic description for conditional quantile and conditional ES models and

then studied the joint regression model at an intermediate level. The pro-
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posed methods for estimating the extreme conditional ES within a linear

regression framework are discussed comprehensively in Section 3. Section

4 provides simulation evidence of the good finite-sample properties of our

methods to predict the conditional ES at extreme levels. An empirical ap-

plication in Section 5 further illustrates the effectiveness of our proposals.

2. A joint model for intermediate quantile and ES regression

Recall that the sample {(yi,xi)}ni=1 are drawn independently from the dis-

tribution of a random vector (Y,X), where Y ∈ R is the response variable

and X ∈ Rp is the predictor. In this paper, we consider X includes the

unit as the first coordinate. We denote FY (·) and FY (·|x) to represent the

unconditional distribution of Y and the conditional distribution of Y given

X = x, respectively. Besides, the generalized inverse functions of FY (·)

and FY (·|x) are denoted as F−1
Y (·) and F−1

Y (·|x), respectively. We denote

(a)+ := max(a, 0) and (a)− := min(a, 0).

The conditional quantile of FY (·|x) given X = x at a (fixed) level

τ ∈ (0, 1) is defined as

QY (τ |x) := F−1
Y (τ |x) = inf{y |FY (y|x) ≥ τ},
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or, equivalently, via an optimization such that

QY (τ |x) = argmin
q∈R

E[ρτ (Y − q) |X = x], (2.2)

where ρτ (u) = (τ − I(u ≤ 0))u = |τ − I(u ≤ 0)| |u|.

The conditional (right-tail) expected shortfall of FY (·|x) given X = x

at a level τ ∈ (0, 1) is defined as

ESY (τ |x) :=
1

1− τ

∫ 1

τ

F−1
Y (t|x) dt = E[Y |Y ≥ QY (τ |x),X = x]. (2.3)

One can see that ESY (τ |x) refers to the expectation of Y givenX = x condi-

tional on the event {Y ≥ QY (τ |x)} of its distribution, indicating ESY (τ |x)

can describe the tail behavior of Y . Following Barendse (2020), He et al.

(2023), ES can be characterized jointly with the conditional quantile by

ESY (τ |x) = argmin
e∈R

E [ϕτ (Y − e, Y −QY (τ |x)) |X = x] , (2.4)

where ϕτ (u, v) :=
(
(u− v) + v

1−τ
I(v ≥ 0)

)2
. Moreover, one can derive the

relationship between QY (τ |x) and ESY (τ |x) by,

ESY (τ |x) = QY (τ |x) +
1

1− τ
E [(Y −QY (τ |x))+|X = x] . (2.5)

The detailed derivations of (2.4), (2.5), as well as (2.10) below, are all

contained in Supplement S3.
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10 2.1 Tail behavior of conditional Expected Shortfall

2.1 Tail behavior of conditional Expected Shortfall

To estimate conditional ES ESY (τ
′
n|x) at an extreme level τ ′n, we are mo-

tivated by (2.4) to propose extrapolation methods utilizing extreme value

theory. More specifically, we investigate the regular variation conditions of

the extreme conditional ES, taking into account the tail behavior of the

conditional distribution FY (·|x). We impose the following assumptions on

the right tail of FY (·|x).

Assumption 1.

(1.a) The distribution of X has a compact support X and E[XX⊤] is posi-

tive definite.

(1.b) There exist a positive and eventually decreasing function A with limt→∞ A(t) =

0, and a positive continuous function g(x) on X with E[g(X)] = 1,

such that as t → ∞,

sup
x∈X

∣∣∣∣1− FY (t |x)
1− F0(t)

− g(x)

∣∣∣∣ = O

(
A

(
1

1− F0 (t)

))
. (2.6)

(1.c) There exist some γ > 0, ρ < 0, and a positive and eventually decreas-

ing function A1 with limt→∞ A1(t) = 0 such that: for all x > 0,

lim
t→∞

1

A1(1/(1− F0(t)))

(
1− F0(tx)

1− F0(t)
− x− 1

γ

)
= x−1/γ x

ρ/γ − 1

γρ
. (2.7)
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11 2.1 Tail behavior of conditional Expected Shortfall

(1.d) As t → ∞, A(t) = o(A1(t)). It also satisfies limn→∞
√
kA1(n/k) = 0

with k := kn such that k → ∞, k/n → 0 as n → ∞.

Assumption 1 characterizes the heteroscedastic extremes for the condi-

tional distribution FY (·|x). Specifically, Assumption (1.a) regarding predic-

tors is a typical condition for the asymptotic theory of quantile regression.

Assumption (1.b) introduces a second-order condition for heteroscedastic

extremes (see Einmahl et al. (2016)), indicating that the conditional distri-

bution FY (·|x) has an equivalent tail to some F0(·), but scaled by a function

g(x), where both F0(·) and g(·) are defined in (1.1). Assumption (1.c) is

a conventional second-order regular varying condition for F0(·), while As-

sumption (1.d) specifies the convergence rate of two related auxiliary func-

tions A(t) and A1(t), with A(t) converging slightly faster than A1(t). Note

that F0(·) can be replaced by the unconditional distribution FY (·). It is

because, as shown in Lemmas S1 and S2, the conditional and unconditional

distributions satisfy the same second-order regular variation as F0(·) with

a uniform extreme value index γ under Assumption 1. It suggests that the

Hill estimator (3.17) for γ can be constructed by directly using the samples

of response variable and applied it in extrapolations, regardless of the val-

ues of the predictors. Therefore, Assumptions (1.b) - (1.c) are milder, more

general and more tractable, as extreme value index is usually conditional on
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12 2.1 Tail behavior of conditional Expected Shortfall

x if we assume regular variation on FY (·|x), which makes the extrapolation

challenging to implement.

