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Abstract: Nonlinear structured latent factor model captures the relationship between ob-

served variables and latent variables in a nonlinear way, offering greater flexibility compared

to a linear factor model. Functional data characterizes features of data that vary continu-

ously over time or space and is widely applied across various fields. This paper proposes a

nonlinear structured latent factor model for functional data. We consider correlations for

the latent factor to account for the dependence in functional data at different time points.

The structured identifiability of latent factors is studied to ensure uniqueness, thereby al-

lowing these factors to have a physical interpretation. A Gaussian process (GP) prior is

utilized to estimate the unknown nonlinear link functions. To improve computational effi-

ciency, an efficient algorithm is developed by using the nearest neighbor Gaussian process

(NNGP). The consistency of the latent factors and the unknown parameters, as well as the

posterior consistency of the unknown link functions, was established. Simulation studies

were conducted to demonstrate the finite-sample performance and the flexibility of the pro-

posed model, and the significant computational time savings achieved by NNGP compared

to GP. The method was applied to analyse the gait data collected in our laboratory for early

detection of neurodegenerative diseases.
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1. Introduction

Latent factor model (Spearman, 1904) is a commonly used statistical tool for multi-

variate data analysis, which describes the common dependence among multiple ob-

served variables using only a few latent variables. Compared to another commonly

used tool for handling multivariate data, principal components analysis (PCA, Mc-

Cabe, 1984), it provides better physical interpretability. For instance, in the gait

dataset collected in our laboratory, numerous gait features may be summarized into

four latent factors: pace, rhythm, symmetry, and variability (SD). The pace factor

directly correlates with walking speed, rhythm reflects the regularity of gait, sym-

metry measures bilateral symmetry between two feet, and SD indicates gait stability

and consistency. Latent factor analysis greatly improves the interpretability of the

data, enabling researchers to gain deeper insights into complex gait patterns. The

details of the dataset will be discussed in Section 5. In practice, factor analysis

has applications across diverse fields, including malfunction detection, diagnostics,

psychometrics, and medical research.

Identifiability is a key property in latent factor models, and is essential for sub-

stantiating the physical interpretation of latent factors. An identifiable model allows

for the unique extraction of specific latent factors from observed data, thus enriching

the comprehension of the interactions between observed variables and latent fac-

tors. In this paper, we consider the identifiability of the structured latent factors.

The term “structured” signifies that the model incorporates specific patterns or con-
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straints on associations between latent factors and observed variables. Traditionally,

this structure is often enforced by setting certain factor loadings to zero, implying

that each observed variable is influenced by specific latent factors only. In a more

recent study, Chen et al. (2020) explored the identifiability and estimation of struc-

tured factor models with predefined generalized link functions, including both linear

and logistic models as special cases. Zhang et al. (2025) studied the identifiability

and estimation of nonlinear structured latent factor models with an unknown link

function from a Bayesian perspective.

Existing latent factor models assume that observed variables are related to a set

of linear combinations of latent factors through either a linear function, a known

nonlinear link function, or an unknown link function similar to a multiple index

model (Chen et al., 2020; Zhang et al., 2025). However, real-world data often ex-

hibit unknown and complex nonlinear relationships. In this paper, we propose a

novel general nonlinear latent factor model, similar to a multivariate nonparametreic

model. Additionally, we examine the methods within the context of functional data

analysis, where data collected at different time points are dependent. This scenario

often occurs in various practical applications, such as stock price fluctuations over

time, human motion trajectories, and variations in patients’ brainwaves. Gait data

also falls under this category. Several studies have been conducted on latent fac-

tor models for functional data. Tu et al. (2014) and Gu et al. (2024) adopted the

dynamic mode decomposition method, which is a popular approach of linearizing

the one-step-ahead transition operator of nonlinear dynamical systems and recon-

structing the dynamics by eigenpairs of the linear mapping matrix. Another type of
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method is to model each latent factor using a Gaussian process in coregionalization 

models (Gu and Shen, 2020; Lin et al., 2025). However, none of them considered the 

identifiability o f l atent f actors, r esulting i n a  l ack o f physical i nterpretability. This 

paper addresses this issue and considers a more general model under unknown link 

functions.

Gaussian processes (GPs) and related methods have been widely applied to build 

nonlinear model, see e.g. Shi and Choi (2011). Lawrence (2005) proposed the Gaus-

sian process latent variable model (GPLVM), which utilizes the concept of Gaussian 

process regression (GPR) models for nonparametric and nonlinear dimensionality 

reduction. Their approach removed the irrelevant relationships between the ob-

served variables and latent factors, offering a  more flexible fr amework compared to 

traditional methods such as functional PCA. Wang et al. (2005) studied the Gaus-

sian process dynamical models (GPDM), assuming that samples are indexed by t 

(time series) but remain independent and identically distributed. In our analysis of 

dependent gait data, we aim to reduce the dimensionality of the observed data by 

identifying low-dimensional interpretable factors. This necessitates exploring nonlin-

ear structured latent factor models for dependent data, a topic that has not received 

sufficient attention in  the literature.

One of primary challenges in implementing GPR, as well as in GPLVM and 

GPDM, is the significant computational cost associated with the calculation o f the 

inverse of covariance matrices, which is O(N3) and N is the number of time points. 

Damianou et al. (2011) tackled this issue by using variational approximations for 

GPDM; however, this method fails to ensure consistent parameter estimates as the
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sample size increases. Liu et al. (2018b) introduced scalable Gaussian processes 

designed to enhance the scalability of full GP models while maintaining good pre-

diction quality for large datasets. Another strategy for reducing computation time 

is local approximation, which only needs a local subset of size m0 (where m0 ≪ N) 

data points (Gramacy and Lee, 2008; Gramacy, 2016). Among these approaches, the 

nearest neighbor Gaussian process (NNGP, Datta et al., 2016) is particularly promis-

ing due to its ability to balance computational efficiency with model ac curacy. The 

NNGP method effectively combines the principles of Gaussian processes and nearest 

neighbor techniques, concentrating on local data subsets and utilizing nearest neigh-

bor approximations to significantly l ower t he c omputational c omplexity o f f ull GP 

models, while still delivering strong predictive performance. Consequently, NNGP 

is a valuable tool for researchers and practitioners, especially in scenarios involving 

large datasets and complex, nonlinear relationships. More discussion can be found 

in Liu et al. (2018a); Wu et al. (2022); Coube-Sisqueille and Liquet (2022); Saha et 

al. (2022); Villarraga and Daziano (2025) among others. A variational version of this 

method will be developed and used in this paper.

