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Abstract: Existing methods for handling nonignorable missing data often rely

on strong modeling assumptions, making them vulnerable to model misspecifi-

cation. This paper proposes a conformal prediction framework for constructing

prediction sets under nonignorable missing responses, which is model-free for the

outcome regression while relying on a consistently estimated propensity score.

Our framework addresses two central challenges posed by nonignorable missing-

ness: non-identifiability and the lack of data exchangeability. The key idea is to

construct the highest conditional density prediction set using a local subset near

the target point, while correcting for selection bias via modeling the missingness

mechanism. Within this framework, we develop a bias-adjusted semiparametric

method for conditional density estimation, which fits a quantile process to the

observed data and corrects for bias using propensity weights. This estimator

integrates seamlessly into the conformal framework, allowing our approach to

guarantee not only marginal coverage, but also local and asymptotic conditional

coverage for any new subject, while achieving asymptotically optimal interval

lengths. We demonstrate the validity and efficiency of our procedure through

simulation studies and an application to a real HIV-CD4 dataset.
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1. Introduction

Quantifying predictive uncertainty is a critical task in statistical model-

ing, especially in applications that demand reliable decision support. In

practice, however, missing responses are common in both experimental and

observational studies, which greatly complicates the problem. Such miss-

ingness often arises from subject dropout, unavailable measurements, or

data loss, and these factors are frequently related to the response variable

itself. For example, in the ACTG 175 study (Hammer et al., 1996), pa-

tients with declining CD4 cell counts were more likely to miss follow-up

visits, suggesting that nonresponse may be informative (Hogan and Laird,

1997; Yuan and Yin, 2010). This type of missingness is referred to as non-

ignorable missingness or missing not at random (MNAR; Little and Rubin,

2019). Since the likelihood of missing data depends on the latent response,

it leads to data imbalance and parameter non-identifiability, which pose

significant challenges for prediction and uncertainty quantification. In this

paper, we address these challenges by proposing a framework for construct-

ing prediction sets for a new subject’s response Y , conditional on covariates
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X, when the training data contain nonignorable missingness.

Although there is a rich body of work on parameter estimation and con-

fidence interval construction under nonignorable missingness (e.g., Zhao and

Shao, 2015; Zhao and Ma, 2022; Li et al., 2022, 2023; Tian et al., 2025), pre-

dictive inference in this setting remains relatively underexplored. Existing

methods typically rely on correctly specifying the regression model Y | X,

which is challenging in the presence of missing responses. To alleviate the

impact of model misspecification, Zhao et al. (2020) proposed a generalized

empirical likelihood method that does not specify the outcome model but

assumes a fully parametric missing data mechanism; Miao et al. (2024) and

Sun et al. (2026) proposed semiparametric methods that are doubly robust

with respect to the correct specification of either the missing mechanism

or the outcome regression; Li et al. (2023) proposed a fully nonparametric

approach that avoids modeling both the missingness mechanism and the

outcome regression by leveraging instrumental variables and imposing ad-

ditional structural conditions for identification. However, these methods

focus on asymptotic inference for fixed parameters or functionals and do

not directly support predictive inference for a random outcome. In our

work, we directly construct prediction sets for a new, unseen response. The

method is model-agnostic with respect to the outcome regression Y | X,
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while relying on a correctly specified parametric or semiparametric model

for the missingness mechanism to address non-identifiability.

Our proposed method builds on the framework of conformal inference

(Vovk et al., 2005; Shafer and Vovk, 2008; Lei et al., 2018), which offers a

flexible and model-agnostic approach for constructing prediction sets with

finite-sample coverage guarantees. A key strength of conformal prediction

is its ability to accommodate any predictive model, including black-box

methods, provided that the data are exchangeable. However, this crucial

assumption is violated under nonignorable missingness, where selection bias

makes the observed data no longer exchangeable with the full population,

thereby rendering standard conformal prediction invalid. Several studies

have explored conformal prediction under non-exchangeable data. For ex-

ample, Tibshirani et al. (2019) introduced a weighted conformal prediction

framework to handle covariate distribution shifts between training and test

data. This idea has been extended to several domains, including causal

inference (Lei and Candès, 2021; Jin et al., 2023; Yin et al., 2024), sur-

vival analysis (Candès et al., 2023; Gui et al., 2024), and policy evaluation

(Zhang et al., 2023). While this line of work informs our thinking, directly

applying weighted conformal prediction in our setting is challenging. Unlike

previous methods that only adjust for selection bias based on fully observed
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X, our framework must additionally address systematic bias introduced by

partially observed Y , which gives rise to non-identifiability issues.

This paper addresses the challenges of non-exchangeability and non-

identifiability arising from nonignorable missingness, with key innovations

and contributions highlighted in three main aspects. First, we introduce a

novel MNAR-weighted conformal prediction framework for predicting out-

comes in new subjects, where the training data exhibit nonignorable miss-

ingness. This framework quantifies and corrects the selection bias and non-

exchangeability induced by missingness via density ratio weighting, while

flexibly incorporating parametric or semiparametric models for the miss-

ingness mechanism to tackle identifiability challenges. Unlike conventional

methods (Tibshirani et al., 2019; Lei and Candès, 2021) that account only

for covariate shift, our framework provides a more comprehensive correction

for selection bias that arises from the joint distribution of X and Y .

Second, to achieve conditional coverage, we target the highest con-

ditional density region of Y given x, while using the profile distance to

partition the covariate space and identify a local subset whose conditional

density profiles are similar to that of the target point x. This approach nat-

urally adapts the prediction set to the local structure of the data, allowing

for personalized and efficient inference. As a result, we establish theoretical
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guarantees for asymptotically optimal prediction sets that achieve local cov-

erage and approximate conditional coverage for individual subjects, going

beyond the marginal guarantees provided by standard conformal methods

(Vovk et al., 2005; Tibshirani et al., 2019). This enables personalized adap-

tation to subject-level heterogeneity, even under complex error distributions

such as asymmetric or multi-modal ones.

Third, we propose a bias-adjusted semiparametric procedure to esti-

mate the conditional density, which is needed both to identify the highest

predictive density region and to select a local subset. We first approximate

it using quantile regression on the observed data and then calibrate it using

an adjustment factor that captures the influence of Y on the missingness

mechanism, allowing us to recover the conditional distribution up to a mul-

tiplicative factor. The procedure is practical and effective, and integrates

seamlessly with the conformal prediction framework to construct valid and

efficient prediction sets that achieve the desired conditional coverage.