The following proposition shows the limiting behavior between ESY (τ |x)

and QY (τ |x) and provides an important relationship to obtain the extrap-

olative approaches below.

Proposition 1. Under Assumption 1 with 0 < γ < 1, we have that as

τ → 1,

sup
x∈X

∣∣∣∣ESY (τ |x)
QY (τ |x)

− 1

1− γ

∣∣∣∣ = O

(
A1

(
1

1− τ

))
. (2.8)

As indicated by Proposition 1, the ratio of ESY (τ |x) and QY (τ |x) con-

verges to a constant 1/(1−γ) uniformly with a convergence rate dominated

by A1(1/(1− τ)) as τ ↑ 1.

Remark 1. The first conclusion stems from Proposition 1 in Cai et al.

(2015), which shows the limit of ratio between marginal expected shortfall

E[Y |X > QX(τ)] and QY (τ) as τ ↑ 1:

lim
τ↑1

E[Y |X > QX(τ)]

QY (τ)
=

∫ ∞

0

R(x−1/γ, 1) dx.

It is straightforward to check that the integral
∫∞
0

R(x−1/γ, 1) dx = 1
1−γ

with R(x, y) = x ∧ y when X = Y for univariate case, agreeing with (2.8).

The second one below stems from Proposition 3 in Li and Wang (2023),

lim
ε↓0

ESY (1− tε)

QY (1− ε)
=

1

1− γ
t−γ,
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13 2.2 Joint inference for intermediate quantile and ES regression

for some t > 0, which can be treated as an unconditional version of (2.8)

when we take a fixed value for t = 1.

2.2 Joint inference for intermediate quantile and ES regression

In this subsection, we study a joint model for intermediate conditional quan-

tile regression and conditional ES regression, explicitly incorporating the

tail behavior of the conditional ES. Throughout the article, we focus on the

right-tailed conditional ES defined in (2.3) with a divergent risk level τ ↑ 1

to be either intermediate or extreme. More specifically, an intermediate

level τn is a sequence of n satisfying n(1− τn) → ∞ and τn → 1 as n → ∞,

while an extreme level τ ′n is a sequence of n satisfying n(1−τ ′n) → c ∈ [0,∞)

and τ ′n → 1 as n → ∞. In this paper, we focus on (conditional) linear regres-

sion models to simultaneously estimate both the intermediate conditional

quantile and ES by

QY (τn|x) = β0(τn)
⊤x and ESY (τn|x) = θ0(τn)

⊤x, (2.9)

where the true values β0(τn) and θ0(τn) are solutions to (2.2) and (2.4),

β0(τn) := argmin
β

E
[
ρτn(Y − β⊤X)

]
,

θ0(τn) := argmin
θ

E
[
ϕτn

(
Y − θ⊤X, Y − β0(τn)

⊤X
)]

.
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14 2.2 Joint inference for intermediate quantile and ES regression

The models given by equation (2.9) are referred to as intermediate quan-

tile and ES regression models because the risk level τn is not a fixed level

but an intermediate one. This distinction sets them apart from the models

proposed in Dimitriadis and Bayer (2019), Patton et al. (2019), He et al.

(2023). Consequently, the β0(τn) and θ0(τn) are both sequences of param-

eter vectors. Based on the relationship (2.5), we derive that

θ0(τn) = β0(τn) +
1

1− τn
(E[XX⊤])−1 · E

[
(Y − β0(τn)

⊤X)+ ·X
]
, (2.10)

which plays an important role in the two-step estimation procedure.

The optimization problem for θ0(τn) is complicated by the presence

of the unknown true value β0(τn), which precludes direct minimization of

θ0(τn) based on the available data. To address this challenge and conduct

inference for both the linear quantile regression and linear ES regression

models at the intermediate level τn, we employ a two-step approach. In the

first step, we fit an intermediate quantile regression model to obtain the

estimator β̂n(τn). In the second step, we fit an intermediate ES regression

model by substituting the unknown parameter β0(τn) with the estimator

β̂n(τn). The procedures are given as follows:

Stage 1: Solve the following optimization to derive β̂n(τn) by

β̂n(τn) := argmin
β

n∑
i=1

ρτn
(
yi − β⊤xi

)
; (2.11)
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15 2.2 Joint inference for intermediate quantile and ES regression

Stage 2: Given β̂n(τn) in the first stage, solve the following optimization

to derive θ̂n(τn) by

θ̂n(τn) := argmin
θ

n∑
i=1

ϕτn

(
yi − θ⊤xi, yi − β̂n(τn)

⊤xi

)
, (2.12)

which yields a closed expression,

θ̂n(τn) = β̂n(τn)+
1

1− τn

(
1

n

n∑
i=1

xix
⊤
i

)−1

·

(
1

n

n∑
i=1

(yi − β̂n(τn)
⊤xi)I(yi ≥ β̂n(τn)

⊤xi) · xi

)
.

