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Abstract: High-dimensional functional data have become increasingly prevalent in

modern applications such as high-frequency financial data and neuroimaging data

analysis. We investigate a class of high-dimensional linear regression models, where

each predictor is a random element in an infinite-dimensional function space, and

the number of functional predictors p can potentially be ultra-high. Assuming that

each of the unknown coefficient functions belongs to some reproducing kernel Hilbert

space (RKHS), we regularize the fitting of the model by imposing a group elastic-net

type of penalty on the RKHS norms of the coefficient functions. We show that our

loss function is Gateaux sub-differentiable, and our functional elastic-net estimator

exists uniquely in the product RKHS. Under suitable sparsity assumptions and a

functional version of the irrepresentable condition, we derive a non-asymptotic tail

bound for variable selection consistency of our method. Allowing the number of

true functional predictors q to diverge with the sample size, we also show a post-

selection refined estimator can achieve the oracle minimax optimal prediction rate.

The proposed methods are illustrated through simulation studies and a real-data
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application from the Human Connectome Project.

Key words: Elastic-net penalty; Functional linear regression; Minimax optimality;

Model selection consistency; Reproducing kernel Hilbert space; Sparsity.

1. Introduction

Modern science and technology give rise to large data sets with high-frequency

repeated measurements, resulting in random trajectories that can be mod-

eled as functional data (Ramsay and Silverman, 2005). There has been a

large volume of literature on scalar-on-function regression models, where the

most studied model is the functional linear model (FLM); see James (2002);

Müller and Stadtmüller (2005); Cai and Hall (2006); Reiss and Ogden (2007);

Crambes et al. (2009); Cai and Yuan (2012); Lei (2014); Shang and Cheng

(2015); Liu et al. (2022), among others. With functional data belonging to an

infinite-dimensional function space (Hsing and Eubank, 2015), the sequence

of eigenvalues of the covariance operator decays to zero, rendering the covari-

ance operator non-invertible and hence the inference of the FLM a challenging

inverse problem.

There has been a recent surge in applications of high-dimensional func-

tional data analysis due to new developments in neuroimaging (e.g. fMRI and

TDI), electroencephalogram (EEG), and high-frequency stock exchange data.

For example, Qiao et al. (2019) modeled EEG activity data from different
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nodes as high-dimensional functional data and proposed a functional Gaus-

sian graphical model to study the connectivity between the nodes. Lee et al.

(2023) considered a class of conditional functional graphical models to model

the connectivity between different regions of interest (ROI) of the brain using

fMRI data.

It is also natural to consider regression models with high-dimensional func-

tional predictors. Fan et al. (2015) studied variable selection procedures for

linear and non-linear regression models with high-dimensional functional pre-

dictors. Their approach was to reduce the dimension of each functional pre-

dictor by representing it as a linear combination of some known basis func-

tions and to apply a group-lasso type of penalty in model fitting. As pointed

out in Xue and Yao (2021), the results in Fan et al. (2015) relied heavily

on the assumption that the minimum eigenvalues of the design matrices are

bounded away from zero, which ignored the infinite-dimensional nature of

functional data and essentially limited their methods to functional data reside

in a finite-dimensional function subspace. Xue and Yao (2021), on the other

hand, focused on hypothesis testing issues in high-dimensional FLMs rather

than variable selection consistency. As Fan et al. (2015), Xue and Yao (2021)

also based their approach on representing functional predictors on pre-selected

basis functions and minimizing a penalized least square loss function, where
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the group penalty can be flexibly chosen from lasso (Tibshirani, 1996), SCAD

(Fan and Li, 2001) or MCP (Zhang, 2010). To the best of our knowledge,

the variable selection consistency property for the high-dimensional FLM in a

general functional-data setting remains an open problem to date.

We propose to conduct variable selection in high-dimensional FLMs un-

der the RKHS framework using a double-penalty approach, where the first

penalty resembles the group-lasso type penalty in Xue and Yao (2021), which

encourages sparsity, and the second penalty is on the squared RKHS norms

of the functional coefficients to regularize the smoothness of the fit. As shown

in Cai and Yuan (2012), the RKHS approach can outperform the principal

component regression approach when the coefficient functions are not directly

spanned by the eigenfunctions of the functional predictors. Many of the ex-

isting high-dimensional functional regression approaches including Fan et al.

(2015) and Xue and Yao (2021) are similar in spirit to the principal component

regression in which both the functional predictors and the coefficient functions

are expressed using the same set of basis functions. Our approach offers the

extra flexibility of picking the reproducing kernel based on the application

and thus can outperform the existing methods when the coefficient functions

are “misaligned” with the functional predictors as described by Cai and Yuan

(2012). Our double penalization method resembles a group-penalized version
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of the elastic-net (Zou and Hastie, 2005), where the two penalties enforces

sparsity and stabilizes the solution paths, respectively. It is well known that

the lasso alone tends not to work well when the predictors are highly corre-

lated, while the elastic-net may offer a more stable solution path and better

prediction performance under high collinearity.

One of the main contributions of the present paper is providing a the-

ory that addresses variable selection consistency for high-dimensional FLMs.

In the scalar case that they considered, Zou and Zhang (2009) established a

variable selection consistency result for the elastic-net. However, the nonin-

vertibility of the design matrices of the functional predictors in our problem

makes it necessary to create a completely new proof. Another important con-

tribution of our paper is that we develop the minimax optimal prediction rate

for the high-dimensional FLMs, where the number of true functional predic-

tors q is allowed to grow to infinity with the sample size n. We show that

a post-selection, refined estimation of the high-dimensional FLM using our

RKHS approach can achieve such a minimax optimal rate.

2. Functional Elastic-Net Regression

2.1 Model Assumptions

Let L2[0, 1] be the L2-space of square-integrable, measurable functions on [0, 1],

equipped with the inner product ⟨f, g⟩2 =
∫ 1

0
f(t)g(t)dt and functional norm
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2.1 Model Assumptions

∥f∥2 = ⟨f, f⟩1/22 , for any f, g ∈ L2[0, 1]. We will also be concerned with the

p-fold product space of Lp
2[0, 1] containing elements f = (f1, . . . , fp)

⊤ with

each fj ∈ L2[0, 1], ∥f∥2 ≡ (
∑p

j=1 ∥fj∥22)1/2 < ∞ and inner product ⟨f , g⟩2 ≡∑p
j=1⟨fj, gj⟩2 for f = (f1, . . . , fp)

⊤, g = (g1, . . . , gp)
⊤. Let ⊗ be the outer

product associated with either inner product such that f⊗g defines an operator

(f ⊗ g)h = f⟨g, h⟩2. In this paper, we consider a high-dimensional FLM:

Yi =

p∑
j=1

⟨Xij, βj⟩2 + εi, i = 1, . . . , n, (2.1)

where the functional predictors Xij(·) are random elements in L2[0, 1], βj(·)

are unknown coefficient functions in L2[0, 1], and εi are iid zero-mean random

errors with variance σ2. Without loss of generality, assume that both Yi and

Xij(t) are centered at 0, i.e., EYi = 0 and EXij(t) = 0 for t ∈ [0, 1], j = 1, . . . , p,

so that no intercept is needed in (2.1).

