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Abstract: Multivariate testing has recently emerged as a promising technique

in scientific decision-making and electronic information fields. Unlike standard

A/B/n testing, which evaluates individual variations, multivariate testing aims

to identify the best-performing combination of variations from all possible com-

binations. We address the challenge of robustly allocating treatments to subjects

in multivariate testing when treatment effects are confounded by covariates and

subjects are interconnected through a network. In this paper, for the first time

we introduce the use of a mixed effect model to account for covariate uncertainty

and network structure. Based on this model, we propose a criterion to measure

the regret of efficiency due to incorrect specification of the covariance structure.

We derive minimax robust experimental schemes and introduce a novel scheme

that optimally matches the design with the robust covariance structure. Our

proposed experimental schemes demonstrate: (a) resilience to various optimal-

ity criteria, (b) efficiency against model misspecification, and (c) applicability to

complex scenarios. This work extends existing researches in optimal A/B test-

ing designs, offering theoretical foundations and practical implementations that
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outperform current approaches in statistical efficiency, as demonstrated through

simulations and a case study.

Key words and phrases: A/B testing, minimax risk, mixed effect model.

1. Introduction

Multivariate testing (MVT) is a type of control experiment that has re-

cently emerged as a promising technique in the fields of scientific decision

making and electronic information, such as e-commerce, marketing research

and clinical trials. Large-scale control experiments are widely adopted by

technology giants such as Amazon and Google to optimize algorithms, user

interfaces, and advertising strategies. Many tech companies have achieved

significant business benefits through controlled experiments (Pokhilko et al.,

2019; Kohavi et al., 2020). For a complete review of control experiments,

see Kohavi et al. (2009) and Larsen et al. (2024).

Unlike traditional A/B testing, which evaluates only two versions of

a single factor, MVT simultaneously tests multiple factors to identify the

treatment combination that maximizes impact on key metrics (e.g., website

click-through rates, clinical trial survival rates). The full factorial design, a

classic approach for MVT, provides a comprehensive estimation of factor ef-

fects by equally allocating subjects to all treatment combinations. However,
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its sample size grows exponentially with the number of factors, limiting its

application in high-dimensional settings. Fractional factorial designs, such

as Taguchi methods (Jiang et al., 2020), slice designs (Sadeghi et al., 2020),

and sequential designs (Haizler and Steinberg, 2021), enhance experimen-

tal feasibility while maintaining statistical power by reducing the number

of test combinations.

In practical applications, control experiments with covariates and net-

work information are common and present unique challenges. For example,

in coupon distribution experiments, due to concerns about customer churn

risk, testing is typically limited to a subset of customers from different con-

sumption tiers, and these customers often exhibit complex social network

connections. In these scenarios, in addition to the treatments, the covariates

of the subjects and network structure among subjects are usually available

to the experimenter and can significantly influence the responses. To ad-

dress this issue, existing research focuses primarily on the randomization

framework (Rubin, 2005), employing rerandomization (Branson et al., 2016;

Li and Ding, 2020; Pashley and Bind, 2023), covariate adjustment (Zhao

and Ding, 2023; Liu et al., 2024), and other covariate balancing techniques

(Zhao and Ding, 2022; Bai et al., 2024) to obtain treatment effect estimates.

Within the A/B testing paradigm, parametric response-treatment-covariate
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frameworks have recently been proposed as alternative methodologies to

model covariates and network effects (Pokhilko et al., 2019; Bhat et al.,

2020; Zhang and Kang, 2022). For example, Zhang and Kang (2022) uti-

lized residuals to capture network dependencies among subjects and devised

a Ds-optimal design to minimize the variance of estimated treatment effects

in the presence of covariates. However, existing methods still have some

limitations: traditional randomization methods face substantial uncertainty

estimation under complex data structures, while optimal design approaches

based on parametric regression models within A/B testing frameworks ex-

hibit high sensitivity to model misspecification (Wiens, 2015).

In this paper, we introduce a linear mixed effect model to address these

challenges, modeling covariate effects as random variables to quantify uncer-

tainty and using residuals to capture network dependencies among subjects.

We propose a criterion to quantify covariance structure misspecification and

derive the corresponding minimax experimental scheme. Additionally, we

develop a novel experimental scheme that optimally matches the design

with the robust covariance structure. Our experimental schemes are robust

against optimality criteria for estimating treatments and the misspecifica-

tion of the covariance structure, making them applicable to various control

experiments with complex covariates and network structures.
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The remainder of this paper is organized as follows. In Section 2, we

develop a mixed effect model to quantify the uncertainty of covariates and

network structures in MVT, and propose a criterion to measure the loss of

efficiency due to incorrect specification of the covariance structure. Section

3 derives minimax robust experimental schemes for estimating treatment

effects. In Section 4, we propose a novel experimental scheme that opti-

mally matches the treatment with the robust covariance structure. Sec-

tions 5 and 6 compare different experimental schemes under various linear

mixed-effects models. Finally, Section 7 discusses future works. For clarity,

additional simulation results and proofs of theoretical results are included

in the Supplementary Materials.

2. Problem Setups

Consider n subjects randomly selected from a population to participate in

a MVT, where the goal is to examine differences between different treat-

ments. We are primarily interested in the treatment effects, thus treat

them as fixed effects. Considering the complex structure of the experimen-

tal units, we divide the covariates of the subjects into two groups to model

the fixed effects and random effects of the covariates respectively. Specifi-

cally, suppose that the relationship among the experimental result Yi, the
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treatment factor ti, and the two groups of covariates zi and ui of the i-th

subject can be described by the following linear mixed-effects model (LMM,

Verbeke et al., 1997; Searle et al., 2009):

Yi = tTi α+ zTi β + uT
i ξ + εi, i ∈ [n], (2.1)

whereα is the p-dimensional treatment effect; β and ξ are the q-dimensional

fixed effect and m-dimensional random effect of the covariates respectively;

εi is the random error. The treatment effect α can be interpreted as the

expected change in the experimental results when subjects with the same

covariates are assigned to different treatments.