(2.13)

Note that (2.13) exhibits an empirical counterpart of (2.10). Then, we

derive the predictions of both intermediate conditional quantile and ES by

Q̂Y (τn|x) = β̂n(τn)
⊤x and ÊSY (τn|x) = θ̂n(τn)

⊤x. (2.14)

It is worthy noting that (2.14) are not well-suited for estimation at

extreme levels due to the scarcity of observations in the tail regions. We

have implemented and compared (2.14) with other proposed extrapolative

methods in simulations to highlight the necessity of extrapolation tech-

niques. The asymptotic normality for β̂n(τn) has already been established

in Proposition S1. The proposition below provides a stronger result by es-

tablishing joint normality for β̂n(τn) and θ̂n(τn), which serves as a key step

in deriving the asymptotic properties of Q̂Y (τn|x) and ÊSY (τn|x). Denote

U0 := (1/(1− F0))
−1 as the tail quantile function of F0(·).
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16 2.2 Joint inference for intermediate quantile and ES regression

Proposition 2. Suppose Assumption 1 holds with 0 < γ < 1/2. Then, we

have that as n → ∞,

√
n(1− τn)

(
β̂n(τn)− β0(τn)

U0(1/(1− τn))
,
θ̂n(τn)− θ0(τn)

U0(1/(1− τn))

)⊤
d−→ N


0p

0p

 ,

Σ11 Σ12

Σ12 Σ22


 .

(2.15)

Here, 0p denotes p-dimensional zero vector and Σ11, Σ12, Σ21, Σ22 are all

p× p-dimensional matrixes, satisfying

Σ11 = γ2
(
E
[
XX⊤g (X)−γ])−1

E
[
XX⊤] (E [XX⊤g (X)−γ])−1

,

Σ12 = B(2, 1/γ − 1)
(
E
[
XX⊤g(X)−γ

])−1
E[XX⊤g(X)γ]

(
E[XX⊤]

)−1
,

Σ21 = Σ⊤
12 = B(2, 1/γ − 1)

(
E[XX⊤]

)−1
E[XX⊤g(X)γ]

(
E
[
XX⊤g(X)−γ

])−1
,

Σ22 = B(3,1/γ−2)
γ

(
E[XX⊤]

)−1
E[XX⊤g(X)2γ]

(
E[XX⊤]

)−1
,

where B(·, ·) denotes the Beta function, B(a, b) =
∫ 1

0
ta−1(1 − t)b−1 dt with

a > 0, b > 0.

Note that the asymptotic properties of Q̂Y (τn|x) alone have been well

established in previous literature. It is also worth noting that a stronger

condition γ ∈ (0, 1/2) is required to ensure the existence of the asymptotic

variances, involving the calculation of second-order moments, see Lemma

S4. Next, we can provide a jointly bivariate asymptotic normality for

Q̂Y (τn|x) and ÊSY (τn|x) at an intermediate level τn.
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Theorem 1. Suppose Assumption 1 holds with 0 < γ < 1/2. Then, we

have that as n → ∞,

√
n(1− τn)

(
Q̂Y (τn|x)
QY (τn|x)

− 1,
ÊSY (τn|x)
ESY (τn|x)

− 1

)⊤
d−→ N(02,Σ0). (2.16)

Here, Σ0 = (σ2
ij) is a 2× 2-dimensional matrix with elements

σ2
11 = γ2g(x)−2γx⊤ (E [XX⊤g (X)−γ])−1

E
[
XX⊤] (E [XX⊤g (X)−γ])−1

x,

σ2
12 = (1− γ)B(2, 1/γ − 1)g(x)−2γx⊤ (E [XX⊤g(X)−γ

])−1
E[XX⊤g(X)γ]

(
E[XX⊤]

)−1
x,

σ2
21 = (1− γ)B(2, 1/γ − 1)g(x)−2γx⊤ (E[XX⊤]

)−1
E[XX⊤g(X)γ]

(
E
[
XX⊤g(X)−γ

])−1
x,

σ2
22 = (1−γ)2B(3,1/γ−2)

γ
g(x)−2γx⊤ (E[XX⊤]

)−1
E[XX⊤g(X)2γ]

(
E[XX⊤]

)−1
x,

where B(·, ·) denotes the Beta function, B(a, b) =
∫ 1

0
ta−1(1 − t)b−1 dt with

a > 0, b > 0.

3. Estimation for Extreme Conditional Expected Shortfall

In this section, we propose three distinct extrapolation methods for estimat-

ing conditional ES at an extreme level. After fitting a joint regression model

by using two-step procedure at an intermediate level, we first extrapolate an

extreme conditional ES based on the intermediate ES estimator; secondly,

we extrapolate an extreme conditional ES based on an intermediate condi-

tional quantile regression; additionally, we consider a third approach that
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18 3.1 Extrapolation based on intermediate quantile and ES

extrapolates an extreme conditional ES regression from an intermediate

conditional quantile regression, with the quantile level determined through

a level selection method.

