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Abstract: Under supervised heterogeneity analysis, samples within a population

form groups, and different groups have different regression models. In most

of the existing analyses, a single level of heterogeneity structure is considered.

Partly motivated by multi-level unsupervised analysis such as hierarchical clus-

tering, we consider multi-level supervised heterogeneity analysis. Consider for

example a two-level analysis. At the higher level, “coarse” information is used,

and samples form a smaller number of groups. At the lower level, “more sub-

tle” information is used, and samples form a larger number of subgroups. To

achieve more lucid interpretations, we further consider the scenario where only

some variables are relevant at each level, different groups (subgroups) have the

same set of relevant variables, and the important variables at the higher level are

nested in those at the lower level. A penalized estimation and selection approach

is developed, and its theoretical and computational properties are established.

Simulation demonstrates competitive performance of the proposed approach. In

the analysis of TCGA breast cancer data, the proposed approach leads to sensible
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grouping/subgrouping, identification, and estimation results. Overall, this study

expands the scope of heterogeneity analysis and delivers a practically useful tool.

Key words and phrases: Multi-level, Nested effects, Penalized estimation, Super-

vised heterogeneity analysis.

1. Introduction

Heterogeneity analysis is routinely conducted, and most of the existing het-

erogeneity analyses can be classified as unsupervised (which does not involve

a response variable) and supervised (which involves a response variable). In

this study, we conduct supervised heterogeneity analysis, under which sam-

ples form groups, and different groups have different regression models. For

such analysis, popular techniques include finite mixture regression (FMR)

(Khalili and Chen, 2007), penalized fusion (Ma and Huang, 2017), Bayesian

(Qin et al., 2024), and others. When only a subset of variables is relevant,

selection using regularization can be conducted. There is vast literature,

and we refer to Fan and Lv (2010); Huang et al. (2012) for reviews.

In most of the existing supervised heterogeneity analyses, there is only

one level of grouping, and it is assumed that there is a single true modeling

and grouping structure. This study has been partly motivated multi-level

unsupervised heterogeneity analyses such as hierarchical clustering. Under
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such analyses, the same samples are grouped at multiple levels. For the

simplicity of description, we consider a two-level analysis and note that

the discussion can be easily extended to more than two levels. At the

higher level, “coarse” information from variables is used, and samples are

separated into a smaller number of groups. Note that, it is possible that

only a subset of variables contributes information. At the lower level, “more

subtle” information is additionally used, and samples are separated into a

larger number of subgroups. As more information is needed, a bigger subset

of variables (than at the higher level) needs to contribute. In a sense, the

modeling and grouping structures at both levels are “true” – here we use a

quotation mark to indicate that the true structures may not be interpreted

as strictly as for a single-level analysis.

To further elaborate, we consider the popular setting under the penal-

ized fusion-based and some other supervised heterogeneity analyses. For a

set of n independent samples, denote βi as the regression coefficient for the

i-th sample. In studies such as Ma and Huang (2017); Wang and Su (2021);

Tang et al. (2021), the goal is to identify a single true structure, under which

samples i and j belong to the same group if and only if βi exactly equals

βj. If βi’s were known, then instead of being limited to a single level of

grouping, we could conduct for example hierarchical clustering of βi’s and
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group samples at as many as n levels. A user can specify, for example, that

two levels of grouping are needed, and three and five clusters are needed at

the two levels, respectively. The second user can also specify two levels but

request two and six clusters (or even a different number of levels). Here,

in a sense, there is not a single true number of clusters (and corresponding

grouping structure). Or, we can also say that whatever number of clus-

ters specified by a user, as long as certain conditions are satisfied (see the

theoretical development below for more details), is a “true” number.

The scheme of the proposed analysis is presented in Figure 1. At the

higher level, the samples form two groups based on five (out of 15) variables

that have nonzero coefficients. At the lower level, they form four subgroups,

and this subgrouping is defined based on the first five as well as five ad-

ditional variables. Intuitively, those additional important variables at the

lower level have weaker signals and contribute more subtle information. For

comparison, we also present two single-level analyses.

