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Statistica Sinica

EFFECTS-NESTED MULTI-LEVEL SUPERVISED
HETEROGENEITY ANALYSIS

Ruiyue Wang!?, Sanguo Zhang', and Shuangge Ma?

L University of Chinese Academy of Sciences

2 Yale University

Abstract: Under supervised heterogeneity analysis, samples within a population
form groups, and different groups have different regression models. In most
of the existing analyses, a single level of heterogeneity structure is considered.
Partly motivated by multi-level unsupervised analysis such as hierarchical clus-
tering, we consider multi-level supervised heterogeneity analysis. Consider for
example a two-level analysis. At the higher level, “coarse” information is used,
and samples form a smaller number of groups. At the lower level, “more sub-
tle” information is used, and samples form a larger number of subgroups. To
achieve more lucid interpretations, we further consider the scenario where only
some variables are relevant at each level, different groups (subgroups) have the
same set of relevant variables, and the important variables at the higher level are
nested in those at the lower level. A penalized estimation and selection approach
is developed, and its theoretical and computational properties are established.
Simulation demonstrates competitive performance of the proposed approach. In

the analysis of TCGA breast cancer data, the proposed approach leads to sensible



grouping/subgrouping, identification, and estimation results. Overall, this study

expands the scope of heterogeneity analysis and delivers a practically useful tool.

Key words and phrases: Multi-level, Nested effects, Penalized estimation, Super-

vised heterogeneity analysis.

1. Introduction

Heterogeneity analysis is routinely conducted, and most of the existing het-
erogeneity analyses can be classified as unsupervised (which does not involve
a response variable) and supervised (which involves a response variable). In
this study, we conduct supervised heterogeneity analysis, under which sam-
ples form groups, and different groups have different regression models. For
such analysis, popular techniques include finite mixture regression (FMR)
(Khalili and Chenl, [2007)), penalized fusion (Ma and Huang, 2017)), Bayesian
(Qin et al., |2024)), and others. When only a subset of variables is relevant,
selection using regularization can be conducted. There is vast literature,
and we refer to Fan and Lv| (2010); Huang et al| (2012)) for reviews.

In most of the existing supervised heterogeneity analyses, there is only
one level of grouping, and it is assumed that there is a single true modeling
and grouping structure. This study has been partly motivated multi-level

unsupervised heterogeneity analyses such as hierarchical clustering. Under



such analyses, the same samples are grouped at multiple levels. For the
simplicity of description, we consider a two-level analysis and note that
the discussion can be easily extended to more than two levels. At the
higher level, “coarse” information from variables is used, and samples are
separated into a smaller number of groups. Note that, it is possible that
only a subset of variables contributes information. At the lower level, “more
subtle” information is additionally used, and samples are separated into a
larger number of subgroups. As more information is needed, a bigger subset
of variables (than at the higher level) needs to contribute. In a sense, the
modeling and grouping structures at both levels are “true” — here we use a
quotation mark to indicate that the true structures may not be interpreted
as strictly as for a single-level analysis.

To further elaborate, we consider the popular setting under the penal-
ized fusion-based and some other supervised heterogeneity analyses. For a
set of n independent samples, denote 3, as the regression coefficient for the
i-th sample. In studies such as Ma and Huang) (2017)); Wang and Sul (2021);
Tang et al.| (2021)), the goal is to identify a single true structure, under which
samples ¢ and j belong to the same group if and only if 3, exactly equals
B;. If B,’s were known, then instead of being limited to a single level of

grouping, we could conduct for example hierarchical clustering of 3,’s and



group samples at as many as n levels. A user can specify, for example, that
two levels of grouping are needed, and three and five clusters are needed at
the two levels, respectively. The second user can also specify two levels but
request two and six clusters (or even a different number of levels). Here,
in a sense, there is not a single true number of clusters (and corresponding
grouping structure). Or, we can also say that whatever number of clus-
ters specified by a user, as long as certain conditions are satisfied (see the
theoretical development below for more details), is a “true” number.

The scheme of the proposed analysis is presented in Figure [1l At the
higher level, the samples form two groups based on five (out of 15) variables
that have nonzero coefficients. At the lower level, they form four subgroups,
and this subgrouping is defined based on the first five as well as five ad-
ditional variables. Intuitively, those additional important variables at the
lower level have weaker signals and contribute more subtle information. For
comparison, we also present two single-level analyses.

In the literature, a relevant study is Ren et al.| (2022), which also con-
ducts a multi-level supervised heterogeneity analysis. In Ren et al.| (2022]),
one set of coarse imaging features is used to define the higher level hetero-
geneity, and a separate set of refined imaging features is used to define the

lower level heterogeneity. It is reinforced that the lower-level subgroups are
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Figure 1: Top(A): A single-level analysis. Two groups are formed based on
five variables with nonzero coefficients. Middle(B): A single-level analysis.
Four subgroups are formed based on eight variables, lacking a effects-nested
structure with respect to (A). Bottom(C): Proposed two-level analysis.
Two (four) groups (subgroups) are formed at the higher (lower) level based

on five (ten) variables. The sets of nonzero effects have a nested structure.