3.1 Extrapolation based on intermediate quantile and ES

In order to apply the extrapolation technique, we first need to estimate the

extreme value index γ. According to Lemmas S1 and S2, FY (· |xi ) contains

a common γ, which is not affected by the predictor xi in the estimators.

Therefore, it is natural to use the Hill estimator for heteroscedastic extremes

by utilizing only the data {yi}ni=1:

γ̂ =
1

k

k∑
j=1

(log yn−j+1,n − log yn−k,n), (3.17)

where y1,n ≤ y2,n ≤ · · · ≤ yn,n are the order statistics of the data {yi}ni=1.

We assume the intermediate level τn := 1− k/n, or equivalently k = n(1−

τn). A common method for selecting an appropriate k is to plot the Hill

estimator γ̂ against k and choose a k that corresponds to the first stable

segment of the Hill plot. We will employ this method to select k in both

our subsequent simulation studies and real data analysis. Moreover, the

extrapolative relation between QY (τ
′
n|x) and QY (τn|x) (see Lemma S2 in
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19 3.1 Extrapolation based on intermediate quantile and ES

Supplement S2), gives

QY (τ
′
n|x)

QY (1− k/n|x)
=

UY (1/(1− τ ′n)|x)
UY (n/k|x)

∼
(

k

n(1− τ ′n)

)γ

,

which accordingly implies that the extreme conditional quantile can be

estimated by:

Q̃Y (τ
′
n |x) =

(
k

n(1− τ ′n)

)γ̂

Q̂Y (1− k/n |x), (3.18)

where Q̂Y (τn |x) is well estimated by the two-step procedure (2.14).

We introduce three extrapolation approaches ÊS
(i)

Y (τ ′n|x), i = 1, 2, 3,

to estimate ESY (τ
′
n|x) by employing the relationships between ESY (τ

′
n|x)

and one of ESY (τn|x), QY (τn|x), and QY (τ
′
n|x), respectively. First, by

Proposition 1 and extrapolative relation of extreme quantile, it follows that,

ESY (τ
′
n|x)

ESY (τn|x)
=

ESY (τ
′
n|x)/QY (τ

′
n|x)

ESY (τn|x)/QY (τn|x)
× QY (τ

′
n|x)

QY (τn|x)
∼
(
1− τn
1− τ ′n

)γ

. (3.19)

This suggests us the estimator

ÊS
(1)

Y (τ ′n|x) =
(
1− τn
1− τ ′n

)γ̂

ÊSY (τn|x), (3.20)

where ÊSY (τn|x) is estimated by the two-step procedure (2.14).

Next, we derive the second extrapolation estimator by using Proposition

1 and the extrapolative relation of extreme quantile. Specifically, we have

ESY (τ
′
n|x)

QY (τn|x)
=

ESY (τ
′
n|x)

QY (τ ′n|x)
× QY (τ

′
n|x)

QY (τn|x)
∼
(

1

1− γ

)(
1− τn
1− τ ′n

)γ

. (3.21)
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20 3.1 Extrapolation based on intermediate quantile and ES

We then obtain the second estimator for ESY (τ
′
n|x):

ÊS
(2)

Y (τ ′n|x) =
(

1

1− γ̂

)(
1− τn
1− τ ′n

)γ̂

Q̂Y (τn|x), (3.22)

where Q̂Y (τn|x) is estimated via (2.14).

Finally, the third extrapolation approach is based on the relationship

between ESY (τ
′
n|x) and QY (τ

′
n|x),

ESY (τ
′
n|x)

QY (τ ′n|x)
∼ 1

1− γ
, (3.23)

which is a direct application of Proposition 1. Thus the third estimator for

ESY (τ
′
n|x) can be given by

ÊS
(3)

Y (τ ′n|x) =
1

1− γ̂
Q̃Y (τ

′
n|x) =

(
1

1− γ̂

)(
k

n(1− τ ′n)

)γ̂

Q̂Y (1− k/n |x).

(3.24)

It is evident that ÊS
(2)

Y (τ ′n|x) and ÊS
(3)

Y (τ ′n|x) are essentially the same

estimator because of 1− τn = k/n. Therefore, in simulation and empirical

analysis, we only implement ÊS
(1)

Y (τ ′n|x) and ÊS
(3)

Y (τ ′n|x) for comparison, by

choosing a suitable k instead of τn. Moreover, we establish the asymptotic

relationships between ÊS
(i)

Y (τ ′n|x) (i = 1, 2, 3) and Q̃Y (τ
′
n |x) as follows.

Proposition 3. Under the conditions of Theorem 1, we have that,

ÊS
(i)

Y (τ ′n|x)
Q̃Y (τ ′n |x)

=
1

1− γ
+ oP

(
1√
k

)
, for i = 1, 2, 3. (3.25)
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21 3.2 Extrapolation based on level selection method

It is worth noting that the ratios ÊS
(i)

Y (τ ′n|x)/Q̃Y (τ
′
n |x) (i = 1, 2, 3)

tend to 1/(1 − γ) in probability as n → ∞, aligning with the limit given

in (2.8). In the subsequent theorem, we further analyze the asymptotic

properties of ÊS
(i)

Y (τ ′n|x) with i = 1, 2, 3.