Let Y = (Y1, · · · , Yn)
T be the response vector of the subjects, T =

(t1, · · · , tn)T be the n × p treatment matrix, Z = (z1, · · · , zn)T and U =

(u1, · · · ,un)
T be the n × q and n × m covariates matrices corresponding

to the fixed effect and random effect respectively, and ε = (ε1, · · · , εn)T be

the random error vector. As done by Verbeke et al. (1997); Searle et al.

(2009), we partition the m-dimensional random effect into k groups, that

is, ξ = (ξT1 , · · · , ξTk )T and U = (U1, · · · ,Uk), where for t ∈ [k], Ut =

(ut1, · · · ,utn)
T is the covariates matrix corresponding to themt-dimensional

random effect ξt, and m =
∑k

t=1mt. In this paper, we consider the case

where p+ q +m < n.

We make the following common assumptions about the first two mo-
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ments for the random effects and random errors.

Assumption 1. E(ξ) = 0m×1 and cov(ξ) = diag{σ2
1Im1 , · · · , σ2

kImk
}.

Assumption 2. E(ε) = 0n×1 and cov(ε) = σ2
0Σ0, where Σ0 is a known

positive-definite matrix.

Assumption 3. cov(ξ, ε) = 0m×n.

Assumption 1 requires that the random effect has a zero mean and no

correlation, which is commonly used in the literature of LMM (Verbeke

et al., 1997; Searle et al., 2009). Assumption 2 requires that the random

error has a zero mean, and a general covariance matrix is used to model the

correlation among subjects. When there are network connections among

subjects, a common correlation assumption in the A/B testing literature

is the conditional autoregressive (CAR) distribution (Pokhilko et al., 2019;

Zhang and Kang, 2022). Assumption 3 requires that the random effects

and random errors are uncorrelated, a sufficient condition that ensures the

separability of inter-group and intra-group variations (Searle et al., 2009).

Under the LMM (2.1) and Assumptions 1-3, the responses of the sub-

jects are modeled as an n-dimensional random vector with the following
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mean and covariance matrix:
E(Y) = Tα+ Zβ;

cov(Y) =
∑k

t=0 σ
2
tΣt ≜ R,

(2.2)

where σ2
t represents the t-th variance component, and Σt = UtU

T
t , for

t ∈ [k]. Therefore, the fixed effect β and the random effect ξ in the model

(2.1) quantify the impacts of the covariates on the mean and covariance of

the experimental results respectively, and the experimental results of sub-

jects with similar covariates are more consistent than those of subjects with

different covariates. Recently, two special LMMs have been studied in the

literature of A/B testing. The first case corresponds to cov(Y) = σ2
0In,

where different subjects are isolated, and their covariates only affect the

expected outcomes of the subjects (Bhat et al., 2020). The second case cor-

responds to cov(Y) = σ2
0Σ0, where different subjects are connected through

a network, but their covariates have no impact on the covariance structure

of subjects (Pokhilko et al., 2019; Zhang and Kang, 2022). Example 1 il-

lustrates that the covariance structure in practical problems may be rather

complex, then the LMM framework (2.2) provides a more suitable modeling

approach for controlled experiments.

In this paper, we consider the problem of experimental design in the

LMM (2.1), and focus on the estimation of the treatment effectα. Through-
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out the paper, let L = (Ip,0p×q), X = (T,Z), and Σ(R) = R−1 −

R−1Z(ZTR−1Z)−1ZTR−1. We introduce the following assumption to en-

sure the existence of the Generalized Least Squares (GLS) estimator

α̂(R,T) = L(XTR−1X)−1XTR−1Y.

Assumption 4. The covariates matrix Z satisfies rank(Z) = q, and there

exists a constant µ ∈ (0, 1] such that TTΣT ⪰ µTTR−1T.

Specifically, µ = 0 implies that rank(XTR−1X) < p + q, µ = 1 implies

that XTR−1X is a block diagonal matrix, and µ ∈ (0, 1) indicates that

XTR−1X is between a column-full-rank matrix and a block diagonal matrix.

If Assumption 4 does not hold, the generalized inverse based least squares

estimator can be discussed similarly (Searle et al., 2009, Appendix M.4).

When the true covariance matrix R is known, the variance-covariance

matrix of α̂(R,T) is given by

cov(α̂(R,T)) = L(XTR−1X)−1LT = (TTΣ(R)T)−1.

From the perspective of optimal experimental designs, for a given s ∈

(0,∞), the ϕs-optimal design (Atkinson et al., 2007) minimizes the design

criterion: ϕs(α̂(R,T)) = (tr(cov(α̂(R,T))s/p))1/s , thus providing the best

estimate of the treatment effect from different perspectives. Specifically,

the commonly used A-, D-, and E-optimal designs correspond to the cases
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where the values of s are 1, 0, and ∞ respectively. It is worth noting that

the above ϕs-optimal design depends on the true covariance matrix R.