Consider X i• = (Xi1, . . . , Xip)
⊤, i = 1, . . . , n, as iid zero-mean random

vectors, with the covariance operator C defined as C = E(Xi1, . . . , Xip)
⊤ ⊗

(Xi1, . . . , Xip). Note that we do not assume that the functional predictors are

independent. It is convenient to view C as a p × p operator-valued matrix

{C (j,j′)} where C (j,j′) = E(Xij ⊗ Xij′) is the cross covariance operators of

Xij and Xij′ . Denote Y n = (Y1, . . . , Yn)
⊤, εn = (ε1, . . . , εn)

⊤ and Xn =

(X1•, . . . ,Xn•)
⊤ as the n × p matrix of functional predictors. Then, the
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2.1 Model Assumptions

sample covariance operator Cn is defined as

Cn =
1

n

n∑
i=1

(Xi1, . . . , Xip)
⊤ ⊗ (Xi1, . . . , Xip) =

1

n
X⊤

n ⊗Xn. (2.2)

We further assume that βj(·) ∈ Hj := H(Kj), which is the reproducing kernel

Hilbert space (RKHS) with kernel Kj (Wahba, 1990). Recall that a real, sym-

metric, square-integrable, and nonnegative definite function K(·, ·) on [0, 1]2

is called a reproducing kernel (RK) for a Hilbert space of functions H(K) on

[0, 1] if K(·, t) ∈ H(K) for any t ∈ [0, 1] and H(K) is equipped with the inner

product such that ⟨β,K(·, t)⟩H(K) = β(t) for any β ∈ H(K) and any t ∈ [0, 1];

the Hilbert space H(K) is then called an RKHS. With a proper choice of RK,

an RKHS provides a flexible class of functions which can also be naturally

regularized using the RKHS norm. As such, the RKHS is a useful framework

in nonparametric estimation (Wahba, 1990) and functional data analysis (Cai

and Yuan, 2012; Hsing and Eubank, 2015; Sun et al., 2018; Lee et al., 2023).

Remark 1. The choice of kernel K determines the smoothness class. Sobolev

kernels of order m (Hsing and Eubank, 2015) regulate the m-th derivative,

whereas Gaussian kernels yield infinitely differentiable functions. In contrast,

total-variation penalties, although successfully applied in scalar-on-image func-

tional regression (Wang et al., 2017) with the benefits of promoting piecewise
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2.2 Functional Elastic-Net Based on RKHS

structure and allowing jumps, are not induced by an RKHS norm and therefore

lie outside our RKHS-based framework.

We adopt the commonly assumed setting where the total number of func-

tional predictors, p, can be much larger than the sample size n but only a

small portion of those have non-zero effects on the response. Denote the sig-

nal set as S = {j ∈ {1, . . . , p} : Var(⟨X1j, βj⟩2) = ⟨βj,C (j,j)βj⟩2 ̸= 0} and the

non-signal set as S c = {1, . . . , p}\S , and write q := |S |.

2.2 Functional Elastic-Net Based on RKHS

In order to regularize the solution as well as to enforce sparsity in β =

(β1, . . . , βp)
⊤, we assume β ∈ H := ⊗p

j=1Hj, which is the direct product of

the RKHS (Hsing and Eubank, 2015), and estimate it by

β̂ = argmin
β∈H

{
1

2n

n∑
i=1

(
Yi −

p∑
j=1

⟨Xij, βj⟩2
)2

+

p∑
j=1

Pen(βj;λ)

}
(2.3)

where Pen(βj;λ) is the functional elastic-net penalty to be specified below

with λ denoting a vector of tuning parameters.

Following Cai and Yuan (2012), for any symmetric positive semi-definite

kernel R(·, ·), denote LR as the integral operator (LRf)(·) =
∫ 1

0
R(s, ·)f(s)ds,

f ∈ L2[0, 1]. SupposeR has a spectral decompositionR(s, t) =
∑∞

j=1 θ
R
j φ

R
j (s)φ

R
j (t).

Then its square root is defined as R1/2(s, t) =
∑∞

j=1(θ
R
j )

1/2φR
j (s)φ

R
j (t), and

LR1/2 is the associated square-root integral operator. For a matrix of kernel
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2.2 Functional Elastic-Net Based on RKHS

functions R = (Rij)
k,m
i,j=1, letLR : Lm

2 → Lk
2 be the corresponding matrix of op-

erators such that LRf =
(∑m

j=1 LRij
fj

)k
i=1

for any f = (f1, . . . , fm)
⊤ ∈ Lm

2 .

By Wahba (1990) and Cai and Yuan (2012), for any positive semi-definite ker-

nel K and any β ∈ H(K), there exists an f ∈ L2[0, 1] such that β = LK1/2f .

If K is not strictly positive definte, then multiple f ’s satisfy this relationship.

However, there is always a unique f satisfying ∥β∥H(K) = ∥f∥2. The ridge

regularization term in our objective (introduced later) guarantees the identi-

fiability of this representative. Without causing any confusion, we use ∥ · ∥2

to denote the norm of L2 functions or vectors of L2 functions as well as the

Euclidean norm in Rp.

Let βj = L
K

1/2
j

fj for all j and denote f = (f1, . . . , fp)
⊤. Then β =

LK1/2f where K(s, t) = diag(K1, . . . , Kp)(s, t). Define X̃ij = L
K

1/2
j

Xij,

X̃ i• = (X̃i1, . . . , X̃ip)
⊤, and X̃n = (X̃1•, . . . , X̃n•)

⊤. Thus, the theoretical and

empirical covariance of X̃ i• are T = Cov(X̃ i•) = LK1/2CLK1/2 and Tn =

LK1/2C nLK1/2 = n−1X̃
⊤
n ⊗ X̃n. Define Mnj = Span

{
X̃ij(·), i = 1, . . . , n

}
and

M⊥
nj the orthogonal complement of Mnj. With the above L2 representation f

of β, the loss function in (2.3) can be rewritten as

ℓ(f) =
1

2
⟨Tnf ,f⟩2 −

〈
1

n
X̃

⊤
nY n,f

〉
2

+
1

2n
∥Y n∥22 +

p∑
j=1

Pen(fj;λ). (2.4)

We propose to use the following functional elastic-net penalty
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2.2 Functional Elastic-Net Based on RKHS

Pen(fj;λ1, λ2) = λ1∥Ψjfj∥2 +
λ2

2
∥fj∥22, λ1, λ2 > 0,

where Ψj is an operator on L2[0, 1] satisfying the following condition.

C.1. For j = 1, . . . , p, Ψj is a self-adjoint operator such that Ψjf ∈ Mnj for

all f ∈ Mnj. Assume that there exist positive constants 0 < Cmin < Cmax <

∞ such that, uniformly for all j, the eigenvalues of Ψj are in the interval

[Cmin, Cmax].

Remark 2. (i) The L2-norm ∥fj∥2 in Pen(fj;λ1, λ2) corresponds to the RKHS

norm ∥βj∥Hj
, a commonly used norm in functional regression problems (cf. Cai

and Yuan, 2012).