The remainder of the paper is organized as follows. In Section 2, we

formally present two proposed methods: non-local and localized conformal

prediction. Section 3 establishes their theoretical guarantees. The per-

formance of the proposed method is assessed through simulation studies in

Section 4, and the analysis of an AIDS clinical trial dataset in Section 5. The
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online Supplementary Materials contain technical proofs, high-dimensional

extensions, and additional numerical experiments.

2. Proposed Method

2.1 Setup and Motivation

Let Y ∈ Y denote the univariate response of interest and X ∈ X rep-

resent the p-dimensional covariates, where X is fully observed, but Y is

subject to nonignorable missingness. Define δ as the missingness indicator

for Y , where δ = 1 if Y is observed and δ = 0 otherwise. Nonignor-

able missingness implies that even after conditioning on X, the propen-

sity score P(δ = 1|X, Y ) still depends on the potentially missing Y . Let

F (x, y, δ) denote the joint distribution of the latent variables (X, Y, δ), and

let {(Xi, Yi, δi) : i = 1, . . . , n} be independent and identically distributed

draws from F (x, y, δ). Given a new subject (Xn+1, Yn+1) ∼ F (x, y), our

goal is to predict the unknown response Yn+1, based on the observed data

{(Xi, δiYi, δi) : i = 1, . . . , n} and Xn+1. Denote the prediction set as

Ĉ(Xn+1;α), a subset of Y , which satisfies the coverage guarantee,

P{Yn+1 ∈ Ĉ(Xn+1;α)} ≥ 1− α, (2.1)
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2.1 Setup and Motivation

for a given miscoverage level α ∈ (0, 1), where the probability P is taken

over all the randomness in the data.

If the data is fully observed, we can directly use standard conformal

prediction methods Vovk et al. (2005); Shafer and Vovk (2008); Lei et al.

(2018) to construct prediction sets that ensure marginal validity (2.1). How-

ever, when the response variable is missing, selection bias in the observed

data causes a distribution shift from the test data,

{(Xi, Yi) : δi = 1} ∼ F (x, y | δ = 1) and (Xn+1, Yn+1) ∼ F (x, y), (2.2)

posing a significant challenge as it violates data exchangeability and ren-

ders standard conformal prediction invalid. To address this challenge, we

introduce a weighted correction to conformal prediction that adjusts for

nonexchangeability by accounting for the joint effect of X and Y in the

missingness mechanism.

Moreover, our goal is not just to satisfy the coverage lower bound (2.1)

but to achieve more efficient predictions. To this end, we identify the highest

conditional density set of Y as the prediction set, ensuring that the length

is asymptotically optimal for any error distribution. However, conditional

density estimation is particularly challenging in cases of non-ignorable miss-

ingness, where the absence of Y results in distributional non-identifiability

(Robins and Ritov, 1997; Miao et al., 2016). To address this challenge,
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2.2 MNAR-weighted Conformal Prediction

we develop a bias-adjusted semiparametric method for conditional density

estimation that fits the quantile process to observed data and incorporates

weights derived from the missingness propensity model to correct for bias.

2.2 MNAR-weighted Conformal Prediction

The core idea of our method is to select all candidate values y ∈ Y that are

consistent with the model trained on the observed data. To evaluate this

consistency, we define a nonconformity score R(Xn+1, y) that measures how

much y deviates from the model — higher scores indicate greater deviation.

Then, we include all candidates in the prediction set if their nonconformity

scores are smaller than a certain threshold, which is chosen as the estimated

(1− α)-quantile of R (Xn+1, Yn+1) to ensure (1− α) coverage (2.1).

Specifically, we randomly split the observed data into two parts: a

training set Dt for constructing the nonconformity score function and a cal-

ibration set Dc for determining the threshold. The nonconformity score

function is defined as a mapping from a data point to a real number,

R(x, y) : X ×Y → R, which measures how well (x, y) aligns with the model

trained on Dt. Although the nonconformity score can be chosen flexibly

without affecting the coverage guarantee, its choice significantly influences

the size of the prediction set. To ensure prediction efficiency, we use the

9

Statistica Sinica: Newly accepted Paper 



2.2 MNAR-weighted Conformal Prediction

negative estimated conditional density as the nonconformity score,

R(x, y) = −f̂(y | x), (2.3)

where f̂ denotes the estimated conditional density of Y given x. Under this

scoring rule, higher density indicates better consistency between the data

point (x, y) and the estimated model f̂ . Compared to standard residual-

based methods (Shafer and Vovk, 2008; Lei et al., 2018), our experience

shows that the conditional density-based approach can yield shorter predic-

tion intervals, especially under complex error distributions such as skewed

or bimodal ones. However, estimating the conditional density is challeng-

ing under nonignorable missingness. We propose an effective estimator that

uses only fully observed data, with a suitable correction informed by the

missing mechanism; see Section 2.4 for details.

To determine the threshold, we need an estimate of the (1−α)-quantile

of R(Xn+1, Yn+1). Under exchangeability, this quantile can be obtained

from the empirical distribution of nonconformity scores on the calibration

set Dc. However, when missingness is present, the distribution shift (2.2)

between the observed data and the test point makes this empirical quantile

unreliable, and prediction coverage is no longer guaranteed. To overcome
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2.2 MNAR-weighted Conformal Prediction

this issue, we derive the distribution function of R(Xn+1, Yn+1) as:

P(Xn+1,Yn+1)∼F (x,y){R(Xn+1, Yn+1) ≤ r}

= E(X,Y )∼F (x,y|δ=1) [w(X, Y ) I{R(X, Y ) ≤ r}] , (2.4)

where w(X, Y ) = f(X, Y )/f(X, Y | δ = 1) is referred to as a density-ratio

weight function. This form of weighting is closely related to the covariate

shift weights in (Tibshirani et al., 2019), but allowing for a more general

setting. We estimate the weights using the training set Dt, and the corre-

sponding estimation procedure together with the associated identifiability

issues are discussed in Section 2.5. Given the distribution in (2.4), we

approximate it by constructing a weighted empirical distribution function

based on the observed data. Specifically, let the observed calibration set be

Dobs
c = {i ∈ Dc : δi = 1}. Then, using the augmented set Dobs

c ∪{(Xn+1, y)},

with y as a candidate value for Yn+1, we construct the corresponding em-

pirical distribution function:

∑
i∈Dobs

c

ϖi(y) I{R(Xi, Yi) ≤ r}+ϖn+1(y) I{R(Xn+1, y) ≤ r}, (2.5)

where the normalized weight is given by:

ϖi(y) =
w(Xi, Yi)∑

j∈Dobs
c

w(Xj, Yj) + w(Xn+1, y)
, i ∈ Dobs

c ,

ϖn+1(y) =
w(Xn+1, y)∑

j∈Dobs
c

w(Xj, Yj) + w(Xn+1, y)
.
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2.2 MNAR-weighted Conformal Prediction

Therefore, the (1− α) quantile from the empirical distribution (2.5) is the

desired threshold, denoted as r̂α(Xn+1, y). The prediction set can be con-

structed as the set of all y such that R(Xn+1, y) ≤ r̂α(Xn+1, y). We sum-

marize the overall procedure in Algorithm 1.

Algorithm 1: MNAR-weighted Conformal Prediction

Input: Dataset {(Xi, δiYi, δi) : i = 1, . . . , n}, test point Xn+1,

candidate grid Ygrid = {y1, y2, . . . } ⊆ Y, target level α ∈ (0, 1).

1 Split the data into two equal-sized subsets Dt and Dc.

2 Use Dt to fit the nonconformity score R(x, y) and the weight w(x, y).

3 for y ∈ Ygrid do

4 Use Dc ∪ (Xn+1, y) to compute the threshold r̂α(Xn+1, y), i.e., the

(1− α) quantile of (2.5).

Output: Return the (1− α) prediction set

Ĉ(Xn+1;α) = {y : R(Xn+1, y) ≤ r̂α(Xn+1, y)}.

Remark 1 (Numerical Implementation). Our conformal prediction set is

defined by inverting a hypothesis test over the response space. When the

response is continuous, the resulting prediction region is a (possibly discon-

nected) subset of R. In practice, we obtain this region by evaluating the

fitted nonconformity score on a fine grid Ygrid = {y1, y2, . . . } ⊆ Y , which

provides a numerical approximation to the boundary of the conformal set.

The grid is typically chosen as a set of uniformly spaced points with a pre-

specified resolution over an empirical range (Chen et al., 2018; Lei, 2019).

Our method follows the split conformal prediction paradigm (Lei et al.,
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2.3 Localized Prediction

2018), in which the nonconformity score and the weight function are fitted

once on Dt and then held fixed. As a result, the grid search involves only

forward evaluations of these two fitted functions, allowing the grid reso-

lution to be increased to improve numerical accuracy at small additional

computational cost.

2.3 Localized Prediction

The method introduced in Section 2.2 achieves valid marginal coverage (see

Theorem 1). However, in many applications, it is desirable to provide per-

sonalized predictions by ensuring valid coverage guarantees for each new

individual xn+1. To this end, we propose an enhanced approach—localized

prediction—that partitions the feature space and identifies a local calibra-

tion dataset within the same cluster as xn+1 for constructing the prediction,

thereby reducing the discrepancy between calibration and xn+1 to better

approximate conditional coverage.

Specifically, we use K-means clustering to partition the covariate space,

based on the profile distance proposed by Izbicki et al. (2022), defined as

d2(x1,x2) :=

∫ ∞

0

{
Gf (t | x1)−Gf (t | x2)

}2
dt, (2.6)
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2.3 Localized Prediction

where Gf (t | x) denote the conditional CDF of f(Y |X), given by

Gf (t | x) = P(f(Y | X) ≤ t | X = x) =

∫
{y:f(y|x)≤t}

f(y | x)dy, (2.7)

and can be estimated by Ĝf̂ (t | x) =
∫
{y:f̂(y|x)≤t} f̂(y | x)dy. The profile dis-

tance measures the overall similarity between the profiles of the conditional

densities f(Y | X). It not only aligns well with our nonconformity score but

also performs effectively in high-dimensional settings. Let An(Xn+1) denote

the local subset of the calibration Dobs
c that belongs to the same cluster as

Xn+1. The prediction set is then obtained by constructing an empirical dis-

tribution similar to (2.5), with Dobs
c replaced by An(Xn+1). We summarize

the overall procedure in Algorithm 2.

Algorithm 2: Localized MNAR-weighted Conformal Prediction

Input: Dataset {(Xi, δiYi, δi) : i = 1, . . . , n}, test point Xn+1,

candidate grid Ygrid = {y1, y2, . . . } ⊆ Y, target level α ∈ (0, 1),

number of clusters.

1 Split the data into two equal-sized subsets Dt and Dc.

2 Use Dt to (i) fit the nonconformity score R(x, y) and the weight

w(x, y), and (ii) perform K-means clustering in the covariate space

based on the profile distance (2.6).

3 Define An(Xn+1) ⊂ Dc as the subset sharing the same cluster as Xn+1.

4 for y ∈ Ygrid do

5 Compute the threshold r̂α(An;Xn+1, y) as the (1− α) quantile of

(2.5) with Dobs
c replaced by An(Xn+1) ∪ (Xn+1, y).

Output: Return (1− α) prediction set

Ĉ(Xn+1;α) = {y : R(Xn+1, y) ≤ r̂α(An;Xn+1, y)}.
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2.4 Conditional Density Estimation

2.4 Conditional Density Estimation

Most existing work on nonignorable missing data focuses on parameter es-

timation, with limited attention paid to the entire density function. In this

section, we propose a bias-adjusted semiparametric approach to estimate

the conditional density (2.3) by fitting the quantile process to the fully ob-

served data, with an appropriate correction for the missingness mechanism.

In particular, we model conditional quantiles rather than the conditional

density directly, since the density admits a simple and natural represen-

tation in terms of quantiles, and model diagnosis and assessment can be

more conveniently conducted on conditional quantiles. This representation

allows us to leverage a wide range of existing quantile regression methods to

estimate the conditional density in a flexible and robust way, even in high-

dimensional settings. In contrast, existing methods, such as kernel-based

approaches, tend to become increasingly difficult to implement and tune as

the covariate dimension increases.

