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Abstract: High-dimensional functional data have become increasingly prevalent in
modern applications such as high-frequency financial data and neuroimaging data
analysis. We investigate a class of high-dimensional linear regression models, where
each predictor is a random element in an infinite-dimensional function space, and
the number of functional predictors p can potentially be ultra-high. Assuming that
each of the unknown coefficient functions belongs to some reproducing kernel Hilbert
space (RKHS), we regularize the fitting of the model by imposing a group elastic-net
type of penalty on the RKHS norms of the coefficient functions. We show that our
loss function is Gateaux sub-differentiable, and our functional elastic-net estimator
exists uniquely in the product RKHS. Under suitable sparsity assumptions and a
functional version of the irrepresentable condition, we derive a non-asymptotic tail
bound for variable selection consistency of our method. Allowing the number of
true functional predictors ¢ to diverge with the sample size, we also show a post-
selection refined estimator can achieve the oracle minimax optimal prediction rate.

The proposed methods are illustrated through simulation studies and a real-data



application from the Human Connectome Project.
Key words: Elastic-net penalty; Functional linear regression; Minimax optimality;

Model selection consistency; Reproducing kernel Hilbert space; Sparsity.

1. Introduction
Modern science and technology give rise to large data sets with high-frequency

repeated measurements, resulting in random trajectories that can be mod-

eled as functional data (Ramsay and Silverman|, 2005). There has been a

large volume of literature on scalar-on-function regression models, where the

most studied model is the functional linear model (FLM); see (2002));

Miller and Stadtmiiller| (2005)); |Cai and Hall (2006)); Reiss and Ogden| (2007);

(Crambes et al.| (2009); |Cai and Yuan! (2012); (2014); [Shang and Cheng

(2015)); Liu et al|(2022), among others. With functional data belonging to an

infinite-dimensional function space (Hsing and Eubank, 2015), the sequence

of eigenvalues of the covariance operator decays to zero, rendering the covari-
ance operator non-invertible and hence the inference of the FLM a challenging
inverse problem.

There has been a recent surge in applications of high-dimensional func-
tional data analysis due to new developments in neuroimaging (e.g. fMRI and

TDI), electroencephalogram (EEG), and high-frequency stock exchange data.

For example, Qiao et al.| (2019) modeled EEG activity data from different




nodes as high-dimensional functional data and proposed a functional Gaus-
sian graphical model to study the connectivity between the nodes. Lee et al.
(2023)) considered a class of conditional functional graphical models to model
the connectivity between different regions of interest (ROI) of the brain using
fMRI data.

It is also natural to consider regression models with high-dimensional func-
tional predictors. [Fan et al. (2015)) studied variable selection procedures for
linear and non-linear regression models with high-dimensional functional pre-
dictors. Their approach was to reduce the dimension of each functional pre-
dictor by representing it as a linear combination of some known basis func-
tions and to apply a group-lasso type of penalty in model fitting. As pointed
out in |Xue and Yao| (2021)), the results in [Fan et al| (2015)) relied heavily
on the assumption that the minimum eigenvalues of the design matrices are
bounded away from zero, which ignored the infinite-dimensional nature of
functional data and essentially limited their methods to functional data reside
in a finite-dimensional function subspace. Xue and Yao (2021)), on the other
hand, focused on hypothesis testing issues in high-dimensional FLMs rather
than variable selection consistency. As Fan et al.| (2015), Xue and Yao| (2021))
also based their approach on representing functional predictors on pre-selected

basis functions and minimizing a penalized least square loss function, where



the group penalty can be flexibly chosen from lasso (Tibshirani, 1996)), SCAD
(Fan and Li, 2001) or MCP (Zhang, 2010). To the best of our knowledge,
the variable selection consistency property for the high-dimensional FLM in a
general functional-data setting remains an open problem to date.

We propose to conduct variable selection in high-dimensional FLMs un-
der the RKHS framework using a double-penalty approach, where the first
penalty resembles the group-lasso type penalty in Xue and Yao (2021), which
encourages sparsity, and the second penalty is on the squared RKHS norms
of the functional coefficients to regularize the smoothness of the fit. As shown
in (Cai and Yuan (2012), the RKHS approach can outperform the principal
component regression approach when the coefficient functions are not directly
spanned by the eigenfunctions of the functional predictors. Many of the ex-
isting high-dimensional functional regression approaches including [Fan et al.
(2015) and Xue and Yao| (2021) are similar in spirit to the principal component
regression in which both the functional predictors and the coefficient functions
are expressed using the same set of basis functions. Our approach offers the
extra flexibility of picking the reproducing kernel based on the application
and thus can outperform the existing methods when the coefficient functions
are “misaligned” with the functional predictors as described by |Cai and Yuan

(2012). Our double penalization method resembles a group-penalized version



of the elastic-net (Zou and Hastie, 2005), where the two penalties enforces
sparsity and stabilizes the solution paths, respectively. It is well known that
the lasso alone tends not to work well when the predictors are highly corre-
lated, while the elastic-net may offer a more stable solution path and better
prediction performance under high collinearity.

One of the main contributions of the present paper is providing a the-
ory that addresses variable selection consistency for high-dimensional FLMs.
In the scalar case that they considered, Zou and Zhang (2009) established a
variable selection consistency result for the elastic-net. However, the nonin-
vertibility of the design matrices of the functional predictors in our problem
makes it necessary to create a completely new proof. Another important con-
tribution of our paper is that we develop the minimax optimal prediction rate
for the high-dimensional FLMs, where the number of true functional predic-
tors ¢ is allowed to grow to infinity with the sample size n. We show that
a post-selection, refined estimation of the high-dimensional FLM using our

RKHS approach can achieve such a minimax optimal rate.

