Statistica Sinica Preprint No: SS-2025-0167

Title

Conditional Quantile-based Variable Screening with FDR

Control in Joint Factor Models

Manuscript ID

SS-2025-0167

URL

http://www.stat.sinica.edu.tw/statistica/

DOI

10.5705/s5.202025.0167

Complete List of Authors

Han Pan,
Wei Xiong and
Mingyao Ai

Corresponding Authors

Mingyao Ai

E-mails

myai@math.pku.edu.cn

Notice: Accepted author version.




Statistica Sinica

Conditional Quantile-based Variable Screening with FDR

Control in Joint Factor Models
Han Pan, Wei Xiong and Mingyao Ai

Shandong University of Finance and Economics, University of International

Business and Economics, and Peking University

Abstract: Joint factor models are commonly adopted to relate unobservable factors with covariates.
Traditional approaches to joint models often assume linear relationships between latent factors and
covariates, require prior knowledge of the number of latent factors, and typically fail to address
heavy-tailedness or high-dimensional covariates. To overcome these challenges, we propose a gener-
al factor-covariate model and introduce a new variable selection procedure to broaden the scope of
application and to alleviate the curse of dimensionality. The procedure is unfolded in three steps:
robust estimation of factors via Huber regression, feature screening using an index of mean squared
deviation (MSD) of conditional quantile and false discovery rate (FDR) control based on derandom-
ized quantile knockoffs. To facilitate implementation, we employ smoothing quantile regression and
apply a modified bootstrap-based eigenvalue method to determine the number of factors. Theoretical
justifications on the sure screening property as well as the control of FDR, per family error rate and &
family-wise error rate are provided. The superiority of our proposed procedure over existing methods

is demonstrated by numerical studies on simulated and real datasets.

Key words: Derandomized knockoffs, False discovery rate, High-dimensional screening, Joint models,

Smoothing quantile regression.



1. INTRODUCTION

1. Introduction

Latent variables are prevalent across numerous scientific disciplines, including financial
engineering, sociology, psychology, and biomedical research, among others. These variables
cannot be directly measured by observed variables but are instead characterized by multiple
observable surrogates. For instance, in medical studies, traits such as depression or overall
adverse effects, are examples of latent variables. To understand the relationships between
the covariates (e.g., age, gender) and these medical traits, latent variable analysis is crucial
for uncovering the hidden patterns.

A conventional method for analyzing latent variables involves regressing the observable
surrogates that characterize corresponding traits on the covariates of interest. However, this
straightforward approach has limitations, as the observable surrogates may be imperfect
representations of latent variables. To facilitate broader applications, existing literature
has explored two-stage joint modeling approaches. In the first stage, latent variables are
characterized by multiple observed variables through a factor model. In the second stage,
a latent response-on-scalar regression is utilized to examine the potential covariates for
latent responses. Roy and Lin| (2000) combined factor analysis with a linear mixed model
to evaluate the effectiveness of methadone treatment in reducing illicit drug use. Ouyang
et al.| (2018) integrated factor model with a semiparametric failure time model to analyze
multivariate censored data. However, these approaches face challenges when handling high-
dimensional covariates. In a more recent study, Yu et al| (2023) introduced a joint model

combining a factor model with linear regression to investigate the relationship between
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psychological well-being and ultrahigh dimensional human genome. Their method assumes
linearity between covariates and latent factors, which may not hold or be challenging to
validate in practice. To address these challenges, we propose a more general factor-covariate
model that integrates a factor model with a nonparametric model to capture nonlinear
effects of high-dimensional covariates on latent factors. This joint model is motivated by
an empirical study of [Fredrickson et al.| (2013]), which aimed to explore the relationship
between measured genes and two types of well-being. These well-beings are unobserved
latent factors that must be derived from data collected via a questionnaire survey. Given
that genes may have nonlinear effects on the well-being, a joint analysis that integrates
factor model for extracting latent responses and a nonparametric model for examining the
relationship between genes and these latent factors is crucial for this investigation.
Several critical issues need to be addressed within the joint factor-covariate model.
The first concern is the estimation of latent factors. While methods based on least squares
regression or EM algorithms have been proposed (Bai, 2003; Desai and Storey, 2012), these
methods assume joint normality of factors and noise, a condition rarely met in practice. The
second issue arises from the potential ultrahigh dimensionality of covariates, leading to the
curse of dimensionality for nonparametric model. To address this, additional assumptions
on the regression function or covariates are required, with the sparsity assumption being a
common strategy, which posits that only a small number of covariates are relevant to the
latent responses. Our objective here is to propose novel methods to identify the covariates

that significantly contribute to the multivariate latent responses. The third issue involves
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controlling the number of false discoveries, mathematically formulated as controlling the
false discovery rate (FDR), which is crucial for reliable feature selection. Existing screening
methods (He et al., |2013]) tend to sacrifice FDR control for the sure screening property by
choosing a conservative threshold, resulting in an inflated model size. Additionally, most
current joint modeling techniques assume prior knowledge of the number of latent factors.
Hence, it is essential to develop robust methods for estimation, screening, and selection
that handle multiple latent factors and heterogeneous effects simultaneously.

In response to these considerations, this paper introduces a quantile-based mean squared
deviation (MSD) index and a MSD-Select procedure tailored for factor-covariate model. We
gradually unveil the whole procedure in three steps. First, we apply a Huber regression to
estimate latent factors robustly. Next, building on MSD index, we develop a novel quantile-
adaptive screening procedure for multivariate latent factors, allowing the active covariates
to vary across quantiles. Following the screening step, a quantile-adaptive derandomized
knockoffs procedure is introduced to further control FDR while maintaining high power at
the targeted quantile levels. Existing FDR control methods generally fall into two cate-
gories: p-value based and knockoffs based methods. The classical p-value based approach
(Benjamini and Hochberg;, |1995) requires exact p-values for FDR control, in contrast, recent
knockoffs algorithms use synthetic knockoff features to control FDR, (Barber and Candes,
2015; (Candes et all 2018; Liu et al., [2022). Relatively little work has focused on FDR
control in a quantile-adaptive manner. To bridge this gap, we extend the knockoffs to the

quantile framework, ensuring a parsimonious model with guaranteed FDR control.
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The primary contributions of this paper are as follows. First, we propose a general
factor-covariate model that uncovers the hidden relationship between observed variables
and covariates. We further introduce a bootstrap-based eigenvalue criterion to determine
the number of latent factors, which is demonstrated to be theoretically consistent and
empirically effective. Second, we develop a new MSD index to quantify the association
between two random vectors from a quantile perspective. Within quantile framework, |Li
et al.| (2015) proposed a quantile correlation to measure the linear quantile relationship
between a univariate response Y and covariates X. |Shao and Zhang (2014) extended this
concept to multivariate X by introducing a martingale difference divergence, assuming that
X has finite second-order moments. Liu et al.[(2022) further introduced a projection quan-
tile correlation, which does not require the moment condition. The MSD index improves
upon these measures by quantifying the quantile dependence between a multivariate Y and
a multivariate X, without the need for moment conditions. The MSD index has several ap-
pealing properties: it equals zero if and only if the quantile independence holds and is robust
to heavy-tailed data and outliers since it is invariant under monotone variable transforma-
tions. Additionally, it has a low computational cost of O(n?), compared with the O(n?)
of the projection quantile correlation. The index is estimated using smoothing quantile
regression techniques (Fernandes et al. 2021, effectively addressing challenges such as the
nondifferentiability of the quantile loss function and the curse of dimensionality. We also
derive useful exponential bounds to establish the sure screening property of the MSD index.

Third, we formulate a quantile-adaptive procedure to control FDR, leveraging the concept
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of derandomized knockoffs (Ren et al. 2023). We prove that the proposed procedure can
simultaneously control the FDR, the per family error rate (PFER), and the &k family-wise
error rate (k-FWER). Simulation studies demonstrate that this method effectively controls
the FDR more tightly while maintaining high power in practical scenarios.

The rest of the paper is organized as follows. In Section 2, we introduce the factor-
covariate joint model and develop a quantile-adaptive MSD-Select procedure. A bootstrap-
based eigenvalue method for determining the number of latent factors is also proposed.
Section 3 establishes the theoretical guarantees, including sure screening properties and
control of FDR, PFER, and k-FWER. The superiority of our new procedure over existing
methods is demonstrated through numerical studies on both simulated and real datasets
in Sections 4 and 5. Section 6 concludes with some discussions. All technical proofs and

additional numerical studies are provided in the Supplementary Materials.