In this paper, we delve into the identifiability a nd e stimation o f t he nonlinear 

structured latent factor model for functional data. The efficiency of  ou r proposed 

methodology is rigorously substantiated through both asymptotic properties and 

simulation studies. In contrast to the extant literature, our work delineates sev-

eral notable contributions. Firstly, we introduce a nonlinear structured latent factor 

model with an unknown link function for functional data. This transition from linear 

to nonlinear factor analysis methodologies signifies a  p ivotal e volution i n t he field,
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enabling the capture of more complex and nuanced relationships within functional

data. Secondly, compared to conventional latent factor models, we account for the

dependency among observations, allowing us to explore the underlying latent struc-

ture of functional data. Thirdly, we apply nonparametric Bayesian methods to latent

factor models, with a specific focus on employing the GPR approach for estimating

unknown functions. Unlike the GPLVM, which fails to offer a lucid substantive in-

terpretation of latent factors, our approach not only establishes the identifiability

of these factors but also provides them with a clear and meaningful interpretation.

In addition, to address computational challenges, we incorporate the concept of the

NNGP.

The rest of the paper is organized as follows. In Section 2, we introduce the

nonlinear structured latent factor model for functional data, and then discuss the

structured identifiability of the latent factors as well as the estimation of unknown

parameters, latent factors, and nonlinear function. In Section 3, We establish the

consistency of the proposed latent factor estimates and unknown parameters, along

with the posterior consistency of the estimator of the unknown link function. Simu-

lation studies are conducted to investigate the finite-sample performance in Section

4. In Section 5, the proposed method is applied to a gait dataset collected in our lab-

oratory. Finally, concluding remarks and directions for further studies are provided

in Section 6. All technical proofs are given in the online Supplementary Materials.
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2. Model and Methodology

2.1 General Nonlinear Structured Latent Factor Model for Functional

Data

Suppose that Y (ti) = (Y1(ti), . . . , YJ(ti))
⊤ ∈ RJ is a J-dimensional functional mani-

fest (observed) variable for i = 1, . . . , N . The component Yj(ti) denotes the value of

the j-th manifest variable at the i-th time point. For each time point ti, we assume

the manifest variable is associated with a K-dimensional latent vector, denoted as

x(ti) = (x1(ti), . . . , xK(ti))
⊤. In the gait dataset of Section 5, Y (ti) represents gait

speed, step length, time for one stride, one step or one stance, and so on, while x(ti)

represents pace, rhythm, asymmetry, variability (SD).

Each component Yj(ti) usually depends on one or more latent variables. To

model such a structure, we defined the following general nonlinear structured latent

factor model (GNSLFM):

Yj(ti) = fj(x
⊤(ti)Rj) + εj(ti), εj(ti) ∼ N (0, σ2), j = 1, . . . , J, i = 1, . . . , N, (2.1)

where fj’s are unknown multivariate link function, εj(ti)’s are i.i.d. random errors,

Rj = diag{rj1, . . . , rjK} is a K × K diagonal matrix, and rjk = 1 means the j-th

manifest variable is associated with the latent variable xk(ti) and rjk = 0 otherwise.

Remark 1. Model (2.1) uses a multivariate nonparametric function to describe the

relationship between manifest variables and latent variables. Chen et al. (2020) and

Zhang et al. (2025) established the relationship between Yj(ti) and a set of linear

combinations of x(ti) using a known or unknown nonlinear link function similar to
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2.1 GNSLFM for Functional Data

a multi-index model. Instead, Model (2.1) establishes a very general factor model. 

In addition, we assume normal random errors to facilitate the subsequent use of 

Gaussian process regression (GPR) for estimating the unknown link functions fj , 

which is a common assumption in the GPR literature. When the data contain 

outliers or exhibit heavy-tailed distributions, alternative assumptions such as the 

t-distribution can be used (Wang and Shi, 2014; Wang et al., 2017, 2021); however, 

this makes the posterior distribution analytically intractable and necessitates the 

use of numerical methods for inference. In this paper, we focus on developing a 

tractable modeling and estimation framework, and leave the investigation of such 

robust extensions to future work.

Remark 2. The role of Rj is to select the set of latent factors associated with the 

manifest variable Yj (ti). In this paper, we assume that Rj is pre-specified according 

to the identifiability conditions of the latent factors, which will be discussed later. 

Regarding the automatic selection of Rj , we have investigated this problem in Zhang 

(2025) and provided practical guidance for settings with a small number of latent 

factors (K = 2, 3, 4), which holds true in most applications. While these approaches 

work well in such low-dimensional cases, a general automatic procedure remains 

challenging due to the structural identifiability constraints of our framework. We 

therefore leave the development of a fully general method for selecting Rj for future 

research.

Let x(j)(ti) be the subset of latent factors associated with Yj(ti), i.e., selection
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2.1 GNSLFM for Functional Data

of the elements with rjk = 1 for k = 1, . . . , K, then the model can be rewritten as

Yj(ti) = fj(x
(j)(ti)) + εj(ti). (2.2)

The structure of the model in (2.1) or (2.2) is illustrated by an example in Fig-

ure 1. Here we consider two latent factors (K = 2) and J = 6, the structure

of the model is defined by Rj, where Rj = diag{1, 0} for j = 1, 2, 3; Rj =

diag{1, 1} for j = 4 and Rj = diag{0, 1} for j = 5, 6. Thus, x(1)(ti) = x(2)(ti) =

x(3)(ti) = (x1(ti), 0), x
(4)(ti) = (x1(ti), x2(ti)), x

(5)(ti) = x
(6)(ti) = (0, x2(ti)). Based

on the conditions discussed in Theorem 1, this structure can guarantee the identifi-

ability of x1(t) and x2(t) for each t.

Figure 1: Model structure— Latent factor model

For latent factor models, existing literature typically assumes that the latent

factors are independent across different time points ti, i = 1, . . . , N . However, in

practice, this assumption is often too strong. In this paper, we consider Y (ti) as

functional data, i.e., Y (ti)
′s are dependent at different data time t′is. Consequently,

x(ti)
′s are also dependent, which is commonly encountered in practical applications.

To describe the internal dependence within each factor across different values of t,
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2.2 Structured Identifiability

we may assume each curve xk(·) in the latent space follows a GP process:

xk(·)∼GPk (0,Σk(·, ·;Θxk)) for k = 1, . . . , K, (2.3)

with squared exponential covariance function, i.e., the (i, l)-th element of Σk is given

by

Cov(xk(ti), xk(tl)) = vxk exp

{
−1

2
wxk(ti − tl)

2

}
, (2.4)

where the kernel-parameters Θxk = (vxk, wxk)
⊤. Time series models, such as AR(1) 

model, can also be used to describe the dependence between different t ime points. 

The AR(1) model is a parametric model that assumes a linear dependency structure, 

limited to the immediate preceding time point. In contrast, the GP is a nonpara-

metric model that allows for the flexible modeling of arbitrarily complex dependency 

structures, not restricted to linearity.