In the literature, a relevant study is Ren et al. (2022), which also con-

ducts a multi-level supervised heterogeneity analysis. In Ren et al. (2022),

one set of coarse imaging features is used to define the higher level hetero-

geneity, and a separate set of refined imaging features is used to define the

lower level heterogeneity. It is reinforced that the lower-level subgroups are
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Figure 1: Top(A): A single-level analysis. Two groups are formed based on

five variables with nonzero coefficients. Middle(B): A single-level analysis.

Four subgroups are formed based on eight variables, lacking a effects-nested

structure with respect to (A). Bottom(C): Proposed two-level analysis.

Two (four) groups (subgroups) are formed at the higher (lower) level based

on five (ten) variables. The sets of nonzero effects have a nested structure.

nested in the higher-level groups, forming a nested structure in terms of

samples. This study and Ren et al. (2022) share some conceptual common

ground. However, their data settings and analysis goals significantly differ

in multiple critical ways, which subsequently lead to significant differences
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in theoretical developments and applications. First, in Ren et al. (2022),

two separate sets of variables are needed for two-level heterogeneity anal-

ysis. With this requirement in data sources, the number of analysis levels

can be very limited. In contrast, in this study, multiple levels of analysis

use the same variables. This is more coherent with hierarchical clustering

and some other multi-level analyses. In principle, there can be easily more

than two (or even many) levels. Second, in Ren et al. (2022), for the two

levels, with two different sets of variables, two sets of true underlying data

generating models are defined in a strict way. In contrast, in this study, as

the same variables are used for multiple levels of analysis, the definition of

“true models” can be somewhat “vague”. Different levels demand differ-

ent regression models, all of which can be viewed as “true”. This is also

coherent with hierarchical clustering and some other multi-level analyses.

Building multiple sets of “true” models at different levels using the same

variables significantly increases the complexity of methodological and the-

oretical developments. Third, in Ren et al. (2022), it is reinforced that the

lower-level subgroups and higher-level groups have a nested structure, us-

ing a sample-based fusion strategy. In this study, we alternatively reinforce

that the higher-level important variables and lower-level important vari-

ables have a nested structure. The two nested structures are significantly
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different, demand different methodologies, and complement each other. It

is additionally noted that the proposed effect-nested analysis may lead to

samples without having a nested structure. On the other hand, as observed

in our data analysis, samples can often have a close-to-nested structure.

In many practical fields, heterogeneity analysis can be conducted at

multiple levels with different “resolutions”. The unsupervised type of such

analysis has been well developed. This study can fill an important knowl-

edge gap by conducting supervised analysis. With the high significance

of supervised heterogeneity analysis and multi-level unsupervised hetero-

geneity analysis, the analysis developed in this study can have important

implications. Compared to Khalili and Chen (2007); Hui et al. (2015); Ren

et al. (2022), it can have weaker and more realistic data requirements while

more challenging methodological and theoretical developments. Addition-

ally, this study can deliver a useful tool for many practical data scenarios.

2. Model

2.1 Base Data and Model Settings

We first consider a base setting. Consider data with n independent ob-

servations {yi,xi}ni=1. For the i-th subject, yi denotes the response, and

xi = (xi1, xi2, · · · , xip)
⊤ denotes the p-dimensional vector of covariates.
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2.1 Base Data and Model Settings

Consider the FMR framework, and denote K as the number of mixing

components. The conditional density for yi given xi is:

f (y;x,Ω,π) =
K∑
k=1

πkfk (y;x, θk(x), σk) ; θk(x) = h(x⊤βk), (2.1)

where fk (y;x, θk(x), σk) is the density for the k-th component, and h(·)−1

is a known link function. Denote Ω = {β⊤
1 ,β

⊤
2 , · · · ,β⊤

K ,σ
⊤}⊤, where

βk = (βk1, βk2, . . . , βkp)
⊤ represents the covariate effects for the k-th com-

ponent and σ = (σ1, σ2, . . . , σK)
⊤ contains the dispersion parameters. π =

(π1, π2, . . . , πK)
⊤ contains the mixing probabilities satisfying πk > 0, and∑K

k=1 πk = 1. Additionally, denote β = {β⊤
1 ,β

⊤
2 , · · · ,β⊤

K}⊤. The observed

log-likelihood is: L(Ω,π) = 1
n

∑n
i=1 log

(∑K
k=1 πkfk (yi;xi, θk(xi), σk)

