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Abstract: Nonlinear structured latent factor model captures the relationship between ob-
served variables and latent variables in a nonlinear way, offering greater flexibility compared
to a linear factor model. Functional data characterizes features of data that vary continu-
ously over time or space and is widely applied across various fields. This paper proposes a
nonlinear structured latent factor model for functional data. We consider correlations for
the latent factor to account for the dependence in functional data at different time points.
The structured identifiability of latent factors is studied to ensure uniqueness, thereby al-
lowing these factors to have a physical interpretation. A Gaussian process (GP) prior is
utilized to estimate the unknown nonlinear link functions. To improve computational effi-
ciency, an efficient algorithm is developed by using the nearest neighbor Gaussian process
(NNGP). The consistency of the latent factors and the unknown parameters, as well as the
posterior consistency of the unknown link functions, was established. Simulation studies
were conducted to demonstrate the finite-sample performance and the flexibility of the pro-
posed model, and the significant computational time savings achieved by NNGP compared
to GP. The method was applied to analyse the gait data collected in our laboratory for early

detection of neurodegenerative diseases.
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1. Introduction

Latent factor model (Spearman) 1904)) is a commonly used statistical tool for multi-
variate data analysis, which describes the common dependence among multiple ob-
served variables using only a few latent variables. Compared to another commonly
used tool for handling multivariate data, principal components analysis (PCA, |[Mc-
Cabe, |1984)), it provides better physical interpretability. For instance, in the gait
dataset collected in our laboratory, numerous gait features may be summarized into
four latent factors: pace, rhythm, symmetry, and variability (SD). The pace factor
directly correlates with walking speed, rhythm reflects the regularity of gait, sym-
metry measures bilateral symmetry between two feet, and SD indicates gait stability
and consistency. Latent factor analysis greatly improves the interpretability of the
data, enabling researchers to gain deeper insights into complex gait patterns. The
details of the dataset will be discussed in Section [5] In practice, factor analysis
has applications across diverse fields, including malfunction detection, diagnostics,
psychometrics, and medical research.

Identifiability is a key property in latent factor models, and is essential for sub-
stantiating the physical interpretation of latent factors. An identifiable model allows
for the unique extraction of specific latent factors from observed data, thus enriching
the comprehension of the interactions between observed variables and latent fac-
tors. In this paper, we consider the identifiability of the structured latent factors.

The term “structured” signifies that the model incorporates specific patterns or con-



straints on associations between latent factors and observed variables. Traditionally,
this structure is often enforced by setting certain factor loadings to zero, implying
that each observed variable is influenced by specific latent factors only. In a more
recent study, Chen et al.| (2020) explored the identifiability and estimation of struc-
tured factor models with predefined generalized link functions, including both linear
and logistic models as special cases. |Zhang et al.| (2025) studied the identifiability
and estimation of nonlinear structured latent factor models with an unknown link
function from a Bayesian perspective.

Existing latent factor models assume that observed variables are related to a set
of linear combinations of latent factors through either a linear function, a known
nonlinear link function, or an unknown link function similar to a multiple index
model (Chen et al., [2020; Zhang et al., [2025). However, real-world data often ex-
hibit unknown and complex nonlinear relationships. In this paper, we propose a
novel general nonlinear latent factor model, similar to a multivariate nonparametreic
model. Additionally, we examine the methods within the context of functional data
analysis, where data collected at different time points are dependent. This scenario
often occurs in various practical applications, such as stock price fluctuations over
time, human motion trajectories, and variations in patients’ brainwaves. Gait data
also falls under this category. Several studies have been conducted on latent fac-
tor models for functional data. Tu et al. (2014) and |Gu et al. (2024) adopted the
dynamic mode decomposition method, which is a popular approach of linearizing
the one-step-ahead transition operator of nonlinear dynamical systems and recon-

structing the dynamics by eigenpairs of the linear mapping matrix. Another type of



method is to model each latent factor using a Gaussian process in coregionalization
models (Gu and Shen, 2020; Lin et al.| 2025). However, none of them considered the
identifiability of latent factors, resulting in a lack of p hysical i nterpretability. This
paper addresses this issue and considers a more general model under unknown link
functions.

Gaussian processes (GPs) and related methods have been widely applied to build
nonlinear model, see e.g. Shi and Choi (2011). Lawrence (2005) proposed the Gaus-
sian process latent variable model (GPLVM), which utilizes the concept of Gaussian
process regression (GPR) models for nonparametric and nonlinear dimensionality
reduction. Their approach removed the irrelevant relationships between the ob-
served variables and latent factors, offering a more fl exible framework compared to
traditional methods such as functional PCA. Wang et al. (2005) studied the Gaus-
sian process dynamical models (GPDM), assuming that samples are indexed by ¢
(time series) but remain independent and identically distributed. In our analysis of
dependent gait data, we aim to reduce the dimensionality of the observed data by
identifying low-dimensional interpretable factors. This necessitates exploring nonlin-
ear structured latent factor models for dependent data, a topic that has not received
sufficient at tention in the literature.

One of primary challenges in implementing GPR, as well as in GPLVM and
GPDM, is the significant computational cost associated with t he calculation of the
inverse of covariance matrices, which is O(N?) and N is the number of time points.
Damianou et al, (2011) tackled this issue by using variational approximations for

GPDM; however, this method fails to ensure consistent parameter estimates as the



sample size increases. [Liu et al| (2018b) introduced scalable Gaussian processes
designed to enhance the scalability of full GP models while maintaining good pre-
diction quality for large datasets. Another strategy for reducing computation time
is local approximation, which only needs a local subset of size mg (where my < N)
data points (Gramacy and Lee, 2008; Gramacy, 2016). Among these approaches, the
nearest neighbor Gaussian process (NNGP, Datta et al., 2016) is particularly promis-
ing due to its ability to balance computational efficiency with model ac curacy. The

NNGP method effectively combines the principles of Gaussian processes and nearest

neighbor techniques, concentrating on local data subsets and utilizing nearest neigh-
bor approximations to significantly lower t he c omputational c omplexity of full GP

models, while still delivering strong predictive performance. Consequently, NNGP
is a valuable tool for researchers and practitioners, especially in scenarios involving
large datasets and complex, nonlinear relationships. More discussion can be found
in Liu et al) |(2018a); Wu et al. (2022); Coube-Sisqueille and Liquet (2022); Saha et
al||(2022); Villarraga and Daziano (2025) among others. A variational version of this
method will be developed and used in this paper.