2. MSD-Select Procedure

2.1 General Factor-Covariate Model

To establish the functional associations between observed variables and potential covariates,
we develop the factor-covariate model, which comprises two major components: a factor

model and a nonparametric model, i.e.,

Z=p+Bf te,

f:m(Xl,...,Xp)+£,
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where Z = (Zy,...,Z4)T is a d x 1 vector of observable variables with mean vector pu =
(p1, -+, a)” and covariance matrix 3 = (01)1<jr<q¢- The dependence structure of Z is
captured by the K x 1 latent factors f = (f1,..., fx)? with zero mean. B = (by,...,bg)T
is a d x K loading matrix and € = (g1,...,4)7 is a d x 1 vector of idiosyncratic random
errors, independent of f. Additionally, X = (X1,..., X,)? is a p x 1 vector of covariates,
m(-) = (mi(-),...,mg())T with my(-) : R? — R is the regression function corresponding
to the kth latent factor and & = (&;,...,&x)T is a K x 1 vector of random errors.

Let Zy,...,Z, be n independent and identically distributed (iid) observations, then
Z; = u+Bf, +¢€; fori = 1,...,n. Since only Z; is observable, B and f; cannot be
estimated separately as they are both unobserved. For any K x K nonsingular matrix D,
one can choose B = BD and f; = D' f; such that Bf; = Bf;. To make both B and f;

identifiable, we follow |[Fan et al.| (2019) and impose the following conditions
¥;=Ix¢ and B”B is diagonal, (2.2)

where X is the covariance matrix of f and Ik is a K x K identity matrix. Other identifi-
ability conditions can be found in Bai and Li (2012), Fan et al.| (2013)). Let Cov(e) = 2. =

(0c,ij)1<i j<d, under conditions 1} the covariance matrix of Z is ¥ = BBT + X..

Remark 1. In model , the number of latent factors K is unknown and must be learned
from data. Methods for determining the number of latent factors are generally based on the
ergenvalues of covariance or correlation matrix of the observable variables. Following |Ba
and Ng (2002), Fan et al. (2022), we define K = rank(B). Further details on the selection

of K will be provided in Section [2.5.
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In model , both d and p are allowed to diverge with the sample size n, and & may
exhibit skewness or heavy tails. When p > n, directly fitting the factor-covariate model
would be problematic due to the curse of dimensionality, leading to the simultaneous chal-
lenges to computational expediency, statistical accuracy, and algorithmic stability. These
concerns, coupled with the heterogeneity nature of ultrahigh dimensional data, motivate

the development of a robust screening procedure for the factor-covariate model.

2.2 Screening with a Conditional Quantile-based Index

The goal of this section is to identify a sparse set of ultrahigh dimensional covariates X
that are relevant for modeling the conditional quantile of multiple latent factors f. We
advocate a quantile-adaptive screening procedure that allows the sparse set to vary across
quantiles. Note that the multivariate conditional quantile function is not a trivial extension
of its univariate counterpart, as the notion of multivariate quantile function is not uniquely

defined. To address, given a quantile 7 € (0,1), we define the set of active variables as

K
A = U {1<j<p: Q:(fu|X) functionally depends on X}, (2.3)
k=1

where A, = {1 < 7 < p: Q-(fr|X) functionally depends on Xj} is the active set for
the kth factor fi, and Q,(fx|X) = inf{y € R: P(fx < y|X) > 7} is the 7th conditional
quantile of fi given X. We use A7 and A, to denote the index sets of inactive covariates
for f and fy, respectively. Denote by |A| the cardinality of A, then |A;| < S0 | Azl

Throughout this paper, | A, x| is assumed to be smaller than the sample size.

Remark 2. A permutation matrix P and its inverse can be substituted in the factor model
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to yield Z = p+ BP P f +¢e. The elements of Pf correspond to original factors, but in
another order. This complicates the task of accurately identifying A, i, as f is identified

up to an invertible matriz. Hence, our focus is mainly on recovering A, rather than A, .

Denote by Fy,(-) and Q,(f;) the distribution function and unconditional quantile of
fr- fr and X; are independent if and only if Q,(fx|X;) = Q-(fx) holds for all 7 € (0, 1).
Similarly, given 7 € (0, 1), if Fy, {Q,(f|7;)} = 7 holds for all ; € Rx,, i.e., Q;(fx|X;) =
Q+(fx), fr is T-quantile independent of X, and X; € A7 . This motivates us to develop a

mean squared deviation (MSD) index, defined by

MSD- (filX;) = Ex, {Fy, [Q-(ful X;)] — 7} (2.4)

to measure the 7-quantile dependence between f; and X;. Proposition |1 states that the

MSD index possesses several appealing properties in quantifying quantile independence.

Proposition 1. Let X € Rx and Y € Ry be two continuous random variables, then

(i) MSD,(Y[X) = Ex{Fy(Q-(Y]X)) = Fy(Q-(Y))}* = [{F¥(Q-(Y|v)) — T}?dF ().

(1) It holds that MSD, (Y |X) =0 for all T € (0,1) if and only if X and Y are independent.
(iii) For a given T € (0,1), 0 < MSD,(Y|X) < maz{7r% (1 —71)?}, and MSD.(Y|X) =0 if
and only if Q-(Y|X) = Q-(Y) almost surely.

(iv) MSD.(Y|X) is invariant under monotone variable transformation, that is, for a,b € R
(b # 0) and any strictly monotone transformation g(-), MSD.(Y|X) = MSD.{g(Y)|a+bX}

if g(+) is nondecreasing, and MSD.(Y|X) = MSD,_.{g(Y)|a+bX} if g(-) is nonincreasing.

Proof of Proposition |1] is provided in the Supplementary Materials. Result (i) shows
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that the MSD index, resembling a mean squared error, is fully nonparametric and model-
free. This together with result (ii) motivates us to utilize this index to screen out inactive
covariates at the interested quantiles. In general, MSD, (Y |X) # MSD.(X|Y). But when
X and Y are jointly normal, MSD,(X]Y) = MSD.(Y|X). Result (iv) indicates that the
MSD index is invariant under strictly increasing monotone variable transformations, where-
as such property is not shared by most of the screening indices (e.g., Pearson correlation
and distance correlation). This invariance property indicates that the MSD index is robust
against model misspecification. Proposition S1 of the Supplementary Materials further elu-
cidates specific properties of the MSD index under bivariate Gaussian copula distribution.

Intuitively, based on ({2.3), we can employ
MSD-(f|X;) := 12}%>§(MSDT(fk|Xj) (2.5)

to measure the importance of X; for f. To perform feature screening, we use the sample
counterpart, @T( f1X;), defined in Section . Hence, the set of active features is
obtained as

A, ={1<j<p:NMSD,(f]X,) > n}, (2.6)

where 1 > 0 is a prespecified threshold. We refer to this procedure as MSD-based screening

(MSDS). With a proper choice of 1, we show that MSDS enjoys sure screening property.

2.3 FDR Control via Derandomized Quantile Knockoffs

Next, we introduce how to enhance the performance of MSDS to achieve FDR control while

maintaining a high power using knockoffs procedure. In practice, all active covariates can
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be included with high probability by employing a conservative threshold. However, there
is no guarantee of the accuracy of A, with no falsely selected covariates. This section
focuses on identifying A, with a theoretically guaranteed error rate. To be more specific,
we introduce a quantile knockoffs approach to select active variables while controlling FDR.,

at a prespecified target level o € (0, 1), where

FDR, := E(FDPT) and FDP, := M
A V1

The FDP, represents the false discovery proportion at a given quantile 7. Denote by
V() = | A, N AS| the number of false discoveries with respect to 7, then the per family
error rate (PFER) is the expected number of V(7), that is, PFER, = E[V(7)]. We refer to
Barber and Candes| (2015) and |Candes et al.| (2018]) for knockoffs framework. More details
of the knockoffs can also be found in the Supplementary Materials. Given a 7 € (0,1), we

propose to measure the dependence between X; and f by the following knockoff statistic
W, = MSD,(f|X,) — MSD,(f|X;), i=1,...,p, (2.7)

where X is a knockoff copy of X;, MSD,(f|X;) and MSD,(f|X;) are defined in The

empirical counterpart of the knockoff statistic ([2.7)) is

—~ — ~ — N

W,, = MSD,(f|X,) — MSD,(f|X;), i=1,...,p. (2.8)

In the Supplementary Materials, we introduce the MSD Knockoffs (MSDK) procedure,
which serves as the foundation for the DMSDK procedure outlined below, and demonstrate

in Theorem S1 that the MSDK procedure effectively controls the FDR.
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Derandomized MSD knockoffs (DMSDK) procedure. The MSDK procedure based on
the model-X knockoffs is a randomized procedure. To yield more stable results and enhance
statistical power, we are inspired by the derandomized idea (Ren et al. [2023)) and intro-
duce a derandomized quantile knockoffs that aggregate the results across multiple quantile
knockoffs realizations. By using this method, the FDR along with the PFER and k-FWER
are verified to be controlled, as demonstrated in Theorem [3] of Section [, Details of the

DMSDK procedure are summarized in Algorithm [1}
Algorithm 1: Derandomized MSD Knockoffs (DMSDK) procedure

Input : Matrix of covariates X € R™*P; latent factors f € R™*X: number of realizations T’
selection threshold 7j; integer v > 1; a quantile level 7 € (0, 1).
1 fort=1,...T do
(®)

2 i. Generate a knockoff copy X' .