2.2 Structured Identifiability

Identifiability i s c rucial i n s tructured l atent f actor m odels t o p rovide meaningful 

interpretation of the latent factors. Under Model (2.2), it is well known that the 

latent factor is not identifiable if no constraints is applied to Rj .  For positive integers 

K, N and J , let rj = (rj1, . . . , rjK)⊤, j = 1, . . . , J be vectors in {0, 1}K , and define the 

structured index matrix as Q⊤ = (r1, . . . , rJ ) ∈ RK×J . To ensure the identifiability 

of the latent factors, we will impose zero constraints on some elements of Q.

Here we consider the cases with N → ∞, and the identifiability of the k-th
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2.2 Structured Identifiability

latent factor X [k] = (xk(t1), xk(t2), . . .)
⊤ ∈ RZ+ is equivalent to the identification of

the direction of an infinite dimensional vector. Define the following as

sin+∠(u,v) = lim sup
N→∞

sin∠
(
u[1:N ],v[1:N ]

)
,

to quantify the angle between two vectors u and v where u = (u1, u2, . . .)⊤ , v = 

(v1, v2, . . .)⊤ ∈ RZ+ are two vectors with countably infinite c omponents. When 

sin+ ∠(u, v) is 0, we say the angle between u and v is 0. Before presenting the 

structured identifiability o f t he l atent f actor i n Model (2.2), we w ill fi rst introduce 

the definition of structured identifiability.

Definition 1 (Structured identifiability of a latent fa ctor). Consider the k-th la-

tent factor, where k ∈ {1, . . . , K}, and a nonempty parameter space S ⊂ RZ+×{1,...,K} 

for X. We say the k-th latent factor is structurally identifiable in the parameter space

S if for any X, X ′ ∈ S, PX = PX ′ implies sin+ ∠ 
(
X [k], X ′

[k]

) 
= 0, where PX is

the probability distribution of {Yj (ti), i ∈ Z+, j ∈ {1, . . . , J}}, given factor scores X, 

structured index matrix Q and link function fj .

For ∆ ⊂ {1, . . . , K}, denoteRQ(∆) = {j : rjk = 1, if k ∈ ∆ and rjk = 0, if k /∈

∆, 1 ≤ j ≤ J}. Denote K = {1, . . . , K}. Defined the parameter space for X as S,

where

S =
{
X ∈ RZ+×K : ∥x(ti)∥ ≤ C, the columns of X are linearly independent

}

with C being a positive constant. Then under the above parameter space, the fol-

lowing Theorem 1 provides a necessary and sufficient condition on the structured

Statistica Sinica: Newly accepted Paper 



2.2 Structured Identifiability

index matrix Q for the structured identifiability of the k-th latent factor.

Theorem 1. We assume the columns of Q are linearly independent. Under 

Defini-tion 1, given the link function fj , the k-th latent factor is structurally 

identifiable in the parameter space S if and only if

{k} =
⋂

k∈∆, |RQ(∆)|=O(J)

∆,

where we define
⋂

k∈∆, |RQ(∆)|=O(J) ∆ = ∅ if RQ(∆) = ∅ for all ∆ that contains k,

and where | · | denotes the cardinality of a set.

Theorem 1 is not only valid under the double-asymptotic (N → ∞ and J → ∞) 

setting but also when N and J are sufficiently large finite values provided that

|RQ(∆)| = O(J) is replaced by RQ(∆) ̸= ∅. Compared to Chen et al. (2020) and Leeb 

(2021) in which they discussed the conditions for generalized linear factor models, 

we discuss the identifiability of latent factors for a general nonlinear mod-els and 

the dependency of the k-th latent factor X [k] across different values of t. The 

proof is given in the online Supplementary Materials. Theorem 1 is proved by 

contradiction. Because the latent factors are dependent across different observation 

points i = 1, . . . , N , the construction of X̃ and X ′ requires accounting for correla-

tions across rows. This differs from Chen et al. (2020), where the the latent factors 

are assumed to be independent across observation points i = 1, . . . , N .

Remark 3. We discuss what happens when a global factor is present and thank 

one anonymous referee for raising this issue. Under the identifiability conditions of 

Theorem 1, the presence of a global factor renders some latent factors unidentifiable.
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2.3 Estimation and Algorithm

Nevertheless, the proposed general nonlinear structural latent factor model remains 

applicable. In such cases, although the consistency and interpretability of the uniden-

tifiable factors become meaningless, the identifiable factors remain well defined and 

substantively interpretable. Scenario 2 in part (i) of the Simulation section provides 

an illustration. For further discussion of models incorporating a global factor, one 

may instead consider alternative specifications such as the bifactor model (Fang et 

al. (2021)).

2.3 Estimation and Algorithm

In this section, we provide the estimation procedure for the unknown link function, 

latent factors, and unknown parameters under the identifiability c onditions. First we 

consider using a Gaussian process (GP) prior to estimate the unknown link function 

fj (·), and then use maximum a posteriori (MAP) estimation to obtain the estimators 

of the latent factors and unknown model parameters. The computation involves solv-

ing the inverse of the covariance matrix, which incurs high computational costs. We 

address this issue by using the nearest neighbor Gaussian process (NNGP) method.

2.3.1 Estimation of the nonlinear link function

Frequentist methods such as kernel estimation, local linear approaches, and B-splines 

are commonly employed to fit u nknown n onlinear f unctions. However, t hese tech-

niques often face challenges like the “curse of dimensionality”. Consequently, Gaus-

sian process regression has become increasingly popular for estimating nonlinear 

functions. Specifically, w e a ssume a  G P p rior f or t he u nknown f unction fj ( ·) to 

quantify the smoothness of the nonlinear function between the observed variables
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2.3 Estimation and Algorithm

and the latent factors, i.e.,

fj(·)
prior∼ GP (0,Cj(·, ·;Θfj)) ,

where Cj(·, ·;Θfj) is a covariance kernel function and Θfj is referred to as the hyper-

parameters. For any ti, tl ∈ R, we use squared exponential kernel function, that is,

Cj(i, l;Θfj) = Cov
(
fj

(
x(j)(ti)

)
, fj

(
x(j)(tl)

))
= vfj exp

[
−1

2

K∑
k=1

wfjkrjk{xk(ti)− xk(tl)}2
]

where Θfj = (vfj, wfj1, . . . , wfjK)
⊤. Other types of covariance kernels can be found

in Rasmussen and Williams (2006) and Shi and Choi (2011).