In this paper, we delve into the identifiability and e stimation o f t he nonlinear
structured latent factor model for functional data. The efficiency of our proposed
methodology is rigorously substantiated through both asymptotic properties and
simulation studies. In contrast to the extant literature, our work delineates sev-
eral notable contributions. Firstly, we introduce a nonlinear structured latent factor
model with an unknown link function for functional data. This transition from linear

to nonlinear factor analysis methodologies signifies a pivotal e volution in t he field,



enabling the capture of more complex and nuanced relationships within functional
data. Secondly, compared to conventional latent factor models, we account for the
dependency among observations, allowing us to explore the underlying latent struc-
ture of functional data. Thirdly, we apply nonparametric Bayesian methods to latent
factor models, with a specific focus on employing the GPR approach for estimating
unknown functions. Unlike the GPLVM, which fails to offer a lucid substantive in-
terpretation of latent factors, our approach not only establishes the identifiability
of these factors but also provides them with a clear and meaningful interpretation.
In addition, to address computational challenges, we incorporate the concept of the
NNGP.

The rest of the paper is organized as follows. In Section [2, we introduce the
nonlinear structured latent factor model for functional data, and then discuss the
structured identifiability of the latent factors as well as the estimation of unknown
parameters, latent factors, and nonlinear function. In Section (3], We establish the
consistency of the proposed latent factor estimates and unknown parameters, along
with the posterior consistency of the estimator of the unknown link function. Simu-
lation studies are conducted to investigate the finite-sample performance in Section
In Section [f] the proposed method is applied to a gait dataset collected in our lab-
oratory. Finally, concluding remarks and directions for further studies are provided

in Section [6 All technical proofs are given in the online Supplementary Materials.



2. Model and Methodology

2.1 General Nonlinear Structured Latent Factor Model for Functional

Data

Suppose that Y (t;) = (Yi(t;),...,Ys(t;))" € R’ is a J-dimensional functional mani-
fest (observed) variable for ¢ = 1,..., N. The component Y;(t;) denotes the value of
the j-th manifest variable at the ¢-th time point. For each time point ¢;, we assume
the manifest variable is associated with a K-dimensional latent vector, denoted as
x(t;) = (21(L;), ..., 2k (t;))". In the gait dataset of Section 5| Y (¢;) represents gait
speed, step length, time for one stride, one step or one stance, and so on, while x(t;)
represents pace, rhythm, asymmetry, variability (SD).

Each component Y;(t;) usually depends on one or more latent variables. To

model such a structure, we defined the following general nonlinear structured latent

factor model (GNSLFM):

Yi(t:) = fi(x" (t)Rj) +¢;(t:), €;(t:i) ~N(0,0%),5=1,...,J,i=1,...,N, (2.1)

where f;’s are unknown multivariate link function, £;(¢;)’s are i.i.d. random errors,
R; = diag{rji,...,7jx} is a K x K diagonal matrix, and r;; = 1 means the j-th

manifest variable is associated with the latent variable x(t;) and 7;;, = 0 otherwise.

Remark 1. Model (2.1)) uses a multivariate nonparametric function to describe the
relationship between manifest variables and latent variables. (Chen et al.| (2020) and
Zhang et al. (2025)) established the relationship between Y;(t;) and a set of linear

combinations of x(¢;) using a known or unknown nonlinear link function similar to



2.1 GNSLFM for Functional Data

a multi-index model. Instead, Model establishes a very general factor model.
In addition, we assume normal random errors to facilitate the subsequent use of
Gaussian process regression (GPR) for estimating the unknown link functions f;,
which is a common assumption in the GPR literature. When the data contain
outliers or exhibit heavy-tailed distributions, alternative assumptions such as the
t-distribution can be used (Wang and Shi, 2014; Wang et al., 2017, 2021); however,
this makes the posterior distribution analytically intractable and necessitates the
use of numerical methods for inference. In this paper, we focus on developing a
tractable modeling and estimation framework, and leave the investigation of such

robust extensions to future work.

Remark 2. The role of R; is to select the set of latent factors associated with the
manifest variable Y;(¢;). In this paper, we assume that R; is pre-specified according
to the identifiability conditions of the latent factors, which will be discussed later.
Regarding the automatic selection of R;, we have investigated this problem in Zhang
(2025) and provided practical guidance for settings with a small number of latent
factors (K = 2,3,4), which holds true in most applications. While these approaches
work well in such low-dimensional cases, a general automatic procedure remains
challenging due to the structural identifiability constraints of our framework. We
therefore leave the development of a fully general method for selecting R; for future

research.

Let ) (t;) be the subset of latent factors associated with Y;(t;), i.e., selection



2.1 GNSLFM for Functional Data

of the elements with 7, =1 for k = 1,..., K, then the model can be rewritten as
Yi(t) = f5(@9 () + 5 (t:). (2:2)

The structure of the model in or is illustrated by an example in Fig-
ure . Here we consider two latent factors (K = 2) and J = 6, the structure
of the model is defined by R;, where R; = diag{1,0} for j = 1,2,3; R, =
diag{1,1} for j = 4 and R; = diag{0, 1} for j = 5,6. Thus, zV(t;) = z@(t;) =
2O (t;) = (21(t;),0), 2D (t;) = (21(t;), 2(t;)), O (t;) = 2©(¢;) = (0, 25(t;)). Based
on the conditions discussed in Theorem [I} this structure can guarantee the identifi-

ability of z1(t) and xo(t) for each t.

Yi(t) Y, (6) Y3(t) Y, (t) Y5 () Ys(t)
T I T I T I

Figure 1: Model structure— Latent factor model

For latent factor models, existing literature typically assumes that the latent
factors are independent across different time points ¢;, ¢ = 1,..., N. However, in
practice, this assumption is often too strong. In this paper, we consider Y (¢;) as
functional data, i.e., Y (¢;)'s are dependent at different data time t;s. Consequently,
x(t;)'s are also dependent, which is commonly encountered in practical applications.