~ —(t —~ —

3 ii. Run the MSDK base procedure with X(t) and obtain Wi) = (Wl(tT)7 R W;Q)T
—(t — —~

4 iii. Rank the features by magnitudes of W(T), that is, |Wr(f)7| > > |W§£)T| for some

permutation rq, ..., 7.

5 iv. Construct a stopping criterion: TT(t)(U) =minq1 <k<p: E?Zl I{WSL <0} > v}, and

obtain the selection set S (v)={rj:j< 70 (v), W\Tj; > 0}.

6 end

7 Calculate the selection probability IL; - (v) = = Zthl I{je Sﬁt)(v)}.
Output: selection set .flT(v,nO) ={1<j<p:I.(v) >n}

In Algorithm 1], 79 controls how many times a variable needs to be selected to appear in
the final selection set. The larger 7 is, the fewer variables enter the selection set. Following
Ren et al. (2023), we set 1o = 0.5 throughout this paper. The parameter v is chosen to

control the PFER, and the PFER control holds regardless of the choice of 7.

2.4 A Generic Robust Estimation and Selection Procedure

We now propose a MSD based selection procedure named MSD-Select under the factor-

covariate model which includes the following steps: (i) Robust estimation of latent factors;
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(ii) Feature screening via MSD index; (iii) Quantile-adaptive FDR control (including PFER

and k-FWER control) via DMSDK method. Details are summarized in Algorithm

Algorithm 2: MSD-Select Procedure
Input : Observed data Z; = (Zi1, ..., Zia)" € R covariates X; = (Xi1,..., Xip)T € RP for
i=1,...,n;integers K > 1,7 > 1, v > 1, k, < n/2; bandwidth h > 0; a prespecified
level v € (0, 1); selection threshold 79 > 0; a quantile level 7.
Procedure:

Step 1 (Estimation). Obtain an estimator f and 3 of y and X, for example, the sample mean and
covariance matrix or their robust versions. Let )\1 > )\2 A i be the top K elgenvalues of E
and 'vl, Da, ...,V be their corresponding eigenvectors. Define B = ()\1/2 V1, .. )\ 124 K) € RdXK

where \j, = max()\k, 0). Let bi,...,by € RE be the d rows of B, and @ > 0 be the robustification
parameter depends on both n and d, obtain

d
fie argfrgg{r}( wa(zij i — bJTf).
j=1

Step 2 (Screening). For j =1,...,p, construct the sample MSD statistic by using convolution type
kernel smooth quantile regression approach, 5; := MSD,( f |X;). Select the top &, covariates, i.e.,
A, = {j : 5]7 is among the k,th 1argest}.

Step 3 (Selection). Construct second-order knockoff features X A, for X 4 . Forall j € AT, compute
/Wjﬁ = @T(ﬂXAT )= I\TST)T(ﬂXAT ;)- Run DMSDK procedure proposed in Algorithm

I{Wygtf <0} > v}, and

Calculate the stopping criterion, ﬂ(t) (v) = min {1 <k<Ekp: Z] 1

obtain the final selection set A, (v,70) = {j € A, : I, -(v) > 10} based on the selection probability

IT;  (v) given in Algorithm [1}
Output : f = (f ...7fK)T B € R4*K and final selection set A, (v,m0)-

Remark 3. In Algorithm [3, a fixed number of factors, K, must be specified in advance.
Since the true value of K is typically unknown, Section will propose a novel and con-
sistent approach for determining an appropriate K, which can then be used as input for

Algorithm [2. Other reliable methods for determining K are also recommended.

In step 1, we borrow the idea of [Fan et al.| (2019)) to robustly estimate pt = (11;)1<j<q4 and
3 = (0jk)1<jk<d of Z by using a Huber loss, with p; = E(X;) and o, = E(X; X)) — pjfu.

The reason why we take Huber loss largely lies in the good property of Huber estimator
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for heavy-tailed data under mild moment conditions. It is shown that a sub-Gaussian
type deviation bound is allowed by employing Huber estimator with a properly diverging
parameter (Fan et al.| |[2019). The Huber loss 9, () (Huber, |1964)) is defined as

u?/2, if |u| < @,
¢W<u> = (2.9)

wlu| — @?/2, if |u| > w,

where @ > 0 is a robustification parameter to tradeoff between bias and robustness. Then

fij = arg %}?2 Ve, (Zij — 0), (2.10)
Gix = O — fijpix with 6, = arg Igleiﬁlzz/}wjk(zijzik — ), (2.11)
=1

where @; > 0 and w@,; > 0 are robustification parameters. Equations and
yield the robust mean estimator f& and covariance estimator 3, respectively.

In step 2, denote by &7 ; = MSD,(fx|X;) and SZJ = @T(fk|Xj) the population
and sample MSD indices between the jth covariate and the kth latent factor, respectively;
denote by 67 = MSD.(f|X;) and SJT = @T(f|Xj) the population and sample MSD
indices between the jth covariate and the multiple latent factors, respectively. By definition
, 0j = maxi<k<k 0f ; and SJT = maXi<p<k SZJ To obtain the empirical 5}k, we use B-
spline approximation and employ the convolution type kernel smoothing quantile regression
to further reduce the variability of standard quantile regression estimators (Fernandes et al.,
2021). More details can be found in Section $5 of the Supplementary Materials. In practice,
we often rank all the covariates according to 5]7 and keep the top |n/log(n)| covariates,

ie., k, = |n/log(n)|, where |a] denotes the integer part of a.
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2.5 Determining the Number of Latent Factors

This section introduces a method for determining K, a critical step for both Algorithm
and for estimating the loading matrix and factors in model .

The number K can be generally estimated by eigenvalue based criteria (Onatski,
2010; |Ahn and Horenstein, 2013; [Fan et all 2022), information criteria (Bai and Ng|
2002; Bai et al., 2018), cross validation (Owen and Wang, 2016) and parallel analysis
(Dobriban and Owen, 2019). Let 5\]- denote the jth largest eigenvalue of the sample co-
variance matrix. |Onatski (2009) proposed to estimate the number of factors by Kon =
arg maerinqgrmx(;\i — 5\i+1) / (5\i+1 — 5\i+2), where rpi, and 7., are the predetermined lower
and upper bounds of K. [Wang (2012) estimated the number of factors by the ratios of
two adjacent eigenvalues, [A(ER = arg Maxj<j<rm.. 5\2 / S\iﬂ. Ahn and Horenstein| (2013) con-
sidered using Kgr = arg max;<j<,,.. log(Vi_1/Vi)/log(V;/Vis1), where V; = Z?:i—i—l A A
drawback of the above covariance-based methods is that they do not take into account the
scales of the observed variables, thus can be inconsistent. Another option is to follow the
idea of [Fan et al.| (2022), who used sample correlation matrix. Let R be the d x d dimen-
sional correlation matrix of X, that is, R = [diag(X)]™"/?X[diag(X)]~'/2, where diag(X)

is the diagonal matrix obtained by replacing the off-diagonal components of 3 with zeros.

Then the estimator of K 1is

Kaor = max {j ACR) > 1+ /d/(n — 1)}7 (2.12)

where S\JC(R) = —1/7;(M\;(R)) is a bias corrected estimator of \;(R) with ~;(z) = —(1 —
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(d=5)/(n=1))=" 4 (n = 1) [ D (W(R) = 2) 7+ (BA(R) + Ay (R)) /4 — 2)71]. The
idea behind equation is that K > max{1 < j < d: )\;(R) > 1}, i.e., the number of
eigenvalues greater than 1 should not exceed the number of factors. However, this approach
requires the signal of factors to be strong. For those observable variables with weak factors,
the estimated S\JC could be quite smaller than 1 and be unstable, making the estimated K
be much smaller than K. To detect weak factors and yield more stable results, we propose

in Algorithm |3| a modified bootstrap-based method for choosing K.
Algorithm 3: A bootstrap-based eigenvalue method to determine K

Input : Observable matrix Z € R"*¢; a diagonal weight matrix V € R™*™: number of bootstrap

samples G.
1 forg=1,...G do
2 i. Let v;’s be diagonal elements of V, Z =n"13"" | Z; and Z* be the centered sample matrix.

Obtain the sample covariance matrix 3¢ =n=' 3" v;(Z; — Z)(Z; — Z)" = n~'Z*TVZ* and

. . B9 .
correlation matrix Ry, respectively.

3 ii. Calculate the bias corrected eigenvalues S\f(f{Z) forj=1,...,d.
4 iii. Obtain ngmax{j:S\f(f{Z)>1+\/d/(n—1)}.
5 end

Output: K, = Mode{kg :g=1,...,G}, namely, the mode of {I%g}?:l.

In Algorithm [3] the weight matrix V can be chosen by drawing each diagonal element
independently from exponential distribution exp(1), this ensures 3 positive semidefinite.
Other distribution families can also be considered for constructing V, while we do not
specify here. The number of factors K is approximated as the mode of the resulting set.
Alternatively, one can choose the average or the median of the set {K’ 9:9=1,...,G}.

