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Abstract: Joint factor models are commonly adopted to relate unobservable factors with covariates.

Traditional approaches to joint models often assume linear relationships between latent factors and

covariates, require prior knowledge of the number of latent factors, and typically fail to address

heavy-tailedness or high-dimensional covariates. To overcome these challenges, we propose a gener-

al factor-covariate model and introduce a new variable selection procedure to broaden the scope of

application and to alleviate the curse of dimensionality. The procedure is unfolded in three steps:

robust estimation of factors via Huber regression, feature screening using an index of mean squared

deviation (MSD) of conditional quantile and false discovery rate (FDR) control based on derandom-

ized quantile knockoffs. To facilitate implementation, we employ smoothing quantile regression and

apply a modified bootstrap-based eigenvalue method to determine the number of factors. Theoretical

justifications on the sure screening property as well as the control of FDR, per family error rate and k

family-wise error rate are provided. The superiority of our proposed procedure over existing methods

is demonstrated by numerical studies on simulated and real datasets.

Key words: Derandomized knockoffs, False discovery rate, High-dimensional screening, Joint models,

Smoothing quantile regression.
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1. INTRODUCTION

1. Introduction

Latent variables are prevalent across numerous scientific disciplines, including financial

engineering, sociology, psychology, and biomedical research, among others. These variables

cannot be directly measured by observed variables but are instead characterized by multiple

observable surrogates. For instance, in medical studies, traits such as depression or overall

adverse effects, are examples of latent variables. To understand the relationships between

the covariates (e.g., age, gender) and these medical traits, latent variable analysis is crucial

for uncovering the hidden patterns.

A conventional method for analyzing latent variables involves regressing the observable

surrogates that characterize corresponding traits on the covariates of interest. However, this

straightforward approach has limitations, as the observable surrogates may be imperfect

representations of latent variables. To facilitate broader applications, existing literature

has explored two-stage joint modeling approaches. In the first stage, latent variables are

characterized by multiple observed variables through a factor model. In the second stage,

a latent response-on-scalar regression is utilized to examine the potential covariates for

latent responses. Roy and Lin (2000) combined factor analysis with a linear mixed model

to evaluate the effectiveness of methadone treatment in reducing illicit drug use. Ouyang

et al. (2018) integrated factor model with a semiparametric failure time model to analyze

multivariate censored data. However, these approaches face challenges when handling high-

dimensional covariates. In a more recent study, Yu et al. (2023) introduced a joint model

combining a factor model with linear regression to investigate the relationship between
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1. INTRODUCTION

psychological well-being and ultrahigh dimensional human genome. Their method assumes

linearity between covariates and latent factors, which may not hold or be challenging to

validate in practice. To address these challenges, we propose a more general factor-covariate

model that integrates a factor model with a nonparametric model to capture nonlinear

effects of high-dimensional covariates on latent factors. This joint model is motivated by

an empirical study of Fredrickson et al. (2013), which aimed to explore the relationship

between measured genes and two types of well-being. These well-beings are unobserved

latent factors that must be derived from data collected via a questionnaire survey. Given

that genes may have nonlinear effects on the well-being, a joint analysis that integrates

factor model for extracting latent responses and a nonparametric model for examining the

relationship between genes and these latent factors is crucial for this investigation.

Several critical issues need to be addressed within the joint factor-covariate model.

The first concern is the estimation of latent factors. While methods based on least squares

regression or EM algorithms have been proposed (Bai, 2003; Desai and Storey, 2012), these

methods assume joint normality of factors and noise, a condition rarely met in practice. The

second issue arises from the potential ultrahigh dimensionality of covariates, leading to the

curse of dimensionality for nonparametric model. To address this, additional assumptions

on the regression function or covariates are required, with the sparsity assumption being a

common strategy, which posits that only a small number of covariates are relevant to the

latent responses. Our objective here is to propose novel methods to identify the covariates

that significantly contribute to the multivariate latent responses. The third issue involves
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1. INTRODUCTION

controlling the number of false discoveries, mathematically formulated as controlling the

false discovery rate (FDR), which is crucial for reliable feature selection. Existing screening

methods (He et al., 2013) tend to sacrifice FDR control for the sure screening property by

choosing a conservative threshold, resulting in an inflated model size. Additionally, most

current joint modeling techniques assume prior knowledge of the number of latent factors.

Hence, it is essential to develop robust methods for estimation, screening, and selection

that handle multiple latent factors and heterogeneous effects simultaneously.

In response to these considerations, this paper introduces a quantile-based mean squared

deviation (MSD) index and a MSD-Select procedure tailored for factor-covariate model. We

gradually unveil the whole procedure in three steps. First, we apply a Huber regression to

estimate latent factors robustly. Next, building on MSD index, we develop a novel quantile-

adaptive screening procedure for multivariate latent factors, allowing the active covariates

to vary across quantiles. Following the screening step, a quantile-adaptive derandomized

knockoffs procedure is introduced to further control FDR while maintaining high power at

the targeted quantile levels. Existing FDR control methods generally fall into two cate-

gories: p-value based and knockoffs based methods. The classical p-value based approach

(Benjamini and Hochberg, 1995) requires exact p-values for FDR control, in contrast, recent

knockoffs algorithms use synthetic knockoff features to control FDR (Barber and Candès,

2015; Candès et al., 2018; Liu et al., 2022). Relatively little work has focused on FDR

control in a quantile-adaptive manner. To bridge this gap, we extend the knockoffs to the

quantile framework, ensuring a parsimonious model with guaranteed FDR control.
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1. INTRODUCTION

The primary contributions of this paper are as follows. First, we propose a general

factor-covariate model that uncovers the hidden relationship between observed variables

and covariates. We further introduce a bootstrap-based eigenvalue criterion to determine

the number of latent factors, which is demonstrated to be theoretically consistent and

empirically effective. Second, we develop a new MSD index to quantify the association

between two random vectors from a quantile perspective. Within quantile framework, Li

et al. (2015) proposed a quantile correlation to measure the linear quantile relationship

between a univariate response Y and covariates X. Shao and Zhang (2014) extended this

concept to multivariate X by introducing a martingale difference divergence, assuming that

X has finite second-order moments. Liu et al. (2022) further introduced a projection quan-

tile correlation, which does not require the moment condition. The MSD index improves

upon these measures by quantifying the quantile dependence between a multivariate Y and

a multivariate X, without the need for moment conditions. The MSD index has several ap-

pealing properties: it equals zero if and only if the quantile independence holds and is robust

to heavy-tailed data and outliers since it is invariant under monotone variable transforma-

tions. Additionally, it has a low computational cost of O(n2), compared with the O(n3)

of the projection quantile correlation. The index is estimated using smoothing quantile

regression techniques (Fernandes et al., 2021), effectively addressing challenges such as the

nondifferentiability of the quantile loss function and the curse of dimensionality. We also

derive useful exponential bounds to establish the sure screening property of the MSD index.

Third, we formulate a quantile-adaptive procedure to control FDR, leveraging the concept
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2. MSD-SELECT PROCEDURE

of derandomized knockoffs (Ren et al., 2023). We prove that the proposed procedure can

simultaneously control the FDR, the per family error rate (PFER), and the k family-wise

error rate (k-FWER). Simulation studies demonstrate that this method effectively controls

the FDR more tightly while maintaining high power in practical scenarios.

The rest of the paper is organized as follows. In Section 2, we introduce the factor-

covariate joint model and develop a quantile-adaptive MSD-Select procedure. A bootstrap-

based eigenvalue method for determining the number of latent factors is also proposed.

Section 3 establishes the theoretical guarantees, including sure screening properties and

control of FDR, PFER, and k-FWER. The superiority of our new procedure over existing

methods is demonstrated through numerical studies on both simulated and real datasets

in Sections 4 and 5. Section 6 concludes with some discussions. All technical proofs and

additional numerical studies are provided in the Supplementary Materials.

2. MSD-Select Procedure

2.1 General Factor-Covariate Model

To establish the functional associations between observed variables and potential covariates,

we develop the factor-covariate model, which comprises two major components: a factor

model and a nonparametric model, i.e.,
Z = µ+ Bf + ε,

f = m(X1, . . . , Xp) + ξ,

(2.1)
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2. MSD-SELECT PROCEDURE

where Z = (Z1, . . . , Zd)
T is a d × 1 vector of observable variables with mean vector µ =

(µ1, . . . , µd)
T and covariance matrix Σ = (σjk)1≤j,k≤d. The dependence structure of Z is

captured by the K × 1 latent factors f = (f1, . . . , fK)T with zero mean. B = (b1, . . . , bd)
T

is a d ×K loading matrix and ε = (ε1, . . . , εd)
T is a d × 1 vector of idiosyncratic random

errors, independent of f . Additionally, X = (X1, . . . , Xp)
T is a p × 1 vector of covariates,

m(·) = (m1(·), . . . ,mK(·))T with mk(·) : Rp → R is the regression function corresponding

to the kth latent factor and ξ = (ξ1, . . . , ξK)T is a K × 1 vector of random errors.