Typically, the above ϕs-optimal design is not available because the vari-

ance components variance components σ2
0, . . . , σ

2
k in R are not known in

advance. Therefore, under a complex covariance structure, the key to ex-

perimental design is to effectively utilize the information in the unknown

covariance matrix. In this paper, we seek experimental schemes that are

robust to the true covariance matrix. Specifically, when the true covari-

ance matrix R is misspecified as the working covariance matrix R0, the

variance-covariance matrix of the GLS estimator α̂(R0,T) is

cov(α̂(R0,T)) = L(XTR−1
0 X)−1(XTR−1

0 RR−1
0 X)(XTR−1

0 X)−1LT .

Although both estimators α̂(R,T) and α̂(R0,T) are unbiased, the Gauss-

Markov theorem (Harville, 1976) shows that α̂(R0,T) is inefficient, that

is,

cov(α̂(R0,T))− cov(α̂(R,T)) = DTRD ⪰ 0,

where DT = L(XTR−1
0 X)−1XTR−1

0 − L(XTR−1X)−1XTR−1. Therefore,

DTRD can be regarded as the regret caused by the misspecification of the

covariance matrix. We define this regret as

RT(R,R0,T) =
∥cov(α̂(R0,T))− cov(α̂(R,T))∥

∥cov(α̂(R,T))∥
, (2.3)
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where ∥ · ∥ is the spectral norm operator. A key property of the regret

is that RT(R,R0,T) ≥ 0, and it equals zero when R0 = R. Therefore,

the smaller the regret, the better the performance of the covariance matrix

R0 and the design T. In particular, zero regret means that the working

covariance matrix achieves the same effect as the true covariance matrix.

Another important property of the regret is that for any c, c0 > 0, we have

RT(cR, c0R0,T) = RT(R,R0,T). This indicates that the regret depends

only on the covariance structure, rather than on a specific covariance matrix.

The following example demonstrates that we can significantly reduce the

regret by selecting an appropriate working covariance structure.

Example 1. In a controlled experiment, there are n subjects. The first n1

subjects are male, and the last n1 subjects are married. That is,

UT
1 =


n1 males︷ ︸︸ ︷
1, · · · , 1, 0, · · · , 0

0, · · · , 0, 1, · · · , 1︸ ︷︷ ︸
n−n1 females

 , UT
2 =


n−n1 unmarried︷ ︸︸ ︷
1, · · · , 1 , 0, · · · , 0

0, · · · , 0, 1, · · · , 1︸ ︷︷ ︸
n1 married

 .

In this situation, a suitable covariance structure is R = In + a1Σ1 + a2Σ2,

where a1, a2 ≥ 0,Σ1 = U1U
T
1 ,Σ2 = U2U

T
2 . Suppose that the experimenter

uses a balanced designTb = 1(n/2)×1⊗(1,−1)T to test the difference between

the two treatments. Under each true covariance structure R = In + a1Σ1 +

a2Σ2 with a1 ∈ [0, 1] and a2 ∈ [0, 1], we calculate the regrets (2.3) for the
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two working covariance structures: R00 = In + 0.5Σ1 + 0.5Σ2 and R01 =

In + Σ1 + Σ2.

As shown in Figure 1(a), the regret is influenced by both the covariates

imbalance between treatment and control groups and the chosen working

covariance structure. Specifically, when n1 is odd, the differences in both

the number of male/female and married/unmarried subjects between the

treatment and control groups are 1; when n1 is even, those differences are

0. The regret of the experimental scheme is unaffected by the working co-

variance structure only when the design perfectly balances all covariates.

Otherwise, selecting an appropriate working covariance structure can sig-

nificantly reduce the regret. Figure 1(b) further displays the regret surfaces

under R00 and R01 when n1 = 5. Intuitively, the regret surface of R00 is

flatter than that of R01. Additionally, the maximum and average regrets of

R01 are 1.8 and 3.2 times higher than those of R00, respectively. Therefore,

R00 is a more suitable working covariance structure for allocating treat-

ments.

To avoid the situation of ill-conditioned covariance structures, we define

the following covariance class:

Ω0 =

{
R =

k∑
t=0

σ2
tΣt | κ(R) ≤ κ0, σ

2
t ≥ 0 for t ∈ [k] ∪ {0}

}
, (2.4)

where κ(R) is the condition number of R, and κ0 controls the condition
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(a) Regret under different values of n1. (b) Regret surface when n1 = 5.

Figure 1: Regrets of working covariance matricesR00 andR01 under various

true covariance matrices R.

number of the covariance structures in Ω0. Note that, for given Σ0, · · · ,Σk,

the covariance class in (2.4) is determined by the parameters σ2
0, · · · , σ2

k.

Therefore, we call Ω0 a parametric covariance class. More generally, for

any r ≥ 0, we introduce the following non-parametric covariance class:

Ωr = {R+K | R ∈ Ω0,R+K ≻ 0 and ∥K∥ ≤ r} . (2.5)

The covariance class Ωr contains all covariance matrices whose spectral

radius from a certain parametric covariance matrix in (2.4) does not exceed

r. Here, the spectral norm ∥ · ∥ is chosen for convenience; other matrix

norms are also feasible. With this definition, the LMM with Assumptions

1-3 can be extended to responses with E(Y) = Tα+Zβ and cov(Y) ∈ Ωr.

When r = 0, the non-parametric covariance class Ωr degenerates to the

parametric covariance class Ω0. Therefore, this provides a more general
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framework than (2.2) for controlled experiments.

Let Θ = {T | T ∈ {−1, 1}n×p, rank(T) = p} denote the full-rank

design space. In this paper, we adopt the minimax robust framework to

find a design T∗ ∈ Θ and a working covariance matrix R∗ ∈ Ω0 such that

they have high inference ability for the treatment effect under various true

covariance structures in Ωr, that is,

(T∗,R∗) = arg min
T∈Θ,R0∈Ω0

max
R∈Ωr

RT(R,R0,T). (2.6)

Since the experimental scheme (T∗,R∗) has the minimum regret under the

worst-case covariance structure, we call it a minimax robust experimental

scheme. Based on the minimax covariance structure R∗, we further provide

an approximate solution to the following ϕs-optimal design:

T∗
s = argmin

T∈Θ
tr
(
(TTΣ(R∗)T)−1)−s/p

)1/s
, (2.7)

which combines the efficiency of the ϕs-optimal design and the robustness

of R∗ with respect to the true covariance structure.