To describe the internal dependence within each factor across different values of ¢,



2.2 Structured Identifiability

we may assume each curve z(-) in the latent space follows a GP process:
Tp()~GPr (0, 2k (-, Oyy)) for k=1,... K, (2.3)

with squared exponential covariance function, i.e., the (i,[)-th element of ¥ is given

by

Cov(zg(t;), xk(t;)) = var exp {—%ka(ti - tl)Q} , (2.4)

where the kernel-parameters ©,;, = (vgg, wyr) ' . Time series models, such as AR(1)
model, can also be used to describe the dependence between different time points.
The AR(1) model is a parametric model that assumes a linear dependency structure,
limited to the immediate preceding time point. In contrast, the GP is a nonpara-
metric model that allows for the flexible modeling of arbitrarily complex dependency

structures, not restricted to linearity.

2.2 Structured Identifiability

Identifiability i s ¢ rucial i n s tructured | atent f actor m odels t o p rovide meaningful
interpretation of the latent factors. Under Model |(2.2), it is well known that the
latent factor is not identifiable if no constraints is applied to R;. For positive integers
K,Nand J,letr; = (rj1,...,r;x) ,j=1,...,J bevectors in {0, 1}, and define the
structured index matrix as Q' = (r1,...,7;) € RE*/. To ensure the identifiability
of the latent factors, we will impose zero constraints on some elements of Q.

Here we consider the cases with N — oo, and the identifiability of the k-th



2.2 Structured Identifiability

latent factor X = (zj(t1), 2 (t2),...)" € R%* is equivalent to the identification of

the direction of an infinite dimensional vector. Define the following as

sing Z(u,v) = limsupsin £ (u[l:N], U[I;N]) ,
N—oo

to quantify the angle between two vectors w and v where u = (uq,us, .. .)T LU =
(v1,v9, .. .)T € R%Z+ are two vectors with countably infinitec omponents. When
siny Z(u,v) is 0, we say the angle between u and v is 0. Before presenting the
structured identifiability of t he latent factor in M odel , we will first introduce
the definition of structured identifiability.

Definition 1 (Structured identifiability of a latent fa ctor). Consider the k-th la-
tent factor, where k € {1,..., K}, and a nonempty parameter space S C RZ+x{L-,

for X. We say the k-th latent factor is structurally identifiable in the parameter space

S if for any X, X’ € S, Px = Px implies sin, / (X (1, Ek}) = 0, where Py is
the probability distribution of {Y; (¢;), i € Z4, j € {1, ..., J}}, given factor scores X,

structured index matrix @ and link function f;.
ForA c {1,...,K}, denoteRQ(A) ={j:rp=1iftkeAandry =0, ifk ¢
A,1<j < J}. Denote K = {1,...,K}. Defined the parameter space for X as S,

where

S

{X € RZ7K . |lz(t;)|| < C,the columns of X are lincarly independent}

with C being a positive constant. Then under the above parameter space, the fol-

lowing Theorem 1 provides a necessary and sufficient condition on the structured



2.2 Structured Identifiability

index matrix @ for the structured identifiability of the k-th latent factor.

Theorem 1. We assume the columns of Q are linearly independent. Under
Defini-tion 1, given the link function f; , the k-th latent factor s structurally

identifiable in the parameter space S if and only if

{k} = N A,
KeA, Ry (A)=0()
where we define (\yea. RQ@I=0() A=10if RQ(A) =0 for all A that contains k,

and where | - | denotes the cardinality of a set.

Theorem [l is not only valid under the double-asymptotic (N — oo and J — o0)
setting but also when N and J are sufficiently large finite values provided that
\RQ(A)| = O(J) is replaced by RQ(A) # (). Compared to Chen et al. (2020) and Leeb
(2021) in which they discussed the conditions for generalized linear factor models,
we discuss the identifiability of latent factors for a general nonlinear mod-els and
the dependency of the k-th latent factor Xy across different values of t. The
proof is given in the online Supplementary Materials. Theorem 1 is proved by
contradiction. Because the latent factors are dependent across different observation
points ¢ = 1,..., N, the construction of X and X' requires accounting for correla-
tions across rows. This differs from Chen et al. (2020), where the the latent factors

are assumed to be independent across observation points ¢ =1,..., N.

Remark 3. We discuss what happens when a global factor is present and thank
one anonymous referee for raising this issue. Under the identifiability conditions of

Theorem [1| the presence of a global factor renders some latent factors unidentifiable.



2.3 Estimation and Algorithm

Nevertheless, the proposed general nonlinear structural latent factor model remains
applicable. In such cases, although the consistency and interpretability of the uniden-
tifiable factors become meaningless, the identifiable factors remain well defined and
substantively interpretable. Scenario 2 in part (i) of the Simulation section provides
an illustration. For further discussion of models incorporating a global factor, one
may instead consider alternative specifications such as the bifactor model (Fang et,

all[(2021)).

2.3 Estimation and Algorithm

In this section, we provide the estimation procedure for the unknown link function,
latent factors, and unknown parameters under the identifiability c onditions. First we
consider using a Gaussian process (GP) prior to estimate the unknown link function
f;(+), and then use maximum a posteriori (MAP) estimation to obtain the estimators
of the latent factors and unknown model parameters. The computation involves solv-
ing the inverse of the covariance matrix, which incurs high computational costs. We

address this issue by using the nearest neighbor Gaussian process (NNGP) method.

2.3.1 Estimation of the nonlinear link function

Frequentist methods such as kernel estimation, local linear approaches, and B-splines
are commonly employed to fit unknown n onlinear f unctions. H owever, t hese tech-
niques often face challenges like the “curse of dimensionality”. Consequently, Gaus-
sian process regression has become increasingly popular for estimating nonlinear
functions. Specifically, w e a ssume a G P p rior f or t he u nknown f unction f;( -) to

quantify the smoothness of the nonlinear function between the observed variables
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and the latent factors, i.e.,

FOPEGP (0,C4(-, - ©4)))

where C;(-, -; ©y;) is a covariance kernel function and @, is referred to as the hyper-

parameters. For any ¢;,t; € R, we use squared exponential kernel function, that is,

Ci(i,1;0y) = Cov(f; (Y (k). f; (2 (1))

K
1
= U exp |5 > wrkrir{e(ts) — wx(t)}?
k=1
where ©; = (vyj, wij1, ..., wpx)' . Other types of covariance kernels can be found

in Rasmussen and Williams| (2006) and [Shi and Choi (2011]).