Let Z1, . . . ,Zn be n independent and identically distributed (iid) observations, then

Zi = µ + Bfi + εi, for i = 1, . . . , n. Since only Zi is observable, B and fi cannot be

estimated separately as they are both unobserved. For any K ×K nonsingular matrix D,

one can choose B̃ = BD and f̃i = D−1fi such that B̃f̃i = Bfi. To make both B and fi

identifiable, we follow Fan et al. (2019) and impose the following conditions

Σf = IK and BTB is diagonal, (2.2)

where Σf is the covariance matrix of f and IK is a K ×K identity matrix. Other identifi-

ability conditions can be found in Bai and Li (2012), Fan et al. (2013). Let Cov(ε) = Σε =

(σε,ij)1≤i,j≤d, under conditions (2.2), the covariance matrix of Z is Σ = BBT + Σε.

Remark 1. In model (2.1), the number of latent factors K is unknown and must be learned

from data. Methods for determining the number of latent factors are generally based on the

eigenvalues of covariance or correlation matrix of the observable variables. Following Bai

and Ng (2002), Fan et al. (2022), we define K = rank(B). Further details on the selection

of K will be provided in Section 2.5.
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2. MSD-SELECT PROCEDURE

In model (2.1), both d and p are allowed to diverge with the sample size n, and ξ may

exhibit skewness or heavy tails. When p � n, directly fitting the factor-covariate model

would be problematic due to the curse of dimensionality, leading to the simultaneous chal-

lenges to computational expediency, statistical accuracy, and algorithmic stability. These

concerns, coupled with the heterogeneity nature of ultrahigh dimensional data, motivate

the development of a robust screening procedure for the factor-covariate model.

2.2 Screening with a Conditional Quantile-based Index

The goal of this section is to identify a sparse set of ultrahigh dimensional covariates X

that are relevant for modeling the conditional quantile of multiple latent factors f . We

advocate a quantile-adaptive screening procedure that allows the sparse set to vary across

quantiles. Note that the multivariate conditional quantile function is not a trivial extension

of its univariate counterpart, as the notion of multivariate quantile function is not uniquely

defined. To address, given a quantile τ ∈ (0, 1), we define the set of active variables as

Aτ =
K⋃
k=1

{
1 ≤ j ≤ p : Qτ (fk|X) functionally depends on Xj

}
, (2.3)

where Aτ,k :=
{

1 ≤ j ≤ p : Qτ (fk|X) functionally depends on Xj

}
is the active set for

the kth factor fk, and Qτ (fk|X) = inf{y ∈ R : P (fk ≤ y|X) ≥ τ} is the τth conditional

quantile of fk given X. We use Acτ and Acτ,k to denote the index sets of inactive covariates

for f and fk, respectively. Denote by |A| the cardinality of A, then |Aτ | ≤
∑K

k=1 |Aτ,k|.

Throughout this paper, |Aτ,k| is assumed to be smaller than the sample size.

Remark 2. A permutation matrix P and its inverse can be substituted in the factor model
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2. MSD-SELECT PROCEDURE

to yield Z = µ+ BP−1Pf + ε. The elements of Pf correspond to original factors, but in

another order. This complicates the task of accurately identifying Aτ,k, as f is identified

up to an invertible matrix. Hence, our focus is mainly on recovering Aτ rather than Aτ,k.

Denote by Ffk(·) and Qτ (fk) the distribution function and unconditional quantile of

fk. fk and Xj are independent if and only if Qτ (fk|Xj) = Qτ (fk) holds for all τ ∈ (0, 1).

Similarly, given τ ∈ (0, 1), if Ffk{Qτ (fk|xj)} = τ holds for all xj ∈ RXj , i.e., Qτ (fk|Xj) =

Qτ (fk), fk is τ -quantile independent of Xj, and Xj ∈ Acτ,k. This motivates us to develop a

mean squared deviation (MSD) index, defined by

MSDτ (fk|Xj) = EXj
{
Ffk
[
Qτ (fk|Xj)

]
− τ
}2

(2.4)

to measure the τ -quantile dependence between fk and Xj. Proposition 1 states that the

MSD index possesses several appealing properties in quantifying quantile independence.

Proposition 1. Let X ∈ RX and Y ∈ RY be two continuous random variables, then

(i) MSDτ (Y |X) = EX{FY (Qτ (Y |X))− FY (Qτ (Y ))}2 =
∫
{FY (Qτ (Y |x))− τ}2dF (x).

(ii) It holds that MSDτ (Y |X) = 0 for all τ ∈ (0, 1) if and only if X and Y are independent.

(iii) For a given τ ∈ (0, 1), 0 ≤ MSDτ (Y |X) ≤ max{τ 2, (1− τ)2}, and MSDτ (Y |X) = 0 if

and only if Qτ (Y |X) = Qτ (Y ) almost surely.

(iv) MSDτ (Y |X) is invariant under monotone variable transformation, that is, for a, b ∈ R

(b 6= 0) and any strictly monotone transformation g(·), MSDτ (Y |X) = MSDτ{g(Y )|a+bX}

if g(·) is nondecreasing, and MSDτ (Y |X) = MSD1−τ{g(Y )|a+bX} if g(·) is nonincreasing.

Proof of Proposition 1 is provided in the Supplementary Materials. Result (i) shows
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2. MSD-SELECT PROCEDURE

that the MSD index, resembling a mean squared error, is fully nonparametric and model-

free. This together with result (ii) motivates us to utilize this index to screen out inactive

covariates at the interested quantiles. In general, MSDτ (Y |X) 6= MSDτ (X|Y ). But when

X and Y are jointly normal, MSDτ (X|Y ) = MSDτ (Y |X). Result (iv) indicates that the

MSD index is invariant under strictly increasing monotone variable transformations, where-

as such property is not shared by most of the screening indices (e.g., Pearson correlation

and distance correlation). This invariance property indicates that the MSD index is robust

against model misspecification. Proposition S1 of the Supplementary Materials further elu-

cidates specific properties of the MSD index under bivariate Gaussian copula distribution.

Intuitively, based on (2.3), we can employ

MSDτ (f |Xj) := max
1≤k≤K

MSDτ (fk|Xj) (2.5)

to measure the importance of Xj for f . To perform feature screening, we use the sample

counterpart, M̂SDτ (f |Xj), defined in Section 2.4. Hence, the set of active features is

obtained as

Âτ =
{

1 ≤ j ≤ p : M̂SDτ (f |Xj) ≥ η
}
, (2.6)

where η ≥ 0 is a prespecified threshold. We refer to this procedure as MSD-based screening

(MSDS). With a proper choice of η, we show that MSDS enjoys sure screening property.

2.3 FDR Control via Derandomized Quantile Knockoffs

Next, we introduce how to enhance the performance of MSDS to achieve FDR control while

maintaining a high power using knockoffs procedure. In practice, all active covariates can
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2. MSD-SELECT PROCEDURE

be included with high probability by employing a conservative threshold. However, there

is no guarantee of the accuracy of Âτ with no falsely selected covariates. This section

focuses on identifying Âτ with a theoretically guaranteed error rate. To be more specific,

we introduce a quantile knockoffs approach to select active variables while controlling FDRτ

at a prespecified target level α ∈ (0, 1), where

FDRτ := E(FDPτ ) and FDPτ :=
|Âτ ∩ Acτ |
|Âτ | ∨ 1

.

The FDPτ represents the false discovery proportion at a given quantile τ . Denote by

V (τ) = |Âτ ∩ Acτ | the number of false discoveries with respect to τ , then the per family

error rate (PFER) is the expected number of V (τ), that is, PFERτ = E[V (τ)]. We refer to

Barber and Candès (2015) and Candès et al. (2018) for knockoffs framework. More details

of the knockoffs can also be found in the Supplementary Materials. Given a τ ∈ (0, 1), we

propose to measure the dependence between Xj and f by the following knockoff statistic

Wj,τ := MSDτ (f |Xj)−MSDτ (f |X̃j), j = 1, . . . , p, (2.7)

where X̃j is a knockoff copy of Xj, MSDτ (f |Xj) and MSDτ (f |X̃j) are defined in 2.5. The

empirical counterpart of the knockoff statistic (2.7) is

Ŵj,τ := M̂SDτ (f̂ |Xj)− M̂SDτ (f̂ |X̃j), j = 1, . . . , p. (2.8)

In the Supplementary Materials, we introduce the MSD Knockoffs (MSDK) procedure,

which serves as the foundation for the DMSDK procedure outlined below, and demonstrate

in Theorem S1 that the MSDK procedure effectively controls the FDR.
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2. MSD-SELECT PROCEDURE

Derandomized MSD knockoffs (DMSDK) procedure. The MSDK procedure based on

the model-X knockoffs is a randomized procedure. To yield more stable results and enhance

statistical power, we are inspired by the derandomized idea (Ren et al., 2023) and intro-

duce a derandomized quantile knockoffs that aggregate the results across multiple quantile

knockoffs realizations. By using this method, the FDR along with the PFER and k-FWER

are verified to be controlled, as demonstrated in Theorem 3 of Section 3. Details of the

DMSDK procedure are summarized in Algorithm 1.