nested in the higher-level groups, forming a nested structure in terms of
samples. This study and Ren et al.| (2022) share some conceptual common
ground. However, their data settings and analysis goals significantly differ

in multiple critical ways, which subsequently lead to significant differences



in theoretical developments and applications. First, in |[Ren et al. (2022,
two separate sets of variables are needed for two-level heterogeneity anal-
ysis. With this requirement in data sources, the number of analysis levels
can be very limited. In contrast, in this study, multiple levels of analysis
use the same variables. This is more coherent with hierarchical clustering
and some other multi-level analyses. In principle, there can be easily more
than two (or even many) levels. Second, in Ren et al. (2022), for the two
levels, with two different sets of variables, two sets of true underlying data
generating models are defined in a strict way. In contrast, in this study, as
the same variables are used for multiple levels of analysis, the definition of
“true models” can be somewhat “vague”. Different levels demand differ-
ent regression models, all of which can be viewed as “true”. This is also
coherent with hierarchical clustering and some other multi-level analyses.
Building multiple sets of “true” models at different levels using the same
variables significantly increases the complexity of methodological and the-
oretical developments. Third, in |[Ren et al.| (2022), it is reinforced that the
lower-level subgroups and higher-level groups have a nested structure, us-
ing a sample-based fusion strategy. In this study, we alternatively reinforce
that the higher-level important variables and lower-level important vari-

ables have a nested structure. The two nested structures are significantly



different, demand different methodologies, and complement each other. It
is additionally noted that the proposed effect-nested analysis may lead to
samples without having a nested structure. On the other hand, as observed
in our data analysis, samples can often have a close-to-nested structure.
In many practical fields, heterogeneity analysis can be conducted at
multiple levels with different “resolutions”. The unsupervised type of such
analysis has been well developed. This study can fill an important knowl-
edge gap by conducting supervised analysis. With the high significance
of supervised heterogeneity analysis and multi-level unsupervised hetero-
geneity analysis, the analysis developed in this study can have important
implications. Compared to Khalili and Chen| (2007); Hui et al.| (2015)); Ren
et al.[ (2022), it can have weaker and more realistic data requirements while
more challenging methodological and theoretical developments. Addition-

ally, this study can deliver a useful tool for many practical data scenarios.

2. Model

2.1 Base Data and Model Settings

We first consider a base setting. Consider data with n independent ob-
servations {y;, x;}" ;. For the i-th subject, y; denotes the response, and

x; = (v, T, ,xip)T denotes the p-dimensional vector of covariates.



2.1 Base Data and Model Settings

Consider the FMR framework, and denote K as the number of mixing

components. The conditional density for y; given x; is:

[y, ) = Zﬂkfk (y;2,0k(x),00) 5 Ok(x) = h(z By), (2.1)

where f, (y; x,0(x), 01,) is the density for the k-th component, and h(-)~!
is a known link function. Denote Q@ = {8!,8;,--- ,B),0'}", where
Br = (Br1, Br2s - - - ,5kp)T represents the covariate effects for the k-th com-
ponent and o = (01,09, ... ,O’K)T contains the dispersion parameters. w =
(701, T2, . .. ,7TK)T contains the mixing probabilities satisfying 7, > 0, and
S m = 1. Additionally, denote 3 = {B/,85,--- , B8k} . The observed
log-likelihood is: £(Q, ) = 23" | log (Z,ﬁil T fre (Y @4, O (2;), O’k)>. For
discussion on identifiability (up to a permutation of component labels), we
refer to McLachlan et al.[(2019). In what follows, we focus on linear models
— meaning that f, is the Gaussian density for y — ' 3,. Conceptually, the
proposed analysis can be easily extended to other models. With a moderate
to large number of variables and the sparsity assumption, penalization and
other regularization techniques can be applied. For references, we refer to
Khalili and Lin| (2013)); Hui et al.| (2015).

Under this setting, we consider a simplified two-level analysis. The
lower level is as defined above, and subject ¢ belongs to the k-th subgroup

if y; = &/ B, + ;. For the upper level, we specify the number of groups as



2.2 Effects-nested Multi-level Analysis

one (that is, the special case of a homogeneity model). We can write y; =
z; B, +x; (B,—B.,)+€i. Here, B, is the “true” regression coefficient vector
shared by all the samples, and z; (3, — 3,,) can be viewed as an additional
noise. A special case, which is intuitively reasonable and is considered in
this study, is 8, = B, +ay and Bej-ap; = 0, 7 = 1,2, -+, p, indicating that
the additional signals corresponding to ay are used to define heterogeneity

for the k-th subgroup at the lower level.

2.2 Effects-nested Multi-level Analysis

Our goal is to simultaneously conduct multi-level analysis. With the higher-
level important variable set nested in the lower-level one, we “decouple”
the covariate effects at each level into a leading component (which likely
has higher signals and is consistent with the higher-level important effects)
and a level-specific component. To fix ideas and simplify notation, here,
we specifically consider a two-level analysis and denote K, and K; as the
numbers of upper-level groups and lower-level subgroups, respectively, with
K, < K (noting that we no longer use a single K'). We denote the effects for
the k-th upper-level group by B = (544, Bis, - - - ,ﬂ}jp)T, k=12, K,

and for the k-th lower-level subgroup by B}, = (8L, 84y, . 8L,) . k =



2.2 Effects-nested Multi-level Analysis

1,2,---, K;. The lower-level effects are further decoupled as:
B.=al+4L, st oloyl=0 k=12 K, (2.2)

where, for the k-th subgroup, el denotes the leading effect, and % denotes
the level-specific effect. “©®©” denotes element-wise multiplication.
For the selection of important effects, estimation, and (sub)grouping,

we propose objective function:

‘Cma(ﬂv 7Tu7 ﬂ-l) = ‘C(Qu7ﬂ-u) + ‘C(ﬁl7ﬂl) - 7Dma (IBu7 a177l> ) (23)

where = (Q“T,ﬁlT)T, Q= (), ,Q}L{I)T, Qp = vec (B, 0p) =

T ~1 T

(51?1,5;:27... 75%70;;) ,and Q = (QZT’,YT)T’ o — (QllT,... ’Qg) 7
T

Q;c = vec (aiﬁo-%c) = (0461704627"' 705562770-2) ) Yhan {7l1T77l2T7'” ’VlKTl}T'

T T
Also, " = (ﬂ%, Ty, ,W}L(u) and 7! = (ﬂ, Th, ... ,7rlKl) . Here, operator

~1
“vec(+)” straightens column vectors, and £(2") and £(€2 ) denote the ob-

served log-likelihood functions for the upper and lower levels, respectively.

The key development is the Multilevel Aligning (MA) penalty:

Pra (8", &', ') =

P Ky K; P K;
STPLADBEZHY )2 A |+ P D ()2
j=1 k=1 k=1 j=1 k=1

(2.4)
where P(-,\) is a penalty function, and A\; and Ay are tuning parameters.

Choices for the penalty include Lasso, SCAD, MCP, and others. Note



2.2 Effects-nested Multi-level Analysis

that in the proposed multi-level analysis, at each level, once the number of
(sub)groups at that level is set, the “true” parameters can be accordingly
determined. As such, the estimation of parameters as well as the deter-
mination of grouping and subgrouping structures can be conducted in a
similar way as under the FMR framework.

Rationale A sparse group type penalty is proposed. It ensures that, if a
variable is identified as important at the higher level (with nonzero estimates
corresponding to 3), then its lower-level estimates (corresponding to «) are
automatically nonzero, making it identified as the lower level. The level-
specific effect 7 is only identified in the more heterogeneous lower-level
subgroups. However, this is not true the other way around. At the same
level, all the estimates corresponding to one specific variable across the
groups/subgroups are viewed as a group. With group penalization, they are
either all zero or all nonzero. In addition, our model degenerates into the
simplified analysis in Sectionwhen K, =1land f}; = ozfgj, k=1,--- K.
Our approach allows for more flexible, or “more heterogeneous”, analysis,
and we also consider the “more homogeneous” case in Section [7]
Remarks: The proposed approach can be generalized to more than two
levels in a rather straightforward way. Consider for example a three-level

analysis (with an additional middle level denoted by “m”). Denote the



numbers of mixture components at the three levels as K, < K,,, < K;. For
decoupling the effects, we write: 8" = o' + v}, st. o O~ =0,k =

1,2,---, K,,. Consider the penalty:

p Ky Km
Pa (B ™ 4" 0l A) =D P D B2+ ) (af)2 M
j=1 k=1 k=1
P K K; p K;
+ P\ A2+ (k)% A | Y P4 D ()% s |
7j=1 k=1 k=1 7=1 k=1

(2.5)
where \i, A9, and A3 are tuning parameters. In a similar manner, the anal-
ysis can be extended to more levels. Obviously, computation is expected to
be more complicated. Our preliminary exploration suggests that statistical
properties similar to those described below can be established. Also noted
that more levels of analysis introduce more model parameters, inevitably
bringing computational challenges. In unsupervised hierarchical clustering
and other analyses, sometimes, certain levels/numbers of grouping lead to

insensible results. This is also expected to hold for the proposed analysis.

3. Statistical Properties

For the simplicity of notation, we still consider two levels. As discussed
above, it is not assumed that there is a single true model. However, our

exploration suggests that, for the purpose of presentation, it can be easier if



we call the lower-level model as the true, with its corresponding parameters
indicated using superscript “*”.

Define S = {j + S5, B2 £ 0,1 < j <ph={j: B #0,1<j<
p, 1 < k < K}, under the assumption that all the subgroups share the same
set of important variables. There exists a decomposition & = §; U Sy with
Slz{j:a%;é(),lgjgp,l<k’<Kl}and82:{j:72?7&0,1<j<
p, 1 <k < K}, and §; NS, = @. For the upper level, the set of important
variables S; corresponds to model parameters 2%*, which can be viewed as

a “shrunk version” of the lower-level ones. Specifically,

Ky
Qv = argmaX{E[Z e fr (v x, B, 03]}
o k=1 (3.6)

Ky
st {5 ) B #£01<j<pt=38
k=1

Remarks: To get some intuitive insight, we consider a model with two
subgroups Y; € R*, X; € R™ and Y, € R*, X, € R™5. For the
two subgroups, the first four regression coefficients are the same, and the
fifth regression coefficients have the same absolute magnitude but opposite

signs. Additionally, we consider the special case of orthogonal designs. The

te OLS estimat = XY g = XeYr 19 p
separate estimates are /81] - XIle ) 62]’ - X;ng’ — L&yttt Y,
J ¥ ¥

where X;; and X,; are the j-th columns of X; and Xy, respectively.

For the upper level, if we set the number of groups as one (that is, a



homogeneity model), with Y = (Y|, Y,)" and X = (X, X,)7, 3; =

X].TY o XlTjY1+X;jY2
T - T T
Xj Xj leX1j+X2jX2j’

j = 1,2,--- 5, where 3; = B1; = B2 # 0 for
7 =1,2,3,4,and 35 = 0. Here, the “more common” effects of the lower level
are “averaged” to form the upper-level effects, while the “more specific”
effects of the lower level are canceled out. Although this is a special example,
it is not hard to see that many data/model settings have similar properties.