Denote X = (x1,...,zx) € RVE with @, = (1(t1),...,21(ty))", and Y =
(Yi,....Y,)) e RV with Y = (Yj(t1),...,Y;(tn)) " Let f; = (f; (9 (t)) ...,
£ (@(t\) " and £ = (f1,...,F,) € RV Followed by Shi and Choi (2011),
we estimate the unknown nonlinear link functions f;(-) using the posterior mean
of Gaussian process regression. Specifically, for each f; (:B(j)(ti)), its estimator is

obtained through the conditional expectation given all observations except the i-th

time point, as described in [Shi and Choil (2011)) (p.19, formula (2.7)):

E (f] (w(j)(ti)) ‘ D\i) = TP]‘T(IIJ(j)(ti))\i (Cj\i + UZIN_l)il Yj\i, (2,5)

where 1p; (21 (#;)) denotes the covariance vector between f; () (t;)) and all other

latent function values. This posterior mean serves as a plug-in estimator for f;(-)
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in subsequent parameter estimation. The notation \i indicates the removal of the
ith sample, meaning estimating f; (zc(j )(ti)) using all samples except the 7th sample.
That is, ¥ (9 (t:))i = (W1, - Vsim1, Vjisn, - - ) and Y = (Yi(ty), .. .,

Y;(tiz1), Yj(tis1), ..., Y;(ty))". Here, we use the posterior mean of f; (¢V)(t;)) in

Expression (2.5)) as the estimate of f; (zV)(t;)) .

2.3.2 Estimation of latent factors and unknown parameters using nearest

neighbor Gaussian process

Recall from the previous section that we assumed the latent factors follow a Gaussian
process or a time series to model the dependence between different time points t. For
the former, direct estimation of the latent factors using MAP method requires com-
puting the inverse of the latent factor covariance matrix in the iterative algorithm,
leading to a computational cost of O(N?). In this paper, we define a NNGP (Datta

et al., 2016]) to address this issue. That is:
2h() ~ NNGP; (0,5 (-, Ou))

where 3, (+, ;O ) is derived from the parent GPy (0, Xy (+,;O)) for k=1,... K.

NNGP is a non-degenerate stochastic process that preserves the structural prop-
erties of conventional Gaussian processes while introducing sparsity through inno-
vative neighborhood conditioning. Derived from a parent Gaussian process, NNGP
operates as a distinct stochastic process alongside standard GP frameworks, retaining
all essential theoretical properties of Gaussian processes and achieving computational

acceleration through sparse covariance matrix construction. Its positive definite co-
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variance structure ensures full-rank matrices, avoiding pathological distributions and
maintaining non-degeneracy. The sparsity-aware methodology constrains the condi-
tional dependence structure of spatial or temporal random effects to their m near-
est neighbors, and Datta et al. (2016) rigorously demonstrated that this localized
conditioning preserves multivariate Gaussian characteristics without compromising
theoretical validity. The computational superiority of NNGP is highlighted through
efficient algorithmic optimizations, with Finley et al.| (2019)) reducing the covariance
matrix inversion complexity to O(Nm?) floating-point operations. Next, the imple-
mentation of NNGP will be discussed in detail, and in Section [4] its computational
efficiency will be compared to the standard Gaussian process framework through
simulation studies.

Under the Bayesian analysis of the model, there are three types of parameters:
{z(t;), i=1,..., N} for factor scores, 0 and {@.1, k =1,..., K} for the model pa-
rameters and {@y;, j = 1,...,J} for the hyperparameters involved in the covariance
function. Hyperparameters {@y;, j = 1,...,J} are conventionally presumed to be
known, and our goal is to estimate the factor scores x(t;) and the model parameters
©,.r. We will provide a method for estimating these hyperparameters later.

Using NNGP, we estimate the latent factors X and model parameters O,
through MAP estimation. Under the assumption that f;(-) is given and X is in-

dependent of f, the joint posterior distribution reduces to

(X, 0u4]Y, f) o p(Y|X, f) p(X|Ou1)p(Oup). (2.6)

We assume that a non-informative prior distribution is designated for ©,;. Then
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from ([2.6) we need to maximize

log p(Y'| X, f)p(X[O.) o< log p(X @) + log p(Y| X, f), (2.7)

where the latent factor likelihood term decomposes as

K

1
log p(X|©® k) Zlogp xy) Z [log (2m) — flog\2k| — ftr(E af;kka) . (2.8)
k=1

The above equation is derived from Equation (2.3). Assuming X is given, we use
this Formula (2.8 to estimate ©,;. To address computational challenges with large
N, we implement NNGP approximation by replacing the full covariance matrix 3,

with its sparse counterpart flk This yields the modified log-likelihood

K
N 1 = 1 ~—1
(O4X) =% {—5 log(2m) — 5 log ‘zk‘ 5t (zk kakTﬂ . (2.9)
k=1

where the specific form of 3. will be provided later.

To estimate X, the maximum likelihood estimation in for the model can
be divided into a sum of two parts logp(X|0,;) and logp(Y'|X, f). The part of
log p(X|®,x) can be decomposed into the sum of K terms, where the density p(xy)

can be expressed as the product of conditional densities

p(er) = p(or(tr))p(zn(t)|[ze(te)) - . p(rr(tn) e (tr), - 2(tn-1)). (2.10)

Based on Equation (2.3)), we choose m nearest neighbors for each z(t;), i = 1,..., N,

and replace the large conditioning sets on the right-hand side of (2.10) with m
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previous nearest neighbors

N

plar) = plax(ty)) [ [ o (2a(t) [ @ (N (1)), (2.11)

