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Conformal Prediction Under Nonignorable Missingness

Menghan Yi!, Yingying Zhang', Yanlin Tang'" and Huixia Judy Wang?"

!East China Normal University and “Rice University

Abstract: Existing methods for handling nonignorable missing data often rely
on strong modeling assumptions, making them vulnerable to model misspecifi-
cation. This paper proposes a conformal prediction framework for constructing
prediction sets under nonignorable missing responses, which is model-free for the
outcome regression while relying on a consistently estimated propensity score.
Our framework addresses two central challenges posed by nonignorable missing-
ness: non-identifiability and the lack of data exchangeability. The key idea is to
construct the highest conditional density prediction set using a local subset near
the target point, while correcting for selection bias via modeling the missingness
mechanism. Within this framework, we develop a bias-adjusted semiparametric
method for conditional density estimation, which fits a quantile process to the
observed data and corrects for bias using propensity weights. This estimator
integrates seamlessly into the conformal framework, allowing our approach to
guarantee not only marginal coverage, but also local and asymptotic conditional
coverage for any new subject, while achieving asymptotically optimal interval
lengths. We demonstrate the validity and efficiency of our procedure through

simulation studies and an application to a real HIV-CD4 dataset.



Key words and phrases: Conditional density estimation; Distribution shift; In-

verse probability weighting; Localized prediction; Nonignorable missing.

1. Introduction

Quantifying predictive uncertainty is a critical task in statistical model-
ing, especially in applications that demand reliable decision support. In
practice, however, missing responses are common in both experimental and
observational studies, which greatly complicates the problem. Such miss-
ingness often arises from subject dropout, unavailable measurements, or
data loss, and these factors are frequently related to the response variable
itself. For example, in the ACTG 175 study (Hammer et al., |1996)), pa-
tients with declining CD4 cell counts were more likely to miss follow-up
visits, suggesting that nonresponse may be informative (Hogan and Laird),
1997; [Yuan and Yin, 2010). This type of missingness is referred to as non-
ignorable missingness or missing not at random (MNAR; [Little and Rubin),
2019). Since the likelihood of missing data depends on the latent response,
it leads to data imbalance and parameter non-identifiability, which pose
significant challenges for prediction and uncertainty quantification. In this
paper, we address these challenges by proposing a framework for construct-

ing prediction sets for a new subject’s response Y, conditional on covariates



X, when the training data contain nonignorable missingness.

Although there is a rich body of work on parameter estimation and con-
fidence interval construction under nonignorable missingness (e.g.,|Zhao and
Shao, 2015 Zhao and May, [2022; [Li et al., 2022, 2023} Tian et al., [2025)), pre-
dictive inference in this setting remains relatively underexplored. Existing
methods typically rely on correctly specifying the regression model Y | X,
which is challenging in the presence of missing responses. To alleviate the
impact of model misspecification, [Zhao et al.| (2020) proposed a generalized
empirical likelihood method that does not specify the outcome model but
assumes a fully parametric missing data mechanism; Miao et al.| (2024) and
Sun et al.|(2026) proposed semiparametric methods that are doubly robust
with respect to the correct specification of either the missing mechanism
or the outcome regression; |Li et al.| (2023) proposed a fully nonparametric
approach that avoids modeling both the missingness mechanism and the
outcome regression by leveraging instrumental variables and imposing ad-
ditional structural conditions for identification. However, these methods
focus on asymptotic inference for fixed parameters or functionals and do
not directly support predictive inference for a random outcome. In our
work, we directly construct prediction sets for a new, unseen response. The

method is model-agnostic with respect to the outcome regression Y | X,



while relying on a correctly specified parametric or semiparametric model
for the missingness mechanism to address non-identifiability.

Our proposed method builds on the framework of conformal inference
(Vovk et al., 2005} [Shafer and Vovk, 2008} [Lei et al., 2018), which offers a
flexible and model-agnostic approach for constructing prediction sets with
finite-sample coverage guarantees. A key strength of conformal prediction
is its ability to accommodate any predictive model, including black-box
methods, provided that the data are exchangeable. However, this crucial
assumption is violated under nonignorable missingness, where selection bias
makes the observed data no longer exchangeable with the full population,
thereby rendering standard conformal prediction invalid. Several studies
have explored conformal prediction under non-exchangeable data. For ex-
ample, Tibshirani et al.| (2019)) introduced a weighted conformal prediction
framework to handle covariate distribution shifts between training and test
data. This idea has been extended to several domains, including causal
inference (Lei and Candes, 2021; |Jin et al., 2023} Yin et al., [2024), sur-
vival analysis (Candes et al., 2023; Gui et al., [2024)), and policy evaluation
(Zhang et al., 2023). While this line of work informs our thinking, directly
applying weighted conformal prediction in our setting is challenging. Unlike

previous methods that only adjust for selection bias based on fully observed



X, our framework must additionally address systematic bias introduced by
partially observed Y, which gives rise to non-identifiability issues.

This paper addresses the challenges of non-exchangeability and non-
identifiability arising from nonignorable missingness, with key innovations
and contributions highlighted in three main aspects. First, we introduce a
novel MNAR-weighted conformal prediction framework for predicting out-
comes in new subjects, where the training data exhibit nonignorable miss-
ingness. This framework quantifies and corrects the selection bias and non-
exchangeability induced by missingness via density ratio weighting, while
flexibly incorporating parametric or semiparametric models for the miss-
ingness mechanism to tackle identifiability challenges. Unlike conventional
methods (Tibshirani et al., [2019; |Lei and Candes, [2021)) that account only
for covariate shift, our framework provides a more comprehensive correction
for selection bias that arises from the joint distribution of X and Y.

Second, to achieve conditional coverage, we target the highest con-
ditional density region of Y given x, while using the profile distance to
partition the covariate space and identify a local subset whose conditional
density profiles are similar to that of the target point x. This approach nat-
urally adapts the prediction set to the local structure of the data, allowing

for personalized and efficient inference. As a result, we establish theoretical



guarantees for asymptotically optimal prediction sets that achieve local cov-
erage and approximate conditional coverage for individual subjects, going
beyond the marginal guarantees provided by standard conformal methods
(Vovk et al., 2005; Tibshirani et al., 2019)). This enables personalized adap-
tation to subject-level heterogeneity, even under complex error distributions
such as asymmetric or multi-modal ones.