3. Minimax Experimental Scheme against a Misspecification of

Covariance Structure

In this section, we present the minimax robust experimental schemes for

problem (2.6) under different scenarios. First, we establish the connection
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between the regret in (2.3) and the ϕs-criterion. For any GLS estimator

α̂(R0,T), its ϕs-efficiency relative to α̂(R,T) is defined as

Effs(α̂(R0,T)) ≜
ϕs(α̂(R,T))

ϕs(α̂(R0,T))
, s ∈ [0,∞].

Obviously, the ϕs-efficiency takes values in the interval [0, 1]. The larger

the ϕs-efficiency of the estimator α̂(R0,T) is, the higher the estimation

accuracy of α̂(R0,T) under the ϕs-optimality criterion is. In particular,

Effs(α̂(R0,T)) = 1 means that α̂(R0,T) and α̂(R,T) are equivalent.

Proposition 1. For any (R,R0,T) ∈ Ωr × Ω0 × Θ, and s ≥ 1, the ϕs-

efficiency of α̂(R0,T) satisfies

Effs(α̂(R0,T)) ≥ 1

1 + κ0κ(XTX)RT(R,R0,T)
.

If the covariates matrix Z satisfies Assumption 4, then

Effs(α̂(R0,T)) ≥ 1

1 + κ0µ−1κ(TTT)RT(R,R0,T)
.

The lower bound given by Proposition 1 uniformly holds for all ϕs-

optimality criteria with s ≥ 1. For any ϵ ∈ [0, 1), if the risk RT(R,R0,T) ≤

[(1 − ϵ)−1 − 1](κ0µ
−1κ(TTT))−1, then for all ϕs-optimality criteria with

s ≥ 1, the estimation efficiency of α̃ is at least 100(1− ϵ)%. Therefore, the

regret in (2.3) provides a way to control all ϕs-criteria with s ≥ 1.
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Define the index set J = {(j0, j1, · · · , jk) | jt ∈ {0, 1}} \ 0(k+1)×1. For

any subclass C ⊆ Ω0, let [C] = {cR | c > 0,R ∈ C}. The following lemma

gives an equivalent characterization of the covariance class Ω0.

Lemma 1. For any κ0 ≥ κ(Σ0), there exists δ ∈ (0, 1) such that

Ω0 = ∪j∈J [Ω
∗
j ],

where for any j ∈ J , Ω∗
j = {R =

∑k
t=0 atΣt | a ∈ Aj}, Aj = ×k

t=0Aj,t, if

jt = 1, then Aj,t = {1}; otherwise Aj,t = [δI{t = 0}, 1).

Lemma 1 shows that the covariance class Ω0 can be partitioned into

the union of 2k+1 − 1 disjoint subclasses. For example, when k = 1, we

have Ω∗
(0,1) = {a0Σ0 + Σ1 | a0 ∈ [δ, 1)}, Ω∗

(1,0) = {Σ0 + a1Σ1 | a1 ∈ [0, 1)},

and Ω∗
(1,1) = {Σ0 + Σ1}. Ω∗

(0,1),Ω
∗
(1,0) and Ω∗

(1,1) correspond to the cases

where σ2
0 > σ2

1, σ
2
0 < σ2

1 and σ2
0 = σ2

1 in the true covariance structure,

respectively. An intuitive interpretation of the parameter δ is that the

smaller δ is, the more ill-conditioned covariance structures are included in

Ω0. In particular, when δ → 0+, Ω∗
(0,1) contains covariance structures with

the condition number tending to infinity.

The following theorem establishes an upper bound for the regret.

Theorem 1. For any R ∈ Ωr, let R∗ =
∑k

t=0 σ
∗2
t Σt be the parametric

covariance structure in Ω0 that is closest to R in the sense of the spectral
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norm. If Assumption 4 holds, then for any (R,R0,T) ∈ Ωr × Ω0 × Θ, the

regret RT(R,R0,T) is upper bounded by

RT(R,R0,T) = C1κ(T
TT)(C2∥σ∗2 − σ2

0∥1 + r)2,

where C1 and C2 are constants independent of the design and the covariance

structure, and ∥ · ∥1 denotes the l1-norm.

Theorem 1 demonstrates that the regret between the nonparametric

covariance R and the parametric covariance R0 is controlled by the l1-norm

of the difference in the variance components betweenR∗ andR0. Therefore,

maxR∈Ωr RT(R,R0,T) = maxR∗∈Ω0 RT(R
∗,R0,T). In addition, the effects

of the design T and the covariance structure (R,R0) on this upper bound

are separable. Geometrically, the complex regret surface RT(R,R0,T) can

be controlled by a surface RT(R,R0,T) with good properties, and if a

experimental design has a smaller upper bound of the regret, then it usually

also has a smaller regret, thus ensuring a higher ϕs efficiency.

In practical problems, experimenters are also interested in specific linear

combinations of treatment effects. For example, the parameter α1 − α2

measures the difference between the first two treatment effects. Generally

speaking, for any b×p row full-rank matrix Γ, if we focus on the parameter

vector in the form of γ = Γα, then the upper bound in Theorem 1 can still

provide effective guidance for the corresponding regret.
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Corollary 1. For any (R,R0,T) ∈ Ωr × Ω0 × Θ, if Assumption 4 holds,

then for the estimators γ̂(R0,T) = Γα̂(R0,T) and γ̂(R,T) = Γα̂(R,T),

we have

∥cov(γ̂(R0,T))− cov(γ̂(R,T))∥
∥cov(γ̂(R,T)∥

≤ κ(ΓΓT)RT(R,R0,T).

Based on the above representation of Ω0, we discuss the experimental

designs that minimize the maximum regret upper bound in two cases. If the

experimenter knows in advance which variance components will dominate,

that is, R ∈ [Ω∗
j ] for some j ∈ J , then we consider the following minimax

experimental scheme:

(T∗,R∗) ∈ arg min
T∈Θ,R0∈Ω0

max
R∈[Ω∗

j ]
RT(R∗,R0,T). (3.8)

We provide a solution to this minimax problem as follows.