1=2

where xj (N (t;)) is m previous nearest neighbors of x(t;). The selection of m
can be refered to [Datta et al| (2016) and |Guinness| (2018)). It can be shown that
p(xx(t)) in is a multivariate Gaussian density with covariance matrix ;. The
term p (zx(t;) | 2% (N (t;))) is the conditional density N (z(t:) | @ x (N (), dig),

where

a;p = Ek (N (tz) s N (tz))_l Zk (N (tl) ,tz) 5 (212)

diy = 2y (tiati) — 2 (% N (tz)) a;p. (2.13)

Finley et al| (2019) provides efficient algorithms to calculate sparse f]k = (I —
Ak)_le(I — Ak)——l—’ where A, = (alvk, A< 7afN,k) and D, = diag{dl,k, o ,dN7k}’
the expression of a; and d, . are given in (2.12)) and (2.13)). Thus we can obtain the

~—1
and ¥, in Equation (2.9), that is

expression for ‘f]k
S, = (- A) DI - Ay (2.14)

~-1 =1
and X, admits a Cholesky decomposition 3, = L, L; with the lower-triangular

Cholesky factor Ly = D,;l/g(I — Ag). Then

N
’i‘k‘ -1 (2.15)
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where [;;; is the diagonal element of matrix Lj.

The sequential NNGP algorithm proposed in Datta et al.| (2016 updates the
components of x(t;) individually for ¢ = 1,..., N. That is, updates zx(¢;) from
N(0, CZk), where

i+m

a
Z Ll : (2.16)
d“g et dlk

where a; ;7] is the ith element of vector a; . Thus, for log p(X|®,), we can update
na(ts) from S0, log 7 (mu(ts) | N(0, i)
Equation involves the part of logp(Y'|X, f) as well. From Model (2.1)),
Y;(t:)]f;(-), X ~ N (f;(2Y)(t;)), 0?) independently for i =1,..., N, that is
N oIy ' 1 ‘
logp(Y| X, f) ZZ — { ; (])(ti)) -- §(fj (:1:(3)(12)))2 — NJlogo.

o
=1 j5=1

Combining the two parts above, when the estimation of f;(-) and o? are given, we

can estimate x(t;) sequentially, i.e.

x(t;) = argmax ((x(t;)),
X(ts)

where the objective function combines the log-likelihood of observations and NNGP

distribution:

X Zé{ (+.) . m(j)(ti)) _%(fj (:B(j)(ti)))Q} — Jlogo

+§K:10gp ( i) | N(O, dm)) (2.17)

k=

—_
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where 1) (t;) is given in ([2.2), and dy is defined in (2.16)).

2.3.3 Iterative algorithm

In the following, we introduce an iterative algorithm to estimate the unknown link
function, latent factors, and model parameters. The iterative approach starts with

2 and ©,;,. The initial values of X are computed us-

giving initial values of X, o
ing a linear latent factor model, with the same constraints imposed on the loading
matrix. The initial values of @, and o2 are generated from a random uniform dis-
tribution. We first assume the hyperparameters ®¢; are given and aim to estimate
the factor scores X and the model parameters (02, ©,;). In the subsequent remark,
we will discuss how to estimate the hyperparameters using the empirical Bayesian
method. Algorithm (1| provides the detailed steps of the iterative algorithm, which is
implemented by alternately updating ®,, and X.

This iterative procedure ensures consistent estimation of both latent factors and

nonlinear link functions while maintaining computational tractability for functional

data.

Remark 4. (i) The NNGP approximation in Step 1 replaces the full GP covari-
ance X with a sparse version ik, reducing computational complexity from O(N?)
to O(Nm?). (ii) The optimization in Step 2 leverages the block-diagonal structure
induced by NNGP, allowing parallel computation across time points. (iii) Hyper-
parameters are typically considered to be known. If they are unknown, we apply

the empirical Bayesian method to estimate their values using the same approach

as in Step 1 expression (2.18) of Algorithm [1] which can be further refined by in-



2.3 Estimation and Algorithm

Algorithm 1 Iterative Estimation via NNGP

1: Initialize: Set initial values for X(O)7 020 and @g?

2: while not converged do
3: Step 1: Update parameters @S,ﬁw) and o2er) given X (ter—1)

Estimate 02(*¢") by maximizing:

J
(0% X ter=0) = 3 [— %bg oIy +Cn| - %tr((aQIN + CN)-lyijT)]. (2.18)
j=1

Then maximize the log-likelihood of the latent factors using expression (2.9)), where the

~ 1 ~
expressions of ¥, and ’Ek‘ are given in equations ([2.14]) and (2.15]).

. . iter) s (iter—1) iter—
4: Step 2: Update latent factors X! )glven e ter—1)

and o(

For each time point t;, solve:

w(ite'r‘) (ti) = arg max g(m(tm@%erfl) : 0_2(ite7"—1)),
T(t;)
where the objective function is defined in , and f; (m(j )(ti)) is replaced by its estimator
E(f; (29 (t))), which is given in (2.5).
5: Check convergence: Repeat Steps 1-2 until || X (") — x(ter=1|, < ¢ where € is a
small convergence threshold.
6: end while

7: Estimate unknown link function: Using the final estimate /)Z, compute for each j and ¢;:
i (m(j)(ti)) ) [fj (w(j)(ti)> |’X\}

where the expectation is evaluated via ([2.5)).

8: Output: Estimated latent factors 3(\, model parameters @$k, 52, and link functions J/‘;()

corporating the estimation within Step 1, enabling concurrent estimation of both
hyper parameters and model parameters. (iv) Although the true model is nonlinear,
when the nonlinearity is not severe, we use a linear factor model to initialize X,

which performs well in practice. More caution is required in more general cases.

In addition, since the conditional objective functions |(2.92.12.18)‘ admit multiple

maximizers, we initialize both latent factors and model parameters with multiple

starting values and perform a global search, selecting the solution that maximizes



the joint likelihood.

3. Asymptotic Properties

In this section, we present the asymptotic properties for the estimators of latent
factors, unknown parameters and unknown link function. Theorem 2 shows that the
latent factors and unknown parameters are consistently estimated given the true link
function f7, if the condition in Theorem 1 is satisfied. Theorem 3 provides posterior

consistency of (f;,0?) given the latent factor estimators.