Third, we propose a bias-adjusted semiparametric procedure to esti-
mate the conditional density, which is needed both to identify the highest
predictive density region and to select a local subset. We first approximate
it using quantile regression on the observed data and then calibrate it using
an adjustment factor that captures the influence of Y on the missingness
mechanism, allowing us to recover the conditional distribution up to a mul-
tiplicative factor. The procedure is practical and effective, and integrates
seamlessly with the conformal prediction framework to construct valid and
efficient prediction sets that achieve the desired conditional coverage.

The remainder of the paper is organized as follows. In Section [2], we
formally present two proposed methods: non-local and localized conformal
prediction. Section [3| establishes their theoretical guarantees. The per-
formance of the proposed method is assessed through simulation studies in

Section[d] and the analysis of an AIDS clinical trial dataset in Section[5] The



online Supplementary Materials contain technical proofs, high-dimensional

extensions, and additional numerical experiments.

2. Proposed Method

2.1 Setup and Motivation

Let Y € )Y denote the univariate response of interest and X € X rep-
resent the p-dimensional covariates, where X is fully observed, but Y is
subject to nonignorable missingness. Define § as the missingness indicator
for Y, where 0 = 1 if Y is observed and 6 = 0 otherwise. Nonignor-
able missingness implies that even after conditioning on X, the propen-
sity score P(6 = 1]X,Y) still depends on the potentially missing Y. Let
F(x,y,0) denote the joint distribution of the latent variables (X,Y,d), and
let {(X;,Y;,0;) : i = 1,...,n} be independent and identically distributed
draws from F(x,y,d). Given a new subject (X, 11, Yn+1) ~ F(x,y), our
goal is to predict the unknown response Y,,;1, based on the observed data
{(X;,8;Y:,0;) : @ = 1,...,n} and X, ;. Denote the prediction set as

C (X,11; @), a subset of Y, which satisfies the coverage guarantee,

P{Y, 11 € C(Xpip;0)} > 1—q, (2.1)



2.1 Setup and Motivation

for a given miscoverage level a € (0,1), where the probability P is taken
over all the randomness in the data.

If the data is fully observed, we can directly use standard conformal
prediction methods [Vovk et al. (2005); Shafer and Vovk (2008); Lei et al.
(2018)) to construct prediction sets that ensure marginal validity (2.1). How-
ever, when the response variable is missing, selection bias in the observed

data causes a distribution shift from the test data,
{(X“Y;) : 61 = 1} ~ F(Xay | 0= 1) and (Xn+17Yn+l) ~ F(X7 y)? (22>

posing a significant challenge as it violates data exchangeability and ren-
ders standard conformal prediction invalid. To address this challenge, we
introduce a weighted correction to conformal prediction that adjusts for
nonexchangeability by accounting for the joint effect of X and Y in the
missingness mechanism.

Moreover, our goal is not just to satisfy the coverage lower bound
but to achieve more efficient predictions. To this end, we identify the highest
conditional density set of Y as the prediction set, ensuring that the length
is asymptotically optimal for any error distribution. However, conditional
density estimation is particularly challenging in cases of non-ignorable miss-
ingness, where the absence of Y results in distributional non-identifiability

(Robins and Ritov, (1997, [Miao et al. 2016). To address this challenge,
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2.2 MNAR-weighted Conformal Prediction

we develop a bias-adjusted semiparametric method for conditional density
estimation that fits the quantile process to observed data and incorporates

weights derived from the missingness propensity model to correct for bias.

2.2 MNAR-weighted Conformal Prediction

The core idea of our method is to select all candidate values y € ) that are
consistent with the model trained on the observed data. To evaluate this
consistency, we define a nonconformity score R(X,,11,y) that measures how
much y deviates from the model — higher scores indicate greater deviation.
Then, we include all candidates in the prediction set if their nonconformity
scores are smaller than a certain threshold, which is chosen as the estimated
(1 — a)-quantile of R (X,11, Ynt1) to ensure (1 — «) coverage (2.1]).
Specifically, we randomly split the observed data into two parts: a
training set D; for constructing the nonconformity score function and a cal-
ibration set D, for determining the threshold. The nonconformity score
function is defined as a mapping from a data point to a real number,
R(x,y) : X xY — R, which measures how well (x,y) aligns with the model
trained on D;. Although the nonconformity score can be chosen flexibly
without affecting the coverage guarantee, its choice significantly influences

the size of the prediction set. To ensure prediction efficiency, we use the



2.2 MNAR-weighted Conformal Prediction

negative estimated conditional density as the nonconformity score,

~

R(x,y) = —f(y | %), (2.3)

where fdenotes the estimated conditional density of Y given x. Under this
scoring rule, higher density indicates better consistency between the data
point (x,y) and the estimated model ]? Compared to standard residual-
based methods (Shafer and Vovk, [2008; |Lei et al., 2018), our experience
shows that the conditional density-based approach can yield shorter predic-
tion intervals, especially under complex error distributions such as skewed
or bimodal ones. However, estimating the conditional density is challeng-
ing under nonignorable missingness. We propose an effective estimator that
uses only fully observed data, with a suitable correction informed by the
missing mechanism; see Section for details.