Algorithm 1: Derandomized MSD Knockoffs (DMSDK) procedure

Input : Matrix of covariates X ∈ Rn×p; latent factors f ∈ Rn×K ; number of realizations T ;
selection threshold η0; integer v ≥ 1; a quantile level τ ∈ (0, 1).

1 for t = 1, . . . T do

2 i. Generate a knockoff copy X̃
(t)

.

3 ii. Run the MSDK base procedure with X̃
(t)

and obtain Ŵ
(t)

τ = (Ŵ
(t)
1,τ , . . . , Ŵ

(t)
p,τ )T .

4 iii. Rank the features by magnitudes of Ŵ
(t)

τ , that is, |Ŵ (t)
r1,τ | ≥ · · · ≥ |Ŵ

(t)
rp,τ | for some

permutation r1, . . . , rp.

5 iv. Construct a stopping criterion: T (t)
τ (v) = min

{
1 ≤ k ≤ p :

∑k
j=1 I{Ŵ

(t)
rj ,τ < 0} ≥ v

}
, and

obtain the selection set Ŝ
(t)
τ (v) =

{
rj : j < T (t)

τ (v), Ŵrj,τ > 0
}
.

6 end

7 Calculate the selection probability Πj,τ (v) = 1
T

∑T
t=1 I{j ∈ Ŝ

(t)
τ (v)}.

Output: selection set Âτ (v, η0) = {1 ≤ j ≤ p : Πj,τ (v) ≥ η0}.

In Algorithm 1, η0 controls how many times a variable needs to be selected to appear in

the final selection set. The larger η0 is, the fewer variables enter the selection set. Following

Ren et al. (2023), we set η0 = 0.5 throughout this paper. The parameter v is chosen to

control the PFER, and the PFER control holds regardless of the choice of T .

2.4 A Generic Robust Estimation and Selection Procedure

We now propose a MSD based selection procedure named MSD-Select under the factor-

covariate model which includes the following steps: (i) Robust estimation of latent factors;
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(ii) Feature screening via MSD index; (iii) Quantile-adaptive FDR control (including PFER

and k-FWER control) via DMSDK method. Details are summarized in Algorithm 2.

Algorithm 2: MSD-Select Procedure

Input : Observed data Zi = (Zi1, . . . , Zid)
T ∈ Rd; covariates Xi = (Xi1, . . . , Xip)

T ∈ Rp for
i = 1, . . . , n; integers K ≥ 1,T ≥ 1, v ≥ 1, κn < n/2; bandwidth h > 0; a prespecified
level α ∈ (0, 1); selection threshold η0 > 0; a quantile level τ .

Procedure:

Step 1 (Estimation). Obtain an estimator µ̂ and Σ̂ of µ and Σ, for example, the sample mean and

covariance matrix or their robust versions. Let λ̂1 ≥ λ̂2 ≥ · · · λ̂K be the top K eigenvalues of Σ̂,

and v̂1, v̂2, . . . , v̂K be their corresponding eigenvectors. Define B̂ = (λ̃
1/2
1 v̂1, . . . , λ̃

1/2
K v̂K) ∈ Rd×K ,

where λ̃k = max(λ̂k, 0). Let b̂1, . . . , b̂d ∈ RK be the d rows of B̂, and $ > 0 be the robustification
parameter depends on both n and d, obtain

f̂i ∈ arg min
f∈RK

d∑
j=1

ψ$(Zij − µ̂j − b̂Tj f).

Step 2 (Screening). For j = 1, . . . , p, construct the sample MSD statistic by using convolution type

kernel smooth quantile regression approach, δ̂τj := M̂SDτ (f̂ |Xj). Select the top κn covariates, i.e.,

Âτ =
{
j : δ̂τj is among the κnth largest

}
.

Step 3 (Selection). Construct second-order knockoff features X̃Âτ for XÂτ . For all j ∈ Âτ , compute

Ŵj,τ = M̂SDτ (f̂ |XÂτ ,j)− M̂SDτ (f̂ |X̃Âτ ,j). Run DMSDK procedure proposed in Algorithm 1.

Calculate the stopping criterion, T (t)
τ (v) = min

{
1 ≤ k ≤ κn :

∑k
j=1 I{Ŵ

(t)
rj ,τ < 0} ≥ v

}
, and

obtain the final selection set Âτ (v, η0) = {j ∈ Âτ : Πj,τ (v) ≥ η0} based on the selection probability
Πj,τ (v) given in Algorithm 1.

Output : f̂ = (f̂1, . . . , f̂K)T , B̂ ∈ Rd×K and final selection set Âτ (v, η0).

Remark 3. In Algorithm 2, a fixed number of factors, K, must be specified in advance.

Since the true value of K is typically unknown, Section 2.5 will propose a novel and con-

sistent approach for determining an appropriate K, which can then be used as input for

Algorithm 2. Other reliable methods for determining K are also recommended.

In step 1, we borrow the idea of Fan et al. (2019) to robustly estimate µ = (µj)1≤j≤d and

Σ = (σjk)1≤j,k≤d of Z by using a Huber loss, with µj = E(Xj) and σjk = E(XjXk)− µjµk.

The reason why we take Huber loss largely lies in the good property of Huber estimator
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for heavy-tailed data under mild moment conditions. It is shown that a sub-Gaussian

type deviation bound is allowed by employing Huber estimator with a properly diverging

parameter (Fan et al., 2019). The Huber loss ψ$(·) (Huber, 1964) is defined as

ψ$(u) =


u2/2, if |u| ≤ $,

$|u| −$2/2, if |u| > $,

(2.9)

where $ > 0 is a robustification parameter to tradeoff between bias and robustness. Then

µ̂j = arg min
θ∈R

n∑
i=1

ψ$j(Zij − θ), (2.10)

σ̂jk = θ̂jk − µ̂jµ̂k with θ̂jk = arg min
θ∈R

n∑
i=1

ψ$jk(ZijZik − θ), (2.11)

where $j > 0 and $jk > 0 are robustification parameters. Equations (2.10) and (2.11)

yield the robust mean estimator µ̂ and covariance estimator Σ̂, respectively.

In step 2, denote by δτk,j = MSDτ (fk|Xj) and δ̂τk,j = M̂SDτ (f̂k|Xj) the population

and sample MSD indices between the jth covariate and the kth latent factor, respectively;

denote by δτj = MSDτ (f |Xj) and δ̂τj = M̂SDτ (f̂ |Xj) the population and sample MSD

indices between the jth covariate and the multiple latent factors, respectively. By definition

(2.5), δτj = max1≤k≤K δ
τ
k,j and δ̂τj = max1≤k≤K δ̂

τ
k,j. To obtain the empirical δ̂τj,k, we use B-

spline approximation and employ the convolution type kernel smoothing quantile regression

to further reduce the variability of standard quantile regression estimators (Fernandes et al.,

2021). More details can be found in Section $5 of the Supplementary Materials. In practice,

we often rank all the covariates according to δ̂τj and keep the top bn/ log(n)c covariates,

i.e., κn = bn/ log(n)c, where bac denotes the integer part of a.
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2.5 Determining the Number of Latent Factors

This section introduces a method for determining K, a critical step for both Algorithm 2

and for estimating the loading matrix and factors in model (2.1).

The number K can be generally estimated by eigenvalue based criteria (Onatski,

2010; Ahn and Horenstein, 2013; Fan et al., 2022), information criteria (Bai and Ng,

2002; Bai et al., 2018), cross validation (Owen and Wang, 2016) and parallel analysis

(Dobriban and Owen, 2019). Let λ̂j denote the jth largest eigenvalue of the sample co-

variance matrix. Onatski (2009) proposed to estimate the number of factors by K̂ON =

arg maxrmin<i≤rmax(λ̂i−λ̂i+1)/(λ̂i+1−λ̂i+2), where rmin and rmax are the predetermined lower

and upper bounds of K. Wang (2012) estimated the number of factors by the ratios of

two adjacent eigenvalues, K̂ER = arg max1≤i≤rmax λ̂i/λ̂i+1. Ahn and Horenstein (2013) con-

sidered using K̂GR = arg max1≤i≤rmax log(Vi−1/Vi)/ log(Vi/Vi+1), where Vi =
∑d

j=i+1 λ̂j. A

drawback of the above covariance-based methods is that they do not take into account the

scales of the observed variables, thus can be inconsistent. Another option is to follow the

idea of Fan et al. (2022), who used sample correlation matrix. Let R be the d× d dimen-

sional correlation matrix of Σ, that is, R = [diag(Σ)]−1/2Σ[diag(Σ)]−1/2, where diag(Σ)

is the diagonal matrix obtained by replacing the off-diagonal components of Σ with zeros.