Our approach is motivated by two equivalent decompositions of the joint

distribution of y and δ = 1 given x, namely P(δ = 1 | x, y)f(y | x) and f(y |

x, δ = 1)P(δ = 1 | x). Therefore, we can derive the relationship between

the conditional distribution of the response and that of the observed data:

f(y | x) = ρ(x, y)f(y | x, δ = 1), (2.8)
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2.4 Conditional Density Estimation

where ρ(x, y) = P(δ = 1 | x)/P(δ = 1 | x, y) is the adjustment factor,

capturing how the probability of being observed changes when y is further

taken into account given x. This adjustment gives more weight to data

points whose observation probabilities are smaller, conditional on x.

We propose to estimate f(y | x) based on equation (2.8), by first using

the fully observed data to estimate f(y | x, δ = 1), and then correcting

it with ρ(x, y). To estimate f(y | x, δ = 1), we propose a semiparametric

approach by fitting a quantile process based on the observed data. The

key idea is that the conditional density can be related to the conditional

quantile function through the following relationship:

f{QY (τ | x, δ = 1) | x, δ = 1} =

{
dQY (τ | x, δ = 1)

dτ

}−1

, (2.9)

where QY (τ | x, δ = 1) is the τ -th conditional quantile of Y given x and

δ = 1. Therefore, according to (2.9), we can construct quotient-type density

estimates (Siddiqui, 1960), given by:

f̂
{
Q̂Y (τ | x, δ = 1) | x, δ = 1

}
=

2hn

Q̂Y (τ + hn | x, δ = 1)− Q̂Y (τ − hn | x, δ = 1)
,

(2.10)

where Q̂Y denotes the estimated conditional quantile function, and hn is a

bandwidth parameter tending to zero as n → ∞. To estimate the density

f̂(y|x, δ = 1) for any y ∈ Y , we first compute the density along the quantile

16
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2.4 Conditional Density Estimation

process {Q̂Y (τ1|x, δ = 1), . . . , Q̂Y (τκ|x, δ = 1)} using (2.10), at a set of

quantile levels τ1 < · · · < τκ. We then apply a smoothing technique, such

as linear interpolation, to recover a continuous estimate of the full density

function. Note that the conditional quantiles in (2.10) can be estimated

using any suitable method on the observed data Dt without affecting the

coverage guarantee, such as linear quantile regression (Koenker, 2005), high-

dimensional penalized quantile regression (Belloni and Chernozhukov, 2011;

Tan et al., 2022; Qiu et al., 2026), or nonparametric approaches like quantile

random forests (Meinshausen, 2006; Athey et al., 2019).

To estimate the adjustment factor ρ(x, y), we can directly obtain an

estimate of P(δ = 1 | x, y) through the weight function estimation process

in Section 2.5. Additionally, the propensity P(δ = 1 | x) can be easily

estimated using binary classification methods, such as logistic regression or

gradient boosting, based on the fully observed data {(Xi, δi)}. We provide

further discussion on conditional density estimation in high-dimensional

settings in Section S2 of the Supplementary Material.

It is important to note that we do not use the quotient-type density to

directly estimate f(y | x), as estimating the conditional quantile QY (τ | x)

is particularly challenging under nonignorable missingness in Y , and typi-

cally requires specifying parametric models or making additional assump-

17

Statistica Sinica: Newly accepted Paper 



2.5 Weight Estimation

tions (Zhang and Wang, 2020; Yu et al., 2023).

2.5 Weight Estimation

If the weight function is known, the constructed prediction set guarantees

(1 − α) coverage in a finite sample without any additional assumptions.

However, in most applications, the weight function is unknown and needs

to be estimated. To this end, we first derive the weight function as follows:

w(x, y) =
f(x, y)

f(x, y|δ = 1)
=

f(x)

f(x|δ = 1)
· f(y|x)
f(y|x, δ = 1)

=
P(δ = 1)

P(δ = 1|x)
· P(δ = 1|x)
P(δ = 1|x, y)

∝ 1

P(δ = 1 | x, y)
.

(2.11)

It follows that the weight function is entirely determined by the missing

propensity score P(δ = 1 | x, y). If the missing mechanism is Missing at

Random (MAR), the weight function depends only on x. Therefore, it can

be directly estimated based on the fully observed data (x, δ). However,

under non-ignorable missingness, the weight function also depends on the

missing y, making its identification and estimation more challenging.

Robins and Ritov (1997) and Miao et al. (2016) pointed out that, under

nonignorable missingness, identifiability remains a major challenge even

when both the missingness mechanism P(δ = 1 | x, y) and the outcome

model f(y | x) are specified. To address this issue, many studies impose

parametric or semi-parametric models while adding extra assumptions. We

18
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2.5 Weight Estimation

adopt several existing options to model the missingness mechanism.

Model 1 (Parametric Model). For nonignorable missing data, a

commonly used missingness mechanism is the logistic regression model:

P(δ = 1 | X, Y ) =
1

1 + exp(α +X⊤β + Y γ)
,

where (α,β, γ) are unknown parameters. Under this model, Liu et al. (2022)

further assumes that f(y | x, δ = 1) follows a finite-dimensional parametric

model, leveraging the information from fully observed X to resolve the

identifiability issue and estimate (α, β, γ).

Model 2 (Semiparametric Model). To mitigate the risk of model

misspecification, a more flexible semiparametric model can be adopted:

P(δ = 1 | X, Y ) =
1

1 + g(U)q (Y,γ)
, (2.12)

where q(Y,γ) is a parametric function with an l-dimensional unknown pa-

rameter γ, g(·) is an unknown nonparametric function, and U ⊂ X denotes

a subset of covariates that the missingness mechanism depends on. Define

Z = X \U as the nonresponse instrumental variables, which are related to

the response variable but excluded from the missingness mechanism. By

appropriately selecting Z and leveraging them to construct additional esti-

mating equations, the model parameters can be rendered identifiable (Shao

and Wang, 2016). Similar instrumental variable methods, with notable in-
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novations, have been widely used (Zhang et al., 2018; Zhao et al., 2020,

2021; Li et al., 2022, 2023; Miao et al., 2024), including in high-dimensional

settings (Wang et al., 2021).