To determine the threshold, we need an estimate of the (1 —a)-quantile
of R(X,41,Yns1). Under exchangeability, this quantile can be obtained
from the empirical distribution of nonconformity scores on the calibration
set D.. However, when missingness is present, the distribution shift
between the observed data and the test point makes this empirical quantile

unreliable, and prediction coverage is no longer guaranteed. To overcome
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2.2 MNAR-weighted Conformal Prediction

this issue, we derive the distribution function of R(X, 41, Y,+1) as:

IED(Xn+17Yn+1)~F(x,y){R(Xnﬂ, Y1) <r}

= Exyyrigisy WX, V) H{RX,Y) < 7] (2.4)

where w(X,Y) = f(X,Y)/f(X,Y | § = 1) is referred to as a density-ratio
weight function. This form of weighting is closely related to the covariate
shift weights in (Tibshirani et al., 2019), but allowing for a more general
setting. We estimate the weights using the training set D;, and the corre-
sponding estimation procedure together with the associated identifiability
issues are discussed in Section . Given the distribution in , we
approximate it by constructing a weighted empirical distribution function
based on the observed data. Specifically, let the observed calibration set be
D = {j € D.: §; = 1}. Then, using the augmented set D*U{(X,+1,¥)},
with y as a candidate value for Y., we construct the corresponding em-

pirical distribution function:

Y @iy {R(X:Y:) <7} + @i () {R(Xs1,y) < 1 (2.5)

i€Dgbs
where the normalized weight is given by:

, i€ Do,
je’ngs w(X]7 Y]) + w(Xn+17 y)

w 1(y) — w(Xn+1>y)
" ZjengS w(Xja Y;) + w<Xn+17 y)

11



2.2 MNAR-weighted Conformal Prediction

Therefore, the (1 — «) quantile from the empirical distribution (2.5) is the
desired threshold, denoted as 7, (X, +1,y). The prediction set can be con-
structed as the set of all y such that R(X,11,y) < 70(Xpi1,y). We sum-

marize the overall procedure in Algorithm [}

Algorithm 1: MNAR-weighted Conformal Prediction
Input: Dataset {(X;,9;Y;,8;) :i=1,...,n}, test point X, 41,

candidate grid Veria = {y1,y2,...} C Y, target level a € (0,1).
1 Split the data into two equal-sized subsets D; and D..
2 Use D; to fit the nonconformity score R(x,y) and the weight w(x,y).
3 for y € YVyiq do
4 L Use D. U (X,41,y) to compute the threshold 7, (X,,+1,¥), i.e., the

(1 — ) quantile of (2.5)).

Output: Return the (1 — a) prediction set
a(Xn—H; CM) = {y : R(Xn-i-lvy) < ?a(Xn-Ha y)}

Remark 1 (Numerical Implementation). Our conformal prediction set is
defined by inverting a hypothesis test over the response space. When the
response is continuous, the resulting prediction region is a (possibly discon-
nected) subset of R. In practice, we obtain this region by evaluating the
fitted nonconformity score on a fine grid Vyia = {y1,v2,...} € Y, which
provides a numerical approximation to the boundary of the conformal set.
The grid is typically chosen as a set of uniformly spaced points with a pre-
specified resolution over an empirical range (Chen et al., 2018; Lei, [2019).

Our method follows the split conformal prediction paradigm (Lei et al.

12



2.3 Localized Prediction

2018)), in which the nonconformity score and the weight function are fitted
once on D; and then held fixed. As a result, the grid search involves only
forward evaluations of these two fitted functions, allowing the grid reso-
lution to be increased to improve numerical accuracy at small additional

computational cost.

2.3 Localized Prediction

The method introduced in Section achieves valid marginal coverage (see
Theorem . However, in many applications, it is desirable to provide per-
sonalized predictions by ensuring valid coverage guarantees for each new
individual x,,1. To this end, we propose an enhanced approach—localized
prediction—that partitions the feature space and identifies a local calibra-
tion dataset within the same cluster as x,,,1 for constructing the prediction,
thereby reducing the discrepancy between calibration and x,.; to better
approximate conditional coverage.

Specifically, we use K-means clustering to partition the covariate space,

based on the profile distance proposed by [Izbicki et al.|(2022)), defined as

(%1, %) = /OOO (Gt | x1) — Gylt ]| x2) Y odlt, (2.6)

13



2.3 Localized Prediction

where G¢(t | x) denote the conditional CDF of f(Y'|X), given by

Grlt |0 =B X)X =)= [ gyl (D

and can be estimated by @f(t | x) = f{y:f(y|x)§t} f(y | x)dy. The profile dis-
tance measures the overall similarity between the profiles of the conditional
densities f(Y | X). It not only aligns well with our nonconformity score but
also performs effectively in high-dimensional settings. Let A, (X, 1) denote
the local subset of the calibration D" that belongs to the same cluster as
X, +1- The prediction set is then obtained by constructing an empirical dis-
tribution similar to (2.5)), with D2 replaced by A,(X,11). We summarize

the overall procedure in Algorithm 2]

Algorithm 2: Localized MNAR-weighted Conformal Prediction
Input: Dataset {(X;,9;Y;,0;) :i=1,...,n}, test point X,,;1,

candidate grid Veria = {y1, %2, ...} C Y, target level a € (0, 1),

number of clusters.

[uny

Split the data into two equal-sized subsets D; and D..

N

Use Dy to (i) fit the nonconformity score R(x,y) and the weight
w(x,y), and (ii) perform K-means clustering in the covariate space

based on the profile distance (2.6)).

w

Define A, (X,+1) C D, as the subset sharing the same cluster as X, ;.

'

for Yy < ygrjd do
L Compute the threshold 7 (Ay; Xnt1,y) as the (1 — ) quantile of

" with ngbs replaced by An(Xn-i-l) U (Xn-i-la y)
Output: Return (1 — «) prediction set

é\’(}(n-i-l; a) = {y : R(Xn-i-lvy) < "/"\a(Am Xn+1a y)}

<))
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2.4 Conditional Density Estimation

2.4 Conditional Density Estimation

Most existing work on nonignorable missing data focuses on parameter es-
timation, with limited attention paid to the entire density function. In this
section, we propose a bias-adjusted semiparametric approach to estimate
the conditional density by fitting the quantile process to the fully ob-
served data, with an appropriate correction for the missingness mechanism.
In particular, we model conditional quantiles rather than the conditional
density directly, since the density admits a simple and natural represen-
tation in terms of quantiles, and model diagnosis and assessment can be
more conveniently conducted on conditional quantiles. This representation
allows us to leverage a wide range of existing quantile regression methods to
estimate the conditional density in a flexible and robust way, even in high-
dimensional settings. In contrast, existing methods, such as kernel-based
approaches, tend to become increasingly difficult to implement and tune as
the covariate dimension increases.