Then the estimator of K is

K̂ACT = max
{
j : λ̂Cj (R) > 1 +

√
d/(n− 1)

}
, (2.12)

where λ̂Cj (R) = −1/γj(λ̂j(R)) is a bias corrected estimator of λj(R) with γj(z) = −(1 −
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(d− j)/(n−1))z−1 + (n−1)−1
[∑d

l=j+1(λ̂l(R)− z)−1 + ((3λ̂j(R) + λ̂j+1(R))/4− z)−1
]
. The

idea behind equation (2.12) is that K ≥ max{1 ≤ j ≤ d : λj(R) > 1}, i.e., the number of

eigenvalues greater than 1 should not exceed the number of factors. However, this approach

requires the signal of factors to be strong. For those observable variables with weak factors,

the estimated λ̂Cj could be quite smaller than 1 and be unstable, making the estimated K̂

be much smaller than K. To detect weak factors and yield more stable results, we propose

in Algorithm 3 a modified bootstrap-based method for choosing K.

Algorithm 3: A bootstrap-based eigenvalue method to determine K

Input : Observable matrix Z ∈ Rn×d; a diagonal weight matrix V ∈ Rn×n; number of bootstrap

samples G.

1 for g = 1, . . . G do

2 i. Let vi’s be diagonal elements of V, Z̄ = n−1
∑n
i=1 Zi and Z∗ be the centered sample matrix.

Obtain the sample covariance matrix Σ̂g
b = n−1

∑n
i=1 vi(Zi − Z̄)(Zi − Z̄)T = n−1Z∗TVZ∗ and

correlation matrix R̂
g

b , respectively.

3 ii. Calculate the bias corrected eigenvalues λ̂Cj (R̂
g

b) for j = 1, . . . , d.

4 iii. Obtain K̂g = max
{
j : λ̂Cj (R̂

g

b) > 1 +
√
d/(n− 1)

}
.

5 end

Output: K̂b = Mode{K̂g : g = 1, . . . , G}, namely, the mode of {K̂g}Gg=1.

In Algorithm 3, the weight matrix V can be chosen by drawing each diagonal element

independently from exponential distribution exp(1), this ensures Σ̂b positive semidefinite.

Other distribution families can also be considered for constructing V, while we do not

specify here. The number of factors K is approximated as the mode of the resulting set.

Alternatively, one can choose the average or the median of the set {K̂g : g = 1, . . . , G}.

Under additional assumptions that E(ε) = 0 and cov(ε) = Ψ > 0p×p, where Ψ is

diagonal or more generally satisfies maxi≤d
∑

j≤d |σε,ij|
q = o(d) for some q ∈ [0, 1], the pro-

posed method provides a reliable estimator of the number of factors. Specifically, Theorem

1 establishes that the estimator K̂b obtained from Algorithm 3 consistently estimates K
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under moderate regularity conditions when K is fixed. Theorem S2 of the Supplementary

Materials further extends this result to the case where K diverges as d→∞.

Theorem 1. For the factor model (2.1) satisfying Conditions (i)-(v) in $7.2 of the Sup-

plementary Materials, when λK(R) > 1 +
√
ω with ω ∈ (0,∞), we have P

(
K̂b = K

)
→ 1,

as n, d→∞.

3. Theoretical Results

To fully understand the proposed procedures, we successively establish the theoretical re-

sults through several steps, starting with an oracle procedure that assumes the loading

matrix B is known and the factors {fi}ni=1 are observable, which serves as a heuristic de-

vice. Second, we keep B known but treat f as latent, and study the estimator f̂(B). We

then analyze the difference between the true B and its estimate B̂, which leads to the

theoretical properties of f̂(B̂) when both f and B are unknown. For brevity, this section

presents only the results based on f̂(B̂), while additional results are provided in the Supple-

mentary Materials. The screening statistics constructed from f̂(B̂) are denoted by δ̂k,j and

δ̂j, with the corresponding selected subsets Âτ,k and Âτ . Further denote [K] = {1, . . . , K}.

To facilitate technical derivations, we first impose the following regularity conditions.

(C1) (Condition on the conditional quantile) For k ∈ [K], the conditional quantile

function Qτ (fk|Xj) belongs to Hr, where Hr is the class of functions defined on [0, 1] whose

mth derivative satisfies a Lipschitz condition of order v: |h(m)
kj (s) − h

(m)
kj (t)| ≤ C|s − t|v,

for some positive constant C, s, t ∈ [0, 1], where m is a nonnegative integer and v ∈ (0, 1]
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satisfies r = m+ v > 0.5.

(C2) (Condition on latent factors) The conditional density gfk|Xj(t) is bounded away

from 0 and ∞ on [Qτ (fk|Xj)− ξk, Qτ (fk|Xj) + ξk], for some ξk > 0, uniformly in Xj. The

marginal density gfk(t) is bounded away from 0 and ∞, for k = 1, . . . , K.

(C3) (Condition on marginal covariates) The marginal density function gj of Xj, for

j ∈ [p], are uniformly bounded away from 0 and ∞.

(C4) (Condition on signal size) minj∈Aτ,k δk,j ≥ 2c1n
−κ for some 0 ≤ κ < 1/2 and some

positive constant c1.

(C5) (Condition on the basis function) The number of basis functions sn satisfies

s−rn nκ = o(1) and snn
2κ−1 = o(1) as n→∞.

(C6) (Condition on the kernel function) The kernel function K(·) is integrable, twice

differentiable with bounded first and second derivatives, satisfying
∫
K(u)du = 1 and 0 <∫∞

0
K(u){1−K(u)}du <∞.

(C7) (Condition on the bandwidth) The bandwidth 0 < h < 1, and h = O
(
(sn/n)1/4

)
.

(C8) (Condition on the idiosyncratic error ε and loading matrix B) The idiosyncratic

errors ε1, . . . , εd are mutually independent, and there exist constants Cε, cε > 0 such that

cε ≤ min1≤j≤d σ
1/2
ε,jj ≤ max1≤j≤d

(
Eε4

j

)1/4 ≤ Cε. There exist constants cl, cu > 0 such that

λmin(d−1BTB) ≥ cl and ‖B‖max ≤ cu.

(C9) (Condition on dimensionality) (n, d) satisfies that n4κ−1 log n = o(d) as n, d→∞

for some 0 ≤ κ < 1/2.

(C10) (Pervasiveness) There exist positive constants cB1, cB2 and cB3 such that cB1d ≤
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λ̄k − λ̄k+1 ≤ cB2d for k = 1, . . . , K with λ̄K+1 := 0, and ‖Σε‖ ≤ cB3 < λ̄K , where λ̄k is the

top kth eigenvalues of BBT.

Condition (C1) assumes that the conditional quantile function Qτ (fk|Xj) belongs to a

class of smooth functions. This condition is standard for nonparametric spline approxima-

tion. Condition (C2) is a standard condition on random errors in the theory for quantile

regression. It relaxes the usual sub-Gaussian assumptions that are needed in literature on

high dimensional inference. Condition (C3) is similar to Condition (B) of Fan et al. (2011)

and Condition (C4) of He et al. (2013). Note that Condition (C3) is not restrictive when

Xj is supported on a bounded interval, say [0,1]. When Xj has an unbounded support

(e.g., normal), we can view Xj as coming from a truncated distribution. Specifically, if

Xj contains outliers or follows a heavy-tailed distribution, we can improve performance by

removing the outliers or transforming Xj to a uniform distribution on [0, 1]. Condition (C4)

assumes that the active covariates at quantile level τ have strong enough marginal signals,

a smaller κ indicates a stronger marginal signal. This condition is crucial as it ensures

marginal utilities carry information about the covariates in the active set. Condition (C5)

describes how fast the number of basis functions is allowed to grow with the sample size.

Conditions (C6) and (C7) guarantee that the smoothing bias can be ignored when sample

size is large enough. Condition (C8) is a standard assumption in factor model. Condition

(C9) enables the factor-covariate model to be high-dimensional with respect to both d and

p. Condition (C10) is required for high-dimensional spiked covariance model with the first

several eigenvalues well separated and significantly larger than the rest.
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Theorem 2. Under Conditions (C1)-(C10), for a given τ ∈ (0, 1), if n−1 log(nd) → 0,

K/d→ 0, and $ �
√
d/ log n as n, d→∞, then

(i) for any C > 0, there exist positive constants c2 and c3 such that for n sufficiently large

P
(

max
1≤j≤p

|δ̂τj − δτj | ≥ Cn−κ
)
≤ Kp

{
exp(−c2n

1−4κ + log n) + exp(−c3s
−2
n n1−2κ + log n)

}
.