In practical applications, the selection of a parametric or semiparamet-

ric model depends on the data characteristics, while the feasibility of the

instrumental variable method is also taken into account. For simplicity,

we focus on Model 2 (Shao and Wang, 2016) in the following theoretical

derivations and numerical simulations for detailed analysis and discussion.

It is worth noting that our method is only partially model-free: it does

not require a correctly specified regression model for Y | X, but relies on

a correctly specified or consistently estimated propensity score P(δ = 1 |

X, Y ), as shown in Theorems 1 and 2. Relaxing the dependence on correct

specification of the missingness mechanism remains an open challenge.

3. Theoretical Results

In this section, we establish the coverage guarantee for the proposed pre-

diction set, beginning with the following assumption.

Assumption 1. Assume that F (x, y) is absolutely continuous with respect

to F (x, y | δ = 1)

This assumption ensures that w(x, y) is finite almost surely and that
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the empirical distribution in (2.5) is well defined, which yields the coverage

lower bound in Theorem 1 under the propensity score model (2.12).

Theorem 1. Under Assumption 1, suppose the estimated function ĝ(·) and

parameter γ̂ satisfy E(X,Y )∼f(x,y|δ=1) {ĝ(U)q(Y, γ̂) | Dt} < ∞, where U =

X\Z denotes the covariates excluding the instrumental variables. Then, for

any given α ∈ (0, 1), the proposed methods in Algorithms 1 and 2 satisfy

P{Yn+1 ∈ Ĉ(Xn+1;α)} ≥ 1− α− ∆̂marg,

where the probability is over Dc and (Xn+1, Yn+1), and

∆̂marg =
1

2
E(X,Y )∼f(x,y|δ=1)

∣∣ĝ(U)q(Y, γ̂)− g(U)q(Y,γ)
∣∣.

Theorem 1 indicates that, when the propensity score is known, the

finite-sample coverage achieves the exact (1−α) level regardless of whether

the nonconformity score is correctly specified or consistently estimated.

However, when the propensity score is unknown, the estimation bias in-

troduces an additional error term, ∆̂marg, for the coverage lower bound.

This error term is asymptotically negligible provided that the propensity

score is consistently estimated, a condition typically guaranteed under mild

assumptions (Shao and Wang, 2016; Zhao et al., 2021).

Theorem 1 shows that our method achieves average coverage over the

entire population of X, but this does not imply coverage guarantees for
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any specific x. To address this limitation, Theorem 2 establishes a stronger

result of local coverage, showing that our localized method guarantees cov-

erage for each region in a prespecified partition of the covariate space.

Theorem 2. Let A = {Aj : j ≥ 1} be a partition of the covariate space X .

Under the same assumptions as Theorem 1, for any given α ∈ (0, 1), the

localized prediction in Algorithm 2 satisfies

P{Yn+1 ∈ Ĉ(Xn+1;α) | Xn+1 ∈ Aj} ≥ 1− α− ∆̂loc, for all j,

where the probability is over Dc and (Xn+1, Yn+1), and

∆̂loc =
(1− α/2)E(X,Y )∼f(x,y|δ=1)

∣∣ĝ(U)q(Y, γ̂)− g(U)q(Y,γ)
∣∣

EX∼f(x|δ=1)w(X)I (X ∈ Aj)
.

The local validity in Theorem 2 must be interpreted in conjunction

with the resolution of the partition A: if A = X , then local validity re-

duces to marginal validity; if Aj ∈ A shrinks to a single point x, then

local validity approximates conditional validity. In our procedure, we use

K-means clustering based on the profile distance Izbicki et al. (2022) to

partition the covariate space in a data-adaptive manner. This approach

effectively captures the local structure of Y | X and better approximates

the neighborhood around a given x compared to uniform partitioning (Lei

and Wasserman, 2014). The coverage error ∆̂loc in Theorem 2 is typically

asymptotically negligible: under standard regularity conditions, consistent
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propensity score estimation ensures that the numerator approaches zero,

while the denominator remains positive because the data-driven partition-

ing usually yields regions with nonzero probability.

While Theorems 1 and 2 establish valid lower bounds on coverage, our

primary goal is to achieve optimal efficiency by constructing the smallest

possible prediction sets. To evaluate the performance of our method, we

begin by introducing the oracle prediction set, defined as the highest pre-

diction density set (Izbicki et al., 2022), which serves as a benchmark.

Definition 1. The highest prediction density (HPD) set is defined as

C(x;α) = {y : f(y | x) ≥ Qf (α | x)},

where Qf (α | x) denotes the α-th conditional quantile of the conditional

density values f(Y | x). This set satisfies the conditional coverage condition

P{Y ∈ C(x;α) | X = x} = 1 − α and has the smallest Lebesgue measure

among all sets with conditional coverage at least 1− α.

To establish a stronger result regarding efficiency, we introduce the

following additional assumptions.

Assumption 2. The weight function w(X, Y ) and its estimator ŵ(X, Y )

are almost surely bounded away from 0 and ∞. In addition, there exist
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sequences ηn = o(1) and ρn = o(1) such that

P
(
E[sup

y∈Y

∣∣ŵ(X, y)− w(X, y)
∣∣2 | ŵ] ≥ ηn

)
≤ ρn.

Assumption 3. There exist sequences ηn = o(1) and ρn = o(1) such that,

for each region Aj in the partition A,

P
(
sup
x∈Aj

sup
y∈Y

∣∣f̂(y | x)− f(y | x)
∣∣ ≥ ηn

)
≤ ρn.

Assumption 4. The conditional CDF Gf (t | x) in (2.7) is Lipschitz contin-

uous in (t,x); that is, there exists a constant L > 0 such that, for all t1, t2 ∈

R and x1,x2 ∈ Rp,
∣∣Gf (t1 | x1)−Gf (t2 | x2)

∣∣ ≤ L
(
|t1 − t2|+ d(x1,x2)

)
.

Assumption 5. For each region Aj in the partition A, the probability

mass satisfies nP{X ∈ Aj} → ∞, and the diameter supx1,x2∈Aj
d(x1,x2)

converges to zero as the partition is refined.