Our approach is motivated by two equivalent decompositions of the joint
distribution of y and § = 1 given x, namely P(6 = 1 | x,y)f(y | x) and f(y |
x,0 = 1)P(6 = 1 | x). Therefore, we can derive the relationship between

the conditional distribution of the response and that of the observed data:

f(y ’ X) = p(X, y)f(y ‘ X,0 = 1)7 (28>
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2.4 Conditional Density Estimation

where p(x,y) = P(0 = 1 | x)/P(6 = 1 | x,y) is the adjustment factor,
capturing how the probability of being observed changes when v is further
taken into account given x. This adjustment gives more weight to data
points whose observation probabilities are smaller, conditional on x.

We propose to estimate f(y | x) based on equation ([2.8), by first using
the fully observed data to estimate f(y | x,6 = 1), and then correcting
it with p(x,y). To estimate f(y | x,d = 1), we propose a semiparametric
approach by fitting a quantile process based on the observed data. The
key idea is that the conditional density can be related to the conditional

quantile function through the following relationship:

(2.9)

dQy (r | x,6 =1)) "
dr } ’

f{Qy(T|x,5:1)\x,5:1}:{

where Qy (7 | x,d = 1) is the 7-th conditional quantile of ¥ given x and
0 = 1. Therefore, according to (2.9)), we can construct quotient-type density

estimates (Siddiqui, (1960), given by:

f{@y(7|x,5:1) |x,(5:1}

oh, (2.10)

Oy(T+hy | x,6=1)—Oy(r—hy | x,6 =1)

where @y denotes the estimated conditional quantile function, and h,, is a
bandwidth parameter tending to zero as n — oo. To estimate the density

~

f(y|x,6 =1) for any y € Y, we first compute the density along the quantile

16



2.4 Conditional Density Estimation

process {Qy(ri|x,6 = 1),...,Qy(rs|x, = 1)} using , at a set of
quantile levels 7 < --- < 7,. We then apply a smoothing technique, such
as linear interpolation, to recover a continuous estimate of the full density
function. Note that the conditional quantiles in can be estimated
using any suitable method on the observed data D; without affecting the
coverage guarantee, such as linear quantile regression (Koenker, 2005)), high-
dimensional penalized quantile regression (Belloni and Chernozhukov}, 2011}
Tan et al., [2022; Qiu et al., [2026)), or nonparametric approaches like quantile
random forests (Meinshausen| 2006; Athey et al., [2019).

To estimate the adjustment factor p(x,y), we can directly obtain an
estimate of P(§ = 1 | x,y) through the weight function estimation process
in Section 2.5 Additionally, the propensity P(6 = 1 | x) can be easily
estimated using binary classification methods, such as logistic regression or
gradient boosting, based on the fully observed data {(X;,d;)}. We provide
further discussion on conditional density estimation in high-dimensional
settings in Section S2 of the Supplementary Material.

It is important to note that we do not use the quotient-type density to
directly estimate f(y | x), as estimating the conditional quantile Qy (7 | x)
is particularly challenging under nonignorable missingness in Y, and typi-

cally requires specifying parametric models or making additional assump-
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2.5 Weight Estimation

tions (Zhang and Wang] [2020; [Yu et al., [2023).

2.5 Weight Estimation

If the weight function is known, the constructed prediction set guarantees
(1 — «) coverage in a finite sample without any additional assumptions.
However, in most applications, the weight function is unknown and needs

to be estimated. To this end, we first derive the weight function as follows:

w(x,y) = f(x,y) _ f(x) _ f(y|x)
Foys =0~ fodi=0 foka=1
PO=1) PO=1x) 1

T PO=1x) PO=1xy)  PO=1|xy)

It follows that the weight function is entirely determined by the missing
propensity score P(§ = 1 | x,y). If the missing mechanism is Missing at
Random (MAR), the weight function depends only on x. Therefore, it can
be directly estimated based on the fully observed data (x,d). However,
under non-ignorable missingness, the weight function also depends on the
missing y, making its identification and estimation more challenging.
Robins and Ritov| (1997) and Miao et al.| (2016) pointed out that, under
nonignorable missingness, identifiability remains a major challenge even
when both the missingness mechanism P(§ = 1 | x,y) and the outcome
model f(y | x) are specified. To address this issue, many studies impose

parametric or semi-parametric models while adding extra assumptions. We
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2.5 Weight Estimation

adopt several existing options to model the missingness mechanism.
Model 1 (Parametric Model). For nonignorable missing data, a

commonly used missingness mechanism is the logistic regression model:

1
L+exp(a+XTB8+Y7)’

P(5=1|X,Y)=

where (a, 3, 7) are unknown parameters. Under this model, |Liu et al.[ (2022)
further assumes that f(y | x,6 = 1) follows a finite-dimensional parametric
model, leveraging the information from fully observed X to resolve the
identifiability issue and estimate (v, 3,7).

Model 2 (Semiparametric Model). To mitigate the risk of model

misspecification, a more flexible semiparametric model can be adopted:

P(5=1|X,Y) = (2.12)

14+ g(U)q(Y,~)’

where ¢(Y, ) is a parametric function with an /-dimensional unknown pa-
rameter 7y, ¢g(-) is an unknown nonparametric function, and U C X denotes
a subset of covariates that the missingness mechanism depends on. Define
Z = X\ U as the nonresponse instrumental variables, which are related to
the response variable but excluded from the missingness mechanism. By
appropriately selecting Z and leveraging them to construct additional esti-
mating equations, the model parameters can be rendered identifiable (Shao

and Wang, 2016)). Similar instrumental variable methods, with notable in-
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novations, have been widely used (Zhang et al., [2018; Zhao et al 2020],
2021; Li et al} 2022, 2023; Miao et al.; 2024), including in high-dimensional
settings (Wang et al., [2021]).

In practical applications, the selection of a parametric or semiparamet-
ric model depends on the data characteristics, while the feasibility of the
instrumental variable method is also taken into account. For simplicity,
we focus on Model 2 (Shao and Wang, 2016) in the following theoretical
derivations and numerical simulations for detailed analysis and discussion.