(ii) (Sure screening property) If κ < 1/4 and s2
nn

2κ−1 = o(1), take the threshold ηn = c∗n−κ

for some constant c∗, then for n sufficiently large

P (Aτ ⊂ Âτ ) ≥ 1− |Aτ |
{

exp(−c2n
1−4κ + log n) + exp(−c3s

−2
n n1−2κ + log n)

}
,

where |Aτ | is the cardinality of Aτ . Further assuming that log n = o(n1−4κ + s−2
n n1−2κ), we

have P (Aτ ⊂ Âτ )→ 1 as n→∞.

(iii) (Rank consistency property) Replace Condition (C4) with minj∈Aτ,k δk,j −maxl∈Acτ,k δk,l ≥

2c1n
−κ, for some 0 ≤ κ < 1/2 and some positive constant c1, we have

P

(
min
j∈Aτ

δ̂τj −max
j∈Acτ

δ̂τj > 0

)
> 1−Kp

{
exp(−c4n

1−4κ + log n) + exp(−c5s
−2
n n1−2κ + log n)

}
,

where c4 and c5 are some positive constants. If log p = o(n1−4κ + s−2
n n1−2κ) and log n =

o(n1−4κ + s−2
n n1−2κ) with 0 < κ < 1/4 and s2

nn
2κ−1 = o(1), then

lim inf
n→∞

{
min
j∈Aτ

δ̂τj −max
j∈Acτ

δ̂τj

}
> 0, a.s.

The sure screening and rank consistency properties based on the oracle procedure, where

the true factors f and loading matrix B are assumed known, are straightforward to derive

and are provided in Theorems S3-S4 of the Supplementary Materials. Building upon these
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oracle results, together with the consistency of f̂(B) for f , the consistency of B̂ for B, and

the consistency of f̂(B̂) for f (as shown in Lemma S14 and Lemmas S19-S20), we derive

Theorem 2, which establishes the sure screening and rank consistency properties when

both B and f are unknown. Specifically, Theorem 2 (i) suggests that we can handle the

dimensionality log(np) = o(n1−4κ + s−2
n n1−2κ). This dimensionality depends on the number

of basis functions sn and the strength of the marginal signals n−κ. If we take sn = n1/(2r+1)

(the optimal rate for spline approximation), then for κ < min(1/4, (r − 1/2)/(2r + 1)), we

can handle ultrahigh dimensionality, that is, p can grow at the exponential rate. In Theorem

2 (ii), when we take κ < 1/4 and s2
nn

2κ−1 = o(1), the condition log n = o(n1−4κ + s−2
n n1−2κ)

typically holds, which guarantees that P (Aτ ⊂ Âτ ) → 1 as n → ∞, that is, all active

covariates can be selected with high probability. The rank consistency result in Theorem 2

(iii) strengthens the sure screening property in (ii) by imposing a stronger assumption on

the signal gap between active and inactive covariates, i.e, minj∈Aτ,k δk,j −maxl∈Acτ,k δk,l ≥

2c1n
−κ. Provided that log p = o(n1−4κ + s−2

n n1−2κ) and log n = o(n1−4κ + s−2
n n1−2κ), the

active covariates are always ranked ahead of inactive ones with high probability.

Remark 4. Here we make some remarks on the estimation of f̂ and B̂, along with

their convergence rates. (i) Existing approaches for estimating the factor matrix F =

(f1, . . . ,fn)T and the loading matrix B typically assume that the errors in (2.1) are i.i.d.

sub-Gaussian. Under this assumption, F and B can be obtained via constrained least squares

(Bai, 2003; Fan et al., 2013). The resulting estimators F̃ and B̃ are given by B̃ = n−1F̃TX,

where the columns of F̃/
√
n are the eigenvectors corresponding to the largest K eigenval-

Statistica Sinica: Newly accepted Paper 



3. THEORETICAL RESULTS

ues of XXT . Fan et al. (2013) showed that F̃ consistently estimates F up to a rotation.

Under conditions such as
√
d log d = o(n), the optimal rate for f̃i is 1/

√
d (Bai, 2003;

Fan et al., 2013; Li et al., 2018). By comparison, our estimator f̂i(B) achieves the rate√
log n/d with a properly chosen robustification parameter $. Although slightly slower, this

rate reflects the tradeoff for robustness, as our method is designed to handle heavy-tailed

errors by relaxing the sub-Gaussian assumption and requiring only finite fourth moments

(E(ε4) < ∞). (ii) Our robust procedure begins with constructing a covariance estimator

Σ̂, which yields robust loadings b̂j’s. Based on B̂ = (b̂1, . . . , b̂d)
T , f̂i is estimated robust-

ly via Huber regression, denoted as f̂i(B̂). Under the condition log d = o(n), traditional

estimators b̃j’s converge at the rate of Op(
√

log d/n), whereas our estimator achieves the

rate of Op(
√

log(nd)/n+ 1/
√
d), as shown in Lemma S19 of the Supplementary Materials.

This difference stems from the employment of the adaptive Huber covariance estimator (Fan

et al., 2019), which requires weaker assumptions than the sample covariance and is broadly

applicable to heavy-tailed settings. (iii) The estimation error of f̂i(B̂) can be decomposed

as ‖f̂i(B̂) − fi‖2 ≤ ‖f̂i(B̂) − f̂i(B)‖2 + ‖f̂i(B) − fi‖2. This implies that the convergence

rate of f̂i(B̂) depends jointly on the estimation accuracy of f̂i(B) and B̂. Improvements in

either component lead to faster convergence of f̂i(B̂).

Theorem 3 further establishes that the proposed DMSDK procedure controls both the

PFER and the k-FWER.

Theorem 3. (PFER and k-FWER control) Consider the DMSDK procedure (Algorithm

1) with a base procedure satisfying PFERτ ≤ v, under the condition P (Πj,τ (v) ≥ η0) ≤
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γE(Πj,τ (v)) for every j ∈ Acτ , we have

(i) E[V (τ)] ≤ γv.

(ii) Further assuming that P (V (τ) ≥ k) ≤ `E[V (τ)]/k for each k ≥ 1, we have

P (V (τ) > k) ≤ `γv/k.

The base procedure we adopt here is the v-quantile knockoffs, as specified in the Sup-

plementary Materials. From Theorem 3 (i), the upper bound for PFERτ is relatively

conservative. Take η0 = 0.5, we have E[V (τ)] ≤ 2v, implying γ = 2. This bound can be

improved by introducing additional assumptions. Specifically, if the knockoff variables are

conditionally iid, the number of selections TΠj,τ follows a binomial distribution conditional

on X and f (by the law of larger numbers), that is, TΠj,τ |X,f ∼ Bin(T, P (j ∈ Ŝ(1)
τ |X,f)),

where Ŝ
(1)
τ is defined in Algorithm 1. Consequently, the PFERτ is calculated directly via

E[V (τ)] = E

[ ∑
j∈Acτ

P (j ∈ Âτ (v, η0)|X,f)

]
= E

[ ∑
j∈Acτ

P (TΠj,τ ≥ Tη0|X,f)

]
.

Take T = 3 and let pj = P (j ∈ Ŝ(1)
τ |X,f), then E[V (τ)] ≤ 1.125v. We refer to Ren et al.

(2023) for more details on choosing parameters v, k, `, and γ to help control the k-FWER.

4. Simulation Studies

In this section, we conduct simulation studies to investigate the performance of the proposed

procedures, including MSDS for feature screening, and MSDK and DMSDK for FDR con-

trol. We first evaluate the sure screening property of MSDS and compare it with six other

popular screening procedures in literature: quantile-adaptive sure independence screening
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(QaSIS, He et al., 2013), nonparametric independence screening (NIS, Fan et al., 2011),

sure independent ranking and screening (SIRS, Zhu et al., 2011), distance correlation based

screening (DCSIS, Li et al., 2012), RV correlation based screening (RVSIS, Yu et al., 2023)

and projection correlation based screening (PC-Screen, Liu et al., 2022). DCSIS, RVSIS

and PC-Screen can handle multiple responses, while the others are intended for univariate

response. To adapt QaSIS, NIS, and SIRS for multiple responses, we adopt the same con-

struction logic as in MSDS, but replace MSD with other screening statistics in (2.5). For

MSDS, the robustification parameters involved in the Huber loss are selected by five fold

cross validation as in Fan et al. (2019). The kernel function is set to be the triangular kernel

function and we take h = max{0.05, {(S + log n)/n}2/5} as suggested by He et al. (2023),

where S is the number of basis. In computing MSDS, QaSIS, and NIS, we set S = 3.