2. Functional Elastic-Net Regression

2.1 Model Assumptions

Let L3 [0, 1] be the Lo-space of square-integrable, measurable functions on [0, 1],

equipped with the inner product (f, g)s = fol f(t)g(t)dt and functional norm



2.1 Model Assumptions

Ifll2 = (f, f>é/2, for any f,g € Ly[0,1]. We will also be concerned with the
p-fold product space of L5[0,1] containing elements f = (fi,...,f,)" with
each f; € Ly[0,1], [|fll2 = (X2)-, 1 £i13)Y? < co and inner product (f,g)s =
> (fingi)e for f = (fi,., f)',9 = (91,.--,95)". Let ® be the outer
product associated with either inner product such that f®g defines an operator

(f ® g)h = f{g,h)2. In this paper, we consider a high-dimensional FLM:

p
Y; :Z<Xij76j>2+€ia t=1,...,m, <2'1)

J=1

where the functional predictors X;;(-) are random elements in Ly[0, 1], 5;(-)
are unknown coefficient functions in Ly[0, 1], and ¢; are iid zero-mean random
errors with variance o?. Without loss of generality, assume that both Y; and
X;(t) are centered at 0, i.e., EY; = 0 and EX;;(t) =0fort € [0,1], j =1,...,p,
so that no intercept is needed in (2.1)).

Consider X;o = (Xi1,...,X;)", i = 1,...,n, as iid zero-mean random
vectors, with the covariance operator 4 defined as € = E(X;1,..., X)) ®
(Xi,...,Xp). Note that we do not assume that the functional predictors are
independent. It is convenient to view % as a p X p operator-valued matrix
{€)} where €VU9) = E(X;; ® X,;) is the cross covariance operators of
X;; and X;. Denote Y, = (Yi,....Y)", €, = (e1,...,6,)" and X,, =

(X 1e,..., X ne)! as the n x p matrix of functional predictors. Then, the



2.1 Model Assumptions

sample covariance operator %6, is defined as

1

Go=— (X, . Xip) @ (X, X)) = EXIL ® X, (2.2)
We further assume that f5;(-) € H; := H(K), which is the reproducing kernel
Hilbert space (RKHS) with kernel K; (Wahbal, [1990)). Recall that a real, sym-
metric, square-integrable, and nonnegative definite function K(-,-) on [0,1]?
is called a reproducing kernel (RK) for a Hilbert space of functions H(K') on
[0,1] if K(-,t) € H(K) for any ¢ € [0,1] and H(K) is equipped with the inner
product such that (8, K(-,t))nx) = B(t) for any f € H(K) and any ¢ € [0,1];
the Hilbert space H(K) is then called an RKHS. With a proper choice of RK,
an RKHS provides a flexible class of functions which can also be naturally
regularized using the RKHS norm. As such, the RKHS is a useful framework
in nonparametric estimation , and functional data analysis

and Yuan, 2012; Hsing and Eubank, 2015; |Sun et al. 2018; Lee et al., [2023).

Remark 1. The choice of kernel K determines the smoothness class. Sobolev

kernels of order m (Hsing and Eubank, |2015) regulate the m-th derivative,

whereas Gaussian kernels yield infinitely differentiable functions. In contrast,

total-variation penalties, although successfully applied in scalar-on-image func-

tional regression (Wang et all |2017) with the benefits of promoting piecewise
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structure and allowing jumps, are not induced by an RKHS norm and therefore

lie outside our RKHS-based framework.

We adopt the commonly assumed setting where the total number of func-
tional predictors, p, can be much larger than the sample size n but only a
small portion of those have non-zero effects on the response. Denote the sig-
nal set as . = {j € {1,...,p} : Var((Xy;, Bj)2) = (B;, €9 B;)5 # 0} and the

non-signal set as .¢ = {1,...,p}\.7, and write ¢ := |.¥|.

2.2 Functional Elastic-Net Based on RKHS

In order to regularize the solution as well as to enforce sparsity in 8 =
(Bi,...,By)", we assume B € H := ® H;, which is the direct product of
the RKHS (Hsing and Eubank! [2015)), and estimate it by

fg:argmin{%i(yz Z(xw,ﬁj ) +ZPen6], } (2.3)

peH i=1 j=1

where Pen(f;; A) is the functional elastic-net penalty to be specified below
with A denoting a vector of tuning parameters.

Following |Cai and Yuan| (2012)), for any symmetric positive semi-definite

kernel R(-,-), denote .Zx as the integral operator (ZLxf)(-) = fol R(s,)f(s)ds,

f € Ly[0,1]. Suppose R has a spectral decomposition R(s,t) = ZJ 1 HJR R(s )c,p] (t).

Then its square root is defined as R'?(s,t) = 72 (07)1/20f(s)@f(t), and

Zri2 is the associated square-root integral operator. For a matrix of kernel
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functions R = (Rij)iﬁl, let g : LT — L% be the corresponding matrix of op-

k
i=

erators such that Lrf = <Z;n:1 Q?Rijfj> X for any f = (f1,..., fm)" € L

By (1990) and [Cai and Yuan| (2012)), for any positive semi-definite ker-

nel K and any 5 € H(K), there exists an f € Ly[0, 1] such that § = Zy1.2f.

If K is not strictly positive definte, then multiple f’s satisfy this relationship.
However, there is always a unique f satisfying ||B||nx) = [/f|]2- The ridge
regularization term in our objective (introduced later) guarantees the identi-
fiability of this representative. Without causing any confusion, we use || - |2
to denote the norm of Ly functions or vectors of L, functions as well as the
Euclidean norm in RP.

Let 8, = gK;/ij for all j and denote f = (f1,...,f,)". Then B =
L2 f where K(s,t) = diag(Ky,...,K,)(s,t). Define )?ij = XK;/QXU,
,)?Z-. = ()A(Cﬂ, o ,)A(C,;p)T, and jf/n = (/)\(/1., . ,Xn.)T. Thus, the theoretical and
empirical covariance of f)\(/i. are 7 = Cov(f)\(/i.) = Y1126 Ly and T, =
L1206, Ly = n*1}: ®3(/n. Define M,,; = Span{)zij(-),i =1,... ,n} and
M. the orthogonal complement of M,;. With the above Ly representation f

J

of 3, the loss function in (2.3) can be rewritten as

1

(f) = %(ﬁf,fh — <E/X/1—|1—Yn7f> + %HYnH% + ZPen(fj;)\). (2.4)
2 ey

We propose to use the following functional elastic-net penalty
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A
Pen(fj; A1, A2) = A ||W; fjll2 + §2||fj\|§, A1, A2 > 0,

where ¥; is an operator on L[0, 1] satisfying the following condition.

C.1. For j =1,...,p, ¥, is a self-adjoint operator such that ¥;f € M,; for
all f € M,;. Assume that there exist positive constants 0 < Chyin < Chax <

oo such that, uniformly for all j, the eigenvalues of V; are in the interval

[Cmim Cmax] .