(ii) A simple choice for Ψj is Ψj = I , the identity operator, based on which

the penalty Pen(fj;λ1, λ2) includes both ∥fj∥2 and ∥fj∥22 and resembles an

elastic-net (cf. Zou and Hastie, 2005) version of the group lasso (Yuan and

Lin, 2006). In the high-dimensional functional regression setting, Xue and

Yao (2021) considered a penalty that focused on the amount of variation Xj

explains rather than the norm of fj. Their penalty translates in our setting to

λ1n
−1/2(

∑n
i=1⟨Xij, βj⟩22)1/2 = λ1∥{T (j,j)

n }1/2fj∥2 where T (j,j)
n is the empirical

covariance of X̃•j = (X̃1j, · · · , X̃nj)
⊤ or the (j, j)th entry of Tn. The approach

in Xue and Yao (2021) does not penalize the squared norm, but both Xj and

βj are represented by a growing but finite number of basis functions, which
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2.2 Functional Elastic-Net Based on RKHS

effectively sets a lower bound on the smallest eigenvalue of T (j,j)
n . In our

setting, we can achieve similar effects by setting Ψj = (T (j,j)
n + θI )1/2, where

θ > 0 provides a floor to the smallest eigenvalue of Ψj and is treated as a

tuning parameter.

Note that the functional estimator, f̂ , is defined as the solution that min-

imizes (2.4) over an infinite-dimensional space Lp
2[0, 1]. The following proposi-

tion establishes that the minimization problem is indeed well defined and any

minimizer must be in a finite-dimensional subspace.

Proposition 1. Suppose that Condition C.1 holds. Then, for each j =

1, . . . , p, any minimizer f̂j of (2.4) must be in the space Mnj.

The proof of Proposition 1 uses the ideas of the well-known representer

theorem for smoothing splines (Wahba, 1990). The fact that the minimizer of

(2.4) is in a finite-dimensional subspace allows us to establish its uniqueness

in Proposition 2 below.

Next, we develop the convex programming conditions in the functional

space that characterize the optimizer of (2.4). For the classical lasso problem

(Tibshirani, 1996), the Karush-Kuhn-Tucker (KKT) condition is used to char-

acterize the solution (cf. Zhao and Yu, 2006; Wainwright, 2009), where sub-

gradients are used in place of gradients due to the nondifferentiability of the

lasso objective function. Similarly, in the function space, the objective func-
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tion (2.4) is not always differentiable because of the group-lasso-type penalty

on ∥Ψjfj∥2. In Section S.1.1, we review the definition of Gateaux differentia-

bility and define the corresponding notion of sub-differential. With these in

mind, we state the following result.

Proposition 2. Let β0 be the true value of β in Model (2.1), and f 0 =

(f01, . . . , f0p)
⊤ be the corresponding Lp

2 surrogate such that β0 = LK1/2f 0.

Suppose Condition C.1 holds. Then, for all λ1, λ2 > 0, the solution f̂ for

(2.4) exists uniquely and satisfies

Tn(f̂ − f 0)− gn + λ2f̂ + λ1ω = 0, (2.5)

where gn = n−1X̃
⊤
n εn, and ωj =

Ψ2
j f̂j

∥Ψj f̂j∥2
if f̂j ̸= 0 and ωj = Ψjηj for some ηj

with ∥ηj∥2 ≤ 1 if f̂j = 0.

Equation (2.5) is referred to as the functional KKT condition for the op-

timization problem (2.4) and plays a central role in establishing Theorem 1

.

3. Theoretical Results

3.1 Consistency property of variable selection

In this section, we establish the consistency property of variable selection using

our approach. Even though the normality assumption is not essential to our

methodology, in order to get sharp results that are comparable with those in
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3.1 Consistency property of variable selection

the literature, we assume that the rows of X i•, i = 1, . . . , n, are iid zero-mean

Gaussian random vectors with each element lies in L2[0, 1], and εi
iid∼ N (0, σ2).

Note that Gaussianity is invoked only to obtain exponential concentration; our

current theory does not cover genuinely heavy-tailed designs or errors. Recall

the definitions of S and f̂ = (f̂1, . . . , f̂p)
⊤ in Sections 2.1 and 2.2, respectively,

and define Ŝ =
{
j ∈ {1, . . . , p} : f̂j ̸= 0

}
. Then, variable selection consistency

is achieved when Ŝ = S .

We collect here some notation used throughout the paper. Let H1 and

H2 be two Hilbert spaces and A : H1 → H2 be a compact linear operator

mapping from H1 to H2. Then the L2 operator norm is defined as ∥A ∥2 =

supf∈H1
∥A f∥2/∥f∥2 which is the maximum singular value of A ; if H1 = H2

and A is self-adjoint, the trace of A is tr(A ) =
∑

j≥1 Λj(A ), which is the

sum of all eigenvalues. For any f ∈ Lp
2[0, 1], ∥f∥∞ := maxj ∥fj∥2; for any r×s

operator-valued matrix A = (Aij)
r,s
i,j=1, where each Aij maps from L2[0, 1]

to L2[0, 1], define the norm |||A |||a,b := sup∥f∥a≤1 ∥A f∥b for a, b ∈ {2,∞}.

For any index sets S1 and S2, A (S1,S2) is the submatrix of A with rows

in S1 and columns in S2. This notation is used for matrices of operators,

such as C , T , and Tn. Consistent with this notation, T (j,j) = Cov(Xj) is

the jth diagonal element of T , and define T (j,j)
λ = T (j,j) + λI for any λ > 0

where I is the identity operator. Let Q(S ,S ) = diag{T (j,j), j ∈ S } be the
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3.1 Consistency property of variable selection

operator-valued matrix that only contains the diagonal terms of T (S ,S ), and

let Q(S ,S )
λ = Q(S ,S ) + λI .

In addition to Condition C.1, we need the following conditions.

C.2. Each T (j,j) is standardized such that ∥T (j,j)∥2 = 1, with its trace uni-

formly bounded by a finite constant τ , i.e., supj∈{1,...,p} tr(T
(j,j)) ≤ τ .

C.3. Define κ(λ2) :=
∣∣∣∣∣∣∣∣∣T (S ,S )(T (S ,S )

λ2
)−1
∣∣∣∣∣∣∣∣∣

∞,∞
. Assume that for some γ ∈

(0, 1], we have κ(λ2) ·
∣∣∣∣∣∣T (S c,S )(T (S ,S ))−

∣∣∣∣∣∣
∞,∞ ≤ (Cmin/Cmax)(1− γ), where

(T (S ,S ))− is the Moore-Penrose generalized inverse of T (S ,S ).

C.4. ℵ(λ2) :=
∣∣∣∣∣∣∣∣∣(T (S ,S ) −Q(S ,S )

) (
Q(S ,S )

λ2

)−1
∣∣∣∣∣∣∣∣∣

∞,∞
< 1.

Remark 3. (i) Condition C.2 places a mild constraint on the decay rate of

the eigenvalues for T (j,j), which is equivalent to supj∈{1,...,p} E∥X̃j∥22 ≤ τ .