Theorem 2. Under the conditions of Theorem 1, we suppose dn := k
n(1−τ ′n)

→

∞ and
√
k/ log dn → ∞ as n → ∞. Then, we have that, as n → ∞,

√
k

log dn

 ÊS
(i)

Y (τ ′n|x)
ESY (τ ′n|x)

− 1

 d−→ N
(
0, γ2

)
, for i = 1, 2, 3. (3.26)

At an extreme level, the influence of the intermediate parts ÊSY (τn|x)

and Q̂Y (τn|x) diminishes under the standard extreme convergence rate

√
k/ log dn, despite their differences. Consequently, all the proposed es-

timators ÊS
(i)

Y (τ ′n|x) (i = 1, 2, 3) share the same asymptotic normality.

3.2 Extrapolation based on level selection method

Alternatively, PELVE proposed by Li and Wang (2023), motivates us to ex-

trapolate an extreme conditional ES estimator via a level selection method.

Specifically, we can select an ES level τ and a quantile level ω such that

ESY (τ |x) = QY (ω|x), (3.27)

conditional on x. The levels τ and ω are closely related and can be expressed

as ω = ω(τ) or τ = τ(ω). Unlike PELVE, (3.27) does not emphasize
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22 3.2 Extrapolation based on level selection method

the uniqueness or size relationship, although it does imply that ω ≥ τ .

Rather, it only requires the existence of τ and ω that satisfies (3.27). The

proposition below states that the two levels are of the same type. Even if

multiple values of τ or ω may satisfy (3.27), they are functionally equivalent

in extrapolation, and therefore it suffices to select any one of them.

Proposition 4. Under Assumption 1 with 0 < γ < 1 and (3.27), we have,

lim
τ→1

1− τ

1− ω(τ)
=

(
1

1− γ

)1/γ

. (3.28)

This implies τ and ω share the same extremeness (intermediate or ex-

treme). We can also interpret (3.28) as a variant of Theorem 3 in Li and

Wang (2023), which shows that c(ε) tends to the same limit as in (3.28).

Based on (3.28), we can estimate the level ω(τ) by using the Hill estimator:

ω̂(τ) = 1− (1− τ)(1− γ̂)1/γ̂, (3.29)

as τ → 1, or conversely, we can estimate τ(ω) by, as ω → 1,

τ̂(ω) = 1− (1− ω)(1− γ̂)−1/γ̂. (3.30)

We now introduce another novel extrapolative method based on (3.29).

Specifically, we first select an intermediate ES level τn and define the cor-

responding intermediate quantile level ω̂(τn) using (3.29). We then extrap-
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23 3.2 Extrapolation based on level selection method

olate the extreme ES estimator as follows:

ÊS
(4)

Y (τ ′n|x) =
(
1− τn
1− τ ′n

)γ̂

ÊSY (τn|x) =
(
1− τn
1− τ ′n

)γ̂

Q̂Y (ω̂(τn)|x). (3.31)

This method provides a unique way to extrapolate the ES estimator by

leveraging the relationship between the intermediate levels τn and ω̂(τn),

offering a distinct approach from (3.22) and (3.24). As the quantile level

is an estimator, the asymptotic normality of ÊS
(4)

Y (τ ′n|x) may have compli-

cated uncertainty and limiting distribution. To establish the asymptotic

normality, we select two intermediate orders k and k̃, where k is used for

the Hill estimator γ̂, and k̃ is used for the intermediate level τn := 1− k̃/n

in the quantile regression. It is worth noting that in the first three ex-

trapolation methods (3.20), (3.22), and (3.24), we use τn = 1− k/n as the

intermediate level in the regression, while in the fourth extrapolation ap-

proach (3.31) based on the level selection method, we use τn = 1− k̃/n as

the intermediate level. In addition, we study the asymptotic relationships

between ÊS
(4)

Y (τ ′n|x) and Q̃Y (τ
′
n |x) as follows.

Proposition 5. Let τn = 1 − k̃/n. Suppose k̃ → ∞, k̃/n → 0, k̃ = o(k)

and
√
k̃A1(n/k̃) = o(1), under the conditions of Theorem 1, we have that,

ÊS
(4)

Y (τ ′n|x)
Q̃Y (τ ′n |x)

=
1

1− γ
+OP

(
1√
k̃

)
. (3.32)
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While the ratio converges to 1/(1 − γ) as established in Proposition

1, its convergence rate differs notably from those of ÊS
(i)

Y (τ ′n|x)/Q̃Y (τ
′
n |x)

(i = 1, 2, 3) in Proposition 3. The slower convergence of the fourth estimator

stems from the additional estimation uncertainty in ω̂(τn), which reduces

the convergence rate from 1/
√
k to 1/

√
k̃ (see Proposition S2). Subse-

quently, we delve into a more detailed analysis of the asymptotic properties

of ÊS
(4)

Y (τ ′n|x).