Under additional assumptions that E(e) = 0 and cov(e) = ¥ > 0,,, where ¥ is
diagonal or more generally satisfies max;<q ), lo-.ij|* = o(d) for some ¢ € [0, 1], the pro-
posed method provides a reliable estimator of the number of factors. Specifically, Theorem

establishes that the estimator K obtained from Algorithm [3] consistently estimates K



3. THEORETICAL RESULTS

under moderate regularity conditions when K is fixed. Theorem S2 of the Supplementary

Materials further extends this result to the case where K diverges as d — oo.

Theorem 1. For the factor model (2.1) satisfying Conditions (i)-(v) in $7.2 of the Sup-

plementary Materials, when Ag(R) > 1+ /w with w € (0,00), we have P(Kb = K) — 1,

as n,d — 00.

3. Theoretical Results

To fully understand the proposed procedures, we successively establish the theoretical re-
sults through several steps, starting with an oracle procedure that assumes the loading
matrix B is known and the factors {f;}!; are observable, which serves as a heuristic de-
vice. Second, we keep B known but treat f as latent, and study the estimator f (B). We
then analyze the difference between the true B and its estimate B, which leads to the
theoretical properties of f (]AB) when both f and B are unknown. For brevity, this section
presents only the results based on f (]:3)), while additional results are provided in the Supple-
mentary Materials. The screening statistics constructed from f (B) are denoted by 3;9,]- and
0;, with the corresponding selected subsets A, ;. and A,. Further denote [K] = {1,..., K}.
To facilitate technical derivations, we first impose the following regularity conditions.
(C1) (Condition on the conditional quantile) For k € [K], the conditional quantile
function Q. (fx|X;) belongs to H,, where H, is the class of functions defined on [0, 1] whose
mth derivative satisfies a Lipschitz condition of order wv: |h,(£7)(s) — hg;) ) < Cls —t|",

for some positive constant C, s,t € [0, 1], where m is a nonnegative integer and v € (0, 1]
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satisfies r = m 4+ v > 0.5.

(C2) (Condition on latent factors) The conditional density gy, |x;(t) is bounded away
from 0 and oo on [Q-(fx|X;) — &, Q- (fi|X;) + &, for some &, > 0, uniformly in X;. The
marginal density gy, (¢) is bounded away from 0 and oo, for k =1,..., K.

(C3) (Condition on marginal covariates) The marginal density function g; of X;, for
J € [p], are uniformly bounded away from 0 and oc.

(C4) (Condition on signal size) minjc ., 0x; > 2c;n™" for some 0 < k < 1/2 and some
positive constant c;.

(C5) (Condition on the basis function) The number of basis functions s, satisfies
s, = o(1) and s,n* ! = 0(1) as n — .

(C6) (Condition on the kernel function) The kernel function K(-) is integrable, twice
differentiable with bounded first and second derivatives, satisfying [ K(u)du = 1 and 0 <
I K(u){1 = K(u)}du < .

(C7) (Condition on the bandwidth) The bandwidth 0 < h < 1, and h = O((s,/n)"/*).

(C8) (Condition on the idiosyncratic error € and loading matrix B) The idiosyncratic
errors €y, ...,&q are mutually independent, and there exist constants C., c. > 0 such that
c. < minj<j<q 081/]3 < maxi<j<d (E6?)1/4 < (. There exist constants ¢;, ¢, > 0 such that
/\min(dleTB) > ¢ and || Bl|max < Cu.

(C9) (Condition on dimensionality) (n, d) satisfies that n**~!logn = o(d) as n,d — oo

for some 0 < k < 1/2.

(C10) (Pervasiveness) There exist positive constants ¢y, cgs and ¢pz such that cgid <
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A — M1 < cgad for k=1,..., K with Ag4; := 0, and ||Z.|| < eps < Ak, where )\, is the
top kth eigenvalues of BBT.

Condition (C1) assumes that the conditional quantile function Q. (fx|X;) belongs to a
class of smooth functions. This condition is standard for nonparametric spline approxima-
tion. Condition (C2) is a standard condition on random errors in the theory for quantile
regression. It relaxes the usual sub-Gaussian assumptions that are needed in literature on
high dimensional inference. Condition (C3) is similar to Condition (B) of Fan et al.| (2011)
and Condition (C4) of He et al|(2013). Note that Condition (C3) is not restrictive when
X; is supported on a bounded interval, say [0,1]. When X; has an unbounded support
(e.g., normal), we can view X; as coming from a truncated distribution. Specifically, if
X contains outliers or follows a heavy-tailed distribution, we can improve performance by
removing the outliers or transforming X; to a uniform distribution on [0, 1]. Condition (C4)
assumes that the active covariates at quantile level 7 have strong enough marginal signals,
a smaller x indicates a stronger marginal signal. This condition is crucial as it ensures
marginal utilities carry information about the covariates in the active set. Condition (C5)
describes how fast the number of basis functions is allowed to grow with the sample size.
Conditions (C6) and (C7) guarantee that the smoothing bias can be ignored when sample
size is large enough. Condition (C8) is a standard assumption in factor model. Condition
(C9) enables the factor-covariate model to be high-dimensional with respect to both d and
p. Condition (C10) is required for high-dimensional spiked covariance model with the first

several eigenvalues well separated and significantly larger than the rest.
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Theorem 2. Under Conditions (C1)-(C10), for a given 7 € (0,1), if n~'log(nd) — 0,
K/d— 0, and w =< y/d/logn as n,d — oo, then

(i) for any C > 0, there exist positive constants ca and c3 such that for n sufficiently large

P<1I£l?<)§) |§T 67| > Cn") < Kp{ exp(—con' ™" 4 logn) + exp(—css,*n' " +logn)}.

(ii) (Sure screening property) If k < 1/4 and s2n*~' = o(1), take the threshold n, = c¢*n™"

for some constant c*, then for n sufficiently large
PA. CA)>1— |A-|{ exp(—con' ™" + log n) + exp(—c3s, °n' " + logn) },

where | A, | is the cardinality of A,. Further assuming that logn = o(n*=%* + s 2n'=2%) we
have P(A, C AT) —1 asn — oo.
(iii) (Rank consistency property) Replace Condition (C4) with minjea, , O ; — maXea: , Ok >

210", for some 0 < k < 1/2 and some positive constant ¢y, we have

P 07T —maxd] >0) >1-K 4 2t T ]
<Jrg1411 max J; ) p{ exp(—can +logn) + exp(—css,, +logn)},

where ¢y and cs are some positive constants. If logp = o(n'= + s-2n'=2%) and logn =

o(n'=4 + s 2n!72%) with 0 < k < 1/4 and s2n**~! = o(1), then

lim inf {min o7 —maxSJT-} >0, a.s.

n—oo | jEA- JEAS

The sure screening and rank consistency properties based on the oracle procedure, where
the true factors f and loading matrix B are assumed known, are straightforward to derive

and are provided in Theorems S3-S4 of the Supplementary Materials. Building upon these
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oracle results, together with the consistency of f (B) for f, the consistency of B for B, and
the consistency of f(B) for f (as shown in Lemma S14 and Lemmas $19-S20), we derive
Theorem [2, which establishes the sure screening and rank consistency properties when
both B and f are unknown. Specifically, Theorem [2| (i) suggests that we can handle the
dimensionality log(np) = o(n'=%% + s2n'=2%). This dimensionality depends on the number
of basis functions s,, and the strength of the marginal signals n=". If we take s, = n'/Zr+1)
(the optimal rate for spline approximation), then for x < min(1/4, (r — 1/2)/(2r + 1)), we
can handle ultrahigh dimensionality, that is, p can grow at the exponential rate. In Theorem
(ii), when we take x < 1/4 and s2n*~! = o(1), the condition logn = o(n'~% 4 s 2n!=2)
typically holds, which guarantees that P(A, C /lT) — 1 as n — oo, that is, all active
covariates can be selected with high probability. The rank consistency result in Theorem
(iii) strengthens the sure screening property in (ii) by imposing a stronger assumption on
the signal gap between active and inactive covariates, i.e, minjea, , 0x,; — max;e A2, Oy >
2cin~". Provided that logp = o(n'™* + s ?n'=%%) and logn = o(n'~* + s 2n'=2%) the

active covariates are always ranked ahead of inactive ones with high probability.