(ii) Condition C.3 controls the correlation between functional predictors in the

true signal set S and those in the non-signal set S c. This assumption is

related to the so-called “irrepresentable condition” on model selection consis-

tency of the classical lasso (Zhao and Yu, 2006; Wainwright, 2009), the classi-

cal elastic-net (Jia and Yu, 2010), and the sparse additive models (Ravikumar

et al., 2009). Condition C.3 becomes harder to fulfill when κ(λ2) is large or

when Cmin/Cmax is small. However, when the predictors in S and in S c are

uncorrelated, then
∣∣∣∣∣∣T (S c,S )(T (S ,S ))−

∣∣∣∣∣∣
∞,∞ = 0 and the assumption holds

trivially.
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3.1 Consistency property of variable selection

(iii) Condition C.4 puts constraints on the correlations between the predictors

in the true signal set S , so that none of the true predictors can be represented

by other predictors in S . When the predictors in S are uncorrelated, then

ℵ(λ2) = 0 and C.4 trivially holds.

To gain a deeper understanding of Conditions C.2-C.4, an example will be

provided in Section S.1.2 where the functional predictors have a partially sepa-

rable covariance structure (Zapata et al., 2021). To state the variable selection

consistency properties of our approach, we further assume without loss of gen-

erality that ∥f 0S ∥∞ = 1 below. Also, the symbol D∗ and similar symbols

below will denote universal constants in (0,∞) that arise from inequalities,

whose values change from line to line but do not depend on the model param-

eters, sample size, or regularization parameters. The specific expressions of

universal constants may be complicated and do not add to the understanding

of the results. With these in mind, define the following conditions on λ1, λ2:

λ1/λ2 >

(
3

γ
− 2

)
C−1

max, D∗
1,1 > λ1 > D∗

1,2

τ 1/2(1 + σ)

Cminγ

√
log(p− q)

n
,

D∗
2,1 > λ2 > D∗

2,2

τ(1 + σ)(ρ1 + 1)

(Cmin/Cmax)2γ2
max

(
q log(p− q)

n
,

√
q2

n

)
. (3.6)

where ρ1 denotes the largest eigenvalue of T (S ,S ) and D∗
1,1, D

∗
1,2, D

∗
2,1, D

∗
2,2 are

universal constants. It is worth emphasizing that by carefully separating the

model/regularization parameters with universal constants, our nonasymptotic
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3.1 Consistency property of variable selection

results below can be readily used to state asymptotic results for which some

or all of the parameters could change with n. An example of that is provided

in Corollary 1 below.

Finally, define the signal set containing predictors with “substantial” pre-

dictive power SG := {j ∈ S :
∥∥(T (j,j))1/2f0j

∥∥
2
> G}, where G ∈ (0,∞);

recall ∥(T (j,j))1/2f0j∥22 = E⟨Xj, βj⟩22. The variable selection consistency of our

functional elastic-net approach is given in the following result.

Theorem 1. Consider the functional elastic-net problem (2.4). Suppose that

Conditions C.1-C.3 and (3.6) hold. Then Ŝ exists uniquely, and (i) and (ii)

below hold with probability at least

1− exp

(
−Dλ2

2n

q

)
, where D = D∗

(
(Cmin/Cmax)γ

τ 1/2(ρ1 + 1)(σ + 1)

)2

, (3.7)

for some universal constant D∗.

(i) The estimated signal set is contained in the true signal set, i.e. Ŝ ⊂ S .

(ii) Under the additional Condition C.4, we have Ŝ ⊃ SG for

G =
12− 8ℵ(λ2)

1− ℵ(λ2)

(
Cmax

√
λ2
1/λ2 + 2

√
λ2

)
,

and, in particular, if SG = S , then Ŝ = S and variable selection consistency

is achieved.
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3.1 Consistency property of variable selection

Remark 4. (i) Part (i) of Theorem 1 guarantees a sparse solution for the func-

tional elastic-net where all predictors in the non-signal set are eliminated. By

examining (3.6) and (3.7), we can see that increasing λ2 (and, consequently,

λ1) leads to a higher probability of eliminating the non-signals. Condition (3.6)

also implies that, as the correlation of predictors between the signal and non-

signal sets increases (i.e., decreasing value of γ), larger values of λ1, λ2, λ1/λ2

are required. Moreover, larger values of γ, smaller values of τ , and reduced

σ2 (resulting in a decreased correlation between S and S c, faster eigenvalue

decay for each T (j,j), and a higher signal-to-noise ratio, respectively) enhance

the functional elastic-net’s ability to accurately identify the signal set.

(ii) Part (ii) of Theorem 1 provides conditions that prevent the functional

elastic-net from removing the true signals and thus guarantees that the predic-

tors identified by the functional elastic-net are not overly sparse. Large values

of λ1, λ1/λ2, and ℵ(λ2) result in a larger gap G, making signal detection more

challenging. This is understandable because a large sparsity penalty can lead

to the removal of true signals, especially when there is a strong correlation.

(iii) Condition (3.6) requires that the lower bound of λ1 must be of the rate√
log(p−q)

n
to control sparsity. This is similar to the lower bound of the regular-

ization parameter of the lasso (see Theorem 3 of Wainwright, 2009). Our the-

ory also requires a lower bound for λ2 to control both the smoothness and vari-
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3.1 Consistency property of variable selection

ance of f̂j. The roles of λ2 in functional linear regression have been discussed

by many (see, e.g., Cai and Yuan, 2012). The classical (finite-dimensional)

elastic-net optimization (Zou and Hastie, 2005) includes lasso as a special

case, with λ2 = 0. However, this is not feasible in the infinite-dimensional

functional setting. To understand it, consider classical high-dimensional data

(in the scalar setting) and let ΣS be the q × q covariance matrix of the true

predictors. A common assumption to avoid collinearity in that setting is to

bound the minimum eigenvalue of ΣS away from zero (Zhao and Yu, 2006;

Wainwright, 2009), which is why λ2 could be taken as zero. We cannot bound

the eigenvalues of T (S ,S ) that way in the functional setting because it con-

tradicts the intrinsic infinite dimensionality of functional data; in fact, the

sequence of eigenvalues for T (S ,S ) shrinks to zero even if all the predictors in

S are uncorrelated.

Following Cai and Yuan (2012), we also study the excess risk as a metric to

measure the prediction accuracy of the estimator R (f) = E
(∑p

j=1⟨X̃∗
j , f0j − fj⟩2

)2
,

where X̃
∗
• is a copy of X̃ i•. The excess prediction risk of our estimator, f̂ ,

is obtained by plugging f̂ in R (f). The following result describes the excess

prediction risk of the functional elastic-net estimator.

Theorem 2. Assume that Conditions C.1-C.3 and (3.6) hold. Then, the

excess risk satisfies R(f̂) < q (4Cmaxλ1 + 4λ2 + C2
maxλ

2
1/λ2) with probability
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3.1 Consistency property of variable selection

bounded below by the expression in (3.7).