We introduce the following notations. For simplicity, use ay and -y,
to denote ! and ~%, respectively, for k = 1,2,--- | K;. Similarly, use 3,
to denote B3, for k = 1,2,--- , K, (here we note the different implications
from Section . Denote Q" as the “true” value of 2. ~*, as a part of
Q. is similarly defined. Let |- | denote the cardinality of a set, and define
the sparsity parameters as s; = |Si|, s2 = |Sa|, and s = s1 + so. Write
x ~ y if x = Dy for some positive constant D. The 2-norm of a vector

2= (21, ,2,) is defined as ||z[js = ,/ 4_1 7. The assumed conditions

and their implications are described in Supplementary Materials.

Theorem 1. Suppose that Conditions 1-6 (Supplementary Materials) hold
and 1/ K?STlogp =0 (M), 1/ @ = O (X\2). The minimum signals in B*
and o* are larger than (a+0.5)- A1, and that in v* is larger than (a40.5)-Aa,
where a is the regularization parameter defined in Condition 5. Then, there

exists a local mazximizer of , with probability tending to 1:



1. (Estimation consistency): Hﬁ -

0 [ K3slogp \ .
2 " ’
2. (Heterogeneous effects consistency): |7 —v*|, = O (\/ w> ;

3. (Selection consistency): §1 = 81,§2 = S,, where §1 ={j:ay #

0,1<j<pl<k<K}, S=1{j: 3 #01<j<pl<k<K}

The proof is presented in Supplementary Materials. Note that the com-
monly encountered reshuffling issue is also applicable here. It is “reas-
suring” that, with a more complicated analysis goal and formulation, the
proposed approach enjoys similar much-desired properties as [Fan and Lv
(2011); Zhang et al. (2016). Compared to the multi-level heterogeneity
analysis in Ren et al.| (2022)), the proposed analysis enjoys stronger variable
selection properties by better accommodating high-dimensional variables.
In addition, unlike |[Ren et al. (2022)) which is concerned with identifying the
exact number of (sub)groups (using penalized fusion to aggregate samples),
the proposed analysis can accommodate any reasonably specified number
of (sub)groups and is more concerned with differences in parameters at dif-
ferent levels. There are also differences/advancements from the existing
mixture regression literature (e.g., [Hui et al. (2015) and [Sun et al.| (2022)).
For example, when ss = o(s;), the analysis can detect subgroup-level ef-

fects with smaller signals. Although with more levels in our analysis, K]



is allowed to diverge like in [Hao et al| (2018). Our analysis can accom-
modate slightly more subgroups as sample size grows and, thus, can be

advantageous over some existing ones like [Li et al.| (2023]).

4. Computation

We develop an effective algorithm based on the EM technique. Denote
p and pl, as the means of the k-th group and the k’-th subgroup, re-

spectively. Denote w" = (i), . and w' = (wh) where w and w!,

nxK;’
correspond to the upper and lower levels, respectively, as the latent indica-
tor variables representing the component memberships of the :—th sample
in the mixtures. Use superscript (¢) to denote the updated parameters in
the t-th iteration. With initial values from the standard FMR or K-means
with regression estimates, the algorithm is sketched in Algorithm

The EM technique has been popular in mixture modeling. There are
additional complexities for our model. For example, the optimization of
B(t), a® ~® in the M-step is not straightforward. For this purpose, we
develop an Iterative Hierarchical Shooting Algorithm. Here, we describe it
for MCP and note that it can be modified for other penalties.

iy wiy (@i (yi—pp— By)
We denote 2%, = == il e — ) for & = 1,---,K,and 2, :=
J 21 Wik J

iy wi (@i (yi—pg ,
AL ]Z(;/n S (et ) fork=1,---,K;,j=1,---,p. A necessary
i=1%ik



Algorithm 1 EM-based Algorithm

Initialize: w4© ¢ RE« 7l0 ¢ RE a0 ¢ REx 410 ¢ RE: QO ¢
REut2K)xp+Kut K given tuning parameters A, Ao, regularization param-
eter a, and a sufficiently small constant (.
fort=1,---,7T do

Input: (=D glt=1) gu=1) ,e-1) Q=1 (yi, )0,

for k=1,--- K, do

fori=1,--- ,ndo

Wz(t%)fk (yi;wi,(l,wj) (Mz(t%)ﬂl(Ct—l)-r)TvUZ(tfl))

= .
szul 7rZ(t—l)fk (yi;mi,(l,m;r) (”Z(t_l)vﬂz(f_l)T) ’g;:(t—l))

0 =

end for " -
n w(t t—1
u(t) 1 n u(t), u(t) Dot Wiy (yi*w;rﬂk )
T =i Wi 5 My = D)
Dot Wi,

end for
fork=1,--- ,K, do
fori=1,--- ,ndo
1(t—1 1(t—1 t—1)T )T\ | 1(t—1
() N )fk(yi;wi,(l,w,—-r)(u; A ) e ))
W = .
ik K _ _ _ _ T _
Zk:ll ”L(t 1)fk(yi;$i7(1»$iT)<ﬂi@(t 1),a§f 1>T+’Y§: DT) #Tﬁcu 1>)
end for " b o een
t t—1 t—1
) 1<=n  Ilt). ey Srawn) (i (af )
T = = ﬁZizl Wiy M~ = N TOO)
D Wi
end for