Theorem 2. Suppose that for some j ∈ J , R ∈ [Ω∗
j ]. If the design T∗

satisfies TT
∗T∗ = nIp, and the working covariance structure is

R∗ =


Σ0 + (1/2)

∑k
t=1,jt=0 Σt +

∑k
t=1,jt=1Σt, if j0 = 1;

[(1 + δ)/2]Σ0 + (1/2)
∑k

t=1,jt=0 Σt +
∑k

t=1,jt=1Σt, if j0 = 0,

then (T∗,R∗) ∈ argminT∈Θ,R0∈Ω0 maxR∈[Ω∗
j ]
RT(R,R0,X).

Theorem 2 shows that the column-orthogonal treatment matrix and

the parametric covariance structure R∗ can minimize the maximum regret
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upper bound, and the variance components with jt = 1 should be larger

than the other components. The conclusion in Theorem 2 is applicable

when the relative magnitudes of the variance components can be estimated

from previous experimental results or determined by experts in the field. In

Example 1, we assume that R ∈ Ω∗
(1,0,0) and show that the corresponding

minimax covariance structure R00 has a smaller regret than R01.

If the experimenter has no prior knowledge about the covariance struc-

ture, a reasonable assumption in this case is the nonparametric covariance

class Ωr, and the following minimax experimental design can be considered:

(T∗,R∗) ∈ arg min
T∈Θ,R0∈Ω0

max
R∈Ωr

RT(R,R0,T). (3.9)

The following theorem provides a solution to the minimax problem (3.9).

Theorem 3. If the design T∗ satisfies TT
∗T∗ = nIp, and the working co-

variance structure is

R∗ =



Σ0 + (1− δ/2)Σ1, k = 1;

Σ0 + (1− δ/2)(Σ1 + Σ2) or Σ0 + (1/2)(Σ1 + Σ2), k = 2;

Σ0 + (1/2)
∑k

t=1Σt, k > 2,

then (T∗,R∗) ∈ argminT∈Θ,R0∈Ω0 maxR∈Ωr RT(R,R0,T).

Theorem 3 shows that, in the absence of information about the true

covariance structure, the treatment matrix of the minimax experimental
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design is still column-orthogonal, but its covariance structure assigns the

maximum weight to the components of the random error. It should be

noted that when the number of groups of random effects k ≥ 2, the mini-

max covariance structure is independent of the parameter δ, which further

enhances its practicality. In fact, R00 in Example 1 is the minimax covari-

ance structure in the cases where R ∈ Ωr or R ∈ Ω∗
(1,0,0).

Next, we identify the conditions under which the above minimax exper-

imental schemes achieves zero regret. For any positive definite matrix A,

define ΩA = {Σ | Σ = A+XD1X
T +VD2V

T}, where D1,D2 are arbitrary

symmetric matrices such that Σ is positive definite, and V is an arbitrary

column full-rank matrix satisfying XTA−1V = 0.

Theorem 4. For any experimental scheme (R0,T) ∈ Ω0 × Θ, we have

RT(R,R0,T) = 0 if and only if R ∈ [ΩR0 ].

The above conclusion shows that the robust experimental scheme in

Theorem 3 has zero regret under a class of parametric covariance structures.

Therefore, if R ∈ [ΩR∗ ], then the minimax working covariance structure

achieves the same effect as the true covariance structure. Note that if

there exists a column full-rank matrix Q ∈ Rq×m such that U = ZQ, then

Ω0 ⊂ [ΩR∗ ], that is, the minimax robust experimental scheme in Theorem

3 achieves zero regret in the parametric covariance class Ω0.
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4. Optimal Matching Based on Minimax Covariance Structure

In this section, we give an approximate solution for any ϕs-optimal design

T∗
s in (2.7):

T∗
s = argmin

T∈Θ
tr((TTΣ(R∗)T)−s/p)1/s, (4.10)

where R∗ is the minimax robust covariance structure given in Theorem 2

or 3. Intuitively, the optimal solution of Problem (4.10) not only preserves

the effectiveness of the ϕs-optimal design, but also inherits the robustness

of the minimax covariance structure R∗.

However, solving the above ϕs-optimal design is quite difficult, because

even in the simplest case where s = p = 1, it is an NP-complete prob-

lem (Nesterov, 1998). From Lemma S2 in the Supplementary Materials,

any ϕs-optimality criterion is controlled by tr(TTΣ(R∗)T/p)−1. An intu-

itive interpretation is that a larger value of tr(TTΣ(R∗)T/p) indicates that

the performance of the design T is better under all ϕs-optimality criteria.

Therefore, we consider the following trace maximization problem:

T∗ = argmax
T∈Θ

tr(TTΣ(R∗)T/p). (4.11)

Although the solution of Problem (4.11) provides an approximation

for all ϕs-optimal designs, it is still computationally intractable. To solve

this problem, we introduce the semidefinite relaxation (SDR) technique to
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approximate the problem effectively. Specifically, consider the following

semidefinite programming problem:

max
S

tr(Σ(R∗)S)

s.t. Sii = 1, i ∈ [n],

ST = S⪰ 0.

(4.12)

Given an optimal solution T∗ ∈ Θ of Problem (4.11), define S∗ = T∗T∗T/p.

It is easy to verify that S∗ is a symmetric positive semi-definite matrix and

S∗
ii = 1 for i ∈ [n], that is, S∗ satisfies the constraints of Problem (4.12).

In addition, tr(Σ(R∗)S
∗) = tr(T∗TΣ(R∗)T

∗/p). Therefore, in the sense of

achieving a higher objective value, Problem (4.12) is a relaxation of Problem

(4.11).