Denote X = (x1, . . . ,xK) ∈ RN×K with xk = (xk(t1), . . . , xk(tN))
⊤, and Y =

(Y 1, . . . ,Y J) ∈ RN×J with Y j = (Yj(t1), . . . , Yj(tN))
⊤. Let f j =

(
fj

(
x(j)(t1)

)
, . . . ,

fj
(
x(j)(tN)

))⊤
and f = (f 1, . . . ,fJ) ∈ RN×J . Followed by Shi and Choi (2011),

we estimate the unknown nonlinear link functions fj(·) using the posterior mean

of Gaussian process regression. Specifically, for each fj
(
x(j)(ti)

)
, its estimator is

obtained through the conditional expectation given all observations except the i-th

time point, as described in Shi and Choi (2011) (p.19, formula (2.7)):

E
(
fj

(
x(j)(ti)

)
| D\i

)
= ψ⊤

j (x
(j)(ti))\i

(
Cj\i + σ2IN−1

)−1
Y j\i, (2.5)

where ψj

(
x(j)(ti)

)
denotes the covariance vector between fj

(
x(j)(ti)

)
and all other

latent function values. This posterior mean serves as a plug-in estimator for fj(·)
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2.3 Estimation and Algorithm

in subsequent parameter estimation. The notation \i indicates the removal of the

ith sample, meaning estimating fj
(
x(j)(ti)

)
using all samples except the ith sample.

That is, ψ⊤
j (x

(j)(ti))\i = (ψj,1, . . . , ψj,i−1, ψj,i+1, . . . , ψj,N) and Y j\i = (Yj(t1), . . . ,

Yj(ti−1), Yj(ti+1), . . . , Yj(tN))
⊤. Here, we use the posterior mean of fj

(
x(j)(ti)

)
in

Expression (2.5) as the estimate of fj
(
x(j)(ti)

)
.

2.3.2 Estimation of latent factors and unknown parameters using nearest

neighbor Gaussian process

Recall from the previous section that we assumed the latent factors follow a Gaussian

process or a time series to model the dependence between different time points t. For

the former, direct estimation of the latent factors using MAP method requires com-

puting the inverse of the latent factor covariance matrix in the iterative algorithm,

leading to a computational cost of O(N3). In this paper, we define a NNGP (Datta

et al., 2016) to address this issue. That is:

xk(·) ∼ NNGPk

(
0, Σ̃k (·, ·;Θxk)

)

where Σ̃k (·, ·;Θxk) is derived from the parent GPk (0,Σk (·, ·;Θxk)) for k = 1, . . . , K.

NNGP is a non-degenerate stochastic process that preserves the structural prop-

erties of conventional Gaussian processes while introducing sparsity through inno-

vative neighborhood conditioning. Derived from a parent Gaussian process, NNGP

operates as a distinct stochastic process alongside standard GP frameworks, retaining

all essential theoretical properties of Gaussian processes and achieving computational

acceleration through sparse covariance matrix construction. Its positive definite co-
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2.3 Estimation and Algorithm

variance structure ensures full-rank matrices, avoiding pathological distributions and

maintaining non-degeneracy. The sparsity-aware methodology constrains the condi-

tional dependence structure of spatial or temporal random effects to their m near-

est neighbors, and Datta et al. (2016) rigorously demonstrated that this localized

conditioning preserves multivariate Gaussian characteristics without compromising

theoretical validity. The computational superiority of NNGP is highlighted through

efficient algorithmic optimizations, with Finley et al. (2019) reducing the covariance

matrix inversion complexity to O(Nm3) floating-point operations. Next, the imple-

mentation of NNGP will be discussed in detail, and in Section 4, its computational

efficiency will be compared to the standard Gaussian process framework through

simulation studies.

Under the Bayesian analysis of the model, there are three types of parameters:

{x(ti), i = 1, . . . , N} for factor scores, σ2 and {Θxk, k = 1, . . . , K} for the model pa-

rameters and {Θfj, j = 1, . . . , J} for the hyperparameters involved in the covariance

function. Hyperparameters {Θfj, j = 1, . . . , J} are conventionally presumed to be

known, and our goal is to estimate the factor scores x(ti) and the model parameters

Θxk. We will provide a method for estimating these hyperparameters later.

Using NNGP, we estimate the latent factors X and model parameters Θxk

through MAP estimation. Under the assumption that fj(·) is given and X is in-

dependent of f , the joint posterior distribution reduces to

p(X,Θxk|Y ,f) ∝ p (Y |X,f) p(X|Θxk)p(Θxk). (2.6)

We assume that a non-informative prior distribution is designated for Θxk. Then
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2.3 Estimation and Algorithm

from (2.6) we need to maximize

log p(Y |X,f)p(X|Θxk) ∝ log p(X|Θxk) + log p(Y |X,f), (2.7)

where the latent factor likelihood term decomposes as

log p(X|Θxk) =
K∑

k=1

log p(xk) =
K∑

k=1

[
−N

2
log(2π)− 1

2
log |Σk| −

1

2
tr
(
Σ−1

k xkxk
⊤)]. (2.8)

The above equation is derived from Equation (2.3). Assuming X is given, we use

this Formula (2.8) to estimate Θxk. To address computational challenges with large

N , we implement NNGP approximation by replacing the full covariance matrix Σk

with its sparse counterpart Σ̃k. This yields the modified log-likelihood

ℓ(Θxk|X) =
K∑
k=1

[
−N

2
log(2π)− 1

2
log

∣∣∣Σ̃k

∣∣∣− 1

2
tr
(
Σ̃

−1

k xkxk
⊤
)]

, (2.9)

where the specific form of Σ̃k will be provided later.

To estimate X, the maximum likelihood estimation in (2.7) for the model can

be divided into a sum of two parts log p(X|Θxk) and log p(Y |X,f). The part of

log p(X|Θxk) can be decomposed into the sum of K terms, where the density p(xk)

can be expressed as the product of conditional densities

p(xk) = p(xk(t1))p(xk(t2)|xk(t1)) . . . p(xk(tN)|xk(t1), . . . xk(tN−1)). (2.10)

Based on Equation (2.3), we choosem nearest neighbors for each xk(ti), i = 1, . . . , N,

and replace the large conditioning sets on the right-hand side of (2.10) with m
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2.3 Estimation and Algorithm

previous nearest neighbors

p̃(xk) = p(xk(t1))
N∏
i=2

p (xk(ti) | xk (N (ti))) , (2.11)

where xk (N (ti)) is m previous nearest neighbors of xk(ti). The selection of m

can be refered to Datta et al. (2016) and Guinness (2018). It can be shown that

p̃(xk(t)) in (2.11) is a multivariate Gaussian density with covariance matrix Σ̃k. The

term p (xk(ti) | xk (N (ti))) is the conditional density N
(
xk(ti) | a⊤

i,kxk (N (ti)) , di,k
)
,

where

ai,k = Σk (N (ti) , N (ti))
−1Σk (N (ti) , ti) , (2.12)

di,k = Σk (ti, ti)−Σk (ti, N (ti))ai,k. (2.13)

Finley et al. (2019) provides efficient algorithms to calculate sparse Σ̃k = (I −

Ak)
−1Dk(I − Ak)

−⊤, where Ak = (a1,k, . . . ,aN,k) and Dk = diag{d1,k, . . . , dN,k},

the expression of ai,k and di,k are given in (2.12) and (2.13). Thus we can obtain the

expression for
∣∣∣Σ̃k

∣∣∣ and Σ̃
−1

k in Equation (2.9), that is

Σ̃
−1

k = (I −Ak)
⊤D−1

k (I −Ak) (2.14)

and Σ̃
−1

k admits a Cholesky decomposition Σ̃
−1

k = L⊤
kLk with the lower-triangular

Cholesky factor Lk =D
−1/2
k (I −Ak). Then

∣∣∣Σ̃k

∣∣∣ = N∏
i

l−2
kii , (2.15)
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2.3 Estimation and Algorithm

where lkii is the diagonal element of matrix Lk.