Theorem 3. Recall that τn = 1− k̃/n. Under the conditions of Theorem 1

and Proposition 5, we further suppose d̃n = k̃
n(1−τ ′n)

→ ∞, (k̃/k)1/2 log d̃n →

∞, and
√
k/ log d̃n → ∞ as n → ∞. Then, we have that as n → ∞,

√
k

log d̃n

 ÊS
(4)

Y (τ ′n|x)
ESY (τ ′n|x)

− 1

 d−→ N
(
0, γ2

)
. (3.33)

The extrapolation method described in (3.31) is also implemented in

the subsequent simulation to facilitate practical comparison.

4. Simulation

In this section, we conduct Monte Carlo simulations to compare the per-

formance of our proposed methods (3.20), (3.24), and (3.31) with that of

direct estimator at extreme levels. We consider the following multivariate
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predictors as our potential model:

yi = xi1 + xi2 + (1 + rxi1)σi, for i = 1, 2, ..., n.

Here, xi1 and xi2 are independent standard uniform random variables, and

the errors σi’s are also independent random variables, which are also inde-

pendent of xi1 and xi2. These errors are generated from the following three

populations with γ = 0.2, 0.3, and 0.4:

• Student-t distribution with degree of freedom 1/γ;

• Pareto distribution with CDF: F (x) = 1− x−1/γ, x > 1;

• Fréchet distribution with CDF: F (x) = exp
{
−x−1/γ

}
, x > 0.

In addition, the coefficient r is a constant that controls the degree of het-

eroscedasticity. We set r = 0, 0.5, and 0.9 in this study. Therefore, the

τ -th true conditional expected shortfall of Y is given by

ESY (τ |xi) = θ(τ)⊤xi,

where xi = (1, xi1, xi2)
⊤, θ(τ) = (θ0(τ),θ1(τ)

⊤)⊤ with θ0(τ) = ESσ(τ) and

θ1(τ) = (1 + rESσ(τ), 1)
⊤. Here, ESσ(τ) denotes the expected shortfall of

error variable σ at level τ . In this study, we consider three extreme ES

levels τ ′n = 0.99, 0.995, 0.999 and repeat the simulation m = 500 times with
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sample size n = 1000, 2000, and 3000. Moreover, we will implement the

following four methods to compare their finite-sample performance:

• Method I: a direct estimator ÊSY (τ
′
n|x) obtained by applying the two-

step procedure (2.14) without any extrapolation. This serves as a

benchmark to demonstrate the necessity of employing extrapolative

techniques in the estimation of extreme conditional ES.

• Method II: our proposed method ÊS
(1)

Y (τ ′n|x) in (3.20), which utilizes

the first extrapolative approach.

• Method III: our proposed method ÊS
(3)

Y (τ ′n|x) in (3.24), which employs

the third extrapolative approach. Note that this method is equivalent

to ÊS
(2)

Y (τ ′n|x) in (3.22).

• Method IV: our proposed method ÊS
(4)

Y (τ ′n|x) in (3.31), which incorpo-

rates the fourth extrapolative approach via a level selection method.

Both the Hill estimators and the extrapolation techniques necessitate

the selection of an intermediate order k (and k̃). To determine the appro-

priate k, we plot the Hill estimator γ̂ against k and identify the first stable

segment of the plot, from which we select the corresponding k. Following

the approach in Wang et al. (2012), we choose k̃ =
[
k/(log n)1/4

]
for the
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extrapolation techniques employed in Method IV. For each case, we ini-

tially use one replication to determine the optimal k, which is then applied

consistently across all m = 500 replications for extrapolation. To assess the

performance of each method, we compute the integrated square error (ISE)

using L = 100 new data points. The ISE serves as a metric to evaluate

the average prediction accuracy of each method. Specifically, for the j-th

simulation, we estimate ESY (τ
′
n|x∗

l ) and calculate the ISE as follows:

ISEj =
1

L

L∑
l=1

 ÊS
(j)

Y (τ ′n|x∗
l )

ESY (τ ′n|x∗
l )

− 1

2

, for j = 1, 2, ...,m,

where x∗
1, ...,x

∗
L are independent random replications of X for each simula-

tion, and ESY (τ
′
n|x∗

l ) is the true conditional ES derived from the simulation

models. Tables S1-S9 (see Supplement S1) provide a comprehensive sum-

mary of the mean and standard error of {ISEj : j = 1, 2, ...,m} for r = 0,

0.5, and 0.9 across all models with varying sample sizes and tail indices.

Our analysis reveals several key insights. When the random error term

follows a Pareto or a Fréchet distribution, both the mean and variance of

the ISE for all four methods consistently increase as the level τ approaches

1. This trend indicates that the estimation becomes more challenging as

we move towards more extreme quantiles, due to the sparsity of data in the

tail regions. In contrast, when the random error term follows a Student-t

distribution, the mean of the ISE for Methods I, III, and IV, as well as the
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variance for all four methods, also increase as τ approaches 1. However,

under moderate and heavy tails (γ = 0.3 and 0.4), an interesting phe-

nomenon emerges: only when the random error term follows the Student-t

distribution does the mean of Method II decrease as τ increases. This

unique behavior can be attributed to the fact that Method II extrapolates

the ES from an intermediate level to an extreme level based on the ES re-

gression, leveraging the heterogeneity information above the intermediate

quantiles more effectively. In contrast, Methods III and IV are based on

quantile regression at intermediate levels, which only account for thresh-

old values without considering the heterogeneity information from points

above the tails. This distinction is crucial, as it highlights the importance

of the extrapolation techniques in capturing the tail behavior accurately.