Unless both n and p are very small, it is almost impossible to obtain

the optimal solution of Problem (4.11). Fortunately, moderate to large-scale

semidefinite programming problems can be solved in polynomial time. For

example, the simplest subgradient method can obtain an ϵ-approximate

solution of Problem (4.12) after O(n2 log n/ϵ2) operations (Nesterov, 2007).

Based on the π/2 theorem in Nesterov (1998), we propose the follow-

ing random allocation Algorithm 1. This method transforms the optimal

solution of Problem (4.12) into a feasible solution of Problem (4.11) by inde-

pendent sampling from a multivariate Gaussian distribution. The following
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Algorithm 1: SDR based Randomized Allocation Algorithm

Input: Sample size n, number of treatments p, and working

covariance matrix R∗.

Output: Tr, the random allocation of Problem (4.11).

1 Calculate an optimal solution S∗ of Problem (4.12) based on the

covariance structure R∗.

2 for j = 1, · · · , p do

3 Independently generate uj ∼ N(0n×1,S
∗);

4 Set vj = sign[uj], where the symbol sign[uj] represents the sign

of the elements in uj.

5 end

6 Return the random allocation Tr = (v1,v2, · · · ,vp).

proposition provides the theoretical support for Algorithm 1.

Proposition 2. Let T∗ and Tr be the optimal solution of Problem (4.11)

and the output of Algorithm 1, respectively. Then, with probability 1, Tr ∈

Θ and E(tr(TT
r Σ(R∗)Tr)) ≥ (2/π)tr(T∗TΣ(R∗)T

∗).

Proposition 2 shows that based on the optimal solution of Problem

(4.12), the outputTr of Algorithm 1 provides a feasible solution for Problem

(4.11) with probability 1. In addition, the expected efficiency of Tr relative
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to the optimal solution of Problem (4.11) is at least 2/π (this is an efficiency

lower bound independent of the scale of the original problem!). Bhat et al.

(2020) derived a similar conclusion in the context of A/B testing, so the

result of Proposition 2 can be regarded as a generalization of the conclusion

in Bhat et al. (2020) to the case of p-dimensional treatments.

Next, we investigate the approximation capability of the output Tr of

Algorithm 1 with respect to the ϕs-optimal design T∗
s of Problem (4.10).

For simplicity, we define Mr = TT
r Σ(R∗)Tr and M∗

s = T∗T
s Σ(R∗)T

∗
s. Sub-

sequently, we establish the following lower bound for any ϕs-efficiency of

α̂(R∗,Tr) relative to α̂(R∗,T
∗
s).

Theorem 5. For any 0 ≤ s ≤ ∞, the expected relative ϕs-efficiency

E

(
ϕs(α̂(R∗,Tr))

ϕs(α̂(R∗,T∗
s))

)
≥ (4/π − 1)es

κs(M∗
s)E(κ(Mr))

> 0,

where κs(M
∗
s) = κ(M∗

s) if s < 1; κs(M
∗
s) = min{p1−1/s, κ(M∗

s)} if s ≥ 1,

and es ≥ 1 is a constant independent of Tr.

Note that the GLS estimator α̂(R∗,T
∗
s) is computationally infeasible

unless the sample size n and dimension p are very small. Theorem 5 en-

sures that α̂(R∗,Tr) serves as a practical alternative, offering a theoretically

guaranteed approximation, that is, the expected ϕs-efficiency of α̂(R∗,Tr)

relative to α̂(R∗,T
∗
s) is bounded below by a positive constant. This means
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that the α̂(R∗,Tr)’s precision is guaranteed to not degrade arbitrarily com-

pared to the ideal estimator, even in high-dimensional settings. The con-

ditional numbers κ(Mr) and κ(M∗
s) have a negative impact on the lower

bound of the efficiency, because as these conditional numbers increase, the

GLS estimators α̂(R∗,Tr) and α̂(R∗,T
∗
s) become increasingly unstable.

It is worth noting that the random allocation Algorithm 1 does not

depend on a specific ϕs optimality criterion. For a given s, the stability

and effectiveness of Algorithm 1 can be further improved by integrating the

outputs of the M runs of Algorithm 1. Specifically, let

Ts,M = arg min
Tr,i,i∈[M ]

tr
(
(TT

r,iΣ(R∗)Tr,i)
−s/p

)1/s
,

where Tr,i is the i-th output of Algorithm 1. We call (Ts,M ,R∗) the

semidefinite relaxation based matching (SDRM). The total time complex-

ity of the SDRM scheme is O(n2 log n/ϵ2 + n3 + n2pM), where the first,

second, and third terms come from solving the semidefinite programming

problem in (4.12), computing the Cholesky decomposition of S∗, and draw-

ing pM independent n-dimensional Gaussian samples, respectively. By us-

ing the stochastic proximal point algorithm (Vono et al., 2022) to gener-

ate Gaussian distribution samples, the time complexity can be reduced to

O(n2 log n/ϵ2 + n2pM). In addition, the time for solving the semidefinite

programming problem in (4.12) can be further reduced by using the block
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coordinate descent algorithm (Waldspurger et al., 2015).

5. Simulation

In this section, we assume the following relationship between the responses

and the covariates:

Y ∼ N(Tα+ Zβ,R), (5.13)

where the treatment effect α = (2, 3 × 1(p−1)×1)
T , the fixed effect β =

−1q×1, and N(µ,Σ) represents the multivariate normal distribution with

location parameter µ and scale matrix Σ. We set p = 2, q = m = 13,

k = 3, Z = U, and consider the following covariates distributions: u1i ≡

1, u2i
i.i.d.∼ MN(2; 0.9, 0.1), u3i

i.i.d.∼ MN(10; 0.1 × 1T
10×1), i ∈ [n], where

MN(n; p1, . . . , pn) is a multinomial distribution.