Remark 2. (i) The Ly-norm || ;]2 in Pen(f;; A1, A2) corresponds to the RKHS

norm || B;||n,, @ commonly used norm in functional regression problems (cf.

\and Yuan, |2012).

(i) A simple choice for V; is W; = 7, the identity operator, based on which
the penalty Pen(fj; M1, A2) includes both || fill2 and ||f;]|3 and resembles an
elastic-net (cf. |Zou and Hastié, [2005) version of the group lasso
. In the high-dimensional functional regression setting,

2021)) considered a penalty that focused on the amount of variation X;

explains rather than the norm of f;. Their penalty translates in our setting to
Mn V23 (X, Bi)3)Y? = )\1H{%(j’j)}1/2fjH2 where 77 s the empirical

covariance off)z.j = ()N(U, e 7)N(,,Lj)T or the (j, j)th entry of Z,,. The approach

in | Xue and Yao (2021) does not penalize the squared norm, but both X; and

B; are represented by a growing but finite number of basis functions, which
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effectively sets a lower bound on the smallest eigenvalue of %(j"j). In our
setting, we can achieve similar effects by setting ¥; = (C%(j’j) +0.7)12, where

0 > 0 provides a floor to the smallest eigenvalue of V; and is treated as a

tuning parameter.

Note that the functional estimator, /f, is defined as the solution that min-
imizes (2.4) over an infinite-dimensional space L%[0, 1]. The following proposi-
tion establishes that the minimization problem is indeed well defined and any

minimizer must be in a finite-dimensional subspace.

Proposition 1. Suppose that Condition C[1] holds. Then, for each j =

1,...,p, any minimizer ]/“; of (2.4) must be in the space M,,;.

The proof of Proposition (1| uses the ideas of the well-known representer
theorem for smoothing splines (Wahbal, [1990). The fact that the minimizer of
is in a finite-dimensional subspace allows us to establish its uniqueness
in Proposition [2] below.

Next, we develop the convex programming conditions in the functional

space that characterize the optimizer of (2.4). For the classical lasso problem

(Tibshirani, [1996), the Karush-Kuhn-Tucker (KKT) condition is used to char-

acterize the solution (cf. |Zhao and Yu, 2006; Wainwright| 2009)), where sub-

gradients are used in place of gradients due to the nondifferentiability of the

lasso objective function. Similarly, in the function space, the objective func-



tion (2.4) is not always differentiable because of the group-lasso-type penalty
on ||V, f;|l2. In Section S.1.1, we review the definition of Gateaux differentia-
bility and define the corresponding notion of sub-differential. With these in

mind, we state the following result.

Proposition 2. Let B, be the true value of B in Model , and fo =
(for,- -+, fop) " be the corresponding LYy surrogate such that By, = Ly fo-
Suppose Condition C holds. Then, for all \i,\s > 0, the solution } for

(2.4) exists uniquely and satisfies

To(F = £o) = Gn + Nof + Mw =0, (2.5)
il D
where g, = n"" X, €,, and w; = II‘I’JfH if f; 70 and w; = VY;n; for some n;
ifill2

with ;]2 <1 if f; =0.

Equation ([2.5)) is referred to as the functional KKT condition for the op-

timization problem ([2.4) and plays a central role in establishing Theorem

3. Theoretical Results

3.1 Consistency property of variable selection

In this section, we establish the consistency property of variable selection using
our approach. Even though the normality assumption is not essential to our

methodology, in order to get sharp results that are comparable with those in
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the literature, we assume that the rows of X,,, 7 = 1,...,n, are iid zero-mean
Gaussian random vectors with each element lies in L,[0, 1], and ¢; L (0,07).
Note that Gaussianity is invoked only to obtain exponential concentration; our
current theory does not cover genuinely heavy-tailed designs or errors. Recall
the definitions of . and ? = (]?1, e ]?p)T in Sections and , respectively,
and define % = { jed{l,...,p}: f; + O}. Then, variable selection consistency
is achieved when .7 = ..

We collect here some notation used throughout the paper. Let H; and
H, be two Hilbert spaces and &/ : Hi — H; be a compact linear operator
mapping from H; to Hy. Then the Ly operator norm is defined as |7y =
sup ey, |47 f1l2/ fll2 which is the maximum singular value of «7; if Hy = H,
and & is self-adjoint, the trace of & is tr(@) = >, Aj(«/), which is the

sum of all eigenvalues. For any f € L5[0, 1], || f|leo := max; || f;]|2; for any r x s

7,8

operator-valued matrix ./ = (&7;);;_;, where each /; maps from L;|0, 1]

to L3[0, 1], define the norm ||.</|

ap = SUp|gy.<1 | fllp for a,b € {2,00}.
For any index sets . and .%, .72 is the submatrix of ./ with rows
in .7 and columns in .%. This notation is used for matrices of operators,
such as 6, 7, and Z,. Consistent with this notation, 707 = Cov(Xj) is
the jth diagonal element of 7, and define %(j 9 = 7G3) 4 \.F for any A > (

where .# is the identity operator. Let &) = diag{.70%) j € .#} be the



3.1 Consistency property of variable selection

operator-valued matrix that only contains the diagonal terms of ) and
let 277 = 2 1 \g.

In addition to Condition C[I} we need the following conditions.

C.2. Each Y9 is standardized such that || 79|y = 1, with its trace uni-

formly bounded by a finite constant T, i.e., sup,cq }tr(ﬂ(j’j)) <.

,,,,, 72

C.3. Define »(X\3) = )Hy(f,y)(g:\(sz)>_1‘

‘ . Assume that for some v €

(0, 1], we have 3(\p) - ’Hg(yc’y)(g(‘y’%)_H|OO7OO < (Chin/Chmax) (1 — ), where

(T~ is the Moore-Penrose generalized inverse of T+,

< 1.