Next, we discuss asymptotic results readily derived from Theorems 1 and

2 by allowing p, q as well as the model/regularization parameters to vary with

the sample size n. To facilitate the discussion, denote ak ≍ bk for two positive

sequences {ak}∞k=1 and {bk}∞k=1, if c1 < ak/bk < c2 for some 0 < c1 < c2 < ∞

and for all k. The following corollary is a direct result of Theorem 2, the proof

of which is in the Supplementary Material.

Corollary 1. Assume that Conditions C.1-C.3 and (3.6) hold, where Cmin and

γ are bounded away from 0, and ρ1, σ
2, τ , and Cmax bounded away from ∞.

Let α(p, q, n) := max
(
q,
√

log(p− q),
√
q log n

)
and assume that qα(p, q, n) =

o(n1/2). Then, for some sufficiently large constant D, the probability that

R
(
f̂
)
> Dn−1/2qα(p, q, n) infinitely often is 0.

Remark 5. Consider a high dimension FLM setting where q ≍ nς for some

0 < ς < 1/4, and suppose all functional predictor in the signal set have

about the same contribution to the variation of the response such that G =

minj∈S ∥(T (j,j))1/2f0j∥2 ≍ 1/
√
q. By Theorem 1 (ii), we can choose λ1 ≍

λ2 ≍ (1/q) to guarantee recovery of the signal set SG. Condition (3.6) is also

satisfied if log p = O(n1−2ς), which is an ultra-high-dimensional FLM setting.

Under this setting and with the choice of tuning parameters described above,

the probability bound in (3.7) goes to 1 which ensures variable selection consis-
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3.2 Oracle minimax optimal rate and a post-selection refined estimator

tency; the condition qα(p, q, n) = o(n1/2) in Corollary 1 is also satisfied, and

we can conclude R
(
f̂
)
→ 0 almost surely.

3.2 Oracle minimax optimal rate and a post-selection refined esti-

mator

Cai and Yuan (2012) established the minimax lower bound of the excess pre-

diction risk for univariate FLM with q = 1. Such a lower bound is yet to be

established for high-dimensional FLMs. In this subsection, we first investigate

the minimax lower bound of the excess prediction risk under the oracle model,

where S is known and the true number of functional predictors q is allowed

to diverge with the sample size n. We need the following conditions for our

results.

C.5. For each j ∈ S , the k-th eigenvalue of T (j,j) is bounded by ck−2r for

some c ∈ (0,∞) and r > 1/2. For some b ∈ (0,∞),

sup
α>0

∣∣∣∣∣∣∣∣∣(Q(S ,S )
α

)−1/2 T (S ,S )
α

(
Q(S ,S )

α

)−1/2
∣∣∣∣∣∣∣∣∣

2,2
≤ b (3.8)

Condition C.5 requires that the eigenvalues of each T (j,j), j ∈ S , to decay

in a polynomial rate, which is the same assumption made in Cai and Yuan

(2012). By requiring r > 1/2, each T (j,j) is a linear operator that belongs to

the trace class, which includes the Hilbert-Schmidt operators. Condition C.5

trivially holds when T (S ,S ) = Q(S ,S ) meaning that the functional predictors
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3.2 Oracle minimax optimal rate and a post-selection refined estimator

are uncorrelated. When the functional predictors have a partially separable

covariance structure, (3.8) holds in mild conditions (see supplementary ma-

terials). The following proposition and its corollary further illustrate what

Condition C.5 entails.

Proposition 3. Assume (3.8) holds, we have Λk(T (S ,S )) ≤ bΛk(Q(S ,S )),

where Λk(T (S ,S )) and Λk(Q(S ,S )) denote the k-th largest eigenvalues of T (S ,S )

and Q(S ,S ), respectively.

Corollary 2. Assume Condition C.5 holds, let {ρl = Λl(T (S ,S ))}l≥1 be the

eigenvalues of T (S ,S ) in a decreasing order, then ρq(k−1)+j ≤ bc · k−2r for any

k ≥ 1 and j = 1, . . . , q.

Corollary 2 is a direct result of Proposition 3 and is essential in deriving

the minimax lower bound in the following theorem.

Theorem 3. Let P (r) be the class of covariance operators satisfying Condi-

tion C.5. Then

lim
a→0

lim
n→∞

inf
f̃S

sup
T (S ,S )∈P (r)

sup
f0S ∈Lq

2

P
(
R(f̃S ) ≥ a(n/q)−

2r
2r+1

)
= 1,

where the infimum is taken over all possible predictors f̃S based on the training

data {(X iS , Yi), i = 1, . . . , n}.

Theorem 3 provides the oracle minimax lower bound for the excess pre-

diction risk of the high dimensional FLM, which reduces to the lower bound
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3.2 Oracle minimax optimal rate and a post-selection refined estimator

of Cai and Yuan (2012) if q = 1. By comparing this result with Corollary 1,

we can see that the excess risk of the functional elastic-net, R(f̂), is at a rate

slower than (n/q)−1/2, which in turn is slower than the oracle minimax rate in

Theorem 3 when r > 1/2. This is understandable, since the primary goal of

functional elastic-net is to perform variable selection. Suppose all assumptions

in Theorem 1 hold and S = SG, the functional elastic-net estimator enjoys

variable selection consistency and can help us find an estimated signal set Ŝ

that satisfies the following condition.

C.6. limn→∞ supT (S ,S )∈P (r) supf0S ∈Lq
2
P
(
Ŝ ̸= S

)
= 0.

This motivates us to refine our FLM estimator within the selected signal

set with the goal of improving the excess prediction risk,

f̂ Ŝ = argmin
fj∈L2

 1

n

n∑
i=1

Yi −
∑
j∈Ŝ

⟨X̃ij, fj⟩2

2

+ λ3

∑
j∈Ŝ

∥fj∥22

 . (3.9)

The refined estimator (3.9) is a special case of the functional elastic-net esti-

mator in Section 2.2 by including functional predictors in Ŝ only and setting

the ℓ1 penalty to 0, as the focus has shifted away from variable selection. As

such, f̂ Ŝ can be calculated the same way as the functional elastic-net with a

minimum modification to the algorithm.

Theorem 4. Assume Conditions C.5-C.6 hold, and the number of true signals

satisfies q = o
(
n

2r−1
4r

)
. Then
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lim
A→∞

lim
n→∞

sup
T (S ,S )∈P (r)

sup
f0S ∈Lq

2

P
(
R(f̂ Ŝ ) ≥ A(n/q)−

2r
2r+1

)
= 0,

provided that λ3 ≍ (n/q)−2r/(2r+1).

Theorem 4 shows that our refined estimator (3.9) achieves the oracle the

minimax rate in Theorem 3, which is determined by the rate of decay of the

eigenvalues of the operator T (S ,S ). When q is a constant that does not grow

with n, the minimax rate for the excess risk is on the order of n−2r/(2r+1),

consistent with the findings in Cai and Yuan (2012).