We define Σt = UtU
T
t /tr(UtU

T
t ), where Ut = (ut1, · · · ,utn)

T , for t ∈

[k], Σ0 = (ρ|i−j|), if Σ0 follows a first-order autoregressive (AR) structure,

and Σ0 = (M−1 − ρW)−1, if Σ0 follows a conditional autoregressive (CAR)

structure, where M is a diagonal matrix with diagonal elements mii =

(1 +
∑

j∈[n] wij)
−1, W is a random adjacency matrix, satisfying wii = 0,

P (wij = 1) = P (wij = 0) = 0.5. In this simulation, we set ρ ∼ U [0.2, 0.8]
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in Σ0. Let

Ω = {R =
k∑

t=0

σ2
tΣt | σ2

0 ∼ U [10−3, 1], σ2
1, · · · , σ2

k
i.i.d.∼ U [0, 1]},

and

Ω = {R+K | R ∈ Ω,K = vVVT/tr(VVT), Vij
i.i.d.∼ U [0, 1], v ∼ U [0, 1]},

represent parametric and nonparametric covariance structures, respectively.

The true covariance structure R in (5.13) is randomly sampled from the

following cases,

R1. Ω, where Σ0 follows the first-order AR structure;

R2. Ω, where Σ0 follows the first-order AR structure;

R3. Ω, where Σ0 follows the CAR structure;

R4. Ω, where Σ0 follows the CAR structure.

In this section, we compare the performance of the GLS estimator

α̂(R0,T0) based on different experimental schemes listed in Table 1. In

the baseline scheme (BI), each treatment is assigned to each individual with

equal probability, and the working covariance matrix R0 = In. According

to Theorem 3, the minimax covariance structure R∗ = Σ0 + (1/2)
∑k

t=1 Σt.

As suggested by Zhang and Kang (2022), we set ρ = 0.5 in Σ0 of R∗. The
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schemes of combining the column-balanced design and column-orthogonal

design with the minimax covariance structure (R0 = R∗) are abbreviated

as BM and OM, respectively. The random sampling and SDR matching

methods based on the minimax covariance structure (R0 = R∗) are abbre-

viated as RSM and SDRM, respectively. Thus, the true covariance structure

R is misspecified by R0 in the BI, BM, OM, RSM, and SDRM schemes.

We denote the SDR matching method based on the true covariance struc-

ture (R0 = R) as ORACLE, which corresponds to the case of the covari-

ance structure is correctly specified. In this simulation, we set s = 1, and

use M = 104 independent samplings for the RSM, SDRM, and ORACLE

schemes.

For each experimental scheme (R0,T0), we calculate the following three

metrics:

(i). Regret: ∥cov(α̂(R0,T0))− cov(α̂(R,T))∥/∥cov(α̂(R,T))∥;

(ii). Relative ϕ0-efficiency: det(cov(α̂(R0,T0)))/ det(cov(α̂(R,T)));

(iii). Mean Squared Error-efficiency (MSE-efficiency): MSE(α̂(R,T))/MSE(α̂(R0,T0)),

where α̂(R,T) is the GLS estimator based on the ORACLE scheme, and

det(·) is the determinant operator. The summary table of various 128-

run schemes evaluated across L = 100 randomly generated true covariance

Statistica Sinica: Newly accepted Paper 



Table 1: Designs and covariance structures of experimental schemes.

Method Design Covariance Structure

BI Column-balanced R0 = In

BM Column-balanced R0 = R∗

OM Column-orthogonal R0 = R∗

RSM Random Sampling Matching R0 = R∗

SDRM SDR Matching R0 = R∗

ORACLE SDR Matching R0 = R

structures is displayed in Table 2. From these results, we can draw the

following conclusions: when the random error follows an AR structure (R1

and R2), the performance of the BM scheme is significantly better than

that of the BI scheme. The OM scheme further reduces the uncertainty in

the estimation of the treatment effect by combining the column-orthogonal

design, which is consistent with the conclusion in Theorem 3. In addition,

the RSM scheme utilizes the structure of the ϕs-optimal design, and its per-

formance is better than that of the OM scheme. Across all true covariance

structures, the SDRM scheme consistently exhibits the best performance

among the five experimental schemes.
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Table 2: Summary table across various 128-run experimental schemes.

BI BM OM RSM SDRM

Average regret (standard deviation)

R1 2.75(1.88) 1.11(0.30) 0.80(0.19) 0.65(0.15) 0.03(0.02)

R2 3.20(5.07) 2.66(6.98) 1.80(4.40) 2.00(6.02) 1.25(5.15)

R3 0.21(0.08) 0.21(0.08) 0.15(0.05) 0.07(0.03) 0.03(0.02)

R4 1.77(10.73) 1.78(10.83) 1.58(9.37) 1.45(9.61) 1.32(7.74)

Average ϕ0-efficiency (standard deviation)

R1 0.16(0.12) 0.28(0.07) 0.45(0.10) 0.42(0.06) 1.00(0.01)

R2 0.15(0.11) 0.20(0.10) 0.31(0.14) 0.28(0.13) 0.60(0.28)

R3 0.80(0.05) 0.80(0.05) 0.82(0.04) 0.92(0.02) 1.00(0.00)

R4 0.53(0.21) 0.53(0.21) 0.55(0.21) 0.61(0.23) 0.66(0.25)

Average MSE-efficiency (standard deviation)

R1 0.51(0.06) 0.61(0.07) 0.71(0.09) 0.72(0.07) 1.00(0.06)

R2 0.50(0.06) 0.56(0.06) 0.67(0.08) 0.65(0.07) 0.91(0.10)

R3 0.88(0.08) 0.88(0.08) 0.89(0.07) 0.96(0.08) 1.00(0.07)