To mimic real dataset, we consider (d,K, p, n) = (50, 3, 5000, 200). We also evaluate the

performance of our proposed method for determining the number of latent factors (K) and

compare it with several competitors mentioned in Section 2.5. Due to space limitations,

results for this part are provided in the Supplementary Materials.

We first simulate two examples to evaluate screening performance and adopt the fol-

lowing criteria: (1) minimum model size (MMS) to include all active covariates: we report

the mean of MMS with its standard error (SD), and the median of MMS with its median

absolute deviation (MAD) over 200 replications; (2) Pj: the proportion including a single

Xj for a given model size bn/ log nc; (3) Pall: the proportion including all active covariates

for a given model size bn/ log nc. In examples 1-2, Xi is drawn fromN (0, Ip) andN (0,ΣX),
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where ΣX = (0.5|i−j|)1≤i,j≤p. In example 3, Xi is drawn from N (0, Ip) and t3(0, Ip). For

heteroscedastic error cases, we take τ ∈ {0.50, 0.75, 0.90}, otherwise, τ = 0.50. Other ex-

amples, including factor-additive model and serial dependent factor-nonparametric model,

are provided in the Supplementary Materials.

Example 1: factor-linear model. Consider a three factor model Zi = µ + Bfi + εi, i =

1, . . . , n, where B = (bjl)1≤j≤p,1≤l≤3 has iid entries bjl’s generated from the uniform distri-

bution U(−2, 2), and εi’s are drawn from multivariate normal distribution N (0,Σε) with

Σε a sparse matrix whose diagonal entries being 3 and off-diagonal entries independently

drawn from 0.3 × Bernoulli(0.05). We set the mean µ = 0.5 × 1d and fi’s are assumed

to come from a linear model, i.e., fi = AXi + ξi for i = 1, . . . , n, where the error ter-

m ξi = (ξi1, ξi2, ξi3)T is generated from the following distributions to model symmetric,

heavy-tailed and heteroscedastic error cases, respectively: ξik
iid∼ N(0, 1), ξik

iid∼ t3, and

ξik = exp(
∑k

j=1X7+j)ζik, where ζik
iid∼ N(0, 0.72) for k = 1, 2, 3. A is defined as

A =


1 1 1 0 0 0 · · · 0

0 1 0 1 0 0 · · · 0

0 0 1 1 1 0 · · · 0


3×p

.

Example 2: factor-nonparametric model. We also consider a three factor model, similar

to example 1, but with all weak factors. The bjl’s are iid from N(0, 0.04), and εij’s are iid

from N(0, 150). Besides, µj’s are randomly sampled from {0, 0.5, 0.8} for 1 ≤ j ≤ d and
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fik’s are assumed to follow nonlinear nonparametric models,

fi1 = exp(2−Xi2 −Xi4) + ξi1, fi2 = (2Xi1 + 3Xi3)2 log(|Xi1|) + ξi2,

fi3 = 3(−Xi1Xi3 +Xi5)3 exp(−2Xi5) + ξi3,

where the error term ξi = (ξi1, ξi2, ξi3)T is considered to come from two different distribu-

tions: ξik
iid∼ N(0, 1) and ξik

iid∼ Cauchy for k = 1, 2, 3.

Note that in example 1, the true model size is 5 for homogeneous errors. However,

for heteroscedastic errors, X8, X9, X10 become active when τ ∈ {0.75, 0.9}, leading to a

true model size of 8 for these two quantiles. Simulation results for these two examples

are summarized in Tables 1-2, Tables S4-S5 and S7-S8 of the Supplementary Materials.

Note that we focus on a relative high-dimensional factor model with d = 500 to test our

procedure for estimating the number of latent factors. When Xi ∼ N (0, Ip), we observe that

in the factor-linear benchmark model with normal errors and strong factors, all competing

methods perform well. However, in the presence of heavy-tailed errors, NIS and RVSIS

struggle to accurately identify all active covariates. Other methods, such as QaSIS, SIRS,

DCSIS and PC-Screen experience significant performance deterioration and require much

larger model sizes to recover the active set when heteroscedastic errors are present. For

the factor-nonparametric model with weak factors, all methods, except for our proposed

MSDS and QaSIS, fail to correctly identify covariates X1 and X3. MSDS, however, shows

the highest probability of including all active covariates. Notably, when ξik follows Cauchy

distribution, MSDS significantly outperforms QaSIS. When Xi ∼ N (0,ΣX), similar results

are observed in Tables S4-S5 of the Supplementary Materials, demonstrating that MSDS
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exhibits the best screening performance among all the competitors. This highlights MSDS

as a powerful tool for addressing a wide range of factor-covariate models, effectively handling

both strong and weak factors in high-dimensional settings.

Table 1: Simulation results for example 1 when Xi ∼ N (0, Ip), p
∗ denotes the true model size

MMS

Error Method p∗ Median(MAD) Mean(SD) P1 P2 P3 P4 P5 P8 P9 P10 Pall
N(0, 1) MSDS0.50 5 5.00(0) 6.42(3.74) 1.00 1.00 1.00 1.00 1.00 - - - 1.00

QaSIS0.50 5 6.00(1.48) 13.51(34.10) 0.96 1.00 1.00 1.00 0.97 - - - 0.94

NIS 5 5.00(0) 5.04(0.20) 1.00 1.00 1.00 1.00 1.00 - - - 1.00

SIRS 5 5.00(0) 5.03(0.23) 1.00 1.00 1.00 1.00 1.00 - - - 1.00

DCSIS 5 5.00(0) 5.00(0) 1.00 1.00 1.00 1.00 1.00 - - - 1.00

RVSIS 5 5.00(0) 5.00(0) 1.00 1.00 1.00 1.00 1.00 - - - 1.00

PC-Screen 5 5.00(0) 5.03(0.18) 1.00 1.00 1.00 1.00 1.00 - - - 1.00

t3 MSDS0.50 5 5.00(0) 7.40(6.27) 0.99 1.00 1.00 1.00 0.99 - - - 0.98

QaSIS0.50 5 9.00(5.93) 25.46(43.30) 0.94 1.00 1.00 1.00 0.89 - - - 0.83

NIS 5 24.00(28.16) 104.60(171.36) 0.74 0.85 0.85 0.86 0.68 - - - 0.58

SIRS 5 5.00(0) 6.92(10.05) 1.00 1.00 1.00 1.00 0.96 - - - 0.96

DCSIS 5 5.00(0) 6.69(15.08) 0.98 0.98 1.00 1.00 0.98 - - - 0.98

RVSIS 5 5.00(0) 51.02(126.54) 0.85 0.90 0.93 0.85 0.87 - - - 0.78

PC-Screen 5 5.00(0) 5.33(2.20) 1.00 1.00 1.00 1.00 1.00 - - - 1.00

hetero MSDS0.50 5 5.00(0) 5.71(1.63) 1.00 1.00 1.00 1.00 1.00 - - - 1.00

MSDS0.75 8 10.00(1.48) 124.94(292.98) 0.93 0.92 0.92 0.92 0.92 0.88 0.93 0.91 0.83

MSDS0.90 8 11.00(4.44) 111.66(269.43) 0.92 0.95 0.99 0.96 0.92 0.99 0.99 0.97 0.85

QaSIS0.50 5 59.00(72.64) 105.85(134.09) 1.00 1.00 1.00 0.96 0.45 - - - 0.45

QaSIS0.75 8 1015.00(1104.53) 1203.17(1022.68) 0.98 1.00 1.00 0.91 0.36 0.85 0.92 0.60 0.17

QaSIS0.90 8 2025.00(1186.08) 2067.41(1105.33) 0.31 0.51 0.38 0.13 0.06 0.98 0.98 0.72 0.00

NIS 8 3395.00(1593.79) 3135.05(1300.74) 0.31 0.44 0.35 0.18 0.08 0.49 0.51 0.48 0.00

SIRS 8 37.00(28.17) 300.82(276.77) 1.00 1.00 1.00 1.00 1.00 0.89 0.89 0.56 0.51

DCSIS 8 9.00(1.85) 147.82(397.33) 0.98 1.00 1.00 0.98 0.84 1.00 1.00 0.96 0.81

RVSIS 8 2585.00(1149.01) 2522.76(1132.08) 0.60 0.69 0.67 0.45 0.17 0.43 0.45 0.36 0.00

PC-Screen 8 1295.00(893.26) 1476.50(975.89) 1.00 1.00 1.00 1.00 0.93 0.83 0.50 0.10 0.03

Next, we simulate two additional examples to evaluate the FDR control performance

of the proposed MSDK and DMSDK procedures. For comparison, we also include the

PC-Knockoff procedure introduced in Liu et al. (2022). Here we set ΣX = (0.25|i−j|)1≤i,j≤p.