Assumptions 2 and 3 are not difficult to satisfy, as they only require

uniform consistency of the propensity score and the conditional density es-

timators, without imposing specific convergence rates. For example, the

propensity score estimator of Shao and Wang (2016) satisfies Assumption

2 under standard conditions for kernel estimation. Also, the conditional

density estimator in (2.8) satisfies Assumption 3 under standard regularity

conditions, as supported by existing results for linear quantile regression
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(Wang et al., 2019) and quantile random forests (Meinshausen, 2006). As-

sumption 4 ensures that the conditional CDF of the nonconformity score is

continuous with controlled local variation. This helps reduce the discrep-

ancy between the CDF and its estimate. Assumption 5 ensures that the

local region is small to accurately approximate the conditional distribution,

while containing enough data points to support reliable estimation.

Theorem 3. Under Assumptions 2–5, the localized prediction in Algorithm

2 converges to the HPD set,

P{Yn+1 ∈ C(Xn+1;α)∆Ĉ(Xn+1;α)} = o(1),

where ∆ denotes symmetric set difference, i.e., A∆B := (A∩Bc)∪(B∩Ac).

Furthermore, Ĉ(Xn+1;α) satisfies the asymptotic conditional coverage, that

is, there exists a sequence of (possibly random) sets Λn ⊂ X such that

P(Xn+1 ∈ Λn) = 1− o(1) and

sup
xn+1∈Λn

∣∣∣P{Yn+1 ∈ Ĉ(Xn+1;α) | Xn+1 = xn+1

}
− (1− α)

∣∣∣ = o(1).

Theorem 3 shows that the proposed prediction set converges to the or-

acle prediction set, implying that it is asymptotically optimal and achieves

the smallest Lebesgue measure. Furthermore, it guarantees asymptotic con-

ditional coverage for any given xn+1, a much stronger result than Theorems

1 and 2, which establish only average coverage over a region of the covariate
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space. This highlights the improved efficiency of our method. The proof is

referred to the supplementary materials.

4. Simulation Study

This section evaluates the finite-sample performance of the proposed meth-

ods in terms of marginal coverage, with conditional coverage further exam-

ined in Section S2 of the supplementary materials.

For comparison, we evaluate the performance of the following methods:

(1) OMNI: the omniscient method, which applies standard conformal pre-

diction using the true responses Y for all observations, with no missingness.

This method serves as a gold standard but is unachievable in real-world set-

tings. (2) Naive: standard conformal prediction applied to fully observed

data, i.e., excluding data points with missing responses. (3) MAR-CP:

weighted conformal prediction based on MAR weights. This is implemented

by setting q (Y,γ) = 1 in the propensity (2.12). (4) MNAR-CP: the pro-

posed weighted conformal prediction using MNAR-based weights.

We consider two models: a linear model and a nonlinear model. In

both cases, the covariate vector X = (Z,U) includes a discrete instru-

mental variable Z, where Pr(Zi = 1) = 0.2, Pr(Zi = 2) = 0.4, and

Pr(Zi = 3) = 0.4. The remaining covariates, Uij ∼ N(Zi/10, 1) for

1 ≤ j ≤ 10. The missingness indicator follows δ ∼ Bernoulli(π). The out-
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come and missingness are generated as follows. (1) In the linear model,

Yi = Zi +
∑10

j=1 Uij + ϵi and πi = {1 + exp(a − 0.1
∑10

j=1 Uij + 0.65Yi)}−1.

(2) In the nonlinear model, Yi = Zi + 0.5
(∑10

j=5 Uij

)2
+ ϵi and πi =

{1+exp(a−0.1(
∑10

j=5 Uij)
2+0.4Yi)}−1. We consider both homoscedastic

errors ϵi ∼ N(0, 1) and heteroscedastic errors ϵi ∼ Gamma(0.5Zi, 0.5Zi).

The parameter a is set as a =-3.5, -3, -2.5, which correspond to missing

rates of approximately 40%, 50%, and 60% in the linear model, and 20%,

30%, and 40% in the nonlinear model.

We focus on the non-localized prediction from Algorithm 1, which is

sufficient for evaluating marginal coverage. The localized prediction from

Algorithm 2 is evaluated separately in Section S2 of the supplementary

materials. In our non-localized prediction, we set Ygrid to be a grid of

200 uniformly spaced points over the empirical range of the observed re-

sponses. The weight is obtained from equation (2.11), where the propen-

sity score P(δ = 1 | x, y) is estimated using the method of Wang et al.

(2021). The conditional density is estimated using equation (2.8), where

f(y | x, δ = 1) is obtained via the quotient method (2.10) with quantile lev-

els {1/32, . . . , 31/32}. The bandwidth hn is chosen using the bandwidth.rq

function from the R package quantreg, ensuring that hn converges to zero

at the rate of n−1/3. To estimate the conditional quantile QY (τ | x, δ = 1),
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we employ two methods: linear quantile regression (LQR) and quantile

random forest (QRF), implemented using the R packages quantreg and

grf, respectively. For the adjustment factor ρ(x, y) in (2.8), we estimate

P(δ = 1 | x) using the gradient boosting method via the R package gbm,

and directly use the estimate of P(δ = 1 | x, y) from the weight estimation.

We repeat the simulation 500 times. In each replication, we generate

datasets with n = 1000 and n = 4000 samples to construct prediction

sets with 90% nominal coverage, while evaluate their performance on an

additional 500 data points (Xn+1, Yn+1), . . . , (Xn+500, Yn+500). The coverage

probabilities and interval lengths for different models and sample sizes are

shown in Tables 1–2, with part of the results deferred to the supplementary

material for brevity. It can be seen that the proposed MNAR-CP method

nearly maintains the nominal 90% level, with standard errors comparable

to those of OMNI when n = 4000. However, the Naive and MAR-CP

methods consistently exhibit undercoverage, as they do not correct for the

joint effect of missingness on both X and Y . As a result, even when MAR-

CP produces intervals with lengths comparable to those of MNAR-CP, its

biased weights lead to miscalibrated conformity scores, causing the method

to fail to achieve nominal coverage.

Since Naive and MAR-CP do not guarantee valid coverage, we do not
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Table 1: Average Coverage percentages (AC%) and Average Length (AL) for

90% prediction sets, across different missing rates and f̂ estimators, averaged

over 500 new subjects and 500 repetitions in linear model with n = 1000.