It is worth noting that our method is only partially model-free: it does
not require a correctly specified regression model for Y | X, but relies on
a correctly specified or consistently estimated propensity score P(§ = 1 |
X,Y), as shown in Theorems 1| and . Relaxing the dependence on correct

specification of the missingness mechanism remains an open challenge.

3. Theoretical Results
In this section, we establish the coverage guarantee for the proposed pre-
diction set, beginning with the following assumption.

Assumption 1. Assume that F(x,y) is absolutely continuous with respect

to F(x,y |d=1)

This assumption ensures that w(x,y) is finite almost surely and that

20



the empirical distribution in ([2.5)) is well defined, which yields the coverage

lower bound in Theorem (1] under the propensity score model (2.12)).

Theorem 1. Under Assumption[l], suppose the estimated function g(-) and
parameter 5 satisfy Ex y)~rxyo=1) 19(U)q(Y,7) | Di} < oo, where U =
X\Z denotes the covariates excluding the instrumental variables. Then, for

any given « € (0,1), the proposed methods in Algorithms and@ satisfy
]P){Yn-i-l S a(Xn—H; OZ)} Z l—a— 3marga
where the probability is over D, and (X, 11, Yni1), and

~ 1 =N R
Amaurg = §E(X,Y)~f(x,y|6=1) ‘g(U)Q(Y7 7) - g<U)Q<K 7) } :

Theorem (1| indicates that, when the propensity score is known, the
finite-sample coverage achieves the exact (1 — «) level regardless of whether
the nonconformity score is correctly specified or consistently estimated.
However, when the propensity score is unknown, the estimation bias in-
troduces an additional error term, ﬁmarg, for the coverage lower bound.
This error term is asymptotically negligible provided that the propensity
score is consistently estimated, a condition typically guaranteed under mild
assumptions (Shao and Wang, 2016 Zhao et al.| 2021)).

Theorem (1| shows that our method achieves average coverage over the

entire population of X, but this does not imply coverage guarantees for
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any specific x. To address this limitation, Theorem [2| establishes a stronger
result of local coverage, showing that our localized method guarantees cov-

erage for each region in a prespecified partition of the covariate space.

Theorem 2. Let A= {A;:j > 1} be a partition of the covariate space X .
Under the same assumptions as Theorem |1, for any given o € (0,1), the

localized prediction in Algorithm 9 satisfies
P{Y,.1 € G(XW; a) | Xpp1 €4 >1—a— ﬁloc, for all 7,

where the probability is over D, and (X, 11, Yni1), and

(1 = a/2)Ex yv)~fixgis=1)|9(U)a(Y,7) — g(U)q(Y,~)| ‘

3 oc —
: Exjxjs=nw(X)[(X € A;)

The local validity in Theorem [2] must be interpreted in conjunction
with the resolution of the partition A: if A = X', then local validity re-
duces to marginal validity; if A; € A shrinks to a single point x, then
local validity approximates conditional validity. In our procedure, we use
K-means clustering based on the profile distance [Izbicki et al.| (2022)) to
partition the covariate space in a data-adaptive manner. This approach
effectively captures the local structure of Y | X and better approximates
the neighborhood around a given x compared to uniform partitioning (Lei
and Wasserman, [2014). The coverage error ﬁloc in Theorem 2| is typically

asymptotically negligible: under standard regularity conditions, consistent
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propensity score estimation ensures that the numerator approaches zero,
while the denominator remains positive because the data-driven partition-
ing usually yields regions with nonzero probability.

While Theorems (1| and [2| establish valid lower bounds on coverage, our
primary goal is to achieve optimal efficiency by constructing the smallest
possible prediction sets. To evaluate the performance of our method, we
begin by introducing the oracle prediction set, defined as the highest pre-

diction density set (Izbicki et al., 2022), which serves as a benchmark.

Definition 1. The highest prediction density (HPD) set is defined as

Clxia)={y: flyx) =2 Qe [ x)},

where Q¢(a | x) denotes the a-th conditional quantile of the conditional
density values f(Y | x). This set satisfies the conditional coverage condition
P{Y € C(x;a) | X = x} = 1 — a and has the smallest Lebesgue measure

among all sets with conditional coverage at least 1 — a.

To establish a stronger result regarding efficiency, we introduce the

following additional assumptions.

Assumption 2. The weight function w(X,Y") and its estimator w(X,Y)

are almost surely bounded away from 0 and oco. In addition, there exist
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sequences 1, = o(1) and p,, = o(1) such that

P(Elsup [#(X, y) ~ w(X,9)[* | @] = 1) < pu.

yey
Assumption 3. There exist sequences 7, = o(1) and p,, = o(1) such that,

for each region A; in the partition A,

IED(Sup sup | F(y | x) — f(y | x)| > m) < Pn-
xX€A; yey

Assumption 4. The conditional CDF G¢(¢ | x) in (2.7) is Lipschitz contin-
uous in (¢,x); that is, there exists a constant L > 0 such that, for all ¢;,¢, €

R and x1,x5 € RP,

Gf(tl | X1) - Gf(tg | Xg)‘ S L(|t1 - t2| + d(Xl,X2>).

Assumption 5. For each region A; in the partition A, the probability
mass satisfies nP{X € A;} — 0o, and the diameter sup,, y,ca, d(X1,X2)

converges to zero as the partition is refined.

Assumptions [2] and [3] are not difficult to satisfy, as they only require
uniform consistency of the propensity score and the conditional density es-
timators, without imposing specific convergence rates. For example, the
propensity score estimator of [Shao and Wang| (2016) satisfies Assumption
under standard conditions for kernel estimation. Also, the conditional
density estimator in satisfies Assumption [3| under standard regularity

conditions, as supported by existing results for linear quantile regression
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(Wang et al., |2019) and quantile random forests (Meinshausen, 2006). As-
sumption [4] ensures that the conditional CDF of the nonconformity score is
continuous with controlled local variation. This helps reduce the discrep-
ancy between the CDF and its estimate. Assumption [5| ensures that the
local region is small to accurately approximate the conditional distribution,

while containing enough data points to support reliable estimation.