The sequential NNGP algorithm proposed in Datta et al. (2016) updates the

components of xk(ti) individually for i = 1, . . . , N . That is, updates xk(ti) from

N(0, d̃i,k), where

1

d̃i,k
=

1

di,k
+

i+m∑
l=i+1

a2
l,k[i]

dl,k
, (2.16)

where al,k[i] is the ith element of vector al,k. Thus, for log p(X|Θxk), we can update

xk(ti) from
∑K

k=1 log p̃
(
xk(ti) | N(0, d̃i,k)

)
.

Equation (2.7) involves the part of log p(Y |X,f) as well. From Model (2.1),

Yj(ti)|fj(·),X ∼ N
(
fj(x

(j)(ti)), σ
2
)
independently for i = 1, . . . , N , that is

log p(Y |X,f) ∝
N∑
i=1

J∑
j=1

1

σ2

[
Yj(ti)fj

(
x(j)(ti)

)
− 1

2
(fj

(
x(j)(ti)

)
)2
]
−NJ log σ.

Combining the two parts above, when the estimation of fj(·) and σ2 are given, we

can estimate x(ti) sequentially, i.e.

x̂(ti) = argmax
x(ti)

ℓ(x(ti)),

where the objective function combines the log-likelihood of observations and NNGP

distribution:

ℓ(x(ti)) ∝
J∑

j=1

1

σ2

[
Yj(ti)fj

(
x(j)(ti)

)
− 1

2
(fj

(
x(j)(ti)

)
)2
]
− J log σ

+
K∑
k=1

log p̃
(
xk(ti) | N(0, d̃ik)

)
, (2.17)
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2.3 Estimation and Algorithm

where x(j)(ti) is given in (2.2), and d̃ik is defined in (2.16).

2.3.3 Iterative algorithm

In the following, we introduce an iterative algorithm to estimate the unknown link

function, latent factors, and model parameters. The iterative approach starts with

giving initial values of X, σ2 and Θxk. The initial values of X are computed us-

ing a linear latent factor model, with the same constraints imposed on the loading

matrix. The initial values of Θxk and σ2 are generated from a random uniform dis-

tribution. We first assume the hyperparameters Θfj are given and aim to estimate

the factor scores X and the model parameters (σ2,Θxk). In the subsequent remark,

we will discuss how to estimate the hyperparameters using the empirical Bayesian

method. Algorithm 1 provides the detailed steps of the iterative algorithm, which is

implemented by alternately updating Θxk and X.

This iterative procedure ensures consistent estimation of both latent factors and

nonlinear link functions while maintaining computational tractability for functional

data.

Remark 4. (i) The NNGP approximation in Step 1 replaces the full GP covari-

ance Σk with a sparse version Σ̃k, reducing computational complexity from O(N3)

to O(Nm3). (ii) The optimization in Step 2 leverages the block-diagonal structure

induced by NNGP, allowing parallel computation across time points. (iii) Hyper-

parameters are typically considered to be known. If they are unknown, we apply

the empirical Bayesian method to estimate their values using the same approach

as in Step 1 expression (2.18) of Algorithm 1, which can be further refined by in-
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2.3 Estimation and Algorithm

Algorithm 1 Iterative Estimation via NNGP

1: Initialize: Set initial values for X(0), σ2(0) and Θ
(0)
xk

2: while not converged do

3: Step 1: Update parameters Θ
(iter)
xk and σ2(iter) given X(iter−1)

Estimate σ2(iter) by maximizing:

ℓ(σ2|X(iter−1)) =
J∑

j=1

[
− 1

2
log

∣∣σ2IN +CN

∣∣− 1

2
tr
(
(σ2IN +CN )−1Y jY j

⊤
)]

. (2.18)

Then maximize the log-likelihood of the latent factors using expression (2.9), where the

expressions of Σ̃
−1

∣∣∣Σ̃k

∣∣∣ are given in equations (2.14) and (2.15).

4: xk

k and

Step 2: Update latent factors X(iter) given Θ(iter−1) 
and σ2(iter−1)

For each time point ti, solve:

x(iter)(ti) = argmax
x(ti)

ℓ(x(ti)|Θ(iter−1)
xk , σ2(iter−1)),

where the objective function is defined in (2.17), and fj
(
x(j)(ti)

)
is replaced by its estimator

E
(
fj

(
x(j)(ti)

))
, which is given in (2.5).

5: Check convergence: Repeat Steps 1-2 until ∥X(iter) −X(iter−1)∥2 < ϵ where ϵ is a

small convergence threshold.

6: end while

7: Estimate unknown link function: Using the final estimate X̂, compute for each j and ti:

f̂j

(
x(j)(ti)

)
= E

[
fj

(
x(j)(ti)

)
|X̂

]
where the expectation is evaluated via (2.5).

8: Output: Estimated latent factors X̂, model parameters Θ̂xk, σ̂
2, and link functions f̂j(·)

corporating the estimation within Step 1, enabling concurrent estimation of both

hyper parameters and model parameters. (iv) Although the true model is nonlinear,

when the nonlinearity is not severe, we use a linear factor model to initialize X,

which performs well in practice. More caution is required in more general cases.

In addition, since the conditional objective functions (2.9,2.17,2.18) admit multiple

maximizers, we initialize both latent factors and model parameters with multiple

starting values and perform a global search, selecting the solution that maximizes
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j

the joint likelihood.

3. Asymptotic Properties

In this section, we present the asymptotic properties for the estimators of latent 

factors, unknown parameters and unknown link function. Theorem 2 shows that the 

latent factors and unknown parameters are consistently estimated given the true link 

function fj∗, if the condition in Theorem 1 is satisfied. Theorem 3  provides posterior 

consistency of (fj , σ2) given the latent factor estimators.

Theorem 2. Let (X∗, Q∗) ∈ S, defined i n S ection 2 .2, b e t he t rue f actor scores 

and informative matrix, x∗(ti) is the i-th row of X∗ and r∗ is the j-th row of Q∗.