R4 0.80(0.07) 0.80(0.07) 0.80(0.06) 0.86(0.07) 0.90(0.07)
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It is worth noting that when the true covariance structure belongs to

the parametric class Ω (R1 and R3), the performance of the SDRM scheme

is almost the same as that of the ORACLE. This is consistent with the

conclusion in Theorem 4. When the random error follows a CAR structure

(R3 and R4), the performance of the BM scheme is almost the same as

that of the BI scheme, and the performance of other experimental schemes

is similar to that when the error follows an AR structure. The difference

between the BM and BI schemes under different random error assumptions

is due to the robustness of the minimax covariance structure against the

misspecification of the true covariance structure (Theorem 4), and the AR

structure is essentially different from the independent and identically dis-

tributed error structure, that is, Σ0 /∈ [ΩIn ]. Figure S3 in the Supplementary

Materials shows that the average Frobenius norm of In − (M− ρW)−1 for

different values of ρ and n is less than 10−3. Therefore, the CAR structure

is close to the independent and identically distributed structure, that is,

the performance of the BM scheme is close to that of the BI scheme. It

is worth mentioning that under the general covariance structure, the con-

clusion should be similar to that under the AR structure. Furthermore, as

demonstrated in Table S1 in the Supplementary Materials, when covariates

distributions exhibit greater complexity, the advantages of the proposed
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approaches become more pronounced.

6. Case Study

This case study is based on the Amazon Mechanical Turk dataset from

the UCI Machine Learning Repository. After removing missing values, the

dataset contains 9843 records and 23 attributes, including 21 attributes

describing driving scenarios such as destination, current time, weather con-

ditions, and whether there are passengers, as well as two treatment vari-

ables: coupon type and coupon validity period. Coupon types include bars,

takeaway food restaurants, coffee houses, cheap restaurants, and expensive

restaurants. The coupon validity periods include 2 hours and 24 hours. For

more information on this dataset, refer to Wang et al. (2017).

Our main goal is to assess the impact of coupon distribution on the con-

sumption intention of drivers. We encode the q-level qualitative variables

into q binary dummy variables. Therefore, there are 64 coupon distribution

strategies composed of 6 two-level treatment variables. For example, a fea-

sible strategy is to distribute bar and cafe coupons with a validity period of

2 hours. Note that in addition to coupon distribution strategies, different

driving scenarios also affect drivers’ consumption intentions. For example,

if the coupon’s usage location is in the same direction as the driver’s desti-
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nation, they are more likely to consume. Therefore, we use the LMM (5.13)

to model the relationship between drivers’ consumption intentions, coupon

distribution strategies, and driving scenarios.

Different experimental schemes in Table 1 are compared based on a

synthetic dataset, where drivers’ covariates are randomly sampled from the

Amazon Mechanical Turk dataset, and responses are generated by the LMM

(5.13) considering fixed effects for the first 5 covariates, with the true co-

variance structure belonging to Ω. To ensure the reliability of comparison

results, we require that the sample and population have the same num-

ber of categories for qualitative variables to maintain similarity, which is

easily satisfied through repeated sampling. Three covariates describing the

distance between the driver’s current location and the coupon location are

treated as three-dimensional covariates corresponding to the same random

effect, resulting in a total of k = 19 groups of covariates. The true values

of treatment effects and fixed effects are set as α = (2, 3, 3, 3, 3, 3)T and

β = −15×1, respectively.

We compare the average MSE (AMSE) of estimating treatment effects

for different experimental schemes under 100 randomly generated covari-

ance structures from Ω. Under each true covariance structure, the MSE is

calculated based on 100 independent response datasets.
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Figure 2: AMSEs of various experimental schemes in the case study when

random errors is the CAR structure.

Figure 2 shows the AMSEs of various schemes in 100 repetitions when

random errors follow the CAR structure. We can draw the following conclu-

sions: at each sample size, the experimental schemes based on the minimax

covariance structure (BM, OM, RSM, and SDRM) achieve smaller AMSEs

than the BI scheme. The OM scheme further reduces the estimation error

of the BI scheme by minimizing the upper bound of the regret. On this

basis, our last two schemes (RSM and SDRM) further improve estimation

accuracy by optimally matching the design with the minimax covariance

Statistica Sinica: Newly accepted Paper 



structure. Among these five experimental designs, the SDRM scheme per-

forms the best. Notably, the 96-run SDRM scheme performs almost as well

as the 256-run BI scheme, significantly demonstrating the advantages of the

SDRM scheme under the LMM. Additional simulation results for other net-

work structures are summarized in Figures S4 and S5 in the Supplementary

Materials. From these results, we conclude that under the AR structure,

the boxplots of various experimental schemes are wider because all sub-

jects are connected. Other conclusions are consistent with those under the

CAR structure. These results indicate that our experimental schemes can

be applied to controlled experiments with complex covariates and network

structures.

7. Discussion

This paper focuses on the impact of covariates and network structures of

subjects on treatment effect estimation, aiming to improve estimation accu-

racy through optimizing experimental designs. First, the study employs a

linear mixed effects model framework to effectively address the uncertainty

of covariates and network dependencies. Based on this, minimax robust

schemes and optimal matching schemes are proposed. Simulation experi-

ments and real data analysis show that the SDRM scheme proposed in this
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paper exhibits significant advantages under the LMM.

Future researches include two important directions: First, exploring

optimal designs for heterogeneous treatment effects, such as analyzing the

differential impacts of treatments across different age and income groups.

Second, conducting in-depth research on modeling and analyzing interfer-

ence effects of treatment allocation on related subjects, such as scenarios

where online game duration is influenced by both activity attractiveness

and social relationships. Such problems require integrating network inter-

ference models with optimization design methods, and relevant research

can build on the theoretical framework of Chen et al. (2023) to provide new

approaches for causal inference in complex social systems.

Supplementary Materials

The Supplementary Materials include two applications of the proposed ro-

bust experimental schemes: A/B testing and sequential experiments, sup-

plementary simulation results, and proofs for all the theoretical results.
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