Furthermore, while bias and standard deviation generally decrease with in-

creasing sample size, practical constraints often limit our ability to obtain

sufficiently large samples. This limitation implies the necessity of employing

extrapolation techniques to estimate the extreme conditional ES, especially

when data in the tail region are scarce.

In the comparison of the four methods, we observe that, owing to the

lack of sufficient sample size for tail data, Method I is generally less effective

than the other three methods in estimating the extreme conditional ES and
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the corresponding variance. This further underscores the importance of

extrapolation techniques in the practical estimation of extreme conditional

ES, consistent with the observations from previous studies.

To compare Methods II, III, and IV under the same level of heavy-

tailedness, we present the results in Tables S1–S9. For both Student-t and

Pareto-distributed errors, the optimal method exhibits a consistent pat-

tern across varying degrees of tail heaviness. Under the weak tail heaviness

(γ = 0.2, Table S1 and S4), both Methods III and IV demonstrate strong

performance. Specifically, Method IV is slightly preferable under low het-

eroscedasticity (r = 0, 0.5), whereas Method III performs better under high

heteroscedasticity (r = 0.9). Under the moderate tail heaviness (γ = 0.3,

Table S2 and S5), Methods III and IV continue to outperform others, with

Method III holding a slight advantage. However, under the strong tail heav-

iness (γ = 0.4, Table S3 and S6), Method II clearly emerges as the best

performer. For Fréchet-distributed errors, a distinct pattern is observed.

Method IV significantly outperforms the other three methods, particularly

in scenarios with no data heterogeneity and in cases of high data hetero-

geneity at more extreme levels for the estimation of conditional ES. In a

few instances, where data exhibits heterogeneity but the extreme level is

not exceedingly high, Method III performs slightly better than Method IV.
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The relative merits of Methods II, III and IV hinge on both heteroscedas-

ticity and sample size. Method III dominates in most heteroscedastic

regimes, yet Method II retains its edge under heavy tails even when het-

eroscedasticity is pronounced. With small samples, the best choice fur-

ther varies with error distribution, tail weight and heteroscedastic degree.

Method IV leads when γ = 0.2 (Table S7) and stays competitive for

γ = 0.3 (Table S8), especially under no or extreme-level heteroscedastic-

ity; Method III edges it out for intermediate heteroscedasticity. Method II

dominates under γ = 0.4 (Table S9) and records the smallest variance.

Overall, there is no single dominant method, but a clear logic for selec-

tion emerges: Method II is the most robust for heavy-tailed data. Method

III offers the best overall performance for Student-t and Pareto-distributed

errors under light and moderate tails with high heteroscedasticity. Method

IV excels for Fréchet-distributed error under light tail and moderate tail

with limited sample size.

5. Real Data Analysis

In this section, we apply the four proposed methods to estimate the ex-

treme conditional ES for the weekly market loss (negative return) of the

Dow Jones Industrial Average (DJI30). The dataset spans from January 1,
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1993, to June 30, 2013, comprising 1,066 observations, sourced from Yahoo

Finance. This dataset captures two significant recessions (in 2001 and 2008-

2009) as well as several financial crises (in 1994, 1997, 1998, 2000, 2008, and

2011). Given that weekly returns exhibit much weaker autocorrelation, we

treat the weekly observations as approximately independent for modeling

purposes. The variables included in the dataset are ret (weekly market re-

turn), yield3m (three-month yield change), credit (credit spread change),

term (term spread change), ted (short-term TED spread), and housing

(real estate excess return). Specifically, the variables in our models are de-

fined as follows: 1) Y : the negative weekly return of DJI30 index; 2) x1:

the change in the three-month yield from the Federal Reserve Board’s H.15

release; 3) x2: the change in the credit spread between Moody’s Baarated

bonds and the ten-year Treasury rate from the Federal Reserve Board’s H.15

release; 4) x3: the change in the slope of the yield curve, measured by the

spread between the composite long-term bond yield and the three-month

bill rate obtained from the Federal Reserve Board’s H.15 release; 5) x4: a

short-term TED spread, defined as the difference between the three-month

LIBOR rate and the three-month secondary market treasury bill rate; 6)

x5: the weekly real estate sector return in excess of the market financial

sector return (from the real estate companies with SIC code 65-66).
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We focus on estimating the extreme conditional ES of the weekly loss of

DJI30 at the levels τ ′n = 0.99 and 0.999, utilizing extrapolation techniques.

For comparative purposes, we employ the direct estimator ÊSY (τ
′
n|x) by

implementing a two-step procedure, as detailed in (2.14), without any ex-

trapolation. This approach, referred to as Method I in Section 4, serves as

our baseline. Additionally, we apply the three proposed Methods II, III,

and IV, to estimate the extreme conditional ES, leveraging extrapolation

techniques to enhance the accuracy and robustness of our estimators.