Apply Algorithm [2 to get B8, a®, ®
fork=1,--- , K, do
2
ut) _ Siaen (v-m -2l 8))
O = A0
i=1"ik

end for
for k=1,--- /K, do

- It I(t t ) 2
ity D (- el (o +47))
Op " = n 1(t)
" w

i=1"ik
end for

if convergence criterion is satisfied then
Break;
end if
Output: 70, 70 e 10 Q)
end for

~u ~ A
return ', 7, Q.




and sufficient condition for 3, o, v after an E-step is:

Z;Lk + Djﬂkj =0, ﬁkj 7§ 0, for k= 1,---, Ky
2+ Djog; =0, ap #0, for k=1, K; (4.7)

Z§k+Fj7kj:0, Yej # 0,045 =0 for k=1,.-- K

Aj::H(zj?‘l,--~,z}‘Ku,z]l-17--~,zéKl)H2<)\1, Brj =0 for k=1,--- K,
and ap; =0 for k=1,--- K

By = (50 i)y S Ao =0 for k=1 K
(4.8)

where D, = #—i) ,F-:(L—l) ,and (+); = max(-,0
j <H(ﬁla§)!lz o) =\, T a) o O = max(,0)
is the ReLU function. A closed-form solution is not available here when the

orthonormal condition is not satisfied. Consider that the first line of con-

dition (4.7)) is equivalent to:

o o (== TP _ (S Y
> i Wi B ki

T
where IBk(fj) V (Bkla o © 7/816(]'71)7 07 5k(j71)a s 75kp) 5 k = 17 U 7Ku- Con-

sider the m-th iteration:

now -1 v (s 2T
5(m) o Zi:l wzkx% D(mfl) Zz:l Wik (*sz (yz /Bk:( —5) >)
9 T\ e s 7
i=1 ik i=1 ik

(4.9)

-J

where D;m_l) < = ’\<m T — %) , and ( is a sufficiently small
(3 e o/,



constant (and set as 0.01 in our numerical studies). Similarly, we can con-

duct the iteration for a and ~ as follows:

n m—1 m—1
D i Wi (fij (yz —pp -z <al(c(fj)) + 71(< )>>>
a = — . (4.10)
s Tty —i—D(m 1)) D i Wiy

z lwzk

(a
o _ (( i ( :uk — ] (a,ﬁm_” +715))) w1

kj

where Fj(m_l) = (W — %) . It is noted that the decoupling strat-
egy in can be satisﬁeii by consJirdering both A; and B; in simulta-
neously. Specifically, A; > A\ for a nonzero ay;, A; < Ay and B; > A, for a
nonzero ;. The Iterative Hierarchical Shooting Algorithm is summarized
in Algorithm [2]

Here, A§~m71) and B](-mfl) denote with 3, a, v from the (m — 1)-th
iteration. The iteration is similar to the iterative group shooting algorithm
(Yan and Huang, 2012) and additionally accommodates the nested struc-
ture, and it can be viewed as a special case of a block coordinate descent
algorithm. Unlike the algorithm proposed by [Yan and Huang (2012), this
nested setup realizes a “think twice” mechanism rather than a “no draw-
back” approach (which means that regression coefficients, once zero, remain
zero). In each iteration, the important variables at the upper level are re-

evaluated within the important variable set at the lower level, and { can



Algorithm 2 Iterative Hierarchical Shooting Algorithm
1: Initialize: B8 € REw» o0 ¢ RE*? 40 ¢ REKXP Given {y;, 2},
w' € RMHKu ol ¢ RE v ¢ RE« ! € RE tuning parameters

A1, Ag, regularization parameter a, and a sufficiently small constant (:
2: form=1,---, M do

3. Input: 8™, o™ ~m).

4: forj=1,--- ,pdo

5 Calculate Ag-m_l) and B](-m_l) following ;
6:  if A"V >\ then

7 Update ﬂ_(;n) and a,(;-") following and (4.10]), respectively;
8 else

PN

10: if B >\, then

11: Update 7'(;71) following (4.11));

12: else

13: 7.(;”) = 0;

14: end if

15: end if

16: end for

17:  if convergence criterion is satisfied then

18: Break;

19:  end if

20:  Output: B+ qm+) ~(mt1)
21: end for

22: return 3, &,y

be considered a “compensation signal”, pushing the unselected variables
to still be considered. It can help avoid information loss associated with
the no-drawback approach. Once we have the parameter estimates, for a

new sample, we can calculate the posterior probability that it belongs to a



specific (sub)group. Then, it can be assigned to the one with the highest
posterior probability.

In most of the existing supervised heterogeneity analyses, the num-
ber of groups is a tuning parameter and is selected, for example, using
AIC/BIC. In contrast, in the proposed analysis, the number of (sub)groups
is user-defined, which can be based on analysis needs and/or data. It is
also noted that there can be certain constraints. For example, to gen-
erate consistent estimation, sizes of the groups/subgroups cannot be too
small. Additionally, as in hierarchical clustering, sometimes, some num-
bers of groups/subgroups cannot be realized. We suspect that it may be
possible to revise AIC/BIC and “more objectively” select the number of
(sub)groups. However, this will involve assigning different weights (asso-
ciated with degrees of freedom) for different levels. This is beyond of the
scope of this work and deferred to future research. With MCP, the regu-

larization parameter can be data-dependently selected or prefixed.