Theorem 2. Let (X*,Q") € S, definedinS ectz’on bethetruefactor scores
and informative matriz, x*(t;) is the i-th row of X™* and 77 1s the j-th row of Q.
Let (©%,02) be the true values of model parameters. Let <§(ti),(:)xk,52> denote
the estimators of (x*(t;), ©%,,02). If Q satisfies the condition in Theorem 1, given
(x*(t;),0%,), then 6> 5 02 as N — oo and J — oo. Furthermore, when G° is a
consistent estimator of o2, the latent factors @(t;) are consistent, that is, &(t;) 2
x*(t;) as J — co. When Z(t;) is a consistent estimator of x*(t;), we can also prove

that © 4, > ®;. as N — oo.

Theorem 3. Denote Py be the joint conditional distribution of {Y;(t;)};°, given the
latent factors, assuming that f} is the true link function, ©3, for k = 1,... . K
and o2 are the true model parameters, @}j for g = 1,...,J are the true hyper-
parameters. Let f; have prior IT and X be a K -dimensional Lebesque measure. Then,
under the true informative matriz Q, i.e. R; accurately describes which latent fac-

tors are associated with the manifest variable Y;(t;), given the consistent estimation

(%(ti),(:)mﬁQ,@fj) of latent factors, unknown parameters, and hyperparameters,



if Assumptions A1-A2 given in the online Supplementary Materials hold, for every

e> 0,
1 {fj e W.|Y,2(t),R;, 0,15, éfj} s 1 in Py — probability,
where

We

— f7 (" (t:)R;)

o

In other words, for each j, we have f; (&:\T(ti)R]) S fr ("7 (t:)R;) as N — oo.

i (iT(ti)RJ)

dX(z* (1)) < e} .

The proofs of both theorems are given in the online Supplementary Materials.

Remark 5. For the consistency of the latent factors and the unknown link function,
we have the following explanation. From Model , it can be seen that the infor-
mation about the unknown link function f;is mainly provided by observations of the
J-th component Yjat¢ =1, ..., N, and is not related to other components of Y, while
the information about the latent factors primarily comes from all components Y (¢;), j
=1, ..., J. For the link functions f; , we show that it suffices to establish the
consistency of f; for a fixed j, which is not in conflict with letting J — oo. The
dependence of the link function on j is introduced for model generality. In practice,
multiple manifest variables are often linked to the same latent factor and therefore
share the same link function for the corresponding indices j. See Equation (4.19) in the
Simulation section for an example. For the consistency of the latent factors, we assume
that N, J tend to infinity. Since Y (¢;) is assumed to have a certain smooth-ness in the

time dimension (i.e. different ¢;), we also assume a certain smoothness for



xi(t;), but its consistency mainly relies on the information from different j of Y;(¢;).

4. Simulation Studies

In this section, simulation studies are conducted to evaluate the finite-sample per-
formance of both latent factor estimator and the unknown link function estimator.
First, to assess the robustness of our model, under a general nonlinear structured
latent factor model, we compared two scenarios: one where all factors satisfy the
identifiability conditions in Theorem 1 of our paper but not those in [Zhang et al.
(2025), and another where some factors violate our Theorem 1 conditions. The results
confirm that our algorithm correctly identifies factors meeting our theoretical condi-
tions, while Zhang et al.| (2025))’s model fails in these cases. Second, using multi-index
structured data from Zhang et al.| (2025)), we demonstrate that our model matches
their performance, proving its flexibility without sacrificing accuracy. Finally, to im-
prove computational efficiency, we used NNGP in the latent factor estimator, and
the average computation time of NNGP and GP was compared.

(i) Robustness Analysis with General Structured Data. The data are

generated from a nonlinear structured latent factor model as follows

Y;(tz):f](mT(tl)R])—f—E](tz), j:]_,...7J, izl,...,N7

where z(t;) = (z1(t;), ..., v (t;))", €j(t;) ~ N (0,0?) with 0* = 0.25, and the specific
expression for f; will be provided below. In all settings, we consider K = 3, J =
{6,12,21,30,99} and N = 5J. The factor scores x = (zx(t1),...,2x(ty))" ~ GP

which are dependent for ¢ = 1,..., N but independent for k = 1,2, 3 using kernel



function (2.4]) with v, = 1 and w,, = 100 for k£ = 1, 2,3. Compared to our previous
work (Zhang et al., 2025)), here we consider the dependence of x(t;) between different
t;’s, and our model allows f;(-) to be a multivariate function, which is more flexible in
practice. To investigate the conditions of identifiability, we consider two scenarios,
where the first one satisfies identifiability conditions, but the second one violates
them.

Scenario 1. Here, we consider Model (2.1)) with

1 1 _
i@ T emaemat) forj=1,...,J/3
L= e + =k forj=J/3+1,...,25J/3 (4.19)
1 1 _
| e + Tt forj=2xJ/3+1,...,J.

The corresponding R; = diag{1,1,0} for j = 1,...,J/3; R; = diag{1,0,1} for
jg=4J/3+1,...,2% J/3 and R; = diag{0,1,1} for j = 2% J/3+1,...,J. The

coefficients a; = (aj1, aj2,a;3) " ’s are generated iid from distributions over the ball

{a € R*: ||a|| < 2.5, each element of @ > 0} .

All latent factors are structurally identifiable even when there is no item measuring
a single latent factor.
Scenario 2. Here only the values of R; and f; for j = J/3+1,...,2% J/3 from

Scenario 1 are different, that is R; = diag{0,0,1} for j = J/3+1,...,2x%.J/3, where

Y;(t;) = HQTM + ¢;(t;), all other elements remain unchanged. Then the first

and the third latent factors are identifiable, while the second latent factor is not



identifiable.

In this simulation study, we mainly investigate the finite sample performance
of the estimators for the latent variables and the unknown link function. The for-
mer is measured by the correlation and sin value between the latent variables and
their estimators. For the sake of simplicity and convenience of notation, we de-
note Corrg, = corr(xy, &), Sing, = sin(xy, ;) and similar notations for &, and
3. To measure the convergence of the estimation of the unknown function f; for

I OF_Ff 2
j=1,...,J, we used the quantity dy = w

, where fj, is the true value
of link function f;(-) given in Expression or . For each sample size, 100
replications are conducted and we take the average of those measures. We use two
gradient-based algorithms respectively in the optimization step. Both the scaled con-
jugate gradient algorithm and the gradient descent algorithm yield the same result,
although they have different convergence speeds.