00,00

C.4. R(\y) = H((gw,«sﬂ) _ 20 (@)

Remark 3. (i) Condition C[d places a mild constraint on the decay rate of
(i1) Condition C@ controls the correlation between functional predictors in the
true signal set . and those in the non-signal set .#¢. This assumption is
related to the so-called “irrepresentable condition” on model selection consis-
tency of the classical lasso (Zhao and Yu, |20006;|Wainwright, |2009), the classi-
cal elastic-net (Jia and Yu, |2010), and the sparse additive models (Ravikumar
et all, [2009). Condition C|3 becomes harder to fulfill when s(X2) is large or
when Cin/Cuax 18 small. However, when the predictors in . and in /¢ are
uncorrelated, then ||| 7 (9'('5”"5”))*‘“00700 = 0 and the assumption holds

trivially.
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(iii) Condition C[j| puts constraints on the correlations between the predictors
in the true signal set .#, so that none of the true predictors can be represented
by other predictors in .. When the predictors in . are uncorrelated, then

N(A2) = 0 and CJJ trivially holds.

To gain a deeper understanding of Conditions C2FC[] an example will be
provided in Section S.1.2 where the functional predictors have a partially sepa-
rable covariance structure (Zapata et al., [2021)). To state the variable selection
consistency properties of our approach, we further assume without loss of gen-

erality that ||f,s

s« = 1 below. Also, the symbol D* and similar symbols
below will denote universal constants in (0, 00) that arise from inequalities,
whose values change from line to line but do not depend on the model param-
eters, sample size, or regularization parameters. The specific expressions of
universal constants may be complicated and do not add to the understanding

of the results. With these in mind, define the following conditions on Ay, As:

3 /21 +0) [log(p —q)
M/ >(=—2)C2L. Df >\ > D
1/ 2 <,y > max’ 1,1 1 1,2 Omin’y n ’
\ , T(L+0o)(pr+1) qloglp —q) [¢?

where p; denotes the largest eigenvalue of 7+”) and D14, Dia, D5y, D55 are
universal constants. It is worth emphasizing that by carefully separating the

model /regularization parameters with universal constants, our nonasymptotic
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results below can be readily used to state asymptotic results for which some
or all of the parameters could change with n. An example of that is provided
in Corollary [1| below.

Finally, define the signal set containing predictors with “substantial” pre-
dictive power S = {j € & : ||[(ZUN)2f;||, > G}, where G € (0,00);
recall ||(7U9)Y2f,12 = E(X}, B;)3. The variable selection consistency of our

functional elastic-net approach is given in the following result.

Theorem 1. Consider the functional elastic-net problem (2.4]). Suppose that
Conditions C—C’B and (3.6)) hold. Then 7 exists uniquely, and (i) and (ii)

below hold with probability at least

)\%n * (Omin/ Omax)7 ?
1 —exp (_DT> ,  where D =D (71/2(p1 Do+ (3.7)

for some universal constant D*.
(i) The estimated signal set is contained in the true signal set, i.e. g7

(i1) Under the additional Condition C'. we have & > .S for
12 — 8R(\o)
= ——— | Cmax\/ AT/ A2 + 2V X2 ],
G =T (G0 4 2V0)

and, in particular, if S = %, then = and variable selection consistency

18 achieved.
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Remark 4. (i) Part (i) of Theorem[]] guarantees a sparse solution for the func-
tional elastic-net where all predictors in the non-signal set are eliminated. By
examining (3.6) and , we can see that increasing Ay (and, consequently,
A1) leads to a higher probability of eliminating the non-signals. Condition
also implies that, as the correlation of predictors between the signal and non-
signal sets increases (i.e., decreasing value of 7y ), larger values of A1, Ao, A1 /Ao
are required. Moreover, larger values of v, smaller values of T, and reduced
o? (resulting in a decreased correlation between . and ./, faster eigenvalue
decay for each TU9) | and a higher signal-to-noise ratio, respectively) enhance
the functional elastic-net’s ability to accurately identify the signal set.

(i) Part (11) of Theorem |1 provides conditions that prevent the functional
elastic-net from removing the true signals and thus guarantees that the predic-
tors identified by the functional elastic-net are not overly sparse. Large values
of A1, A1/ A2, and X(Xg) result in a larger gap G, making signal detection more
challenging. This is understandable because a large sparsity penalty can lead
to the removal of true signals, especially when there is a strong correlation.

(111) Condition (3.6) requires that the lower bound of A\ must be of the rate
w to control sparsity. This is similar to the lower bound of the reqular-

ization parameter of the lasso (see Theorem 3 of Wainwright, |2009). Our the-

ory also requires a lower bound for Ay to control both the smoothness and vari-
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ance offj. The roles of Ay in functional linear regression have been discussed
by many (see, e.g., |Cai and Yuan, |2012). The classical (finite-dimensional)
elastic-net optimization (Zou and Hastie, |2005) includes lasso as a special
case, with Ao = 0. Howewver, this is not feasible in the infinite-dimensional
functional setting. To understand it, consider classical high-dimensional data
(in the scalar setting) and let ¥ be the q X q covariance matriz of the true
predictors. A common assumption to avoid collinearity in that setting is to
bound the minimum eigenvalue of 3o away from zero (Zhao and Yu, 20006,
Wainwright, |2009), which is why \s could be taken as zero. We cannot bound
the eigenvalues of T that way in the functional setting because it con-
tradicts the intrinsic infinite dimensionality of functional data; in fact, the
sequence of eigenvalues for T7+7) shrinks to zero even if all the predictors in

< are uncorrelated.

Following|Cai and Yuan| (2012]), we also study the excess risk as a metric to

- 2
measure the prediction accuracy of the estimator Z (f) = E < T (XG foj — fj>2) ,

o~

where )?4: is a copy of X, io- The excess prediction risk of our estimator, f,
is obtained by plugging ? in Z (f). The following result describes the excess

prediction risk of the functional elastic-net estimator.

Theorem 2. Assume that Conditions C’C’.@ and (3.6) hold. Then, the

~

excess risk satisfies Z(f) < q(4CpaxA1 + 4y + C?

max

A2 /X)) with probability
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bounded below by the expression in (3.7)).

Next, we discuss asymptotic results readily derived from Theorems [1f and
by allowing p, ¢ as well as the model/regularization parameters to vary with
the sample size n. To facilitate the discussion, denote a; =< by for two positive
sequences {ax}52, and {bx}2, if ¢1 < ag/br < o for some 0 < ¢; < 3 < 0
and for all k. The following corollary is a direct result of Theorem [2, the proof

of which is in the Supplementary Material.