Let (Θ∗
xk, σ

2
∗) be the true values of model parameters. Let

(
x̂(ti), Θ̂xk, σ̂

2
)

denote

the estimators of (x∗(ti),Θ
∗
xk, σ

2
∗). If Q satisfies the condition in Theorem 1, given

(x∗(ti),Θ
∗
xk), then σ̂2 p→ σ2

∗ as N → ∞ and J → ∞. Furthermore, when σ̂2 is a

consistent estimator of σ2
∗, the latent factors x̂(ti) are consistent, that is, x̂(ti)

p→

x∗(ti) as J → ∞. When x̂(ti) is a consistent estimator of x∗(ti), we can also prove

that Θ̂xk
p→ Θ∗

xk as N → ∞.

Theorem 3. Denote P0 be the joint conditional distribution of {Yj(ti)}∞i=1 given the

latent factors, assuming that f ∗
j is the true link function, Θ∗

xk for k = 1, . . . , K

and σ2
∗ are the true model parameters, Θ∗

fj for j = 1, . . . , J are the true hyper-

parameters. Let fj have prior Π and λ be a K-dimensional Lebesgue measure. Then,

under the true informative matrix Q∗, i.e. Rj accurately describes which latent fac-

tors are associated with the manifest variable Yj(ti), given the consistent estimation

(x̂(ti), Θ̂xk, σ̂
2, Θ̂fj) of latent factors, unknown parameters, and hyperparameters,
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if Assumptions A1-A2 given in the online Supplementary Materials hold, for every

ϵ > 0,

Π
{
fj ∈ Wϵ | Y , x̂(ti),Rj, Θ̂xk, σ̂

2, Θ̂fj

}
→ 1 in P0 − probability,

where

Wϵ =

{
fj :

∫ ∣∣∣fj (x̂⊤(ti)Rj

)
− f ∗

j

(
x∗⊤(ti)Rj

)∣∣∣ dλ(x∗(ti)) < ϵ

}
.

In other words, for each j, we have fj
(
x̂⊤(ti)Rj

)
p→ f ∗

j

(
x∗⊤(ti)Rj

)
as N → ∞.

The proofs of both theorems are given in the online Supplementary Materials.

Remark 5. For the consistency of the latent factors and the unknown link function, 

we have the following explanation. From Model (2.2), it can be seen that the infor-

mation about the unknown link function fj is mainly provided by observations of the 

j-th component Yj at i = 1, . . . , N , and is not related to other components of Y , while 

the information about the latent factors primarily comes from all components Yj (ti), j 

= 1, . . . , J . For the link functions fj , we show that it suffices to establish the 

consistency of fj for a fixed j, which is not in conflict with letting J → ∞. The 

dependence of the link function on j is introduced for model generality. In practice, 

multiple manifest variables are often linked to the same latent factor and therefore 

share the same link function for the corresponding indices j. See Equation (4.19) in the 

Simulation section for an example. For the consistency of the latent factors, we assume 

that N, J tend to infinity. Since Yj (ti) is assumed to have a certain smooth-ness in the 

time dimension (i.e. different ti), we also assume a certain smoothness for
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xk(ti), but its consistency mainly relies on the information from different j of Yj(ti).

4. Simulation Studies

In this section, simulation studies are conducted to evaluate the finite-sample per-

formance of both latent factor estimator and the unknown link function estimator.

First, to assess the robustness of our model, under a general nonlinear structured

latent factor model, we compared two scenarios: one where all factors satisfy the

identifiability conditions in Theorem 1 of our paper but not those in Zhang et al.

(2025), and another where some factors violate our Theorem 1 conditions. The results

confirm that our algorithm correctly identifies factors meeting our theoretical condi-

tions, while Zhang et al. (2025)’s model fails in these cases. Second, using multi-index

structured data from Zhang et al. (2025), we demonstrate that our model matches

their performance, proving its flexibility without sacrificing accuracy. Finally, to im-

prove computational efficiency, we used NNGP in the latent factor estimator, and

the average computation time of NNGP and GP was compared.

(i) Robustness Analysis with General Structured Data. The data are

generated from a nonlinear structured latent factor model as follows

Yj(ti) = fj(x
⊤(ti)Rj) + εj(ti), j = 1, . . . , J, i = 1, . . . , N,

where x(ti) = (x1(ti), . . . , xK(ti))
⊤, εj(ti) ∼ N (0, σ2) with σ2 = 0.25, and the specific

expression for fj will be provided below. In all settings, we consider K = 3, J =

{6, 12, 21, 30, 99} and N = 5J . The factor scores xk = (xk(t1), . . . , xk(tN))
⊤ ∼ GP

which are dependent for i = 1, . . . , N but independent for k = 1, 2, 3 using kernel
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function (2.4) with vxk = 1 and wxk = 100 for k = 1, 2, 3. Compared to our previous

work (Zhang et al., 2025), here we consider the dependence of xk(ti) between different

ti’s, and our model allows fj(·) to be a multivariate function, which is more flexible in

practice. To investigate the conditions of identifiability, we consider two scenarios,

where the first one satisfies identifiability conditions, but the second one violates

them.

Scenario 1. Here, we consider Model (2.1) with

fj(·) =



1

1+e−aj1x1(ti)
+ 1

1+e−aj2x2(ti)
for j = 1, . . . , J/3

1

1+e−aj1x1(ti)
+ 1

1+e−aj3x3(ti)
for j = J/3 + 1, . . . , 2 ∗ J/3

1

1+e−aj2x2(ti)
+ 1

1+e−aj3x3(ti)
for j = 2 ∗ J/3 + 1, . . . , J.

(4.19)

The corresponding Rj = diag{1, 1, 0} for j = 1, . . . , J/3;Rj = diag{1, 0, 1} for

j = J/3 + 1, . . . , 2 ∗ J/3 and Rj = diag{0, 1, 1} for j = 2 ∗ J/3 + 1, . . . , J. The

coefficients aj = (aj1, aj2, aj3)
⊤’s are generated iid from distributions over the ball

{
a ∈ R2 : ∥a∥ ≤ 2.5, each element of a ≥ 0

}
.

All latent factors are structurally identifiable even when there is no item measuring

a single latent factor.

Scenario 2. Here only the values of Rj and fj for j = J/3 + 1, . . . , 2 ∗ J/3 from

Scenario 1 are different, that is Rj = diag{0, 0, 1} for j = J/3+1, . . . , 2∗J/3, where

Yj(ti) = 1

1+e−aj3x3(ti)
+ εj(ti), all other elements remain unchanged. Then the first

and the third latent factors are identifiable, while the second latent factor is not
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identifiable.