4. Implementation and Numerical Studies

4.1 Practical Implementation

Proposition 1 provides an expression for the exact solution to the optimiza-

tion problem (2.4), where each f̂j is a linear combination of X̃•j. However,

such a solution is not scalable to big data and ultra-high dimensions, since

there are a total of np parameters to estimate. In this subsection, we propose

a computationally-efficient algorithm to fit the model based on the idea of

reduced-rank approximations, which has been widely used in semiparametric

regression (Ruppert et al., 2003) and spline smoothing (Ma et al., 2015). Our

low-rank approximation shares a similar spirit as the eigensystem truncation

approach proposed by Xu and Wang (2021) for a low-rank approximation of

smoothing splines.

Statistica Sinica: Newly accepted Paper 



4.1 Practical Implementation

Since f̂j falls in the subspace spanned by X̃•j, it can be well approximated

by the eigenfunctions of T (j,j)
n , which is the empirical covariance of X̃•j. Let

φj(t) = (φj1, . . . , φjMj
)⊤(t) be the first Mj eigenfunctions of T (j,j)

n , such that∫ 1

0
φj(t)φ

⊤
j (t)dt = IMj

, and we approximate fj with f̃j(t) = φ⊤
j (t)cj. Define

Γj =
∫ 1

0
X̃•j(t)φ

⊤
j (t)dt and Hj =

∫ 1

0
(Ψjφj)(t)(Ψjφj)

⊤(t)dt. We reparame-

terize the coefficient vectors as dj = H
1/2
j cj, and solve the group elastic-net

problem (2.4) iteratively using a block coordinate-descent algorithm. At co-

ordinate j, we fix dj′ for j
′ ̸= j, define Ỹ

(j)

n = Y n −
∑

j′ ̸=j Γj′H
−1/2
j′ dj′ , and

update dj by

d̂j = argmin
dj∈RMj

{
1

2
d⊤
j Ωjdj − ϱ⊤

j dj + λ1∥dj∥2
}
, (4.10)

where Ωj = H
−1/2
j

(
1
n
Γ⊤

j Γj + λ2IMj

)
H

−1/2
j and ϱj = n−1H

−1/2
j Γ⊤

j Ỹ
(j)

n .

Proposition 4 provides the solution to the minimization problem (4.10).

Proposition 4. For λ1 > 0, the solution d̂j for (4.10) exists. Furthermore,

if ∥ϱj∥2 ≤ λ1, then d̂j = 0; if ∥ϱj∥2 > λ1, then d̂j ̸= 0 and d̂j is the solution

to Ωjdj − ϱj + λ1dj∥dj∥−1
2 = 0.

We can solve d̂j by iteratively updating dj ←
(
Ωj + λ1∥dj∥−1

2 IMj

)−1
ϱj

until convergence. Since the objective function (4.10) is the combination of

a convex and differentiable least squares loss and a convex penalty, the block

coordinate-wise algorithm is guaranteed to converge to the global minimum
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(Friedman et al., 2007).

For the refined estimator in (3.9), no iteration is needed since there is no

ℓ1 penalty involved. Write f̂j(t) = φ⊤
j (t)ĉj for each j ∈ Ŝ ≡ {j1, j2, . . . , jq̂}.

Then, the coefficient vectors can be calculated as(
ĉ⊤j1 , . . . , ĉ

⊤
jq̂

)⊤
=

1

n

(
1

n
Γ⊤

Ŝ
ΓŜ + λ3I

)−1

Γ⊤
Ŝ
Y n,

where ΓŜ =
(
Γj1 , . . . ,Γjq̂

)
is the design matrix for functional predictors in

the estimated signal set.

In most applications, the functional predictors are observed on N equally

spaced points, the kernel functions Kj are evaluated as N ×N matrices, K
1/2
j

are computed via the spectral decomposition of Kj, and all integrals can be

approximated using Riemann sums on the observed discrete points. As dis-

cussed in Zhou et al. (2023), the incurred errors by these approximations are

negligible when N is sufficiently large.

4.2 Simulation Studies

We simulate the functional predictors as Xij(t) =
√
2
∑

k≥1 zijk
√
νk cos(kπt),

(i = 1, . . . , n, j = 1, . . . , p), where zi·k = (zi1k, . . . , zipk)
⊤ ∼ i.i.d. Normal(0,Σp),

and Σp is an autoregressive correlation matrix with the (j, k)th entry being

ρ|j−k|, 1 ≤ k, j ≤ p. We generate the response Y by the high-dimensional

functional linear regression model (2.1), using coefficient functions under one
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of the three scenarios described below and setting ϵi ∼ Normal(0, σ2 = 0.52).

For each scenario, we consider three correlation levels between the functional

predictors, ρ = 0, 0.3 and 0.75, and three settings for the problem size: a high

dimension and high sample size setting with (n, p, q) = (500, 50, 5), a high

dimension and low sample size setting with (n, p, q) = (200, 100, 5), and an

ultra-high dimension setting with (n, p, q) = (100, 200, 10). For simplicity, we

set the signal set to be S = {1, . . . , q}, and set β0j(t) = 4
∑

k≥1(−1)ujkrkϕk(t),

for j ∈ S , where the basis functions ϕk(t) and coefficients rk are to be spec-

ified below, ujk are i.i.d. Bernoulli random variables with P (ujk = 1) = 0.5.

Inspired by Cai and Yuan (2012), we consider the following three scenarios for

{ϕk(t), rk, νk}:

Scenario I: ϕk(t) =
√
2 cos(kπt), and νk = rk = exp(−k/4), for k ≥ 1;

Scenario II: ϕk(t) =
√
2 sin(kπt), and νk = rk = exp(−k/4), for k ≥ 1;

Scenario III: ϕk(t) =
√
2 cos(kπt), rk = k−2, and νk = (|k − k0| + 1)−2 for

k ≥ 1, where we set k0 = 10.

Scenario I represents a case where the functional predictors and the co-

efficient functions are perfectly aligned. Not only they are spanned by the

same set of cosine functions, but the eigenvalues νk and the coefficients rk both

monotonically decay with k. In other words, the signals most important to Xij

also contribute the most to Yi. As shown by Cai and Yuan (2012), β0j under
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this scenario belong to an RKHS with the RKHS norm ∥β∥H = {
∫
(β′′)2}1/2,

and the reproducing kernel K(s, t) = −1
3

[
B4(|s− t|/2)+B4{(s+ t)/2}

]
, where

Bk is the kth Bernoulli polynomial.

Scenarios II and III represent various cases of misalignment. Under Sce-

nario II, Xij and β0j are spanned by different bases. Using similar derivations

as Cai and Yuan (2012), we can show β0j belong to an RKHS with the repro-

ducing kernel K(s, t) = −1
3

[
B4(|s− t|/2)−B4{(s+ t)/2}

]
. Under Scenario III,

the maximum mode of variation in Xij is contributed from a high-frequency

cosine function with k = k0, however, these high-frequency signals do not con-

tribute much to the response because the corresponding rk’s are small. Even

though the polynomial decay of the coefficient rk = k−2 in Scenario III is

slower than the exponential series rk = exp(−k/4) in the asymptotic sense, as

it turns out exp(−k/4) ≥ k−2 for k ≤ 26. As such, there are practically more

random components that contribute to the variations in Xij and the response

Yi under Scenarios I and II.