Miss.(%) f̂ OMNI Naive MAR-CP MNAR-CP

(a) Homoskedastic

AC%
(SE×100)

40
LQR 89.85(0.08) 88.36(0.11) 87.56(0.29) 89.41(0.12)

QRF 89.95(0.08) 79.84(0.14) 81.98(0.25) 88.60(0.19)

50
LQR 89.85(0.08) 87.98(0.13) 86.54(0.46) 89.39(0.12)

QRF 90.02(0.08) 77.77(0.15) 80.53(0.26) 89.09(0.19)

60
LQR 89.85(0.08) 87.59(0.15) 85.78(0.51) 89.46(0.15)

QRF 89.98(0.08) 75.28(0.18) 79.17(0.32) 88.19(0.22)

AL
(SE)

40
LQR 3.46(0.01) 3.51(0.01) 3.71(0.07) 4.36(0.09)

QRF 8.16(0.01) 7.56(0.02) 8.23(0.09) 8.71(0.07)

50
LQR 3.46(0.01) 3.55(0.01) 3.83(0.08) 4.90(0.11)

QRF 8.16(0.01) 7.56(0.02) 8.27(0.08) 8.75(0.07)

60
LQR 3.46(0.01) 3.62(0.01) 3.89(0.05) 5.64(0.14)

QRF 8.16(0.01) 7.57(0.02) 8.51(0.10) 8.87(0.08)

(b) Heteroscedastic

AC%
(SE×100)

40
LQR 90.07(0.09) 83.97(0.14) 83.48(0.34) 89.17(0.17)

QRF 90.12(0.09) 76.82(0.16) 80.17(0.29) 88.79(0.20)

50
LQR 90.07(0.09) 83.12(0.16) 81.93(0.47) 88.78(0.19)

QRF 90.02(0.09) 74.18(0.18) 78.61(0.35) 88.13(0.22)

60
LQR 90.07(0.09) 82.68(0.19) 81.40(0.50) 89.10(0.21)

QRF 89.99(0.09) 71.70(0.22) 77.84(0.41) 88.27(0.24)

AL
(SE)

40
LQR 2.76(0.01) 2.31(0.01) 2.74(0.09) 6.39(0.22)

QRF 8.19(0.02) 7.45(0.02) 8.35(0.10) 8.80(0.08)

50
LQR 2.76(0.01) 2.29(0.01) 2.95(0.11) 7.27(0.23)

QRF 8.17(0.02) 7.45(0.02) 8.58(0.11) 9.05(0.09)

60
LQR 2.76(0.01) 2.45(0.05) 3.30(0.13) 8.67(0.24)

QRF 8.17(0.02) 7.53(0.02) 9.02(0.13) 9.14(0.09)

OMNI: Standard conformal prediction applied to the complete data. Naive: Standard

conformal prediction applied to the observed data. MAR-CP: Weighted conformal pre-

diction with MAR weights. MNAR-CP: Proposed weighted conformal prediction with

MNAR weights. Values in parentheses are standard errors.
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Table 2: Average Coverage percentages (AC%) and Average Length (AL) for

90% prediction sets, across different missing rates and f̂ estimators, averaged

over 500 new subjects and 500 repetitions in nonlinear model with n = 4000.

Miss.(%) f̂ OMNI Naive MAR-CP MNAR-CP

(a) Homoskedastic

AC%
(SE×100)

20
LQR 89.97(0.06) 84.11(0.08) 86.48(0.23) 90.00(0.10)

QRF 89.93(0.07) 84.22(0.08) 86.64(0.23) 89.81(0.09)

30
LQR 89.97(0.06) 82.88(0.08) 85.65(0.24) 90.00(0.11)

QRF 89.94(0.07) 82.91(0.09) 85.77(0.25) 89.82(0.10)

40
LQR 89.97(0.06) 81.40(0.09) 84.80(0.28) 89.67(0.11)

QRF 89.96(0.07) 81.32(0.09) 84.82(0.28) 89.52(0.10)

AL
(SE)

20
LQR 10.71(0.02) 8.55(0.02) 12.08(0.43) 12.56(0.27)

QRF 10.93(0.01) 9.27(0.01) 11.82(0.34) 10.94(0.03)

30
LQR 10.71(0.02) 8.20(0.02) 11.95(0.45) 13.96(0.35)

QRF 10.92(0.02) 8.96(0.01) 11.82(0.37) 10.93(0.03)

40
LQR 10.71(0.02) 7.86(0.02) 12.22(0.48) 15.31(0.44)

QRF 10.93(0.02) 8.64(0.01) 11.79(0.39) 10.90(0.03)

(b) Heteroscedastic

AC%
(SE×100)

20
LQR 90.08(0.07) 82.57(0.09) 85.06(0.24) 89.83(0.11)

QRF 90.07(0.07) 82.55(0.09) 85.10(0.25) 89.61(0.10)

30
LQR 90.08(0.07) 80.96(0.09) 83.89(0.27) 89.51(0.11)

QRF 90.06(0.07) 80.80(0.09) 83.91(0.27) 89.24(0.10)

40
LQR 90.08(0.07) 79.18(0.09) 82.47(0.38) 89.18(0.12)

QRF 90.04(0.07) 78.87(0.10) 82.53(0.32) 88.67(0.11)

AL
(SE)

20
LQR 10.13(0.02) 7.50(0.01) 10.86(0.42) 13.02(0.37)

QRF 10.48(0.01) 8.43(0.01) 10.91(0.33) 10.33(0.03)

30
LQR 10.13(0.02) 7.13(0.01) 10.56(0.42) 14.54(0.46)

QRF 10.47(0.01) 8.08(0.01) 10.49(0.32) 10.26(0.03)

40
LQR 10.13(0.02) 6.73(0.02) 11.02(0.50) 15.51(0.49)

QRF 10.47(0.01) 7.70(0.01) 10.93(0.40) 10.09(0.03)

OMNI: Standard conformal prediction applied to the complete data. Naive: Standard

conformal prediction applied to the observed data. MAR-CP: Weighted conformal pre-

diction with MAR weights. MNAR-CP: Proposed weighted conformal prediction with

MNAR weights. Values in parentheses are standard errors.
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further discuss their interval lengths. Our proposed method, MNAR-CP,

yields slightly wider intervals than OMNI. This is expected because OMNI

uses fully observed outcomes with equal weights, whereas MNAR-CP relies

on the estimated weights, which increase variability and reduce the effective

sample size, resulting in wider intervals. The variation across the estima-

tors f̂ reflects the model-free property of our method with respect to the

regression model Y | X. The LQR-based f̂ is correctly specified under the

linear setting (Table 1) but misspecified under the nonlinear setting (Ta-

ble 2), whereas the QRF-based f̂ is a flexible nonparametric estimator that

does not rely on parametric model assumptions. In both cases, our method

achieves valid coverage, with the misspecified method yielding longer pre-

diction intervals in order to maintain coverage. In addition, Figure S2 in the

Supplementary Material provides a visual comparison of density estimates

across different regression model specifications.