Example 3: FDR control for factor-linear model. Consider the factor model as defined

in example 1. Let fi = βTXi + ξi for i = 1, . . . , n, where β = (β1,β2,β3) with β1 =
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Table 2: Simulation results for example 2 when Xi ∼ N (0, Ip), p
∗ denotes the true model size

MMS (p∗ = 5)

ξik Method Median(MAD) Mean(SD) P1 P2 P3 P4 P5 Pall
N(0, 1) MSDS0.5 10.00(5.93) 39.12(92.08) 0.92 0.99 0.89 0.99 1.00 0.82

QaSIS0.5 11.00(8.89) 39.32(91.22) 0.93 1.00 0.85 1.00 1.00 0.78

NIS 3980.00(900.67) 3765.70(1015.43) 0.14 0.04 0.06 0.01 0.99 0.00

SIRS 2788.00(1221.66) 2600.80(1009.58) 0.02 0.99 0.05 1.00 1.00 0.00

DCSIS 1736.00(1108.98) 1701.04(892.07) 0.15 0.25 0.08 0.25 1.00 0.00

RVSIS 3885.00(1030.40) 3611.00(996.92) 0.10 0.04 0.05 0.01 0.99 0.00

PC-Screen 395.00(318.75) 660.40(682.53) 0.68 1.00 0.32 1.00 1.00 0.24

Cauchy MSDS0.5 9.50(6.67) 34.75(78.05) 0.92 1.00 0.88 1.00 1.00 0.82

QaSIS0.5 16.50(17.04) 60.88(103.03) 0.92 0.97 0.74 1.00 1.00 0.64

NIS 3992.50(963.69) 3755.05(989.09) 0.10 0.05 0.09 0.05 0.96 0.00

SIRS 2336.00(1313.58) 2339.64(1060.46) 0.04 1.00 0.08 1.00 1.00 0.00

DCSIS 1676.00(1031.89) 1794.84(906.18) 0.12 0.25 0.15 0.23 0.99 0.02

RVSIS 3912.50(848.78) 3612.00(1040.81) 0.08 0.09 0.11 0.05 0.96 0.00

PC-Screen 515.00(530.02) 702.90(672.75) 0.66 1.00 0.30 1.00 1.00 0.22

(1T3 ,0
T
p−3)T , β2 = (0T3 ,1

T
2 ,0

T
p−5)T , β3 = (0T5 ,1

T
3 ,0

T
p−8)T , and Xi is drawn from a mixture

distribution 0.9N (0,ΣX) + 0.1t2(0,ΣX). ξik
iid∼ t3 for k = 1, 2, 3. Therefore, X1-X8 are

active with |Aτ | = 8.

Example 4: FDR control for factor-mixed model with weak factors. We consider a sim-

ilar three factor model as in example 1, except that the entries of factor loading matrix bjl’s

are iid from N(0, 0.04) for j 6= l. We draw εij’s iid from N(0, v2
j ) and v2

j ∼ U(0, 5.5) for

j = 1, . . . , d. In this scenario, the signals of latent factors are very weak. The latent factors

are assumed to follow a mixed model with both additive and single index components

fi1 =2 + 3Xi1 + 3Xi2 + ξi1, fi2 = (2 + 3Xi3)2 + 2(Xi4 − 1)3 + ξi2,

fi3 = exp(Xi5 +Xi6) + ξi3,

where Xi ∼ N (0,ΣX) and ξik
iid∼ N(0, 1) for k = 1, 2, 3. Thus, X1-X6 are active, |Aτ | = 6.

The settings and implementation details for examples 3-4 are provided in Section $10
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of the Supplementary Materials. We summarize the results for examples 3-4 in Table 3 and

Tables S9-S10 of the Supplementary Materials, in which α denotes the prespecified FDR

level, v is the prespecified PFER level, and k-FWER is defined as k-FWER = P (V (τ) ≥ k).

Here, V̂ (τ) and V̂ are the average number of false discoveries, F̂DR is the empirical FDR,

that is, the average empirical FDP, F̂WER is the empirical k-FWER, i.e., the average

empirical P̂ (V (τ) ≥ k), and Power refers to the average empirical power.

It is observed that our MSDK and DMSDK procedures effectively control the FDR at

the prespecified level α, as well as the PFER and k-FWER. The PC-Knockoff procedure

performs well in example 3. However, when applied to nonlinear models with weak factors,

its empirical power and selection probability decline significantly. Additionally, the base

MSDK procedure has an average execution time of approximately 45 seconds, while the

PC-Knockoff takes about 50 minutes on Windows machines with 2.4 GHz CPUs and 16 GB

of memory running R software. Consequently, the PC-Knockoff procedure is less suitable

for scenarios with large n and p, particularly when n is large. In addition, the results for

MSDK procedure at higher quantiles, such as τ = 0.90, seem to be out of control, likely due

to data sparsity at higher tails. In contrast, the derandomized version consistently achieves

much higher selection probability and power while effectively maintaining the sure screening

property across all settings. This demonstrates that the DMSDK procedure is particularly

effective for high-dimensional factor-covariate models with both strong and weak factors,

not only identifying variables across quantiles with FDR control but also handling large

datasets efficiently with reasonable computational time.
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Table 3: Simulation results for example 4 via MSDK, PC-Knockoff and DMSDK procedures
MSDK procedure FDR control

τ α P1 P2 P3 P4 P5 P6 Pall V̂ (τ)(F̂DR) Power

0.50 0.15 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.02(0.145) 1.00

0.20 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.48(0.198) 1.00

0.30 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.41(0.287) 1.00

0.75 0.15 0.93 0.93 0.93 0.93 0.93 0.92 0.92 0.94(0.135) 0.93

0.20 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.56(0.195) 1.00

0.30 1.00 1.00 1.00 1.00 1.00 0.98 0.98 2.53(0.297) 0.99

0.90 0.15 0.84 0.84 0.83 0.84 0.80 0.82 0.76 1.42(0.191) 0.83

0.20 0.96 0.95 0.94 0.97 0.89 0.92 0.78 1.77(0.220) 0.94

0.30 0.97 0.96 0.96 0.97 0.83 0.84 0.73 3.26(0.331) 0.92

PC-Knockoff procedure FDR control

α P1 P2 P3 P4 P5 P6 Pall V̂ (F̂DR) Power

0.15 0.48 0.48 0.47 0.48 0.47 0.47 0.45 1.22(0.124) 0.47

0.20 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.54(0.173) 1.00

0.30 1.00 1.00 1.00 1.00 1.00 1.00 1.00 3.26(0.277) 1.00

DMSDK procedure PFER control

τ v P1 P2 P3 P4 P5 P6 Pall V̂ (τ)(F̂DR) Power

0.50 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.32(0.051) 1.00

2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.10(0.154) 1.00

3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.82(0.232) 1.00

0.75 1 1.00 1.00 1.00 1.00 0.98 1.00 0.98 0.30(0.047) 0.99

2 1.00 1.00 1.00 1.00 0.98 1.00 0.98 1.14(0.159) 0.99

3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.01(0.250) 1.00

0.90 1 1.00 0.98 0.98 1.00 0.99 0.91 0.80 0.46(0.071) 0.95

2 0.99 0.99 1.00 1.00 0.90 0.98 0.89 1.34(0.182) 0.97

3 0.99 0.99 1.00 1.00 0.92 0.98 0.90 2.28(0.275) 0.98

DMSDK procedure k-FWER control at 0.20

τ k(v) P1 P2 P3 P4 P5 P6 Pall V̂ (τ)(F̂WER) Power

0.50 3(1.17) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.64(0.000) 1.00

4(1.56) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.71(0.000) 1.00

5(1.96) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.31(0.000) 1.00

0.75 3(1.17) 1.00 1.00 1.00 1.00 1.00 0.98 0.98 0.54(0.000) 0.99

4(1.56) 1.00 1.00 1.00 1.00 0.98 0.98 0.97 0.66(0.000) 0.99

5(1.96) 1.00 1.00 1.00 1.00 0.98 0.98 0.97 1.11(0.000) 0.99

0.90 3(1.17) 1.00 0.97 0.98 1.00 0.86 0.93 0.77 0.51(0.030) 0.95

4(1.56) 1.00 0.97 0.98 1.00 0.89 0.93 0.79 0.76(0.020) 0.96

5(1.96) 1.00 0.97 0.98 1.00 0.91 0.94 0.82 1.17(0.010) 0.97

5. Real Data Analysis

We apply the proposed procedures to a human well-being dataset studied by Fredrickson

et al. (2013) and Yu et al. (2023), which is available at https://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc=GSE45330. The dataset includes questionnaire responses from 84

healthy adults and gene expression measurements for 34,591 genes. All participants were

Statistica Sinica: Newly accepted Paper 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE45330
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE45330
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between 35 and 64 years old, could read and write in English, and had no chronic diseases

or disabilities. To assess both hedonic and eudaimonic well-being, these participants were

asked to respond to the Mental Health Continuum Short Form (MHC-SF) that comprises

14 questions reflecting hedonic and eudemonic well-being. These questions can be found in

the Supplementary Materials of Yu et al. (2023). Respondents rated the frequency of each

feeling they experienced over the past few weeks on a scale from 0 to 5 (0:never, 1:once or

twice, 2:approximately once per week, 3:two or three times per week, 4:almost every day and

5:every day). Out of 84 participants, only 76 samples were valid due to missing responses.