Remark 4. Here we make some remarks on the estimation of f' and B, along with
their convergence rates. (i) Ewisting approaches for estimating the factor matric F =
(f1,---, f)T and the loading matriz B typically assume that the errors in are 1.i.d.
sub-Gaussian. Under this assumption, F and B can be obtained via constrained least squares
(Bai, 2003; Fan et al.,|2015). The resulting estimators F and B are given by B= nilPN‘TX,

where the columns of f‘/ \/n are the eigenvectors corresponding to the largest K eigenval-



3. THEORETICAL RESULTS

ues of XXT. |Fan et al. (2015) showed that F consistently estimates F up to a rotation.
Under conditions such as v/dlogd = o(n), the optimal rate for fl is 1//d (Baa, 2005;
Fan et al., |2013; |Li et al., |2018). By comparison, our estimator fZ(B) achieves the rate
\/Wl with a properly chosen robustification parameter w. Although slightly slower, this
rate reflects the tradeoff for robustness, as our method is designed to handle heavy-tailed
errors by relaxing the sub-Gaussian assumption and requiring only finite fourth moments
(E(e*) < 00). (ii) Our robust procedure begins with constructing a covariance estimator
2, which yields robust loadings i)j ’s. Based on B = (31, . g l;d)T, fz 18 estimated robust-
ly via Huber regression, denoted as f;(B). Under the condition logd = o(n), traditional
estimators gj ’s converge at the rate of Op(\/W), whereas our estimator achieves the
rate of O,(+\/log(nd)/n+1/v/d), as shown in Lemma S19 of the Supplementary Materials.
This difference stems from the employment of the adaptive Huber covariance estimator (Fan
et al.,|2019), which requires weaker assumptions than the sample covariance and is broadly
applicable to heavy-tailed settings. (iii) The estimation error of fZ(B) can be decomposed
as | fi(B) = fills < Ifi(B) = £:(B)||l2 + | fi(B) — fill2. This implies that the convergence
rate of f;(B) depends jointly on the estimation accuracy of f;(B) and B. Improvements in

either component lead to faster convergence of fz(]g)

Theorem (3| further establishes that the proposed DMSDK procedure controls both the

PFER and the k-FWER.

Theorem 3. (PFER and k-FWER control) Consider the DMSDK procedure (Algorithm

with a base procedure satisfying PFER, < v, under the condition P(1l;,(v) > ny) <
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vyE(IL; ;(v)) for every j € AS, we have
(i) EV(7)] < yv.

(i1) Further assuming that P(V (1) > k) < (E[V(7)]/k for each k > 1, we have
PV (r) > k) < lyv/k.

The base procedure we adopt here is the v-quantile knockoffs, as specified in the Sup-
plementary Materials. From Theorem [3| (i), the upper bound for PFER, is relatively
conservative. Take 1y = 0.5, we have E[V(7)] < 2v, implying v = 2. This bound can be
improved by introducing additional assumptions. Specifically, if the knockoff variables are
conditionally iid, the number of selections T'1I; - follows a binomial distribution conditional
on X and f (by the law of larger numbers), that is, T1I; ;| X, f ~ Bin(T, P(j € §£1)|X, ),

where S\ is defined in Algorithm [I} Consequently, the PFER,, is calculated directly via

E[V(r)] = E[ > P(j € Ar(v,m0)|X, f)} = E[ > P(TT,, > TolX, f)|.

JEAs jeAS
Take T'= 3 and let p; = P(j € §$1)|X, f), then E[V(7)] < 1.125v. We refer to Ren et al.

(2023)) for more details on choosing parameters v, k, £, and ~ to help control the k--FWER.

4. Simulation Studies

In this section, we conduct simulation studies to investigate the performance of the proposed
procedures, including MSDS for feature screening, and MSDK and DMSDK for FDR con-
trol. We first evaluate the sure screening property of MSDS and compare it with six other

popular screening procedures in literature: quantile-adaptive sure independence screening
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(QaSIS, |He et al., 2013), nonparametric independence screening (NIS, Fan et al 2011),
sure independent ranking and screening (SIRS, |Zhu et al.| 2011)), distance correlation based
screening (DCSIS, |Li et al., [2012)), RV correlation based screening (RVSIS, [Yu et al., 2023)
and projection correlation based screening (PC-Screen, Liu et al., 2022). DCSIS, RVSIS
and PC-Screen can handle multiple responses, while the others are intended for univariate
response. To adapt QaSIS, NIS, and SIRS for multiple responses, we adopt the same con-
struction logic as in MSDS, but replace MSD with other screening statistics in . For
MSDS, the robustification parameters involved in the Huber loss are selected by five fold
cross validation as in [Fan et al.|(2019). The kernel function is set to be the triangular kernel
function and we take h = max{0.05, {(S + logn)/n}?/*} as suggested by He et al. (2023),
where S is the number of basis. In computing MSDS, QaSIS, and NIS, we set S = 3.
To mimic real dataset, we consider (d, K,p,n) = (50, 3,5000,200). We also evaluate the
performance of our proposed method for determining the number of latent factors (K') and
compare it with several competitors mentioned in Section 2.5] Due to space limitations,
results for this part are provided in the Supplementary Materials.

We first simulate two examples to evaluate screening performance and adopt the fol-
lowing criteria: (1) minimum model size (MMS) to include all active covariates: we report
the mean of MMS with its standard error (SD), and the median of MMS with its median
absolute deviation (MAD) over 200 replications; (2) P;: the proportion including a single
X; for a given model size |n/logn]; (3) Pay: the proportion including all active covariates

for a given model size |n/logn|. In examples 1-2, X; is drawn from N(0,1,) and N'(0, Xx),
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where x = (0.5 7)., j<,. In example 3, X; is drawn from N(0,1,) and #3(0,1,). For
heteroscedastic error cases, we take 7 € {0.50,0.75,0.90}, otherwise, 7 = 0.50. Other ex-
amples, including factor-additive model and serial dependent factor-nonparametric model,
are provided in the Supplementary Materials.

Example 1: factor-linear model. Consider a three factor model Z;, = p+ Bf; +¢;,i =

1,...,n, where B = (bj;)1<j<p1<i<3 has iid entries bj;’s generated from the uniform distri-
bution U(—2,2), and €;’s are drawn from multivariate normal distribution N(0, X.) with
3. a sparse matrix whose diagonal entries being 3 and off-diagonal entries independently
drawn from 0.3 x Bernoulli(0.05). We set the mean p = 0.5 x 15 and f;’s are assumed
to come from a linear model, ie., f; = AX; +&; for © = 1,...,n, where the error ter-
m & = (&1,&0,&3)T is generated from the following distributions to model symmetric,
heavy-tailed and heteroscedastic error cases, respectively: & YN (0,1), &k w t3, and

Eix = exp(35_ Xo4j)G, where Gy % N(0,0.7%) for k =1,2,3. A is defined as

111000 -0
A=1po 10100 -0
001110 -0
3Xp

Example 2: factor-nonparametric model. We also consider a three factor model, similar

to example 1, but with all weak factors. The b;;’s are iid from N(0,0.04), and ¢;;’s are iid

from N(0,150). Besides, ;s are randomly sampled from {0,0.5,0.8} for 1 < j < d and
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fir’s are assumed to follow nonlinear nonparametric models,

fir =exp(2 — Xio — Xu) + &1, fio = (2Xa + 3Xi3)? log(| X |) + &,
fis = 3(= X1 Xis + Xi5)” exp(—2Xi5) + s,
where the error term & = (&1, &n, &3)? is considered to come from two different distribu-
tions: & i N(0,1) and & u Cauchy for k =1,2,3.
Note that in example 1, the true model size is 5 for homogeneous errors. However,
for heteroscedastic errors, Xg, Xo, X9 become active when 7 € {0.75,0.9}, leading to a
true model size of 8 for these two quantiles. Simulation results for these two examples
are summarized in Tables [I2, Tables S4-S5 and S7-S8 of the Supplementary Materials.
Note that we focus on a relative high-dimensional factor model with d = 500 to test our
procedure for estimating the number of latent factors. When X; ~ A(0,1,), we observe that
in the factor-linear benchmark model with normal errors and strong factors, all competing
methods perform well. However, in the presence of heavy-tailed errors, NIS and RVSIS
struggle to accurately identify all active covariates. Other methods, such as QaSIS, SIRS,
DCSIS and PC-Screen experience significant performance deterioration and require much
larger model sizes to recover the active set when heteroscedastic errors are present. For
the factor-nonparametric model with weak factors, all methods, except for our proposed
MSDS and QaSIS, fail to correctly identify covariates X; and X3. MSDS, however, shows
the highest probability of including all active covariates. Notably, when &;;, follows Cauchy
distribution, MSDS significantly outperforms QaSIS. When X; ~ N (0, ¥x), similar results

are observed in Tables S4-S5 of the Supplementary Materials, demonstrating that MSDS
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exhibits the best screening performance among all the competitors. This highlights MSDS

as a powerful tool for addressing a wide range of factor-covariate models, effectively handling

both strong and weak factors in high-dimensional settings.