5. Analysis of the ACTG 175 Data

In this section, we apply our proposed method to a dataset from the AIDS

Clinical Trials Group Protocol 175 (ACTG 175; Hammer et al., 1996),

which is available in the R package speff2trial. Specifically, this dataset

includes 2,139 HIV-infected patients who were randomly divided into four
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Table 3: Description of covariates in the ACTG175 data.
Variable Description

gender Male and female

race White versus non-white

wtkg Weight in kilogram

days Days until the first occurrence of: (i) a CD4 count decline of at

least 50, (ii) an AIDS progression event, or (iii) death

cd40 CD4 count (cells/mm3) at baseline

cd420 CD4 count (cells/mm3) around 20 weeks after treatments

cd80 CD8 count (cells/mm3) at baseline

cd820 CD8 count (cells/mm3) around 20 weeks after treatments

groups based on the regimen received: (I) zidovudine (ZDV) monotherapy

with 532 subjects; (II) ZDV + didanosine (ddI) with 522 subjects; (III)

ZDV + zalcitabine with 524 subjects; and (IV) ddI monotherapy with 561

subjects. For illustrative purposes, we consider only the patients in group

(I); the analyses for the other groups are similar.

To evaluate the effectiveness of HIV treatment, a key strategy is to

monitor CD4 cell counts in HIV-positive patients, with increases typically

indicating improved health. Consequently, a practical problem is to predict

the CD4 cell count of a new patient following treatment. Let Y denote

the CD4 cell count measured approximately 96 weeks after treatment, with

39.66% of the observations missing due to loss to follow-up. We assume

that this missingness is related to its underlying value and is therefore

nonignorable, as Hogan and Laird (1997) and Yuan and Yin (2010) found
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Table 4: Average Coverage percentage (AC%) and Average Length (AL) for

90% prediction sets, across different f̂ estimators, averaged over leave-one-out

cross-validation on 321 observed subjects.

f̂ Naive MAR-CP MNAR-CP

AC%(SE×100)
LQR 92.52(0.39) 91.90(0.42) 90.03(0.50)

QRF 90.03(0.50) 90.65(0.47) 91.28(0.44)

AL(SE)
LQR 366.35(8.44) 382.76(10.55) 352.17(9.03)

QRF 352.44(3.89) 363.53(7.03) 308.93(7.14)

Naive: Standard conformal prediction applied to the observed data. MAR-CP: Weighted

conformal prediction with MAR weights. MNAR-CP: Proposed weighted conformal

prediction with MNAR weights. Values in parentheses are standard errors.

that patients with low CD4 cell counts are more likely to miss scheduled

study visits than those with normal counts. To determine the covariates

X, we consider the variables used in Zhao et al. (2021) and Li et al. (2023),

while further incorporating the importance measure function from Athey

et al. (2019) to assess the importance of variables with respect to Y . Finally,

we selected 8 covariates as detailed in Table 3. We adopt a semiparametric

propensity score model and, following Wang et al. (2021), use gender and

race as instrumental variables Z, assuming that the missingness propensity

is conditionally independent of Z given Y and other covariates U.

We compare three methods, Naive, MAR-CP, and MNAR-CP, under

the same weight and density estimation settings as in Section 4. Method
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Figure 1: Comparison of 90% prediction intervals by Naive, MAR-CP and MNAR-CP

methods for 10 randomly selected subjects. The points show the true values, and the

horizontal axis shows the subject indices.

performance is evaluated via leave-one-out cross-validation, where each sub-

ject is treated as the test case and the remaining samples are used for train-

ing and calibration. To calculate coverage, we use only the 321 subjects with

observed responses, and the results are reported in Table 4. MNAR-CP

achieves nominal coverage while producing significantly shorter intervals,

particularly with the QRF estimator, thereby demonstrating greater effi-

ciency. Although the Naive and MAR-CP methods also attain nominal

coverage, this reflects accuracy only on the observed distribution, because

coverage is computed over observed cases and unobserved cases cannot be

evaluated without ground truth.

To more comprehensively evaluate predictive performance, we compare
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the interval lengths for each subject individually across the three methods,

focusing on QRF for conditional density estimation because it is more ef-

fective than LQR. We found that 87.82% of the intervals from MNAR-CP

are shorter than those from Naive, and 89.70% are shorter than those from

MAR-CP. Additionally, we present the prediction intervals for 10 randomly

selected patients in Figure 1, further illustrating that MNAR-CP provides

more efficient predictions for the majority.

6. Discussion

In this paper, we go beyond classical statistical inference for parameters

under nonignorable missing data to develop a new approach for uncer-

tainty quantification. We propose both non-localized and localized MNAR-

weighted conformal prediction frameworks for constructing prediction sets

for new test data, where the localized version is applied when personalized

inference and conditional coverage at each point are desired. Importantly,

we also introduce a novel conditional density estimation that leverages the

observed data to identify the density function along the quantile process.

This conditional density estimator can be readily incorporated into our

framework, enabling the resulting predictions to achieve not only approxi-

mate marginal coverage but also local and asymptotic conditional coverage.

There are other interesting directions for future research. Our method
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is robust to misspecification of the conditional density, but it requires the

propensity score to be consistently estimated. This model reliance may

be relaxed by adopting alternative identification strategies that impose ad-

ditional structural assumptions. For example, Li et al. (2023) propose a

nonparametric estimation framework based on a representer equation and

a shadow variable assumption. In addition, it is meaningful to conduct sen-

sitivity analyses for conformal prediction under missing data mechanisms

that violate the MAR assumption. One possible approach is to introduce

an odds ratio–based sensitivity model (Jin et al., 2023; Yin et al., 2024).

Supplementary Materials

The online Supplementary Materials provided detailed technical proofs,

high-dimensional extensions, and additional numerical experiments.
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