First, we perform a visual analysis to assess the validity of the heavy-tail

assumption for the data and display the results in Figure 1. The visualiza-

tions reveal that the losses exhibit a distribution characterized by a sharp

peak and heavy tails, with the upper tail (large losses) being particularly

pronounced. The selection method for the thresholds k and k̃ is consis-

tent with the approach detailed in Section 4. We plot the Hill estimator γ̂

against k in the right panel of Figure 1. Based on this plot, we determine

that k = 45 is an appropriate choice for the weekly loss of DJI30.

We compare the extreme conditional ES under the different proposed

methods and display the results in Figure 2. Figure 2 illustrates the in-

sample ES estimators for the weekly loss of DJI30 from January 1, 1993,

to June 30, 2013, using Methods I, II, III, and IV at the levels τ ′n = 0.99
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Figure 1: The left and middle panels depict the density histogram and

boxplot of the weekly losses of DJI30. The right panel presents the Hill

plot for the selection of k: black line is the Hill estimator against k, the

upper red and lower blue dashed lines are the 90% confidence bounds, the

vertical line shows the selected k.

and 0.999, respectively. As shown in Figure 2, all four methods exhibit a

similar trend in estimating the conditional extreme ES. The estimates from

Method II are close to those from Method I, whereas the estimates from

Methods III and IV are slightly higher than those from Method I. As the

level increases, Figure 2 indicates that the estimates derived from Methods

II, III, and IV exceed those estimated from Method I. This suggests that,

with an increase in the extreme level, estimators without extrapolation may

lead to an underestimation of tail risks, while extrapolation-based methods

can assist financial institutions in more effectively mitigating tail risk. Ad-

ditionally, as the extreme level increases, the trajectory of estimates from
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Method I tends to be flat, while the extrapolation-based Methods II, III,

and IV still maintain volatility. These findings underscore the effectiveness

and necessity of extrapolation in estimating conditional extreme ES.

During periods of economic recessions, the estimates of ES obtained

from all four methods exhibit a significant increase, indicating a rise in

tail risk. This phenomenon is evident during the recession caused by the

bursting of the internet bubble in 2001, the instability in the U.S. mar-

kets resulting from the Asian financial crisis and the collapse of Long-Term

Capital Management in 1998, as well as during the U.S. subprime mortgage

crisis from 2008 to 2009. Notably, during these crisis periods, the estimates

of extreme conditional ES reached their peaks, which is consistent with ac-

tual market conditions. In comparing the three extrapolation-based meth-

ods (Methods II, III, and IV), Figures 2 illustrates that the estimates of

Method II are slightly lower than those from Methods III and IV. Moreover,

while the estimates from Methods III and IV are relatively close, Method IV

displays greater volatility during crisis periods. These observations suggest

that our proposed extreme conditional ES estimators serve as effective risk

measurement tools for measuring extreme tail risks and exhibit robustness.

Furthermore, we employ a rolling approach to estimate the extreme

conditional ES and compare it with the in-sample estimators. This rolling
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out-of-sample analysis is conducted using expanding windows. We select

a rolling window size of 710 weeks, which constitutes approximately two-

thirds of the entire data period, to forecast the remaining 356 weeks, or

approximately 7 years, in a single step. Figure S1 (in Supplement S1)

illustrates the in-sample and out-of-sample conditional ES estimators of

Methods II, III, and IV at levels τ ′n = 0.99, 0.999. Overall, the in-sample

and out-of-sample estimators demonstrate similar trends, although the in-

sample estimators exhibit greater volatility. Notably, during the crisis pe-

riod from 2008 to 2009, both out-of-sample estimators, in line with the

in-sample estimators, reveal a pronounced upward trend, indicating an es-

calation in tail risk. Our empirical analysis substantiates that our proposed

methods for extreme conditional ES serve as effective risk metrics for crisis

forecasting, particularly in relation to loss values within the tail regions.

6. Conclusion

In this paper, we focus on the estimation of extreme conditional ES regres-

sion within a joint framework integrating quantile regression, particularly

in view of heteroscedastic extremes. Existing studies have primarily devel-

oped estimation methods for fixed quantile levels, but have not adequately

addressed intermediate or extreme levels, as highlighted in Barendse (2020),
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Figure 2: The results of the in-sample conditional ES estimators of Method I

(black curve), Method II (green curve), Method III (red curve) and Method

IV (blue curve) with τ ′n = 0.99 (left panel) and 0.999 (right panel).
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Dimitriadis and Bayer (2019), He et al. (2023). This limitation arises from

the scarcity of tail observations, which poses significant challenges for ef-

fective estimation. To address this issue, we propose several extrapolative

methods for estimating extreme ES regression based on conditional het-

eroscedastic EVT. Specifically, we first fit intermediate conditional quantile

and ES regression models using a two-step procedure recently introduced

by Barendse (2020). We then extrapolate an extreme ES by examining

various relationships between ES and quantiles. Simulation results demon-

strate that all proposed methods outperform the direct application of the

two-step method at high levels. A real financial example further highlights

the practical advantages of the ES regression model. Although we restrict

attention to linear models, our underpinning techniques pave the way for

analysing joint non-parameter quantile-ES models and high-dimensional

sparse quantile-ES model. We leave these extensions in future research.

Supplementary Materials

The online Supplementary Material contains some simulation results, aux-

iliary results and all technical proofs.
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