Corollary 1. Assume that Conditions C.-C@ and hold, where C\i, and
v are bounded away from 0, and py, 02, 7, and Cpay bounded away from oo.
Let a(p, q,n) := max <q, \/m, \/m> and assume that qa(p, q,n) =
o(n'/?).  Then, for some sufficiently large constant D, the probability that

R (:f) > Dn~'2qa(p, q,n) infinitely often is 0.

Remark 5. Consider a high dimension FLM setting where q < n°® for some
0 < ¢ < 1/4, and suppose all functional predictor in the signal set have
about the same contribution to the variation of the response such that G =
minjes ||(ZUINV2f . < 1/,/q. By Theorem (i1), we can choose \; <
Ao < (1/q) to guarantee recovery of the signal set . Condition is also
satisfied if logp = O(n'=%), which is an ultra-high-dimensional FLM setting.
Under this setting and with the choice of tuning parameters described above,

the probability bound in (3.7) goes to 1 which ensures variable selection consis-
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tency; the condition qa(p,q,n) = o(n'/?) in C’orollary is also satisfied, and

we can conclude X (}) — 0 almost surely.

3.2 Oracle minimax optimal rate and a post-selection refined esti-

mator

Cai and Yuan| (2012) established the minimax lower bound of the excess pre-
diction risk for univariate FLM with ¢ = 1. Such a lower bound is yet to be
established for high-dimensional FLMs. In this subsection, we first investigate
the minimax lower bound of the excess prediction risk under the oracle model,
where . is known and the true number of functional predictors ¢ is allowed
to diverge with the sample size n. We need the following conditions for our

results.

C.5. For each j € .7, the k-th eigenvalue of 7 U9 is bounded by ck=2" for

some ¢ € (0,00) and r > 1/2. For some b € (0,00),

<b (3.8)

2,2

sup
a>0

H (Qc(yy,y)) -1/2 ga(y,y) (Q((ly,y)) -1/2

Condition C requires that the eigenvalues of each .7U4) | j € .7, to decay
in a polynomial rate, which is the same assumption made in (Cai and Yuan
(2012). By requiring r > 1/2, each .70 is a linear operator that belongs to
the trace class, which includes the Hilbert-Schmidt operators. Condition CJ5]

trivially holds when Z) = 2(+*) meaning that the functional predictors



3.2 Oracle minimax optimal rate and a post-selection refined estimator

are uncorrelated. When the functional predictors have a partially separable
covariance structure, (3.8)) holds in mild conditions (see supplementary ma-
terials). The following proposition and its corollary further illustrate what

Condition C[H entails.

Proposition 3. Assume holds, we have Ap(T77)) < bAL(L)),
where A, (T 7)) and A, (27)) denote the k-th largest eigenvalues of T+7)
and 277 respectively.
Corollary 2. Assume Condition C.@ holds, let {py = N(T)) Y51 be the
eigenvalues of T) in a decreasing order, then Patb—1)+j < be- k™% for any
k>1andj=1,...,q.

Corollary |2 is a direct result of Proposition |3 and is essential in deriving

the minimax lower bound in the following theorem.

Theorem 3. Let & (r) be the class of covariance operators satisfying Condi-

tion CIA Then

lim lim inf sup sup P (%(f/) > a(n/q)*zfﬁ> =1,

a0n=00 Fo 27 eP(r) Foyr€ld
where the infimum is taken over all possible predictors ]}vy based on the training
data {(X;9,Y:), 1 =1,...,n}.

Theorem [3| provides the oracle minimax lower bound for the excess pre-

diction risk of the high dimensional FLM, which reduces to the lower bound
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of |Cai and Yuan (2012) if ¢ = 1. By comparing this result with Corollary

-~

we can see that the excess risk of the functional elastic-net, Z(f), is at a rate

~1/2 which in turn is slower than the oracle minimax rate in

slower than (n/q)
Theorem [3| when r > 1/2. This is understandable, since the primary goal of
functional elastic-net is to perform variable selection. Suppose all assumptions
in Theorem (1| hold and .%¥ = %, the functional elastic-net estimator enjoys

variable selection consistency and can help us find an estimated signal set 7

that satisfies the following condition.

C.6. lim,,_. SUP7(#.7) e (r) SUP, , €LY P (5” #* 5”) = 0.

This motivates us to refine our FLM estimator within the selected signal
set with the goal of improving the excess prediction risk,
n

2
Fo=amgnind =57 (Ve SR | +AY G (9

fi€la . ~ ~
/ i=1 jes jes

The refined estimator is a special case of the functional elastic-net esti-
mator in Section by including functional predictors in 2 only and setting
the ¢; penalty to 0, as the focus has shifted away from variable selection. As
such, f 7 can be calculated the same way as the functional elastic-net with a

minimum modification to the algorithm.

Theorem 4. Assume Conditions C[3-Clf| hold, and the number of true signals

2r—1

satisfies ¢ = o <n7> Then



lim lim sup sup P <=%’()?§) > A(n/q)‘%) =0,

A—00 n—oo 9(&/;7{5/1) cPp (T) nyELg

provided that A3 =< (n/q)~2/Cr+1),

Theorem {f shows that our refined estimator achieves the oracle the
minimax rate in Theorem [3 which is determined by the rate of decay of the
eigenvalues of the operator Z”>”). When ¢ is a constant that does not grow
~2r/(2r 1)

with n, the minimax rate for the excess risk is on the order of n

consistent with the findings in (Cai and Yuan (2012).

4. Implementation and Numerical Studies

4.1 Practical Implementation

Proposition (1| provides an expression for the exact solution to the optimiza-
tion problem , where each ]/c; is a linear combination of 35.]-. However,
such a solution is not scalable to big data and ultra-high dimensions, since
there are a total of np parameters to estimate. In this subsection, we propose
a computationally-efficient algorithm to fit the model based on the idea of
reduced-rank approximations, which has been widely used in semiparametric
regression (Ruppert et al., 2003) and spline smoothing (Ma et al.| 2015). Our
low-rank approximation shares a similar spirit as the eigensystem truncation
approach proposed by Xu and Wang| (2021)) for a low-rank approximation of

smoothing splines.
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Since f; falls in the subspace spanned by 35.]-, it can be well approximated
by the eigenfunctions of G ), which is the empirical covariance of 35.]-. Let
@;(t) = (¢j1,- .. pjm,) " (t) be the first M; eigenfunctions of Z,99 such that
fo @;(t)p] (t)dt = I, and we approximate f; with fi(t) = @, (t)c;. Define

fo «j(t)p! (t)dt and H; fo Wi0,)(t) (¥ ;)T (t)dt. We reparame-

terize the coefficient vectors as d; = H ;/ 2cj, and solve the group elastic-net

problem ([2.4]) iteratively using a block coordinate-descent algorithm. At co-
. . . . () —-1/2

ordinate j, we fix dj for j' # j, define Y, =Y, — Zj,;éj r'yH, / dj, and

update d; by

N (1
d; = argmin {Ed;rﬁjdj -0/ d; + )\1||dj||2} : (4.10)

d; erMj

where Q; = H; Y2 (ATTT; + My, ) H; ? and g, = n— H; *TTY.