5. Simulation

To complement the theoretical investigation, we conduct simulation to ex-
amine practical performance. The settings have been designed to closely

resemble those in existing heterogeneity studies, to sufficiently demonstrate



both strengths and possible limitations of the proposed approach. We

set K; = 4 and K,

= 2 and p = 100. We consider a balanced case

with all the subgroups having 150 samples and an unbalanced case with

(190, 170, 130, 110) samples. For the subgroups, we consider three scenar-

ios, which all have s = 12 variables with nonzero coefficients. Specifically,

B =

By =
e (S1)

Bl =
B, =

=

B =
o (S2)

B, =
B =

B =
By =
B =
By =

4
<p47 p27 527 10558527 57088) 9
2
(p47 p2’ 527 _5 _527557088)1—7
2 1 1
<_p47 p27 527 57 _6527 Eéa 088)T7
4 1 1
<_p47 p2> 527 57 ?€2> _657 088>T-
(5, 3P~ 56 106, <6, 26, 0)T
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2 1
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(_p67_4767_871()’_12714’088) .

Here, for example, p, denotes a vector of length 4 with all components

equal to p. The relative signal strengths are controlled by p and £&. More



specifically, p describes the upper-level effects, and the weaker heteroge-
neous signals corresponding to £ are “truncated” at the upper levels. The
heterogeneity structures and upper-level models (or 3;’s) are derived based
on the lower-level ones. As can be intuitively seen from the above settings,
subgroups 1 and 2 form the first group, and the rest subgroups form the sec-
ond group. Specifically, in S1 and S3, there are 6 important variables at the
upper level, with B} = (pg, 094)". In S2, there are 8 important variables,
with B85 = (—pg,002)". We consider p =€ =1, p=& =15 and p = 1.5
and & = 1. We further set the intercept terms as p! = (4, %, —%, —4)7,
x;’s are generated from a multivariate standard Gaussian distribution. ¢;’s
are generated from a Gaussian distribution A(0,0.5%). We have also ex-
perimented with a few other ways of generating the covariates and random
errors and made similar observations.

Our literature review does not suggest any approaches that closely align
with ours. We consider the following single-level approaches (which conduct
analysis at different levels separately) and two-step approaches as relevant
competitors. Specifically, for the former, we consider: (i) Sparse Finite Mix-
ture Model (S-FMR), which is implemented using R package “flexmix”.
This approach conducts FMR analysis and applies adaptive Lasso for spar-

sity. The numbers of groups and subgroups are set as the true values. This



approach is considered as the baseline. (ii) Group Finite Mixture Model
(G-FMR): This approach applies group Lasso to simultaneously select
variables across multiple groups/subgroups. It is based on the development
in |Hui et al. (2015, with the numbers of groups and subgroups set as the
true values. (iii) MCP Group Finite Mixture Model (MG-FMR): this ap-
proach is similar to (ii), with group Lasso replaced by group MCP (which
may have more favorable performance).

For two-step approaches, we consider: (iv) Ascending order (Order-
A). First, we perform clustering at the upper level. Then, within each
group, we perform clustering to generate subgroups. The model and penal-
ized estimation in each step follow (iii). (v) Descending order (Order-D):
its strategy is similar to (iv), but first generates subgroups and then merge
them to generate upper-level groups. Different from the proposed approach,
(iv) and (v) generate sample-nested structures. We acknowledge that there
can be other alternatives and the above may be more relevant and can pro-
vide direct insights into operating characteristics of the proposed approach.

We adopt the following metrics for evaluation: (i) True and false pos-

P % 3l
itive rates (TPR and FPR), where TPRL — L 2Kt Zioi /(200 20)

Kosh=t S i(EgA)
3251 1 (845 =0.5},#0) | Ky X 1B #0,8,#0)
FPRL = L S0 =tk d TPRU = ;L S =i 7ok
Ki k=t S (Eg=0) R o=t TS (B A0)
P I(Br=0,8" #£0
FPRU — - YK Zi=t (8 =0.5%,70) for the Lower and Upper levels, re-

R =1 XL 155 =0)



spectively. (ii) Mean squared errors (MSE) for the two levels defined as

~1
wseL =y, 3L - gy

, and MSEU = S

‘BZ - 6,’;““2. (iii) Rand
Index (RI) and Adjusted Rand Index (ARI) for the two levels, which mea-
sure grouping accuracy.

The proposed analysis is computationally very affordable. The analysis
of one replicate takes less than one minute on a standard laptop. For each
setting, we generate 100 replicates. The results for the unbalanced subgroup
design with p = 1.5 and £ = 1 are presented in Table|ll Those for the other
settings are presented in Supplementary Materials.

In FMR analysis, estimation accuracy of regression coefficients is tightly
connected to clustering performance. This is also observed in our simula-
tion study. For subgroups, S-FMR fails to identify important variables,
leading to poor subgrouping results. High FPR and low RI/ARI values are
observed. G-FMR can distinguish unimportant variables more effectively
compared to S-FMR, as shown by significant reduction in FPR. However,
with its tendency of excessive shrinkage, G-FMR suffers from high bias,
leading to low TPR, RI/ARI, and high MSE values. MG-FMR demon-
strates notable superiority over the previous two methods, which is likely
caused by the advantage of MCP in estimation — this subsequently leads to

improved variable selection and grouping performance.
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Among those based on group MCP penalization (MG-FMR, Order-A,
and Order-D), the approach that first performs upper-level grouping and
then conducts within-group analysis has better performance. For example,
under S1 in Table [1}, it achieves TPRL = 0.806, FPRL = 0.054, and RIL
= (0.788. The proposed method consistently demonstrates the best perfor-
mance. For example, under S1, S2, and S3 in Table[I] it achieves TPRL =
0.918, 0.885, and 0.807, respectively, while maintaining low FPR and high
RI (=~ 0.85) and ARI values. Particularly, in detecting weak signals at the
lower level, it excels with high TPR and low MSE values.