We repeat the simulation 200 times for each scenario, each level of corre-

lation, and each problem size. For each simulated data set, we also simulate

an additional sample of 100 data pairs of (X, Y ) as testing data to evalu-

ate the prediction performance. We apply our proposed functional elastic-net

(fEnet) method to each simulated data set and make a comparison with the
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method proposed by Xue and Yao (2021), which is to equip high-dimensional

functional linear regression with a SCAD penalty (Fan and Li, 2001) and thus

termed FLR-SCAD. For FLR-SCAD, there are two tuning parameters, the

SCAD penalty parameter λ and the number of basis functions s1 to represent

both the functional predictor and the coefficient functions. For a fair compar-

ison, we set the basis of FLR-SCAD to be the true basis ϕk(t) as described

above. For the proposed fEnet, we set Ψj = (T (j,j)
n +θI )1/2 and hence end up

with four tuning parameters (λ, α, s, and θ), where λ1 = αλ, λ2 = (1− α)λ,

and s is the number of eigenfunctions used in the reduced rank approximation

described in Section 4.1. For both methods, the tuning parameters are selected

based on a grid search that minimizes the averaged mean square prediction

error using the testing sample so that the results reported here represent the

best possible performance of the two. For a single tuning configuration, fEnet

matches FLR–SCAD in runtime (around 3 seconds at the optimal tuning pa-

rameter in the ultra–high–dimensional case). Since fEnet is insensitive to the

basis size s, we fix s and parallelize cross-validation to keep total cost low.

We use false positive rate (FPR) and false negative rate (FNR), defined as

FPR= |Ŝ ∩S c|/|S c| and FNR= |Ŝ c ∩S |/|S |, to assess the variable selec-

tion performance, and we use the maximum norm difference (MND) to gauge

the signal recovery performance, where MND is defined as the maximum of
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the L2 norm of β̂j − β0j for j = 1, . . . , p. In order to make results from the

three scenarios more comparable, we measure prediction error by the relative

excess risk (RER): E{
∑p

j=1⟨X∗
j , (β̂j − βj0)⟩}2/E{

∑p
j=1⟨X∗

j , βj0⟩}2, which is a

standardized version of the excess risk.

Table 1: Simulation Scenario I: summary of estimation, prediction, and variable
selection performance of the proposed fEnet method versus FLR-SCAD under dif-
ferent problem sizes.

n p q Method FPR (%) FNR (%) MND RER

ρ = 0
500 50 5 fEnet 0 (0, 0) 0 (0, 0) 0.36 (0.30, 0.45) 0.0006 (0.0003, 0.0009)

FLR-SCAD 0 (0, 0) 0 (0, 0) 0.54 (0.37, 0.82) 0.0009 (0.0005, 0.0019)
200 100 5 fEnet 0 (0, 0) 0 (0, 0) 0.53 (0.42, 0.68) 0.0018 (0.0011, 0.0029)

FLR-SCAD 0 (0, 0) 0 (0, 0) 0.75 (0.58, 1.19) 0.0035 (0.0017, 0.0106)
100 200 10 fEnet 0 (0, 1.1) 0 (0, 0) 1.31 (1.06, 1.65) 0.0179 (0.0094, 0.0399)

FLR-SCAD 4.7 (1.6, 8.4) 0 (0, 30) 4.89 (3.97, 5.00) 0.5280 (0.3206, 0.7734)

ρ = 0.3
500 50 5 fEnet 0 (0, 0) 0 (0, 0) 0.37 (0.31, 0.47) 0.0007 (0.0004, 0.0011)

FLR-SCAD 0 (0, 0) 0 (0, 0) 0.59 (0.41, 1.03) 0.0012 (0.0006, 0.0027)
200 100 5 fEnet 0 (0, 0) 0 (0, 0) 0.58 (0.45, 0.73) 0.0025 (0.0015, 0.0044)

FLR-SCAD 0 (0, 0) 0 (0, 0) 0.78 (0.58, 1.51) 0.0044 (0.0021, 0.0146)
100 200 10 fEnet 0 (0, 1.6) 0 (0, 0) 1.39 (1.08, 1.92) 0.0192 (0.0103, 0.0441)

FLR-SCAD 4.7 (1.6, 9.5) 10 (0, 40) 5.00 (4.37, 5.05) 0.5319 (0.3665, 0.7523)

ρ = 0.75
500 50 5 fEnet 0 (0, 0) 0 (0, 0) 0.53 (0.42, 0.67) 0.0012 (0.0007, 0.0019)

FLR-SCAD 0 (0, 0) 0 (0, 0) 0.98 (0.67, 1.78) 0.0018 (0.0008, 0.0049)
200 100 5 fEnet 0 (0, 0) 0 (0, 0) 0.85 (0.72, 1.03) 0.0035 (0.0021, 0.0056)

FLR-SCAD 0 (0, 0) 0 (0, 0) 1.28 (0.76, 4.61) 0.0066 (0.0029, 0.1287)
100 200 10 fEnet 0 (0, 4.2) 0 (0, 10) 2.04 (1.49, 5.00) 0.0175 (0.0078, 0.1329)

FLR-SCAD 2.1 (0, 4.2) 50 (30, 70) 5.86 (5.00, 7.91) 0.2895 (0.1932, 0.3894)

Simulation results under Scenario I are summarized in Table 1, where we

compare the median FPR, FNR, MND, and RER as well as their 2.5% and

97.5% quantiles for the two competing methods. As we can see, both methods

accurately choose the correct model under the first two problem sizes and

for all correlation levels, although our method shows some small advantages

in terms of estimation (MND) and prediction (RER). We now focus on the

ultra-high dimension setting with (n, p, q) = (100, 200, 10), where our method
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shows an overwhelming advantage over FLR-SCAD in all criteria considered

for variable selection, estimation, and prediction. Note that under the high

correlation setting (ρ = 0.75), not only {Xij, j ∈ S } are strongly correlated

among themselves, but they are also strongly correlated with some of the

predictors in S c. In this case, even though FLR-SCAD mistakes some of the

non-signals with some real signals, its prediction performance may not be as

bad as when ρ = 0 or 0.3.

To further investigate the variable selection performance under the ultra-

high dimension setting, we plot the receiver operating characteristic (ROC)

curves for the two methods in Figure 1, where the false positive rate and true

positive rate (TPR), i.e. 1−FNR, are calculated under different values of λ

while holding other tuning parameters fixed at their optimal values. As such,

both FPR and TPR become functions of λ. As λ increases, all coefficient func-

tions are shrunk to 0 and hence both FPR and TPR decrease to 0. The ROC

of our method yielding a higher area under the curve (AUC) than FLR-SCAD,

especially when there is a high correlation between the functional predictors,

means that our method has a better variable selection performance.