Proposition (4| provides the solution to the minimization problem (4.10)).
Proposition 4. For \; > 0, the solution c/i\] for (4.10) exists. Furthermore,
if llojlla < A1, then c@ = 0; if lgjlla > A1, then c@ # 0 and c/l\j is the solution
to Q;d; — g; + ud;[|d;[l;" =0

We can solve cij by iteratively updating d; < (£; + )ledeglIMj)_l Q;

until convergence. Since the objective function (4.10]) is the combination of
a convex and differentiable least squares loss and a convex penalty, the block

coordinate-wise algorithm is guaranteed to converge to the global minimum
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(Friedman et al., 2007).

For the refined estimator in (3.9)), no iteration is needed since there is no
¢y penalty involved. Write f](t) = t,ojT(t)Ej for each j € 2= {J1,J2, - Jg}-

Then, the coefficient vectors can be calculated as

S N 4 T
(c‘ ...,cjd) == (51“5;1“524r AgI) rLy,,
where I' > = (an e ’Fja) is the design matrix for functional predictors in
the estimated signal set.
In most applications, the functional predictors are observed on N equally
spaced points, the kernel functions K; are evaluated as NV x /N matrices, K;/Q
are computed via the spectral decomposition of K, and all integrals can be

approximated using Riemann sums on the observed discrete points. As dis-

cussed in [Zhou et al.| (2023)), the incurred errors by these approximations are

negligible when N is sufficiently large.

4.2 Simulation Studies

We simulate the functional predictors as Xy;(t) = v/2 > ks1 Zigk/Vi cos(kmt),

(i=1,...,n,5=1,...,p), where z;x = (211, ..., 2ipr) | ~i.i.d. Normal(0,X,),
and X, is an autoregressive correlation matrix with the (j, k)th entry being

plP=F 1 < k,j < p. We generate the response Y by the high-dimensional

functional linear regression model ({2.1]), using coefficient functions under one
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of the three scenarios described below and setting ¢; ~ Normal(0, o = 0.5%).
For each scenario, we consider three correlation levels between the functional
predictors, p = 0, 0.3 and 0.75, and three settings for the problem size: a high
dimension and high sample size setting with (n,p,q) = (500,50,5), a high
dimension and low sample size setting with (n,p,q) = (200,100,5), and an
ultra-high dimension setting with (n,p, ¢) = (100,200, 10). For simplicity, we
set the signal set to be & = {1,...,q}, and set fo;(t) = 4> ;- (=1)"*repp(t),
for j € .7, where the basis functions ¢ (t) and coefficients 7, are to be spec-
ified below, uj; are i.i.d. Bernoulli random variables with P(u;, = 1) = 0.5.
Inspired by (Cai and Yuan (2012)), we consider the following three scenarios for
{D(t), i, v}

Scenario I: ¢(t) = V2 cos(krt), and vy, = rp = exp(—k/4), for k > 1;
Scenario II: ¢(t) = V2sin(krt), and v, = r, = exp(—k/4), for k > 1;
Scenario I: ¢ (t) = V2cos(knt), r, = k2, and vy, = (|k — ko| + 1)~ for
k > 1, where we set ko = 10.

Scenario I represents a case where the functional predictors and the co-
efficient functions are perfectly aligned. Not only they are spanned by the
same set of cosine functions, but the eigenvalues v, and the coefficients r; both
monotonically decay with k. In other words, the signals most important to Xj;

also contribute the most to Y;. As shown by |Cai and Yuan! (2012), 8y; under
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this scenario belong to an RKHS with the RKHS norm ||8]|n = { [ (8”)7}'/2,
and the reproducing kernel K'(s,t) = —3[Ba(|s —t[/2) + By{(s+1t)/2}], where
B, is the kth Bernoulli polynomial.

Scenarios I and Il represent various cases of misalignment. Under Sce-
nario I, X;; and fy; are spanned by different bases. Using similar derivations
as (Cai and Yuan| (2012)), we can show [y; belong to an RKHS with the repro-
ducing kernel K (s,t) = —5[Bu(|s — t|/2) — Bs{(s+1t)/2}]. Under Scenario II,
the maximum mode of variation in Xj; is contributed from a high-frequency
cosine function with k£ = kg, however, these high-frequency signals do not con-
tribute much to the response because the corresponding r’s are small. Even
though the polynomial decay of the coefficient r, = k=2 in Scenario Il is
slower than the exponential series 1, = exp(—k/4) in the asymptotic sense, as
it turns out exp(—k/4) > k=2 for k < 26. As such, there are practically more
random components that contribute to the variations in X;; and the response
Y; under Scenarios I and 1II.

We repeat the simulation 200 times for each scenario, each level of corre-
lation, and each problem size. For each simulated data set, we also simulate
an additional sample of 100 data pairs of (X,Y") as testing data to evalu-
ate the prediction performance. We apply our proposed functional elastic-net