In this simulation study, we mainly investigate the finite sample performance

of the estimators for the latent variables and the unknown link function. The for-

mer is measured by the correlation and sin value between the latent variables and

their estimators. For the sake of simplicity and convenience of notation, we de-

note Corrx1 = corr(x1, x̂1), Sinx1 = sin(x1, x̂1) and similar notations for x2 and

x3. To measure the convergence of the estimation of the unknown function fj for

j = 1, . . . , J , we used the quantity df =
∑J

j=1 ∥f̂ j−f j∗∥
2

NJ
, where fj∗ is the true value

of link function fj(·) given in Expression (4.19) or (4.20). For each sample size, 100

replications are conducted and we take the average of those measures. We use two

gradient-based algorithms respectively in the optimization step. Both the scaled con-

jugate gradient algorithm and the gradient descent algorithm yield the same result,

although they have different convergence speeds.

As a comparison to our proposed method (denoted by GNSLFM), we also use

a linear latent factor model (denoted by LLF) and our previous work (Zhang et al.,

2025, denoted by NSLFM). We apply the same variable-factor linkage relationships

to both LLF and NSLFM. The results of the simulation studies are shown in Tables

1-2, as well as Figures 2-3.

Table 1 shows the results of latent factor estimation and unknown link function

estimation under Setting 1 for different values of J (N = 5 ∗ J). From Scenario 1

in Table 1, we have the following findings. First, we can see that the correlation

between the latent variables and their estimates using our proposed method tends

to 1, and the sin value tends to 0 as J increases, indicating the identifiability of the
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estimated factor scores. The convergence of the estimation of the factor scores is

mainly dependent on J . The results of df show the good accuracy of the estimation

for the unknown link function, which improves as N and J increases. Second, the

accuracy of the factor score estimates derived from the LLF method is inferior to

that of our proposed model, because the LLF method fails to capture the nonlinear

characteristics of the data. The results of NSLFM also do not perform as well as

our method, as the model GNSLFM offers enhanced flexibility while the NSLFM

can only handle data that has a multi-index structure. Besides, GNSLFM takes into

account the correlations among latent factors across different time points, which is

not considered in both NSLFM and LLF.

From Scenario 2 in Table 1, when the latent factor is not identifiable, the Corrx2

is not close to 1, Sinx2 is not close to 0 even for large J , which reflects the impact

of identifiability on latent factor estimation. The accuracy of the estimation of the

unknown function improves with the increase in N and J . The accuracy of the

unknown function estimators is unaffected by identifiability conditions and improves

as the sample size grows. This robustness is due to the fact that, even in cases where

the latent space lacks uniqueness, GNSLFM can still extract meaningful information

and capture patterns within the data, resulting in effective prediction performance.

Figures 2-3 show the true values and estimations of x1 and x2, evaluated from 99

observations in Scenario 1 for one replication, using our proposed model (GNSLFM)

and LLF. The estimated values for x1 and x2 obtained from our model closely match

their true values. In contrast, the estimates obtained from LLF do not smoothly

replicate the true x1 and x2. This discrepancy arises because the LLF method
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Table 1: The results of GNSLFM, LLF and NSLFM in Simulation Study(i)

J Corrx1 Corrx2 Corrx3 Sinx1 Sinx2 Sinx3 df

Scenario 1

GNSLFM

6 0.83 0.82 0.82 0.45 0.44 0.45 0.62
12 0.86 0.88 0.86 0.40 0.39 0.41 0.52
21 0.91 0.89 0.91 0.38 0.38 0.38 0.41
30 0.95 0.92 0.94 0.34 0.34 0.32 0.40
99 1.00 1.00 1.00 0.15 0.17 0.16 0.22

LLF

6 0.74 0.74 0.74 0.75 0.80 0.77
12 0.81 0.81 0.82 0.65 0.68 0.67
21 0.87 0.88 0.87 0.51 0.56 0.49
30 0.91 0.92 0.91 0.49 0.45 0.42
99 0.92 0.92 0.92 0.35 0.35 0.36

NSLFM

6 0.76 0.76 0.77 0.55 0.58 0.59 0.58
12 0.83 0.83 0.85 0.46 0.49 0.49 0.45
21 0.90 0.89 0.90 0.31 0.36 0.39 0.34
30 0.93 0.93 0.93 0.29 0.29 0.25 0.22
99 0.93 0.94 0.94 0.27 0.28 0.26 0.12

Scenario 2 GNSLFM

6 0.82 0.45 0.82 0.45 0.85 0.45 0.82
12 0.85 0.48 0.87 0.40 0.80 0.41 0.62
21 0.90 0.53 0.90 0.38 0.76 0.38 0.41
30 0.95 0.55 0.95 0.34 0.70 0.32 0.40
99 1.00 0.55 1.00 0.05 0.61 0.06 0.25

assumes that the samples are independent and fails to account for the nonlinear

characteristics of the data.

(ii) Performance on Multi-index Structured Data. In this setting, we use

the multi-index structured data as discussed in Zhang et al. (2025). The data is

generated as follows

Yj(ti) =
1

1 + e−a⊤
j x(ti)

+ εj(ti), j = 1, . . . , J, i = 1, . . . , N, (4.20)

where x(ti) = (x1(ti), x2(ti), x3(ti))
⊤ and εj(ti) ∼ N (0, σ2) with σ2 = 0.25. The

J and N follow the same setup as Setting 1. The confirmatory matrix definded in
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Figure 2: The true values and estimates of x1(t) and x2(t) by using GNSLFM with
dependent data.

Zhang et al. (2025) is set as

Q⊤ =


1 1 0 · · · 1 1 0 · · ·

1 0 1 · · · 1 0 1 · · ·

0 1 1 · · · 0 1 1 · · ·

 .

The factor scores x(ti)
′s and the loading coefficients a′

js are generated iid from

distributions over the ball {x ∈ R3 : ∥x∥ ≤ 2.5}. In this setting, all latent factors

satisfy the identifiability conditions in Zhang et al. (2025) and in Theorem 1 of this

paper.

Table 2 shows the results of latent factor estimation and unknown link function

estimation. Even if the data has a multi-index type structure, the performance of

GNSLFM is quite good and similar to the results achieved by the true model of
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Figure 3: The true values and estimates of x1(t) and x2(t) by using linear FA with
dependent data.

NSLFM. The model NSLFM, as described in Zhang et al. (2025), can be consid-

ered a special case of our proposed model, GNSLFM. Both GNSLFM and NSLFM

outperform LLF, and GNSLFM is applicable to a wider range of data types. When

handling data with a multi-index type structure, both GNSLFM and NSLFM are

suitable; however, for the data types presented in Table 1, our proposed GNSLFM

model is superior.