Table 1: Simulation results for example 1 when X; ~ A (0,1,), p* denotes the true model size

MMS
Error Method p* Median(MAD) Mean(SD) P1 P2 Ps Py Ps Ps Py  Pio Pau
N(0,1) MSDSos0 5  5.00(0) 6.42(3.74) .00 1.00 1.00 1.00 1.00 - - - 100
QaSISps0 5 6.00(1.48) 13.51(34.10) 0.96 1.00 1.00 1.00 0.97 - - - 0.94
NIS 5 5.00(0) 5.04(0.20) 1.00 1.00 1.00 1.00 1.00 - - - 1.00
SIRS 5 5.00(0) 5.03(0.23) 1.00 1.00 1.00 1.00 1.00 - - - 1.00
DCSIS 5 5.00(0) 5.00(0) 1.00 1.00 1.00 1.00 1.00 - - - 1.00
RVSIS 5 5.00(0) 5.00(0) 1.00 1.00 1.00 1.00 1.00 - - - 1.00
PC-Screen 5 5.00(0) 5.03(0.18) 1.00 1.00 1.00 1.00 1.00 - - - 1.00
t3 MSDSp.50 5 5.00(0) 7.40(6.27) 0.99 1.00 1.00 1.00 0.99 - - - 0.98
QaSISp.s0 b5 9.00(5.93) 25.46(43.30) 0.94 1.00 1.00 1.00 0.89 - - - 0.83
NIS 5 24.00(28.16) 104.60(171.36) 0.74 0.85 0.85 0.86 0.68 - - - 0.58
SIRS 5 5.00(0) 6.92(10.05) 1.00 1.00 1.00 1.00 0.96 - - - 0.96
DCSIS 5 5.00(0) 6.69(15.08) 0.98 0.98 1.00 1.00 0.98 - - - 0.98
RVSIS 5 5.00(0) 51.02(126.54) 0.85 0.90 093 0.85 0.87 - - - 0.78
PC-Screen 5 5.00(0) 5.33(2.20) 1.00 1.00 1.00 1.00 1.00 - - - 1.00
hetero MSDSp50 5 5.00(0) 5.71(1.63) 1.00 1.00 1.00 1.00 1.00 - - - 1.00
MSDSp.75 8 10.00(1.48) 124.94(292.98) 093 092 092 092 092 0.88 093 091 0.83
MSDSp.00 8 11.00(4.44) 111.66(269.43) 092 095 099 096 092 0.99 099 0.97 0.85
QaSISp.50 b 59.00(72.64) 105.85(134.09) 1.00 1.00 1.00 0.96 0.45 - - - 0.45
QaSISg.75 8 1015.00(1104.53) 1203.17(1022.68) 0.98 1.00 1.00 0.91 0.36 0.85 0.92 0.60 0.17
QaSISp.90 8 2025.00(1186.08) 2067.41(1105.33) 0.31 0.51 0.38 0.13 0.06 0.98 0.98 0.72 0.00
NIS 8 3395.00(1593.79) 3135.05(1300.74) 0.31 0.44 0.35 0.18 0.08 0.49 0.51 0.48 0.00
SIRS 8 37.00(28.17) 300.82(276.77) 1.00 1.00 1.00 1.00 1.00 0.89 0.89 0.56 0.51
DCSIS 8 9.00(1.85) 147.82(397.33) 0.98 1.00 1.00 0.98 0.84 1.00 1.00 0.96 0.81
RVSIS 8 2585.00(1149.01) 2522.76(1132.08) 0.60 0.69 0.67 0.45 0.17 043 0.45 0.36 0.00
PC-Screen 8 1295.00(893.26) 1476.50(975.89) 1.00 1.00 1.00 1.00 0.93 0.83 0.50 0.10 0.03

Next, we simulate two additional examples to evaluate the FDR control performance
of the proposed MSDK and DMSDK procedures. For comparison, we also include the

PC-Knockoff procedure introduced in [Liu et al.| (2022). Here we set x = (0.25/"77!),<; j<,,.

Example 3: FDR control for factor-linear model. Consider the factor model as defined

in example 1. Let f; = 87X, + & for i = 1,...,n, where B8 = (B4, 8,,33) with B, =
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Table 2: Simulation results for example 2 when X; ~ N (0,1,), p* denotes the true model size

MMS (p* = 5)

ik Method Median(MAD) Mean(SD) P1 P2 P3 P Ps Pait
N(0,1) MSDSg.5 10.00(5.93) 39.12(92.08) 0.92 0.99 0.89 0.99 1.00 0.82
QaSISo 5 11.00(8.89) 39.32(91.22) 0.93 1.00 0.85 1.00 1.00 0.78

NIS 3980.00(900.67) 3765.70(1015.43) 0.14 0.04 0.06 0.01 0.99 0.00

SIRS 2788.00(1221.66) 2600.80(1009.58) 0.02 0.99 0.05 1.00 1.00 0.00

DCSIS 1736.00(1108.98) 1701.04(892.07) 0.15 0.25 0.08 0.25 1.00 0.00

RVSIS 3885.00(1030.40) 3611.00(996.92) 0.10 0.04 0.05 0.01 0.99 0.00

PC-Screen 395.00(318.75) 660.40(682.53) 0.68 1.00 0.32 1.00 1.00 0.24

Cauchy MSDSg.5 9.50(6.67) 34.75(78.05) 0.92 1.00 0.88 1.00 1.00 0.82
QaSISp 5 16.50(17.04) 60.88(103.03) 0.92 0.97 0.74 1.00 1.00 0.64

NIS 3992.50(963.69) 3755.05(989.09) 0.10 0.05 0.09 0.05 0.96 0.00

SIRS 2336.00(1313.58) 2339.64(1060.46) 0.04 1.00 0.08 1.00 1.00 0.00

DCSIS 1676.00(1031.89) 1794.84(906.18) 0.12 0.25 0.15 0.23 0.99 0.02

RVSIS 3912.50(848.78) 3612.00(1040.81) 0.08 0.09 0.11 0.05 0.96 0.00

PC-Screen 515.00(530.02) 702.90(672.75) 0.66 1.00 0.30 1.00 1.00 0.22

(15,00_5)", B, = (05,13,0] )", B3 = (0f,15,0] )", and X; is drawn from a mixture
distribution 0.9M(0,Xx) + 0.1£5(0, ¥x). &» < tz for k = 1,2,3. Therefore, X;-Xg are
active with |A,| = 8.

Example 4: FDR control for factor-mized model with weak factors. We consider a sim-

ilar three factor model as in example 1, except that the entries of factor loading matrix b;;’s
are iid from N(0,0.04) for j # . We draw ¢;;’s iid from N(0,v?) and vj ~ U(0,5.5) for
j =1,...,d. In this scenario, the signals of latent factors are very weak. The latent factors

are assumed to follow a mixed model with both additive and single index components

fir =2 43X +3Xn+&1, fo=02+ 3Xi3)2 +2(Xiy — 1)3 + &2,
fis =exp(Xis + Xig) + &is,
where X; ~ N (0,Xx) and &, b N(0,1) for k =1,2,3. Thus, X;-X; are active, |A,| = 6.

The settings and implementation details for examples 3-4 are provided in Section $10
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of the Supplementary Materials. We summarize the results for examples 3-4 in Table 3| and
Tables S9-S10 of the Supplementary Materials, in which a denotes the prespecified FDR
level, v is the prespecified PFER level, and k-FWER is defined as k-FWER = P(V (1) > k).
Here, \7(7) and V are the average number of false discoveries, FDR is the empirical FDR,
that is, the average empirical FDP, FWER is the empirical k-FWER, i.e., the average
empirical P(V(T) > k), and Power refers to the average empirical power.

It is observed that our MSDK and DMSDK procedures effectively control the FDR at
the prespecified level a, as well as the PFER and k-FWER. The PC-Knockoff procedure
performs well in example 3. However, when applied to nonlinear models with weak factors,
its empirical power and selection probability decline significantly. Additionally, the base
MSDK procedure has an average execution time of approximately 45 seconds, while the
PC-Knockoff takes about 50 minutes on Windows machines with 2.4 GHz CPUs and 16 GB
of memory running R software. Consequently, the PC-Knockoft procedure is less suitable
for scenarios with large n and p, particularly when n is large. In addition, the results for
MSDK procedure at higher quantiles, such as 7 = 0.90, seem to be out of control, likely due
to data sparsity at higher tails. In contrast, the derandomized version consistently achieves
much higher selection probability and power while effectively maintaining the sure screening
property across all settings. This demonstrates that the DMSDK procedure is particularly
effective for high-dimensional factor-covariate models with both strong and weak factors,
not only identifying variables across quantiles with FDR control but also handling large

datasets efficiently with reasonable computational time.
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Table 3: Simulation results for example 4 via MSDK, PC-Knockoff and DMSDK procedures
MSDXK procedure FDR control