(fEnet) method to each simulated data set and make a comparison with the
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method proposed by Xue and Yao (2021), which is to equip high-dimensional

functional linear regression with a SCAD penalty (Fan and Li, [2001) and thus

termed FLR-SCAD. For FLR-SCAD, there are two tuning parameters, the
SCAD penalty parameter A and the number of basis functions s; to represent
both the functional predictor and the coefficient functions. For a fair compar-
ison, we set the basis of FLR-SCAD to be the true basis ¢(t) as described
above. For the proposed fEnet, we set ¥, = (%(j D19 )1/2 and hence end up
with four tuning parameters (A, a, s, and 6), where A\ = a), Ay = (1 — a)\,
and s is the number of eigenfunctions used in the reduced rank approximation
described in Section 4.1} For both methods, the tuning parameters are selected
based on a grid search that minimizes the averaged mean square prediction
error using the testing sample so that the results reported here represent the
best possible performance of the two. For a single tuning configuration, fEnet
matches FLR-SCAD in runtime (around 3 seconds at the optimal tuning pa-
rameter in the ultra-high—dimensional case). Since fEnet is insensitive to the
basis size s, we fix s and parallelize cross-validation to keep total cost low.
We use false positive rate (FPR) and false negative rate (FNR), defined as
FPR= Lé\ﬂ /€| and FNR= |ﬁ N.7|/|-7|, to assess the variable selec-
tion performance, and we use the maximum norm difference (MND) to gauge

the signal recovery performance, where MND is defined as the maximum of
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the Ly norm of BJ — Boj for 7 = 1,...,p. In order to make results from the
three scenarios more comparable, we measure prediction error by the relative
excess risk (RER): E{3°7_, (X, (B; — Bio)) Y2 /B F_1 (X}, Bjo) }?, which is a

standardized version of the excess risk.

Table 1: Simulation Scenario I: summary of estimation, prediction, and variable
selection performance of the proposed fEnet method versus FLR-SCAD under dif-

ferent problem sizes.

n p q Method FPR (%) FNR (%) MND RER

500 50 5 fEnet 0 (0, 0) 0 (0, 0) 0.36 (0.30, 0.45)  0.0006 (0.0003, 0.0009)
FLR-SCAD 0 (0, 0) 0 (0, 0) 0.54 (0.37, 0.82)  0.0009 (0.0005, 0.0019)

200 100 5 fEnet 0 (0, 0) 0 (0, 0) 0.53 (0.42, 0.68)  0.0018 (0.0011, 0.0029)
FLR-SCAD 0 (0, 0) 0 (0, 0) 0.75 (0.58, 1.19)  0.0035 (0.0017, 0.0106)

100 200 10 fEnet 0 (0, 1.1) 0 (0, 0) 1.31 (1.06, 1.65)  0.0179 (0.0094, 0.0399)
FLR-SCAD 4.7 (1.6, 8.4) 0 (0, 30) 4.89 (3.97, 5.00) 0.5280 (0.3206, 0.7734)

p=20.3

500 50 5 fEnet 0 (0, 0) 0 (0, 0) 0.37 (0.31, 0.47) 0.0007 (0.0004, 0.0011)
FLR-SCAD 0 (0, 0) 0 (0, 0) 0.59 (0.41, 1.03)  0.0012 (0.0006, 0.0027)

200 100 5 fEnet 0 (0, 0) 0 (0, 0) 0.58 (0.45, 0.73)  0.0025 (0.0015, 0.0044)
FLR-SCAD 0 (0, 0) 0 (0, 0) 0.78 (0.58, 1.51)  0.0044 (0.0021, 0.0146)

100 200 10 fEnet 0 (0, 1.6) 0 (0, 0) 1.39 (1.08, 1.92)  0.0192 (0.0103, 0.0441)
FLR-SCAD 4.7 (1.6, 9.5) 10 (0, 40)  5.00 (4.37, 5.05)  0.5319 (0.3665, 0.7523)

p=0.75

500 50 5 fEnet 0 (0, 0) 0 (0, 0) 0.53 (0.42, 0.67) 0.0012 (0.0007, 0.0019)
FLR-SCAD 0 (0, 0) 0 (0, 0) 0.98 (0.67, 1.78)  0.0018 (0.0008, 0.0049)

200 100 5 fEnet 0 (0, 0) 0 (0, 0) 0.85 (0.72, 1.03)  0.0035 (0.0021, 0.0056)
FLR-SCAD 0 (0, 0) 0 (0, 0) 1.28 (0.76, 4.61)  0.0066 (0.0029, 0.1287)

100 200 10 fEnet 0 (0, 4.2) 0 (0, 10) 2.04 (1.49, 5.00)  0.0175 (0.0078, 0.1329)
FLR-SCAD 2.1 (0,4.2) 50 (30, 70)  5.86 (5.00, 7.91)  0.2895 (0.1932, 0.3894)

Simulation results under Scenario I are summarized in Table [T where we
compare the median FPR, FNR, MND, and RER as well as their 2.5% and
97.5% quantiles for the two competing methods. As we can see, both methods
accurately choose the correct model under the first two problem sizes and
for all correlation levels, although our method shows some small advantages
in terms of estimation (MND) and prediction (RER). We now focus on the

ultra-high dimension setting with (n, p, ¢) = (100,200, 10), where our method
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shows an overwhelming advantage over FLR-SCAD in all criteria considered
for variable selection, estimation, and prediction. Note that under the high
correlation setting (p = 0.75), not only {X;;, j € ./} are strongly correlated
among themselves, but they are also strongly correlated with some of the
predictors in .#¢. In this case, even though FLR-SCAD mistakes some of the
non-signals with some real signals, its prediction performance may not be as
bad as when p = 0 or 0.3.

To further investigate the variable selection performance under the ultra-
high dimension setting, we plot the receiver operating characteristic (ROC)
curves for the two methods in Figure [I}, where the false positive rate and true
positive rate (TPR), i.e. 1—FNR, are calculated under different values of \
while holding other tuning parameters fixed at their optimal values. As such,
both FPR and TPR become functions of A. As A increases, all coefficient func-
tions are shrunk to 0 and hence both FPR and TPR decrease to 0. The ROC
of our method yielding a higher area under the curve (AUC) than FLR-SCAD,
especially when there is a high correlation between the functional predictors,
means that our method has a better variable selection performance.