Theorem 3. Under Assumptions[ZH{, the localized prediction in Algorithm

13 converges to the HPD set,
P{Y; 11 € C(Xpi1; )AC(Xpsr;a)} = o(1),

where A denotes symmetric set difference, i.e., AAB := (ANB°)U(BNA°).
Furthermore, 6(Xn+1; «) satisfies the asymptotic conditional coverage, that

is, there exists a sequence of (possibly random) sets A, C X such that

P(X,41 € A,) =1—0(1) and

sup ‘P{YW € O(Xps1;0) | Xpr = Xpa = (1 — a)( — o(1).

Xn 1€,

Theorem [3| shows that the proposed prediction set converges to the or-
acle prediction set, implying that it is asymptotically optimal and achieves
the smallest Lebesgue measure. Furthermore, it guarantees asymptotic con-
ditional coverage for any given x,,.1, a much stronger result than Theorems

and [2] which establish only average coverage over a region of the covariate
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space. This highlights the improved efficiency of our method. The proof is

referred to the supplementary materials.

4. Simulation Study

This section evaluates the finite-sample performance of the proposed meth-
ods in terms of marginal coverage, with conditional coverage further exam-
ined in Section S2 of the supplementary materials.

For comparison, we evaluate the performance of the following methods:
(1) OMNI: the omniscient method, which applies standard conformal pre-
diction using the true responses Y for all observations, with no missingness.
This method serves as a gold standard but is unachievable in real-world set-
tings. (2) Naive: standard conformal prediction applied to fully observed
data, i.e., excluding data points with missing responses. (3) MAR-CP:
weighted conformal prediction based on MAR weights. This is implemented
by setting ¢ (Y,~) = 1 in the propensity (2.12). (4) MNAR-CP: the pro-
posed weighted conformal prediction using MNAR-based weights.

We consider two models: a linear model and a nonlinear model. In
both cases, the covariate vector X = (Z,U) includes a discrete instru-
mental variable Z, where Pr(Z; = 1) = 0.2, Pr(Z; = 2) = 0.4, and
Pr(Z; = 3) = 0.4. The remaining covariates, U;; ~ N(Z;/10,1) for

1 < j <10. The missingness indicator follows ¢ ~ Bernoulli(7). The out-
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come and missingness are generated as follows. (1) In the linear model,
Y, =7, + Z}il Uy + e and m; = {1 + exp(a — 0.1 Zjl.il Uy +0.65Y;)} %
(2) In the nonlinear model, Y; = Z; + 0.5(2;25 Uij)2 + ¢ and m =
{1+exp(a— 0.1(2;15 Uij)?+0.4Y;)} . We consider both homoscedastic
errors €; ~ N(0,1) and heteroscedastic errors ¢; ~ Gamma(0.57;,0.57;).
The parameter a is set as a =-3.5, -3, -2.5, which correspond to missing
rates of approximately 40%, 50%, and 60% in the linear model, and 20%,
30%, and 40% in the nonlinear model.

We focus on the non-localized prediction from Algorithm [I] which is
sufficient for evaluating marginal coverage. The localized prediction from
Algorithm [2| is evaluated separately in Section S2 of the supplementary
materials. In our non-localized prediction, we set Vg to be a grid of
200 uniformly spaced points over the empirical range of the observed re-
sponses. The weight is obtained from equation , where the propen-
sity score P(0 = 1 | x,y) is estimated using the method of |Wang et al.
(2021). The conditional density is estimated using equation ({2.8), where
f(y | x,6 =1) is obtained via the quotient method with quantile lev-
els {1/32,...,31/32}. The bandwidth h,, is chosen using the bandwidth.rq
function from the R package quantreg, ensuring that h,, converges to zero

at the rate of n='/3. To estimate the conditional quantile Qy (7 | x,0 = 1),
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we employ two methods: linear quantile regression (LQR) and quantile
random forest (QRF), implemented using the R packages quantreg and
grf, respectively. For the adjustment factor p(x,y) in , we estimate
P(6 = 1 | x) using the gradient boosting method via the R package gbm,
and directly use the estimate of P(0 = 1 | x,y) from the weight estimation.

We repeat the simulation 500 times. In each replication, we generate
datasets with n = 1000 and n = 4000 samples to construct prediction
sets with 90% nominal coverage, while evaluate their performance on an
additional 500 data points (X411, Yni1), - - -, (Xna5005 Ynas00)- The coverage
probabilities and interval lengths for different models and sample sizes are
shown in Tables [[H2] with part of the results deferred to the supplementary
material for brevity. It can be seen that the proposed MNAR-CP method
nearly maintains the nominal 90% level, with standard errors comparable
to those of OMNI when n = 4000. However, the Naive and MAR-CP
methods consistently exhibit undercoverage, as they do not correct for the
joint effect of missingness on both X and Y. As a result, even when MAR-
CP produces intervals with lengths comparable to those of MNAR-CP, its
biased weights lead to miscalibrated conformity scores, causing the method
to fail to achieve nominal coverage.

Since Naive and MAR-CP do not guarantee valid coverage, we do not
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Table 1: Average Coverage percentages (AC%) and Average Length (AL) for
90% prediction sets, across different missing rates and f estimators, averaged

over 500 new subjects and 500 repetitions in linear model with n = 1000.