T e P1 P2 P3 Pa Ps Pe Paul V() (F/D\R) Power
0.50 0.15 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.02(0.145) 1.00
0.20 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.48(0.198) 1.00
0.30 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.41(0.287) 1.00
0.75 0.15 0.93 0.93 0.93 0.93 0.93 0.92 0.92 0.94(0.135) 0.93
0.20 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.56(0.195) 1.00
0.30 1.00 1.00 1.00 1.00 1.00 0.98 0.98 2.53(0.297) 0.99
0.90 0.15 0.84 0.84 0.83 0.84 0.80 0.82 0.76 1.42(0.191) 0.83
0.20 0.96 0.95 0.94 0.97 0.89 0.92 0.78 1.77(0.220) 0.94
0.30 0.97 0.96 0.96 0.97 0.83 0.84 0.73 3.26(0.331) 0.92
PC-Knockoff procedure FDR control
e! P1 P2 P3 Pa Ps Ps Paul V(ﬁ) Power
0.15 0.48 0.48 0.47 0.48 0.47 0.47 0.45 1.22(0.124) 0.47
0.20 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.54(0.173) 1.00
0.30 1.00 1.00 1.00 1.00 1.00 1.00 1.00 3.26(0.277) 1.00
DMSDK procedure PFER control
T v P1 Pa Ps3 Py Ps Ps Paut V(r)(FDR) Power
0.50 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.32(0.051) 1.00
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.10(0.154) 1.00
3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.82(0.232) 1.00
0.75 1 1.00 1.00 1.00 1.00 0.98 1.00 0.98 0.30(0.047) 0.99
2 1.00 1.00 1.00 1.00 0.98 1.00 0.98 1.14(0.159) 0.99
3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.01(0.250) 1.00
0.90 1 1.00 0.98 0.98 1.00 0.99 0.91 0.80 0.46(0.071) 0.95
2 0.99 0.99 1.00 1.00 0.90 0.98 0.89 1.34(0.182) 0.97
3 0.99 0.99 1.00 1.00 0.92 0.98 0.90 2.28(0.275) 0.98
DMSDK procedure k-FWER, control at 0.20
T k(v) Py Ps Ps Py Ps Ps = V(7)(FWER) Power
0.50 3(1.17) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.64(0.000) 1.00
4(1.56) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.71(0.000) 1.00
5(1.96) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.31(0.000) 1.00
0.75 3(1.17) 1.00 1.00 1.00 1.00 1.00 0.98 0.98 0.54(0.000) 0.99
4(1.56) 1.00 1.00 1.00 1.00 0.98 0.98 0.97 0.66(0.000) 0.99
5(1.96) 1.00 1.00 1.00 1.00 0.98 0.98 0.97 1.11(0.000) 0.99
0.90 3(1.17) 1.00 0.97 0.98 1.00 0.86 0.93 0.77 0.51(0.030) 0.95
4(1.56) 1.00 0.97 0.98 1.00 0.89 0.93 0.79 0.76(0.020) 0.96
5(1.96) 1.00 0.97 0.98 1.00 0.91 0.94 0.82 1.17(0.010) 0.97

5. Real Data Analysis

We apply the proposed procedures to a human well-being dataset studied by [Fredrickson
et al.| (2013) and Yu et al.| (2023), which is available at https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE45330. The dataset includes questionnaire responses from 84

healthy adults and gene expression measurements for 34,591 genes. All participants were
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between 35 and 64 years old, could read and write in English, and had no chronic diseases
or disabilities. To assess both hedonic and eudaimonic well-being, these participants were
asked to respond to the Mental Health Continuum Short Form (MHC-SF) that comprises
14 questions reflecting hedonic and eudemonic well-being. These questions can be found in
the Supplementary Materials of [Yu et al.| (2023)). Respondents rated the frequency of each
feeling they experienced over the past few weeks on a scale from 0 to 5 (O:never, 1:once or
twice, 2:approximately once per week, 3:two or three times per week, 4:almost every day and
5:every day). Out of 84 participants, only 76 samples were valid due to missing responses.
The main aim of this application is to explore the biological implications of hedonic and
eudaimonic well-being through human genome. Understanding whether these two well-
beings engage similar biological processes is considered an important yet challenging task.

We apply the proposed factor-covariate model to investigate the intrinsic relationship
between the assayed genes and the two types of well-being. Since these well-being types
are summarized by the 14 items, we set K = 2 and d = 14 in the factor model. First,
we estimate two latent factors, denoted by f; and f;, respectively. Next, we investi-
gate the functional relationships between the two estimated latent factors and the human
genes (p = 34,591) using a nonparametric model. To facilitate this analysis, we begin
by selecting the top 5,000 genes with the largest variance in expression values and stan-
dardize their expression measurements to have zero mean and unit variance. Active genes
associated with the two latent factors are identified using our proposed MSDS method,

followed by the DMSDK procedure to control both the FDR and PFER. We focus on
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T € {0.25,0.50,0.75,0.90}. Additionally, we apply other screening methods discussed in
the simulation studies for comparison. The top 17 genes identified by the various screening
methods and the selected genes based on DMSDK procedure with v = 1 are listed in Table
S11 of the Supplementary Materials. It is clear that the sets of active genes selected by
different methods have multiple overlaps, suggesting several key findings. First, among all
the screening methods, the genes LOC650238 and LOC650436 are selected most frequent-
ly. Second, genes selected by quantile-based procedures differ substantially from those
selected by other methods. This indicates that certain genes may show strong associations
with latent factors only at specific quantiles of the conditional distribution, such as the
upper or lower tails, which other methods might overlook. Third, a more detailed conclu-
sion can be conducted when we compare the genes selected at different quantiles. When
7 € {0.25,0.50}, only three out of the 17 genes overlap, and only three genes (LOC650238,
BLOC1S1, LACTB) are selected at three or more quantiles. This highlights the hetero-
geneity in the data. By further conducting the DMSDK procedure, approximately two
genes are selected as relevant at each quantile.

These selected genes are further served as inputs to fit both linear and additive mod-
els. This approach helps mitigate the curse of dimensionality while also facilitating the
exploration of functional associations of each identified gene. The results, presented in
Table S12, Figure [1, and Figure S3 of the Supplementary Materials, show that the two
well-beings under linear model engage similar biological processes, as the selected genes are

either positively or negatively correlated with both well-being. For additive model, Figure
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and Figure S3 further suggests that the two well-beings exhibit similar biological structures
against the selected genes. These findings support the conclusions of [Fredrickson et al.
(2013), which indicate that the hedonic and eudaimonic well-being share similar affective
correlates and are strongly positively correlated. In contrast, Yu et al.|(2023) examined the
same dataset but focused solely on the mean of the conditional distribution, which fails to

capture genes that are functionally associated with well-being across different quantiles.
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Figure 1: Estimated additive functions of the identified genes from our method at different
quantiles for the two latent factors. The first row shows the results for 7 = 0.25, while the second

row shows the results for 7 = 0.5.

To further investigate the predictive performance of the DMSDK procedure, and com-

pare with the MSDS-SCAD method. The dataset is randomly partitioned into a training
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set of 60 samples and a testing set of 16 samples. A five fold cross validation is applied to
the training data to select the tuning parameters. The average number of selected genes
(Size) over 100 replications is reported, with the corresponding standard errors in paren-
theses. We then assess the performance on the test set for each partition. The prediction
error (PE) is defined as >0, 3772 L4 (fih — fir), where £, ,(-) is the convolution type
smoothed quantile loss function. The numbers in parentheses represent the corresponding
standard errors across 100 partitions. The results, shown in Table [d] clearly indicate that
the analysis based on MSDS followed by DMSDK (MSD-select) achieves strong predictive

power, with a smaller model size and lower prediction error at each quantile level.

Table 4: Prediction performance for human well-being data

Linear Model Additive Model
DMSDK MSDS-SCAD DMSDK MSDS-SCAD
T Size PE Size PE Size PE Size PE

0.25 2.40(0.98) 0.62(0.14) 5.66(2.06) 0.66(0.14) 2.88(1.80) 0.79(0.22)  6.88(1.62) 1.08(0.50)
0.50 3.18(2.08) 0.67(0.07)  6.34(1.95) 0.71(0.10)  3.22(1.37) 1.97(3.11)  4.56(1.29) 1.45(2.51)
0.75 3.52(1.64) 0.50(0.08) 5.06(1.82) 0.57(0.10)  1.66(0.51) 1.10(1.41)  4.46(1.32) 1.39(1.18)
0.90 4.70(2.27) 0.29(0.11)  2.47(1.27) 0.29(0.12)  1.44(0.54) 1.60(3.68)  6.14(2.48) 2.26(2.19)

6. Discussions and Extensions

In this paper, we develop a MSD-Select procedure, which integrates estimation, screening,
and selection with FDR control for joint modeling involving latent factors. This proce-
dure leverages joint information across latent factors, utilizing the quantile-adaptive MSD
index for screening and the quantile-adaptive DMSDK procedure for selection. The proce-

dure exhibits several notable advantages: First, it allows both the dimensions of observed
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variables and covariates to diverge with sample size n, thus offering broader applicabil-
ity. Second, to ensure robustness against heavy-tailed errors or covariates, it employs a
model-free MSD index that provide valuable insights into heterogeneity in the relationship
between active covariates and latent factors. By employing smoothing quantile regression
techniques in place of traditional quantile regression methods and B-spline approximation
in estimation, the nondifferentiability of the quantile loss function and curse of dimension-
ality of the nonparametric function can be further circumvented. Additionally, we establish
the sure screening properties under mild conditions. Third, robustness in FDR control is
achieved by extending the classical knockoffs procedure into the quantile regression frame-
work. Numerical studies demonstrate that the MSDS screening method surpasses existing
methods, and the proposed DMSDK procedure achieves tighter FDR control, along with
PFER control and k-FWER control, while maintaining higher power.