As a comparison to our proposed method (denoted by GNSLEM), we also use
a linear latent factor model (denoted by LLF) and our previous work (Zhang et al.|
2025, denoted by NSLFM). We apply the same variable-factor linkage relationships
to both LLF and NSLFM. The results of the simulation studies are shown in Tables
[1}2], as well as Figures

Table [l shows the results of latent factor estimation and unknown link function
estimation under Setting 1 for different values of J (N = 5% J). From Scenario 1
in Table [I) we have the following findings. First, we can see that the correlation

between the latent variables and their estimates using our proposed method tends

to 1, and the sin value tends to 0 as J increases, indicating the identifiability of the



estimated factor scores. The convergence of the estimation of the factor scores is
mainly dependent on J. The results of d;y show the good accuracy of the estimation
for the unknown link function, which improves as N and J increases. Second, the
accuracy of the factor score estimates derived from the LLF method is inferior to
that of our proposed model, because the LLF method fails to capture the nonlinear
characteristics of the data. The results of NSLFM also do not perform as well as
our method, as the model GNSLFM offers enhanced flexibility while the NSLFM
can only handle data that has a multi-index structure. Besides, GNSLFM takes into
account the correlations among latent factors across different time points, which is
not considered in both NSLFM and LLF.

From Scenario 2 in Table[I| when the latent factor is not identifiable, the Corrg,
is not close to 1, Sing, is not close to 0 even for large .J, which reflects the impact
of identifiability on latent factor estimation. The accuracy of the estimation of the
unknown function improves with the increase in N and J. The accuracy of the
unknown function estimators is unaffected by identifiability conditions and improves
as the sample size grows. This robustness is due to the fact that, even in cases where
the latent space lacks uniqueness, GNSLFM can still extract meaningful information
and capture patterns within the data, resulting in effective prediction performance.

Figures show the true values and estimations of &; and x5, evaluated from 99
observations in Scenario 1 for one replication, using our proposed model (GNSLFM)
and LLF. The estimated values for ; and x5 obtained from our model closely match
their true values. In contrast, the estimates obtained from LLF do not smoothly

replicate the true @, and x5. This discrepancy arises because the LLF method



Table 1: The results of GNSLFM, LLF and NSLFM in Simulation Study(i)

‘ J Corrg, Corrg, Corrg, Sing, Sing, Sing, df

6 083 082 082 045 044 045 0.62
12 086 088 086 040 0.39 0.41 0.52
GNSLFM |21 091 0.89 091 0.38 0.38 0.38 0.41
30 095 092 094 034 034 0.32 0.40
99 1.00 1.00 1.00 0.15 0.17 0.16 0.22

6 0.74 0.74 0.74 0.75 0.80 0.77
Scenario 1 12 0.81 0.81 0.82 0.65 0.68 0.67

LLF 21 0.87 0.88 0.87 0.51 0.56 0.49
30 0.91 0.92 0.91 049 0.45 0.42
99 0.92 0.92 092 0.35 0.35 0.36

6 07 07 077 055 0.58 0.59 0.58
12 083 083 08 046 049 0.49 045
NSLFM (21 090 0.89 090 0.31 0.36 0.39 0.34
30 093 093 093 029 029 0.25 0.22
99 093 094 094 027 028 0.26 0.12

6 082 045 082 045 0.85 045 0.82
12 085 048 087 0.40 0.80 041 0.62
Scenario 2 GNSLFM|21 090 053 0.90 0.38 0.76 0.38 0.41
30 095 055 095 034 0.70 0.32 0.40
99 1.00 055 1.00 0.05 0.61 0.06 0.25

assumes that the samples are independent and fails to account for the nonlinear
characteristics of the data.

(ii) Performance on Multi-index Structured Data. In this setting, we use
the multi-index structured data as discussed in Zhang et al. (2025). The data is

generated as follows

](tz):——f-&](tz), j:]_,...7<]7 izl,...,N7 (420)

where 33(251) = (l‘l(tz),l'g(tz),flfg(tl))—r and €j<tz’) ~ N(O,O’2) with O'2 = 0.25. The

J and N follow the same setup as Setting 1. The confirmatory matrix definded in
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Figure 2: The true values and estimates of z1(t) and z5(¢) by using GNSLFM with
dependent data.

Zhang et al. (2025) is set as

110 --110
Q'=|10 1 101
011 --01 1

The factor scores x(t;)’s and the loading coefficients a’s are generated iid from
distributions over the ball {x € R3: ||z| < 2.5}. In this setting, all latent factors
satisfy the identifiability conditions in Zhang et al. (2025) and in Theorem 1 of this
paper.

Table 2 shows the results of latent factor estimation and unknown link function
estimation. FEven if the data has a multi-index type structure, the performance of

GNSLFM is quite good and similar to the results achieved by the true model of
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Figure 3: The true values and estimates of x;(¢) and z5(t) by using linear FA with
dependent data.

NSLFM. The model NSLFM, as described in [Zhang et al. (2025), can be consid-
ered a special case of our proposed model, GNSLFM. Both GNSLFM and NSLFM
outperform LLF, and GNSLFM is applicable to a wider range of data types. When
handling data with a multi-index type structure, both GNSLFM and NSLFM are
suitable; however, for the data types presented in Table [T} our proposed GNSLFM
model is superior.

(iii) Computational Efficiency via NINGP. Table |3| summarizes the com-
putation time between the full GP and NNGP methods. Under the setting where
K =2,N =5xJ, and m = 20 nearest neighbors are taken as the conditional infor-
mation for the density function p(X), it can be seen that using the NNGP algorithm

is much more efficient than the full GP.