(iii) Computational Efficiency via NNGP. Table 3 summarizes the com-

putation time between the full GP and NNGP methods. Under the setting where

K = 2, N = 5 ∗ J , and m = 20 nearest neighbors are taken as the conditional infor-

mation for the density function p(X), it can be seen that using the NNGP algorithm

is much more efficient than the full GP.
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Table 2: The result of GNSLFM, LLF and NSLFM in Simulation Study(ii)

J Corrx1 Corrx2 Corrx3 Sinx1 Sinx2 Sinx3 df

GNSLFM

6 0.76 0.76 0.77 0.55 0.58 0.59 0.58
12 0.83 0.83 0.85 0.46 0.49 0.49 0.45
21 0.90 0.89 0.90 0.31 0.36 0.39 0.34
30 0.93 0.93 0.93 0.29 0.29 0.25 0.22
99 0.97 0.97 0.98 0.17 0.18 0.16 0.12

LLF

6 0.74 0.74 0.74 0.75 0.80 0.77
12 0.81 0.81 0.82 0.65 0.68 0.67
21 0.87 0.88 0.87 0.51 0.56 0.49
30 0.91 0.92 0.91 0.49 0.45 0.42
99 0.94 0.94 0.94 0.07 0.50 0.06

NSLFM

6 0.83 0.82 0.82 0.45 0.44 0.45 0.62
12 0.86 0.88 0.86 0.40 0.39 0.41 0.52
21 0.91 0.89 0.91 0.38 0.38 0.38 0.41
30 0.95 0.92 0.94 0.34 0.34 0.32 0.40
99 1.00 1.00 1.00 0.15 0.17 0.16 0.22

5. Analysis of Gait Data

Parkinson’s disease (PD) is a complex neurodegenerative disorder that leads to chal-

lenges in disease management, reduced quality of life, and increased healthcare costs

(Hoehn and Yahr, 1998). Gait, as an early diagnostic tool for PD, is also used to

predict morbidity, mortality, fall risk and other neurological disorders (Buckley et

al., 2019). Currently, this research still faces challenges due to numerous factors

influencing the performance of early identification of PD, such as walking protocols,

gait assessment systems, cohort size, disease severity stage of PD, and validation

methods. In this section, we apply the proposed method to gait data collected in our

laboratory. We collected one week of continuous steady-state gait data from Parkin-

son’s patients using wearable devices. After data preprocessing, the gait features

of each individual can be represented as functional data over time. It is important
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Table 3: Comparison of the computation time between the full GP and NNGP
methods

Full GP NNGP

N Iter CPU(s) Iter CPU(s)

20 6 1.00 2 0.62
40 7 14.62 7 1.06
60 4 64.80 7 4.35
80 6 223.83 3 9.81
100 4 178.83 2 15.79
200 6 354.96 4 40.61
500 6 754.96 4 60.61

to note that there are many variables that could describe gait characteristics, i.e.,

the number of manifest variables J , could be very large. Moreover, gait data is a

form of free living data, meaning it can be used to identify activities, detect diseases,

and other applications. Given the complexity and high-dimensional nature of such

data, there is a need for low-dimensional, interpretable latent variables to effectively

capture and analyze the relationships among various gait characteristics that vary

continuously over time. Our aim is to measure these relationships using a few latent

factors in a nonlinear way.

We treat gait characteristics for one Parkinson’s patient as manifest variables.

For illustrative purposes, we focus on a 13-dimensional feature set, which includes

gait speed, step length, stride time, degree of asymmetry in time and distance, and

other relevant metrics. We collected observations at 300 time points, i.e., N = 300.

Referring to the analysis of gait data using a linear latent factor model in Morris et al.

(2017), we consider four latent factors: Pace, Rhythm, Asymmetry, and Variability

(SD). The first factor is related to gait speed and step length. The second factor

is associated with the duration of one stride, one step, one stance and one swing.
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The third factor represents the degree of asymmetry in time and distance, measured

in absolute value. The fourth factor is related to all the variables corresponding

to the first and second factors, and can be regarded as a composite index of time,

length, and velocity. Based on the above relationships and identifiability conditions,

we formulated the design matrix Rj. We obtained estimates of the latent factors

under both models, LFA and GNSLFM.

Figure 4 shows the estimation curves of the second and fourth factor scores

under the two models, respectively. From Figure 4, we can see that the factor

scores obtained from GNSLFM exhibit smoother patterns. Figure 5 displays the

first-order autocorrelation function of the second and fourth factors derived from

both models. The autocorrelation function obtained from LLF remains close to 0,

indicating that the factor scores are largely uncorrelated. This reveals that LLF

usually cannot capture the correlations between different time points. In contrast,

the autocorrelation function from the GNSLFM exhibits a distinct pattern and trend,

showing characteristics more naturally. This indicates that GNSLFM may capture

nonlinear structures within the data that LLF fails to represent. Furthermore, we

performed a frequency domain analysis using power spectral density (Bansal and

Dimri, 2021), which is a measure that describes the distribution of power contained

within a signal as a function of frequency. As illustrated in Figure 6, the power

spectral density of LLF is predominantly concentrated in the low-frequency region.

In contrast, the power spectral density of GNSLFM is distributed across a broader

frequency range, revealing a more diverse spectrum of frequency components. This

indicates that nonlinear dimensionality reduction captures a wider range of frequency
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features and finer details within the data. For the other two factors, we obtained

similar results, which are omitted here for simplicity. In summary, our proposed

method (GNSLFM) captures richer information from the data, and the estimated

factor scores are smoother, which is attributed to the model’s ability to effectively

capture nonlinear features.

Figure 4: Factors scores of LLF and GNSLFM for the second and fourth factor

6. Discussion

We propose a general nonlinear structured latent factor model for functional data. It

allows the nonlinear link functions to be multivariate and captures the correlations

among observed variables using a small number of latent factors. First, identifiability

of the latent factors is established by imposing certain constraints on the structured

index matrix. Second, we estimate the unknown nonlinear functions by assuming

Gaussian process priors, and then consider the correlation of latent factors across
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Figure 5: First-order autocorrelation function of of LLF and GNSLFM for the second 
and fourth factor

different t i by assuming Gaussian process for the l atent f actors. We propose a  two-

step estimation procedure for the latent factors and unknown parameters. Finally, 

the posterior consistency of the nonlinear link functions, as well as the consistency of 

latent factors and unknown parameters, are established. Simulation studies and real-

world data analysis further validate the finite-sample p erformance o f t he proposed 

method.

There are several extensions worth pursuing in future research. First, we as-

sume that the factor loading structures Rj is pre-specified based on identifiability 

conditions. However, in practice, Rj is unknown. In Zhang (2025), we explored the 

automatic selection of Rj in settings with a small number of latent factors, using 

correlation-based clustering and residual diagnostics, and obtained promising empir-

ical results. Developing a full general theory for this problem remains challenging
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Figure 6: Power spectral density of LLF and GNSLFM for the second and fourth 
factor

and is left for future research. Second, theoretically, we have only proven the con-

sistency of the unknown link functions and latent factors. We have not yet studied 

their asymptotic convergence rates or the convergence of the algorithm.

Supplementary Materials

The online Supplementary Materials include all the technical proofs.
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