Miss.(%) f  OMNI Naive ~ MAR-CP  MNAR-CP

(a) Homoskedastic
LQR 89.85(0.08) 88.36(0.11) 87.56(0.20) 89.41(0.12)
40 QRF 89.95(0.08) 79.84(0.14) 81.98(0.25) 88.60(0.19)
AC% LQR 89.85(0.08) 87.98(0.13) 86.54(0.46) 89.39(0.12)
(SEx100) 50 ORF  90.02(0.08) 77.77(0.15) 80.53(0.26) 89.09(0.19)
LQR 89.85(0.08) 87.59(0.15) 85.78(0.51) 89.46(0.15)
60 QRF 89.98(0.08) 75.28(0.18) 79.17(0.32) 88.19(0.22)
LQR 3.46(0.01) 3.51(0.01) 3.71(0.07)  4.36(0.09)
40 QRF  8.16(0.01) 7.56(0.02) 8.23(0.09)  8.71(0.07)
AL LQR 3.46(0.01) 3.55(0.01) 3.83(0.08)  4.90(0.11)
(SE) 50 GRF 8.16(0.01) 7.56(0.02) 8.27(0.08)  8.75(0.07)
LQR  3.46(0.01) 3.62(0.01) 3.89(0.05)  5.64(0.14)
60 QRF 816(0.01) 7.57(0.02) 851(0.10)  8.87(0.08)

(b) Heteroscedastic
LQR 90.07(0.09) 83.97(0.14) 83.48(0.34) 89.17(0.17)
40 QRF 90.12(0.09) 76.82(0.16) 80.17(0.29) 88.79(0.20)
ACY% LQR 90.07(0.09) 83.12(0.16) 81.93(0.47) 88.78(0.19)
(SEx100) 50 ORF 90.02(0.09) 74.18(0.18) 78.61(0.35) 88.13(0.22)
LQR 90.07(0.09) 82.68(0.19) 81.40(0.50) 89.10(0.21)
60 QRF 89.99(0.09) 71.70(0.22) 77.84(0.41) 88.27(0.24)
LQR 276(0.01) 2.31(0.01) 2.74(0.09)  6.39(0.22)
40 QRF  8.19(0.02) 7.45(0.02) 835(0.10)  8.80(0.08)
AL LQR 2.76(0.01) 2.20(0.01) 295(0.11)  7.27(0.23)
(SE) 0 QRF  8.17(0.02) 7.45(0.02) 858(0.11)  9.05(0.09)
LQR 276(0.01) 2.45(0.05) 3.30(0.13)  8.67(0.24)
60 QRF 817(0.02) 7.53(0.02) 9.02(0.13)  9.14(0.09)

OMNI: Standard conformal prediction applied to the complete data. Naive: Standard
conformal prediction applied to the observed data. MAR-CP: Weighted conformal pre-
diction with MAR weights. MNAR-CP: Proposed weighted conformal prediction with

MNAR weights. Values in parentheses are standard errors.
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Table 2: Average Coverage percentages (AC%) and Average Length (AL) for
90% prediction sets, across different missing rates and f estimators, averaged

over 500 new subjects and 500 repetitions in nonlinear model with n = 4000.

Miss.(%) f  OMNI Naive ~ MAR-CP  MNAR-CP

(a) Homoskedastic
LQR 89.97(0.06) 84.11(0.08) 86.48(0.23) 90.00(0.10)
20 QRF 89.93(0.07) 84.22(0.08) 86.64(0.23) 89.81(0.09)
AC% LQR 89.97(0.06) 82.88(0.08) 85.65(0.24) 90.00(0.11)
(SEx100) 30 ORF 89.94(0.07) 82.91(0.09) 85.77(0.25) 89.82(0.10)
LQR 89.97(0.06) 81.40(0.09) 84.80(0.28) 89.67(0.11)
40 QRF 89.96(0.07) 81.32(0.09) 84.82(0.28) 89.52(0.10)
LQR 10.71(0.02) 8.55(0.02) 12.08(0.43) 12.56(0.27)
200 QRF 10.93(0.01) 9.27(0.01) 11.82(0.34) 10.94(0.03)
AL LQR 10.71(0.02) 8.20(0.02) 11.95(0.45) 13.96(0.35)
(SE) 300 QRF 10.92(0.02) 8.96(0.01) 11.82(0.37) 10.93(0.03)
LQR 10.71(0.02) 7.86(0.02) 12.22(0.48) 15.31(0.44)
40 QRF 10.93(0.02) 8.64(0.01) 11.79(0.39) 10.90(0.03)

(b) Heteroscedastic
LQR 90.08(0.07) 82.57(0.09) 85.06(0.24) 89.83(0.11)
20 QRF 90.07(0.07) 82.55(0.09) 85.10(0.25) 89.61(0.10)
AC% LQR 90.08(0.07) 80.96(0.09) 83.89(0.27) 89.51(0.11)
(SEx100) 30 ORF 90.06(0.07) 80.80(0.09) 83.91(0.27) 89.24(0.10)
LQR 90.08(0.07) 79.18(0.09) 82.47(0.38) 89.18(0.12)
40 QRF 90.04(0.07) 78.87(0.10) 82.53(0.32) 88.67(0.11)
LQR 10.13(0.02) 7.50(0.01) 10.86(0.42) 13.02(0.37)
20 QRF 1048(0.01) 8.43(0.01) 10.91(0.33) 10.33(0.03)
AL LQR 10.13(0.02) 7.13(0.01) 10.56(0.42) 14.54(0.46)
(SE) 30 QRF 1047(0.01) 8.08(0.01) 10.49(0.32)  10.26(0.03)
LQR 10.13(0.02) 6.73(0.02) 11.02(0.50) 15.51(0.49)
407 QRF 1047(0.01) 7.70(0.01) 10.93(0.40)  10.09(0.03)

OMNI: Standard conformal prediction applied to the complete data. Naive: Standard
conformal prediction applied to the observed data. MAR-CP: Weighted conformal pre-
diction with MAR weights. MNAR-CP: Proposed weighted conformal prediction with

MNAR weights. Values in parentheses are standard errors.
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further discuss their interval lengths. Our proposed method, MNAR-CP,
yields slightly wider intervals than OMNI. This is expected because OMNI
uses fully observed outcomes with equal weights, whereas MNAR-CP relies
on the estimated weights, which increase variability and reduce the effective
sample size, resulting in wider intervals. The variation across the estima-
tors f reflects the model-free property of our method with respect to the
regression model Y | X. The LQR-based fis correctly specified under the
linear setting (Table [I) but misspecified under the nonlinear setting (Ta-
ble , whereas the QRF-based fis a flexible nonparametric estimator that
does not rely on parametric model assumptions. In both cases, our method
achieves valid coverage, with the misspecified method yielding longer pre-
diction intervals in order to maintain coverage. In addition, Figure S2 in the
Supplementary Material provides a visual comparison of density estimates

across different regression model specifications.