In the factor-covariate model, latent factors need to be linked to the covariates through
a nonparametric model. However, this model presumes that covariates are continuously
distributed and does not accommodate categorical variables. To overcome this limitation,
we propose employing a semiparametric partial linear model as an alternative to the purely
nonparametric model. Nonetheless, the task of identifying which covariates should be mod-
eled linearly versus nonlinearly remains complex, especially in high dimensional contexts.
This challenge is slated for exploration in our future research endeavors.

One limitation of the MSD-Select method is that it does not directly account for the

quantile association between a multivariate latent factor and a covariate. This arises from
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the fact that the conditional quantile of a multivariate vector is not uniquely defined and
is challenging to handle. Future research could explore directly using the multivariate
conditional quantile, potentially based on measure-transportation-based concepts, to define
a screening index for multivariate latent factors. An additional avenue for extending the
factor-covariate model involves the incorporation of sparsity constraints within the factor
loading matrix. This modification has the potential to enhance both interpretability and
predictive performance in high-dimensional settings. Furthermore, integrating temporal
dependencies into the factor-covariate modelrelevant for time series data or longitudinal
studies, can be achieved by extending the factor model to either a state-space model or a
dynamic factor model. Additionally, Ren et al. (2024) introduced a derandomized knockoff
procedure by aggregating e-values from multiple knockoff realizations. Future research
could explore extensions that integrate this new derandomized knockoff methodology with
our proposed MSD index. Finally, the development of robust methods for controlling FDR,
such as using data splitting or Gaussian mirror approaches within the quantile regression

framework, offers another promising direction for future investigation.

Supplementary Materials

The properties of the MSD index under Gaussian distribution, details on the MSD knockoffs
procedure, v-quantile knockoffs and estimation of the MSD index, figures for convolution-
type smoothed quantile loss, as well as all technical proofs, additional results from numerical

studies are provided in the online Supplementary Materials.



REFERENCES

Acknowledgments

The authors would like to thank the editor, associate editor and referees for their insightful
comments and suggestions that have significantly improved the paper. The first two authors
contribute equally to this work, and Mingyao Ai is the corresponding author. Xiong’s work
was supported by the Funds for Central Universities in UIBE CXTD14-05. Ai’s work was

supported by NSFC grants 12131001 and W2412023, and LMEQF.

References

Ahn, S. C. and A. R. Horenstein (2013). Eigenvalue ratio test for the number of factors. Econometrica 81(3),
1203-1227.

Bai, J. (2003). Inferential theory for factor models of large dimensions. Econometrica 71(1), 135-171.

Bai, J. and K. Li (2012). Statistical analysis of factor models of high dimension. The Annals of Statistics 40(1),
436-465.

Bai, J. and S. Ng (2002). Determining the number of factors in approximate factor models. Econometrica 70(1),
191-221.

Bai, Z., K. P. Choi, and Y. Fujikoshi (2018). Consistency of aic and bic in estimating the number of significant
components in high-dimensional principal component analysis. The Annals of Statistics 46(3), 1050-1076.

Barber, R. F. and E. J. Candes (2015). Controlling the false discovery rate via knockoffs. The Annals of Statistic-
s 43(5), 2055-2085.

Benjamini, Y. and Y. Hochberg (1995). Controlling the false discovery rate: a practical and powerful approach to



REFERENCES

multiple testing. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 57(1), 289-300.

Candes, E., Y. Fan, L. Janson, and J. Lv (2018). Panning for gold: model-x knockoffs for high dimensional controlled

variable selection. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 80(3), 551-577.

Desai, K. H. and J. D. Storey (2012). Cross-dimensional inference of dependent high-dimensional data. Journal of

the American Statistical Association 107(497), 135-151.

Dobriban, E. and A. B. Owen (2019). Deterministic parallel analysis: an improved method for selecting factors

and principal components. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 81(1),

163-183.

Fan, J., Y. Feng, and R. Song (2011). Nonparametric independence screening in sparse ultra-high-dimensional

additive models. Journal of the American Statistical Association 106(494), 544-557.

Fan, J., J. Guo, and S. Zheng (2022). Estimating number of factors by adjusted eigenvalues thresholding. Journal

of the American Statistical Association 117(538), 852-861.

Fan, J., Y. Ke, Q. Sun, and W.-X. Zhou (2019). Farmtest: Factor-adjusted robust multiple testing with approximate

false discovery control. Journal of the American Statistical Association 114(528), 1880—-1893.

Fan, J., Y. Liao, and M. Mincheva (2013). Large covariance estimation by thresholding principal orthogonal

complements. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 75(4), 603—-680.

Fernandes, M., E. Guerre, and E. Horta (2021). Smoothing quantile regressions. Journal of Business & Economic

Statistics 39(1), 338-357.

Fredrickson, B. L., K. M. Grewen, K. A. Coffey, S. B. Algoe, A. M. Firestine, J. M. Arevalo, J. Ma, and S. W.

Cole (2013). A functional genomic perspective on human well-being. Proceedings of the National Academy of



REFERENCES

Sciences 110(33), 13684-13689.

He, X., X. Pan, K. M. Tan, and W.-X. Zhou (2023). Smoothed quantile regression with large-scale inference.

Journal of Econometrics 232(2), 367-388.

He, X., L. Wang, and H. G. Hong (2013). Quantile-adaptive model-free variable screening for high-dimensional

heterogeneous data. The Annals of Statistics 41(1), 342-369.

Huber, P. J. (1964). Robust estimation of a location parameter. The Annals of Mathematical Statistics 35(1),

73-101.

Li, G., Y. Li, and C.-L. Tsai (2015). Quantile correlations and quantile autoregressive modeling. Journal of the

American Statistical Association 110(509), 246-261.

Li, Q., G. Cheng, J. Fan, and Y. Wang (2018). Embracing the blessing of dimensionality in factor models. Journal

of the American Statistical Association 113(521), 380-389.

Li, R., W. Zhong, and L. Zhu (2012). Feature screening via distance correlation learning. Journal of the American

Statistical Association 107(499), 1129-1139.

Liu, J., Y. Si, Y. Niu, and R. Zhang (2022). Projection quantile correlation and its use in high-dimensional grouped

variable screening. Computational Statistics €& Data Analysis 167, 107369.

Liu, W., Y. Ke, J. Liu, and R. Li (2022). Model-free feature screening and fdr control with knockoff features.

Journal of the American Statistical Association 117(537), 428-443.

Onatski, A. (2009). Testing hypotheses about the number of factors in large factor models. Econometrica 77(5),

1447-1479.

Onatski, A. (2010). Determining the number of factors from empirical distribution of eigenvalues. The Review of



REFERENCES

Economics and Statistics 92(4), 1004-1016.

Ouyang, M., X. Wang, C. Wang, and X. Song (2018). Bayesian semiparametric failure time models for multivariate

censored data with latent variables. Statistics in Medicine 37(28), 4279-4297.

Owen, A. B. and J. Wang (2016). Bi-cross-validation for factor analysis. Statistical Science 31 (1), 119-139.

Ren, Z., Y. Wei, and E. Candes (2023). Derandomizing knockoffs. Journal of the American Statistical Associa-

tion 118(542), 948-958.

Roy, J. and X. Lin (2000). Latent variable models for longitudinal data with multiple continuous outcomes.

Biometrics 56(4), 1047-1054.

Shao, X. and J. Zhang (2014). Martingale difference correlation and its use in high-dimensional variable screening.

Journal of the American Statistical Association 109(507), 1302-1318.

Wang, H. (2012). Factor profiled sure independence screening. Biometrika 99(1), 15-28.

Yu, C., W. Guo, X. Song, and H. Cui (2023). Feature screening with latent responses. Biometrics 79(2), 878-890.

Zhu, L., L. Li, R. Li, and L. Zhu (2011). Model-free feature screening for ultrahigh-dimensional data. Journal of

the American Statistical Association 106(496), 1464-1475.

Han Pan, School of Statistics and Mathematics, Shandong University of Finance and Economics, Jinan, China

E-mail: scott_pan@163.com

Wei Xiong, School of Statistics, University of International Business and Economics, Beijing, China

E-mail: xiongwei@Quibe.edu.cn

Mingyao Ai, School of Mathematical Sciences and Center for Statistical Science, Peking University, Beijing, China.

E-mail: myai@pku.edu.cn



	Introduction
	MSD-Select Procedure
	General Factor-Covariate Model
	Screening with a Conditional Quantile-based Index
	FDR Control via Derandomized Quantile Knockoffs
	 A Generic Robust Estimation and Selection Procedure
	Determining the Number of Latent Factors

	Theoretical Results
	Simulation Studies
	Real Data Analysis
	Discussions and Extensions