Table 2: The result of GNSLFM, LLF and NSLFM in Simulation Study(ii)

J Corrg, Corrg, Corrg, Sing, Sing, Sing, df

6 07 076 077 055 0.58 0.59 0.58
12 0.83 083 0.85 046 0.49 0.49 0.45
GNSLFM 21 090 0.89 090 0.31 0.36 0.39 0.34
30 093 093 093 029 029 0.25 0.22
99 097 097 098 0.17 0.18 0.16 0.12

6 07 074 074 075 080 0.77
12 0.81 081 0.82 0.65 0.68 0.67
LLF 21 087 088 0.87 051 0.56 0.49
30 091 092 091 049 045 0.42
99 094 094 094 0.07 0.50 0.06

6 083 082 082 045 044 045 0.62
12 086 088 086 0.40 0.39 041 0.52
NSLFM 21 091 089 091 0.38 0.38 0.38 0.41
30 095 092 094 034 034 0.32 040
99 100 1.00 1.00 0.15 0.17 0.16 0.22

5. Analysis of Gait Data

Parkinson’s disease (PD) is a complex neurodegenerative disorder that leads to chal-
lenges in disease management, reduced quality of life, and increased healthcare costs
(Hoehn and Yahr, 1998). Gait, as an early diagnostic tool for PD, is also used to
predict morbidity, mortality, fall risk and other neurological disorders (Buckley et
al., [2019). Currently, this research still faces challenges due to numerous factors
influencing the performance of early identification of PD, such as walking protocols,
gait assessment systems, cohort size, disease severity stage of PD, and validation
methods. In this section, we apply the proposed method to gait data collected in our
laboratory. We collected one week of continuous steady-state gait data from Parkin-
son’s patients using wearable devices. After data preprocessing, the gait features

of each individual can be represented as functional data over time. It is important



Table 3: Comparison of the computation time between the full GP and NNGP
methods

Full GP NNGP
N TIter CPU(s) Iter CPU(s)

20 6 1.00 2 0.62
40 7 14.62 7 1.06
60 4 64.80 7 4.35
80 6 223.83 3 9.81
100 4 178.83 2 15.79
200 6 354.96 4 40.61
500 6 754.96 A 60.61

to note that there are many variables that could describe gait characteristics, i.e.,
the number of manifest variables J, could be very large. Moreover, gait data is a
form of free living data, meaning it can be used to identify activities, detect diseases,
and other applications. Given the complexity and high-dimensional nature of such
data, there is a need for low-dimensional, interpretable latent variables to effectively
capture and analyze the relationships among various gait characteristics that vary
continuously over time. Our aim is to measure these relationships using a few latent
factors in a nonlinear way.

We treat gait characteristics for one Parkinson’s patient as manifest variables.
For illustrative purposes, we focus on a 13-dimensional feature set, which includes
gait speed, step length, stride time, degree of asymmetry in time and distance, and
other relevant metrics. We collected observations at 300 time points, i.e., N = 300.
Referring to the analysis of gait data using a linear latent factor model in Morris et al.
(2017), we consider four latent factors: Pace, Rhythm, Asymmetry, and Variability
(SD). The first factor is related to gait speed and step length. The second factor

is associated with the duration of one stride, one step, one stance and one swing.



The third factor represents the degree of asymmetry in time and distance, measured
in absolute value. The fourth factor is related to all the variables corresponding
to the first and second factors, and can be regarded as a composite index of time,
length, and velocity. Based on the above relationships and identifiability conditions,
we formulated the design matrix R;. We obtained estimates of the latent factors
under both models, LFA and GNSLFM.

Figure 4] shows the estimation curves of the second and fourth factor scores
under the two models, respectively. From Figure we can see that the factor
scores obtained from GNSLFM exhibit smoother patterns. Figure [5| displays the
first-order autocorrelation function of the second and fourth factors derived from
both models. The autocorrelation function obtained from LLF remains close to 0,
indicating that the factor scores are largely uncorrelated. This reveals that LLF
usually cannot capture the correlations between different time points. In contrast,
the autocorrelation function from the GNSLFM exhibits a distinct pattern and trend,
showing characteristics more naturally. This indicates that GNSLFM may capture
nonlinear structures within the data that LLF fails to represent. Furthermore, we
performed a frequency domain analysis using power spectral density (Bansal and
Dimri, [2021)), which is a measure that describes the distribution of power contained
within a signal as a function of frequency. As illustrated in Figure [6] the power
spectral density of LLF is predominantly concentrated in the low-frequency region.
In contrast, the power spectral density of GNSLFM is distributed across a broader
frequency range, revealing a more diverse spectrum of frequency components. This

indicates that nonlinear dimensionality reduction captures a wider range of frequency



features and finer details within the data. For the other two factors, we obtained
similar results, which are omitted here for simplicity. In summary, our proposed
method (GNSLFM) captures richer information from the data, and the estimated
factor scores are smoother, which is attributed to the model’s ability to effectively

capture nonlinear features.

Second Factor Scores Comparison

Value

Value

time

Figure 4: Factors scores of LLF and GNSLFM for the second and fourth factor

6. Discussion

We propose a general nonlinear structured latent factor model for functional data. It
allows the nonlinear link functions to be multivariate and captures the correlations
among observed variables using a small number of latent factors. First, identifiability
of the latent factors is established by imposing certain constraints on the structured
index matrix. Second, we estimate the unknown nonlinear functions by assuming

Gaussian process priors, and then consider the correlation of latent factors across
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Figure 5: First-order autocorrelation function of of LLF and GNSLFM for the second
and fourth factor

different ¢ ; by assuming G aussian process for the latent f actors. We propose a two-
step estimation procedure for the latent factors and unknown parameters. Finally,
the posterior consistency of the nonlinear link functions, as well as the consistency of
latent factors and unknown parameters, are established. Simulation studies and real-
world data analysis further validate the finite-sample p erformance o f t he proposed
method.

There are several extensions worth pursuing in future research. First, we as-
sume that the factor loading structures R; is pre-specified based on identifiability
conditions. However, in practice, R; is unknown. In Zhang (2025), we explored the
automatic selection of R; in settings with a small number of latent factors, using
correlation-based clustering and residual diagnostics, and obtained promising empir-

ical results. Developing a full general theory for this problem remains challenging
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Figure 6: Power spectral density of LLF and GNSLFM for the second and fourth
factor

and is left for future research. Second, theoretically, we have only proven the con-
sistency of the unknown link functions and latent factors. We have not yet studied

their asymptotic convergence rates or the convergence of the algorithm.

Supplementary Materials

The online Supplementary Materials include all the technical proofs.
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