To investigate the effect of & = A1 /(A1 +A2) and 6 on the variable selection
and prediction performance, we revisit the ultra-high dimension setting with

p = 0.75. We calculate the average FPR, FNR, and RER at various values of
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Figure 1: Simulation Scenario I: The ROC curves of fEnet and FLR-SCAD under
the ultra-high-dimension setting (n,p,q) = (100,200,10). The ROC curves are
obtained by changing the value of A and holding other hyperparameters at optimal.
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Figure 2: Simulation Scenario I: The plots of FPR, FNR, and RER versus log;,(1—
«) for different values of # under the ultra-high-dimensional case and p = 0.75.

a and 0 while keeping A and s fixed at their optimal values. In Figure 2] we

plot the averaged FPR, FNR, and RER against log,,(1 —«) for different values

of . These plots suggest that for any fixed 6, FPR is a decreasing function

of o while FNR increases with a. This observation corroborates our remarks

for Theorem [1| that a larger ratio between A; and A means more predictors

will be removed from the model and hence the decreased FPR and increased

FNR. There should be an optimal «, which is neither 0 nor 1, providing the
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best trade-off between FPR and FNR. The plot of RER against log(1 — «)
also suggests the existence of a non-trivial optimal value for a;, which in turn
suggests that we need both components in the elastic-net penalty for the best
performance. By comparing curves across different values of 8, we can see that
FPR decreases with #, FNR increases with 6, and RER is not monotone with
0. All of these point to the conclusion that there is non-zero optimal value for
6.

To save space, results under Scenarios II and Il are deferred to the sup-
plementary material. When there is a misalignment between the functional
predictor and the coefficient functions, particularly under Scenario Il with a
high correlation between the functional predictors, we observe better FPR and
FNR from the proposed fEnet method not only for the ultra-high dimension

setting but all the other problem sizes as well.

Table 2: Relative efficiency (RE) between the functional elastic-net estimate and
the two-stage estimate under Scenario I

n P q p=0 p=03 p=0.75

500 50 5 1.04 1.06 1.29
200 100 5 1.30 1.44 1.51
100 200 10 1.63 1.68 1.95

Next, we demonstrate the efficiency gain of the refined estimator (3.9) in
prediction performance. Focusing on Scenario I, we refit FLM to the simulated

data as described in (3.9)) using the predictors selected by fEnet only. The tun-
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ing parameter A3 is selected by a grid search that minimizes the averaged mean
square prediction error using the testing sample. Table [2| presents a summary
of the relative efficiency (RE) between the fEnet estimator f and the refined
estimator fj;, where RE(F, j?f) = RER(})/RER(]%;). The reported REs
are based on the average over 200 replicates, and a value of RE greater than 1
indicates an improved prediction performance in the refined estimator. These
results demonstrate improved prediction performance of the refined estimator
across all problem sizes and correlation levels, particularly in the case of ultra-
high-dimension and high correlation between functional predictors, where the

refined estimator is almost twice as efficient as the original fEnet.

4.3 Real Data Application

We now demonstrate our methodology using a dataset obtained from the Hu-
man Connectome Project (HCP) (Van Essen et al.; 2013). The data comprise
resting-state fMRI scans from n = 549 individuals, where each brain was
repeatedly scanned over 1200 time points. These 3-dim fMRI images were
pre-processed and parcellated into 268 brain regions-of-interest (ROI) using
a whole-brain, functional atlas defined in Finn et al. (2015). Since the raw
ROI level fMRI time series are quite noisy, we instead treat the smoothed
periodograms at different ROI’s as high-dimensional functional data. Specifi-

cally, we apply Fast Fourier Transform to the fMRI time series at each ROI,
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Figure 3: The orthographic projections of a brain (light blue), where the 33 selected
ROIs using the HCP data are marked in dark blue.

smooth the resulting periodogram using the ‘smooth.spline’ function in R, and
keep the most informative segment from 1 to 300 Hz as a functional predic-
tor. In addition to the fMRI, each subject in the study also undertook the
Penn Progressive Matrix (PPM) test, the score of which is commonly used as
a surrogate for fluid intelligence (Greene et al., 2018]).

This dataset was previously analyzed by [Lee et al.| (2023), who used the
raw fMRI time series as functional data and the PPM score as a covariate
to study functional connectivity between the ROI’'s. We instead treat the
smoothed periodograms from the 268 ROI’s as high-dimensional functional
predictors and the PPM score as the response. By fitting a high-dimensional
functional linear model using the proposed fEnet method, our goal is to identify
brain regions that are associated with fluid intelligence.

To ensure the robustness of our results, we randomly divide the 549 indi-

viduals into a training set (80%) and a validation set (20%) for a total of 200



times. We select the optimal tuning parameters of our model by minimizing
the averaged mean squared prediction error (MSPE) on the 200 validation
sets. We find 33 ROIs that are consistently selected by our proposed method
across all 200 repetitions. In Figure [3] we provide three projection views of
the brain and mark the physical locations of the selected ROIs. Our results
suggest that fluid-intelligence-related ROIs are distributed in multiple brain
regions, including those on the prefrontal and parietal cortices. These findings
agree with the literature (Duncan et al. 2000; Jung and Haier, 2007) that
fluid intelligence, considered a complex cognitive ability that involves various

cognitive processes, is typically associated with multiple brain regions.

5. Summary

Our RKHS-based functional elastic-net method is different from existing high-
dimensional functional linear regression methods in two important ways. First,
we do not express the functional predictors and the coefficient functions us-
ing the same set of basis functions, which offers the extra flexibility to choose
the reproducing kernel based on the application and better numerical perfor-
mance when the functional predictors and the coefficient functions are mis-
aligned. Second, our penalty consists of two parts: a lasso-type penalty on the

normal of the prediction error to enforce sparsity and a ridge penalty that reg-



ularizes the smoothness of the coefficient function for better prediction. Our
simulations show that both penalties are important and that the best perfor-
mance in terms of variable selection, estimation, and prediction is achieved
by finding the best trade-off between the two penalties. We also derived a
sharp non-asymptotic probability bound on the event of our method achiev-
ing variable selection consistency, while assuming the functional predictors are
non-degenerative random elements in infinite-dimensional Hilbert spaces. Our
theory also suggests a bound for the smallest signal size that can be detected
by the functional elastic-net method. Our investigation of the minimax opti-
mal rate for high-dimensional FLM is completely new, and we show that our
post-selection refined RKHS estimator achieves the oracle minimax optimal
excessive risk. The efficiency gain from using the refined estimator is also
demonstrated through simulation studies.

Handling sparsely or irregularly observed functional covariates is an im-
portant yet nontrivial extension. There has been some recent work addressing

functional linear regression with a single discretely observed predictor under

an FPCA framework (Zhou et al. [2023]). However, to the best of our knowl-

edge, analogous results within an RKHS framework, particularly for high-
dimensional settings, remain unavailable. We note this gap as a promising

direction for future research.
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