To investigate the effect of α = λ1/(λ1+λ2) and θ on the variable selection

and prediction performance, we revisit the ultra-high dimension setting with

ρ = 0.75. We calculate the average FPR, FNR, and RER at various values of

Statistica Sinica: Newly accepted Paper 



4.2 Simulation Studies

λ i
nc

re
as

e

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Methods
fEnet
FLR−SCAD

(a) ρ = 0

λ i
nc

re
as

e

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Methods
fEnet
FLR−SCAD

(b) ρ = 0.3

λ i
nc

re
as

e

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Methods
fEnet
FLR−SCAD

(c) ρ = 0.75

Figure 1: Simulation Scenario I: The ROC curves of fEnet and FLR-SCAD under
the ultra-high-dimension setting (n, p, q) = (100, 200, 10). The ROC curves are
obtained by changing the value of λ and holding other hyperparameters at optimal.
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Figure 2: Simulation Scenario I: The plots of FPR, FNR, and RER versus log10(1−
α) for different values of θ under the ultra-high-dimensional case and ρ = 0.75.

α and θ while keeping λ and s fixed at their optimal values. In Figure 2 we

plot the averaged FPR, FNR, and RER against log10(1−α) for different values

of θ. These plots suggest that for any fixed θ, FPR is a decreasing function

of α while FNR increases with α. This observation corroborates our remarks

for Theorem 1 that a larger ratio between λ1 and λ2 means more predictors

will be removed from the model and hence the decreased FPR and increased

FNR. There should be an optimal α, which is neither 0 nor 1, providing the
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best trade-off between FPR and FNR. The plot of RER against log(1 − α)

also suggests the existence of a non-trivial optimal value for α, which in turn

suggests that we need both components in the elastic-net penalty for the best

performance. By comparing curves across different values of θ, we can see that

FPR decreases with θ, FNR increases with θ, and RER is not monotone with

θ. All of these point to the conclusion that there is non-zero optimal value for

θ.

To save space, results under Scenarios II and III are deferred to the sup-

plementary material. When there is a misalignment between the functional

predictor and the coefficient functions, particularly under Scenario III with a

high correlation between the functional predictors, we observe better FPR and

FNR from the proposed fEnet method not only for the ultra-high dimension

setting but all the other problem sizes as well.

Table 2: Relative efficiency (RE) between the functional elastic-net estimate and
the two-stage estimate under Scenario I

n p q ρ = 0 ρ = 0.3 ρ = 0.75

500 50 5 1.04 1.06 1.29
200 100 5 1.30 1.44 1.51
100 200 10 1.63 1.68 1.95

Next, we demonstrate the efficiency gain of the refined estimator (3.9) in

prediction performance. Focusing on Scenario I, we refit FLM to the simulated

data as described in (3.9) using the predictors selected by fEnet only. The tun-
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ing parameter λ3 is selected by a grid search that minimizes the averaged mean

square prediction error using the testing sample. Table 2 presents a summary

of the relative efficiency (RE) between the fEnet estimator f̂ and the refined

estimator f̂ Ŝ , where RE(f̂ , f̂ Ŝ ) = RER(f̂)/RER(f̂ Ŝ ). The reported REs

are based on the average over 200 replicates, and a value of RE greater than 1

indicates an improved prediction performance in the refined estimator. These

results demonstrate improved prediction performance of the refined estimator

across all problem sizes and correlation levels, particularly in the case of ultra-

high-dimension and high correlation between functional predictors, where the

refined estimator is almost twice as efficient as the original fEnet.

4.3 Real Data Application

We now demonstrate our methodology using a dataset obtained from the Hu-

man Connectome Project (HCP) (Van Essen et al., 2013). The data comprise

resting-state fMRI scans from n = 549 individuals, where each brain was

repeatedly scanned over 1200 time points. These 3-dim fMRI images were

pre-processed and parcellated into 268 brain regions-of-interest (ROI) using

a whole-brain, functional atlas defined in Finn et al. (2015). Since the raw

ROI level fMRI time series are quite noisy, we instead treat the smoothed

periodograms at different ROI’s as high-dimensional functional data. Specifi-

cally, we apply Fast Fourier Transform to the fMRI time series at each ROI,
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(a) Top view (b) Front view (c) Side view

Figure 3: The orthographic projections of a brain (light blue), where the 33 selected
ROIs using the HCP data are marked in dark blue.

smooth the resulting periodogram using the ‘smooth.spline’ function in R, and

keep the most informative segment from 1 to 300 Hz as a functional predic-

tor. In addition to the fMRI, each subject in the study also undertook the

Penn Progressive Matrix (PPM) test, the score of which is commonly used as

a surrogate for fluid intelligence (Greene et al., 2018).

This dataset was previously analyzed by Lee et al. (2023), who used the

raw fMRI time series as functional data and the PPM score as a covariate

to study functional connectivity between the ROI’s. We instead treat the

smoothed periodograms from the 268 ROI’s as high-dimensional functional

predictors and the PPM score as the response. By fitting a high-dimensional

functional linear model using the proposed fEnet method, our goal is to identify

brain regions that are associated with fluid intelligence.

To ensure the robustness of our results, we randomly divide the 549 indi-

viduals into a training set (80%) and a validation set (20%) for a total of 200
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times. We select the optimal tuning parameters of our model by minimizing

the averaged mean squared prediction error (MSPE) on the 200 validation

sets. We find 33 ROIs that are consistently selected by our proposed method

across all 200 repetitions. In Figure 3, we provide three projection views of

the brain and mark the physical locations of the selected ROIs. Our results

suggest that fluid-intelligence-related ROIs are distributed in multiple brain

regions, including those on the prefrontal and parietal cortices. These findings

agree with the literature (Duncan et al., 2000; Jung and Haier, 2007) that

fluid intelligence, considered a complex cognitive ability that involves various

cognitive processes, is typically associated with multiple brain regions.

5. Summary

Our RKHS-based functional elastic-net method is different from existing high-

dimensional functional linear regression methods in two important ways. First,

we do not express the functional predictors and the coefficient functions us-

ing the same set of basis functions, which offers the extra flexibility to choose

the reproducing kernel based on the application and better numerical perfor-

mance when the functional predictors and the coefficient functions are mis-

aligned. Second, our penalty consists of two parts: a lasso-type penalty on the

normal of the prediction error to enforce sparsity and a ridge penalty that reg-
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ularizes the smoothness of the coefficient function for better prediction. Our

simulations show that both penalties are important and that the best perfor-

mance in terms of variable selection, estimation, and prediction is achieved

by finding the best trade-off between the two penalties. We also derived a

sharp non-asymptotic probability bound on the event of our method achiev-

ing variable selection consistency, while assuming the functional predictors are

non-degenerative random elements in infinite-dimensional Hilbert spaces. Our

theory also suggests a bound for the smallest signal size that can be detected

by the functional elastic-net method. Our investigation of the minimax opti-

mal rate for high-dimensional FLM is completely new, and we show that our

post-selection refined RKHS estimator achieves the oracle minimax optimal

excessive risk. The efficiency gain from using the refined estimator is also

demonstrated through simulation studies.

Handling sparsely or irregularly observed functional covariates is an im-

portant yet nontrivial extension. There has been some recent work addressing

functional linear regression with a single discretely observed predictor under

an FPCA framework (Zhou et al., 2023). However, to the best of our knowl-

edge, analogous results within an RKHS framework, particularly for high-

dimensional settings, remain unavailable. We note this gap as a promising

direction for future research.
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