When strong signals are only present at the upper level, the methods
with group penalization also perform well, and the proposed method has
performance comparable to the best. An interesting observation is that, by
taking the results with p = £ = 1 as a “baseline”, an increase of the overall
signal level (p = & = 1.5) leads to an improvement in variable selection
for all the methods. However, when the relative difference is larger (p =
1.5,& = 1), our method maintains consistent performance, whereas variable
selection performance of the other methods deteriorates. Also note that in
regular FMR analysis, it is of interest to examine performance when the
number of groups (subgroups) is mis-determined. This is not as applicable

to the proposed analysis — when the number of groups (subgroups) changes,



the level of analysis also changes, and so does the “true” model.

6. Data Analysis

We analyze breast cancer (BRCA) data collected by The Cancer Genome
Atlas (TCGA) project and refer to many published studies for information
on TCGA. The response variable of interest is the ratio between “Positive
Finding Lymph Node Hematoxylin and Eosin Staining Microscopy Count”
and “Lymph Node Examined Number”. It is an indicator of tumor bur-
den, disease progression, and recurrence risk, and can describe the degree
of treatment (Braunstein et al [2017). It has been suggested that this ratio
may be correlated with gene expressions. In genetic studies of breast cancer
(and many other cancers), heterogeneity has been suggested, and hetero-
geneity analysis has been shown to have important implications for disease
prevention, treatment, and management (Reis-Filho and Pusztai, |2011)).
We adopt a dynamic smoothing approach based on empirical Bayes
to correct the response ratio. Let “Positive Finding Lymph Node Hema-
toxylin and Eosin Staining Microscopy Count” of the i-th sample be de-

noted as “positive,”, “Lymph Node Examined Number” as “test;”, and

. __ positive, Do testy o, positive;
ratio; = tost; i Define a; = m, b; = W © Q. Then, the
i

positive; +b;

adjusted ratio is ratio; = = _— T
1 1

. When the numbers of tests are low,



directly calculating the ratios is prone to extreme values of 0 or 1, which
may lead to instability in subsequent analysis. This method effectively mit-
igates the occurrence of extreme values and has been frequently adopted.
It reflects the Bayesian principle of “the more data available, the less in-
fluence the prior has”, ensuring that for the samples with more tests, the
ratio estimates rely more on the actual data, while for the samples with
fewer tests, the ratio estimates are more influenced by global information.
We then retain the samples with test; > 1 and non-missing values and per-

form the transformation log (%) following He et al. (2021)). For the
gene expression data, we focus on the “breast cancer” pathway (hsa05224 in
KEGG), considering a limited sample size. With the above preprocessing,
we have 139 gene expression measurements for 841 samples.

With the proposed approach, the numbers of groups/subgroups need
to be specified. As discussed above, in a sense, there is no wrong or right
specification. As observed in unsupervised hierarchical clustering and some
other analysis, some numbers and their corresponding clustering structures
may be less satisfactory. Taking into account the sample size, biological
(especially subtyping) information about the disease, and desired grouping

results, we choose five subgroups and three groups. We have examined other

options, for example four or six subgroups, and observed inferior results.
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Figure 2: Analysis using the proposed approach: coefficients of the iden-
tified genes, sorted in descending order based on magnitudes of the coeffi-

cients for the subgroups. Top (bottom): upper (lower) level.

The five subgroups have sizes of 241, 289, 176, 57, and 78, and 19 genes
are identified. The three groups have sizes of 552, 146, and 143, and 11 (out
of those 19) genes are identified. The identified genes are presented in Figure
Some interesting findings are made. First, even though not reinforced,

the samples at the two levels roughly satisfy a hierarchical structure: the
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first two subgroups overlap largely with the first group (orange in Figure,
the last two subgroups overlap largely with the second group (blue in Figure
, and the third subgroup overlaps largely with the third group (green in
Figure . More specifically, the samples in subgroup-1 and -2, with a total
size of 530, belong almost exclusively to group-1. Those in subgroup-4
and -5, with a total size of 135, belong almost exclusively to group-3. The
correspondence between group-2 and subgroup-3 is slightly ambiguous, with
subgroup-3 also containing a small number of samples mainly from group-
1. This may be caused by some small heterogeneous effects — the effects
in group-1 are small in general. Second, for the important genes identified
at the upper level, their estimates are similar for the two levels. Here,
it is noted that the blue subgroup-4 and -5 in Figure [2| have significant
differences in the magnitudes of some regression coefficients. However, the
directions (signs) of these coefficients are highly consistent, which may lead
to them identified in the same group at a higher level. Additionally, the
important genes identified only at the lower level have weaker signals, and
their estimates differ significantly across the subgroups.