5. Analysis of the ACTG 175 Data

In this section, we apply our proposed method to a dataset from the AIDS
Clinical Trials Group Protocol 175 (ACTG 175; Hammer et al., 1996),
which is available in the R package speff2trial. Specifically, this dataset

includes 2,139 HIV-infected patients who were randomly divided into four
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Table 3: Description of covariates in the ACTG175 data.

Variable Description

gender Male and female

race White versus non-white

wtkg Weight in kilogram

days Days until the first occurrence of: (i) a CD4 count decline of at

least 50, (ii) an AIDS progression event, or (iii) death
cd40 CD4 count
cd420 CD4 count
cd80 CD8 count
cd820 CDS8 count

cells/mm?) at baseline
cells/mm?) around 20 weeks after treatments
cells/mm?) at baseline

—~ Y~~~

cells/mm?) around 20 weeks after treatments

groups based on the regimen received: (I) zidovudine (ZDV) monotherapy
with 532 subjects; (II) ZDV + didanosine (ddI) with 522 subjects; (III)
ZDV + zalcitabine with 524 subjects; and (IV) ddI monotherapy with 561
subjects. For illustrative purposes, we consider only the patients in group
(I); the analyses for the other groups are similar.

To evaluate the effectiveness of HIV treatment, a key strategy is to
monitor CD4 cell counts in HIV-positive patients, with increases typically
indicating improved health. Consequently, a practical problem is to predict
the CD4 cell count of a new patient following treatment. Let Y denote
the CD4 cell count measured approximately 96 weeks after treatment, with
39.66% of the observations missing due to loss to follow-up. We assume
that this missingness is related to its underlying value and is therefore

nonignorable, as Hogan and Laird (1997) and Yuan and Yin| (2010) found
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Table 4: Average Coverage percentage (AC%) and Average Length (AL) for
90% prediction sets, across different f estimators, averaged over leave-one-out

cross-validation on 321 observed subjects.

~

7 Naive MAR-CP  MNAR-CP

LQR 92.52(0.39)  91.90(0.42)  90.03(0.50)

ACR(SEXI00)  oRp  90.03(0.50)  90.65(0.47)  91.28(0.44)
LQR 366.35(3.44) 382.76(10.55) 352.17(9.03
AL(SE) (8.44) ( ) (9.03)

QRF  352.44(3.89) 363.53(7.03) 308.93(7.14)

Naive: Standard conformal prediction applied to the observed data. MAR-CP: Weighted
conformal prediction with MAR weights. MNAR-CP: Proposed weighted conformal

prediction with MNAR, weights. Values in parentheses are standard errors.

that patients with low CD4 cell counts are more likely to miss scheduled
study visits than those with normal counts. To determine the covariates
X, we consider the variables used in |Zhao et al. (2021)) and |[Li et al.| (2023)),
while further incorporating the importance measure function from |[Athey
et al.| (2019) to assess the importance of variables with respect to Y. Finally,
we selected 8 covariates as detailed in Table 3, We adopt a semiparametric
propensity score model and, following Wang et al.| (2021)), use gender and
race as instrumental variables Z, assuming that the missingness propensity
is conditionally independent of Z given Y and other covariates U.

We compare three methods, Naive, MAR-CP, and MNAR-CP, under

the same weight and density estimation settings as in Section [} Method
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Figure 1: Comparison of 90% prediction intervals by Naive, MAR-CP and MNAR-CP
methods for 10 randomly selected subjects. The points show the true values, and the

horizontal axis shows the subject indices.

performance is evaluated via leave-one-out cross-validation, where each sub-
ject is treated as the test case and the remaining samples are used for train-
ing and calibration. To calculate coverage, we use only the 321 subjects with
observed responses, and the results are reported in Table MNAR-CP
achieves nominal coverage while producing significantly shorter intervals,
particularly with the QRF estimator, thereby demonstrating greater effi-
ciency. Although the Naive and MAR-CP methods also attain nominal
coverage, this reflects accuracy only on the observed distribution, because
coverage is computed over observed cases and unobserved cases cannot be
evaluated without ground truth.

To more comprehensively evaluate predictive performance, we compare
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the interval lengths for each subject individually across the three methods,
focusing on QRF for conditional density estimation because it is more ef-
fective than LQR. We found that 87.82% of the intervals from MNAR-CP
are shorter than those from Naive, and 89.70% are shorter than those from
MAR-CP. Additionally, we present the prediction intervals for 10 randomly
selected patients in Figure [I] further illustrating that MNAR-CP provides

more efficient predictions for the majority.

6. Discussion

In this paper, we go beyond classical statistical inference for parameters
under nonignorable missing data to develop a new approach for uncer-
tainty quantification. We propose both non-localized and localized MNAR-
weighted conformal prediction frameworks for constructing prediction sets
for new test data, where the localized version is applied when personalized
inference and conditional coverage at each point are desired. Importantly,
we also introduce a novel conditional density estimation that leverages the
observed data to identify the density function along the quantile process.
This conditional density estimator can be readily incorporated into our
framework, enabling the resulting predictions to achieve not only approxi-
mate marginal coverage but also local and asymptotic conditional coverage.

There are other interesting directions for future research. Our method
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is robust to misspecification of the conditional density, but it requires the
propensity score to be consistently estimated. This model reliance may
be relaxed by adopting alternative identification strategies that impose ad-
ditional structural assumptions. For example, [Li et al| (2023) propose a
nonparametric estimation framework based on a representer equation and
a shadow variable assumption. In addition, it is meaningful to conduct sen-
sitivity analyses for conformal prediction under missing data mechanisms
that violate the MAR assumption. One possible approach is to introduce

an odds ratio—based sensitivity model (Jin et al. 2023; [Yin et al., 2024).

Supplementary Materials

The online Supplementary Materials provided detailed technical proofs,

high-dimensional extensions, and additional numerical experiments.
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