The main aim of this application is to explore the biological implications of hedonic and

eudaimonic well-being through human genome. Understanding whether these two well-

beings engage similar biological processes is considered an important yet challenging task.

We apply the proposed factor-covariate model to investigate the intrinsic relationship

between the assayed genes and the two types of well-being. Since these well-being types

are summarized by the 14 items, we set K = 2 and d = 14 in the factor model. First,

we estimate two latent factors, denoted by f ∗1 and f ∗2 , respectively. Next, we investi-

gate the functional relationships between the two estimated latent factors and the human

genes (p = 34, 591) using a nonparametric model. To facilitate this analysis, we begin

by selecting the top 5,000 genes with the largest variance in expression values and stan-

dardize their expression measurements to have zero mean and unit variance. Active genes

associated with the two latent factors are identified using our proposed MSDS method,

followed by the DMSDK procedure to control both the FDR and PFER. We focus on
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τ ∈ {0.25, 0.50, 0.75, 0.90}. Additionally, we apply other screening methods discussed in

the simulation studies for comparison. The top 17 genes identified by the various screening

methods and the selected genes based on DMSDK procedure with v = 1 are listed in Table

S11 of the Supplementary Materials. It is clear that the sets of active genes selected by

different methods have multiple overlaps, suggesting several key findings. First, among all

the screening methods, the genes LOC650238 and LOC650436 are selected most frequent-

ly. Second, genes selected by quantile-based procedures differ substantially from those

selected by other methods. This indicates that certain genes may show strong associations

with latent factors only at specific quantiles of the conditional distribution, such as the

upper or lower tails, which other methods might overlook. Third, a more detailed conclu-

sion can be conducted when we compare the genes selected at different quantiles. When

τ ∈ {0.25, 0.50}, only three out of the 17 genes overlap, and only three genes (LOC650238,

BLOC1S1, LACTB) are selected at three or more quantiles. This highlights the hetero-

geneity in the data. By further conducting the DMSDK procedure, approximately two

genes are selected as relevant at each quantile.

These selected genes are further served as inputs to fit both linear and additive mod-

els. This approach helps mitigate the curse of dimensionality while also facilitating the

exploration of functional associations of each identified gene. The results, presented in

Table S12, Figure 1, and Figure S3 of the Supplementary Materials, show that the two

well-beings under linear model engage similar biological processes, as the selected genes are

either positively or negatively correlated with both well-being. For additive model, Figure 1
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and Figure S3 further suggests that the two well-beings exhibit similar biological structures

against the selected genes. These findings support the conclusions of Fredrickson et al.

(2013), which indicate that the hedonic and eudaimonic well-being share similar affective

correlates and are strongly positively correlated. In contrast, Yu et al. (2023) examined the

same dataset but focused solely on the mean of the conditional distribution, which fails to

capture genes that are functionally associated with well-being across different quantiles.
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Figure 1: Estimated additive functions of the identified genes from our method at different

quantiles for the two latent factors. The first row shows the results for τ = 0.25, while the second

row shows the results for τ = 0.5.

To further investigate the predictive performance of the DMSDK procedure, and com-

pare with the MSDS-SCAD method. The dataset is randomly partitioned into a training
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set of 60 samples and a testing set of 16 samples. A five fold cross validation is applied to

the training data to select the tuning parameters. The average number of selected genes

(Size) over 100 replications is reported, with the corresponding standard errors in paren-

theses. We then assess the performance on the test set for each partition. The prediction

error (PE) is defined as
∑16

i=1

∑2
k=1 Lτ,h(f ∗ik − f̂ik), where Lτ,h(·) is the convolution type

smoothed quantile loss function. The numbers in parentheses represent the corresponding

standard errors across 100 partitions. The results, shown in Table 4, clearly indicate that

the analysis based on MSDS followed by DMSDK (MSD-select) achieves strong predictive

power, with a smaller model size and lower prediction error at each quantile level.

Table 4: Prediction performance for human well-being data
Linear Model Additive Model

DMSDK MSDS-SCAD DMSDK MSDS-SCAD

τ Size PE Size PE Size PE Size PE

0.25 2.40(0.98) 0.62(0.14) 5.66(2.06) 0.66(0.14) 2.88(1.80) 0.79(0.22) 6.88(1.62) 1.08(0.50)

0.50 3.18(2.08) 0.67(0.07) 6.34(1.95) 0.71(0.10) 3.22(1.37) 1.97(3.11) 4.56(1.29) 1.45(2.51)

0.75 3.52(1.64) 0.50(0.08) 5.06(1.82) 0.57(0.10) 1.66(0.51) 1.10(1.41) 4.46(1.32) 1.39(1.18)

0.90 4.70(2.27) 0.29(0.11) 2.47(1.27) 0.29(0.12) 1.44(0.54) 1.60(3.68) 6.14(2.48) 2.26(2.19)

6. Discussions and Extensions

In this paper, we develop a MSD-Select procedure, which integrates estimation, screening,

and selection with FDR control for joint modeling involving latent factors. This proce-

dure leverages joint information across latent factors, utilizing the quantile-adaptive MSD

index for screening and the quantile-adaptive DMSDK procedure for selection. The proce-

dure exhibits several notable advantages: First, it allows both the dimensions of observed
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variables and covariates to diverge with sample size n, thus offering broader applicabil-

ity. Second, to ensure robustness against heavy-tailed errors or covariates, it employs a

model-free MSD index that provide valuable insights into heterogeneity in the relationship

between active covariates and latent factors. By employing smoothing quantile regression

techniques in place of traditional quantile regression methods and B-spline approximation

in estimation, the nondifferentiability of the quantile loss function and curse of dimension-

ality of the nonparametric function can be further circumvented. Additionally, we establish

the sure screening properties under mild conditions. Third, robustness in FDR control is

achieved by extending the classical knockoffs procedure into the quantile regression frame-

work. Numerical studies demonstrate that the MSDS screening method surpasses existing

methods, and the proposed DMSDK procedure achieves tighter FDR control, along with

PFER control and k-FWER control, while maintaining higher power.

In the factor-covariate model, latent factors need to be linked to the covariates through

a nonparametric model. However, this model presumes that covariates are continuously

distributed and does not accommodate categorical variables. To overcome this limitation,

we propose employing a semiparametric partial linear model as an alternative to the purely

nonparametric model. Nonetheless, the task of identifying which covariates should be mod-

eled linearly versus nonlinearly remains complex, especially in high dimensional contexts.

This challenge is slated for exploration in our future research endeavors.

One limitation of the MSD-Select method is that it does not directly account for the

quantile association between a multivariate latent factor and a covariate. This arises from
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the fact that the conditional quantile of a multivariate vector is not uniquely defined and

is challenging to handle. Future research could explore directly using the multivariate

conditional quantile, potentially based on measure-transportation-based concepts, to define

a screening index for multivariate latent factors. An additional avenue for extending the

factor-covariate model involves the incorporation of sparsity constraints within the factor

loading matrix. This modification has the potential to enhance both interpretability and

predictive performance in high-dimensional settings. Furthermore, integrating temporal

dependencies into the factor-covariate modelrelevant for time series data or longitudinal

studies, can be achieved by extending the factor model to either a state-space model or a

dynamic factor model. Additionally, Ren et al. (2024) introduced a derandomized knockoff

procedure by aggregating e-values from multiple knockoff realizations. Future research

could explore extensions that integrate this new derandomized knockoff methodology with

our proposed MSD index. Finally, the development of robust methods for controlling FDR,

such as using data splitting or Gaussian mirror approaches within the quantile regression

framework, offers another promising direction for future investigation.

Supplementary Materials

The properties of the MSD index under Gaussian distribution, details on the MSD knockoffs

procedure, v-quantile knockoffs and estimation of the MSD index, figures for convolution-

type smoothed quantile loss, as well as all technical proofs, additional results from numerical

studies are provided in the online Supplementary Materials.
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