For the upper level, genes WNT9B, PTENP1, DVL2, FGF8, EGF, and
E2F2 are clearly identified. They are involved in key signaling pathways

that regulate cell proliferation, differentiation, apoptosis, and metastasis,



which are critical factors influencing tumor aggressiveness and lymphatic
spread. WNT9B is part of the Wnt signaling pathway, which plays a role in
the determination and proliferation of cell fate. Its association with LNR
implies that it may influence the ability of tumor cells to invade lymphatic
vessels (Lu et al., 2021). Dishevelled-2 (DVL2) is another member of the
Wnt signaling pathway, mediating signal transduction. Its association with
the ratio suggests that it may modulate activity of the Wnt pathway, af-
fecting tumor invasiveness (Sharma et al., 2018). Variations in PTENP1
affect PTEN levels, with PTEN being a well-known tumor suppressor in-
volved in cell cycle regulation, thus altering tumor growth and metastatic
potential (Ghafouri-Fard et al., 2022). FGF8 is involved in cell growth and
angiogenesis, while EGF promotes cell proliferation and survival, poten-
tially facilitating tumor expansion and lymph node involvement (Masuda
et al., 2012)). E2F2 regulates genes essential for cell cycle progression.
Similar insightful findings are made at the lower level. Genes WNT2B
and WNT1 can influence overall activity of the Wnt signaling pathway, and
their effects can accumulate and significantly affect tumor behaviors (Xu
et al., |2020). MAPKS3, a key member of the MAPK signaling pathway,
may exert effects on cell signal transduction even with minor changes. And

PIK3CD indicates different degrees of activity of the PI3K/AKT pathway,



potentially related to subgroup-specific molecular mechanisms influencing
tumor invasiveness. These two pathways play important roles in treatment
of various cancers (Ruchi Sharma et al. 2017). FGF8 and FGF9 may
exhibit different affinities across subtypes, leading to variations in activated
signaling pathways and biological effects.

To get some additional insight, in Figure S2 (Supplementary Materi-
als), we compare overall survival across the subgroups and groups. Log-rank
tests lead to p-values 1 x 10~ for the upper level and 4 x 10~° for the lower
level. In Figure S3 (Supplementary Materials), we compare lymph node
positive ratio across the subgroups and groups. Significant differences in
mean and variation are observed. Such differences suggest that the identi-
fied heterogeneity can have meaningful biomedical implications.

Data is analyzed using the alternatives, which lead to significantly dif-
ferent results. S-FMR identifies significantly different variables across the
subgroups (details omitted). It leads to relatively balanced subgroups with
sizes of 141, 135, 193, 173, and 199, and upper-level groups with sizes of
284, 389, and 168. MG-FMR identifies subgroups with sizes of 225, 307,
177, 43, and 89, and 16 genes are identified. The upper-level groups have
sizes of 544, 152, and 142, and 11 genes are identified. The subgroups

are approximately nested in the groups. Among the 11 genes identified at



the upper level, 8 overlap with those identified by the proposed approach.
Genes ERBB2, WNT7B, and DDB2 are newly identified, FOS, WNT1, and
SHC4 are missed. Among the 16 genes identified at the lower level, only 4
(PTENP1, FGF8, EGF, and FGF4) overlap with those at the upper level
— this is significantly different from our proposed analysis. More results are
presented in Supplementary Materials Figure S1. It is interesting to see
that subgroup-3 and its counterparts in the other methods overlap signif-
icantly. They include samples with a very low proportion of lymph node
positivity (Figure S3 in Supplementary Materials). G-FMR, Order-A, and

Order-D lead to results inferior to MG-FMR, and the details are omitted.

7. Extension: Modeling Homogeneity in Effects Across Levels

With the proposed approach, the sets of important variables identified at
different levels have a nested structure. However, there is no special at-
tention to the estimated effects of the same identified variables at different
levels. Consider for example the case of linear regression. For the important
variables identified at the higher level, if they are orthogonal to those ad-
ditionally identified at the lower level, then their estimates are the same at
the two levels. Here, we explore modeling homogeneity in estimated effects,

under which estimates at multiple levels are better aligned in magnitude.



The scheme of this estimation is presented in Figure S4 (Supplementary
Materials). For this purpose, an additional penalty term is introduced.
The proposed approach and its theoretical properties are described in Sec-
tion S3 of Supplementary Materials. We have experimented with a few
simulations and found that this approach has satisfactory identification,
grouping, and estimation performance, in a way similar to the above. In
addition, when there is a strong alignment in the magnitudes of important

effects, it achieves superior performance. Details are omitted here.

8. Discussion

For supervised heterogeneity analysis, we have developed a simultaneous
analysis at multiple levels, where the sets of identified important effects
have a nested structure. A novel penalization approach has been developed,
with its theoretical and numerical properties rigorously established. We
have also considered an extension, under which there is a better alignment
in the magnitudes of estimated effects. Overall, the proposed approach is
conceptually and statistically sound, and as shown in the numerical studies,
can provide a practically useful tool.

As elaborated above, it can be of interest to conduct multi-level super-

vised heterogeneity analysis. Although significant advancements have been



made in this study and some others, it is still relatively underdeveloped
compared to under the unsupervised paradigm. For example, it can be of
interest to “combine” the existing techniques to achieve nested structures in
both identified important effects and samples. It can also be of interest to
combine the proposed nested structure with the penalized fusion technique,
which has been a popular alternative to the FMR technique. In hierar-
chical clustering and other multi-level analysis, the numbers of groups are
often specified in a heuristic way. This also applies to the proposed anal-
ysis. In general, it is of interest to more deeply examine the numbers of

groups/subgroups. Last but not least, more applications may be pursued.

Supplementary Materials

Online Supplementary Materials contains additional theoretical (referenced
in Sections , numerical (referenced in Section |5 and Section @, and
methodological (referenced in Sections @ developments, which is available

on the Statistica Sinica website.
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