)
. For

discussion on identifiability (up to a permutation of component labels), we

refer to McLachlan et al. (2019). In what follows, we focus on linear models

– meaning that fk is the Gaussian density for y−x⊤βk. Conceptually, the

proposed analysis can be easily extended to other models. With a moderate

to large number of variables and the sparsity assumption, penalization and

other regularization techniques can be applied. For references, we refer to

Khalili and Lin (2013); Hui et al. (2015).

Under this setting, we consider a simplified two-level analysis. The

lower level is as defined above, and subject i belongs to the k-th subgroup

if yi = x⊤
i βk + ϵi. For the upper level, we specify the number of groups as
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2.2 Effects-nested Multi-level Analysis

one (that is, the special case of a homogeneity model). We can write yi =

x⊤
i βco+x⊤

i (βk−βco)+ϵi. Here, βco is the “true” regression coefficient vector

shared by all the samples, and x⊤
i (βk−βco) can be viewed as an additional

noise. A special case, which is intuitively reasonable and is considered in

this study, is βk = βco+αk and βcoj ·αkj = 0, j = 1, 2, · · · , p, indicating that

the additional signals corresponding to αk are used to define heterogeneity

for the k-th subgroup at the lower level.

2.2 Effects-nested Multi-level Analysis

Our goal is to simultaneously conduct multi-level analysis. With the higher-

level important variable set nested in the lower-level one, we “decouple”

the covariate effects at each level into a leading component (which likely

has higher signals and is consistent with the higher-level important effects)

and a level-specific component. To fix ideas and simplify notation, here,

we specifically consider a two-level analysis and denote Ku and Kl as the

numbers of upper-level groups and lower-level subgroups, respectively, with

Ku < Kl (noting that we no longer use a singleK). We denote the effects for

the k-th upper-level group by βu
k = (βu

k1, β
u
k2, · · · , βu

kp)
⊤, k = 1, 2, · · · , Ku,

and for the k-th lower-level subgroup by βl
k = (βl

k1, β
l
k2, · · · , βl

kp)
⊤, k =

Statistica Sinica: Newly accepted Paper 



2.2 Effects-nested Multi-level Analysis

1, 2, · · · , Kl. The lower-level effects are further decoupled as:

βl
k = αl

k + γ l
k, s.t. αl

k ⊙ γ l
k = 0, k = 1, 2, · · · , Kl, (2.2)

where, for the k-th subgroup, αl
k denotes the leading effect, and γ l

k denotes

the level-specific effect. “⊙” denotes element-wise multiplication.

For the selection of important effects, estimation, and (sub)grouping,

we propose objective function:

Lma(Ω,πu,πl) = L(Ωu,πu) + L(Ω̃
l
,πl)− Pma

(
βu,αl,γ l

)
, (2.3)

where Ω = (Ωu⊤, Ω̃
l⊤
)⊤, Ωu =

(
Ωu⊤

1 , · · · ,Ωu⊤
Ku

)⊤
, Ωu

k = vec (βu
k , σ

u
k ) =(

βu
k1, β

u
k2, · · · , βu

kp, σ
u
k

)⊤
, and Ω̃

l
= (Ωl⊤,γ⊤)⊤, Ωl =

(
Ωl⊤

1 , · · · ,Ωl⊤
Kl

)⊤
,

Ωl
k = vec

(
αl

k, σ
l
k

)
=

(
αl
k1, α

l
k2, · · · , αl

kp, σ
l
k

)⊤
, γ = {γl⊤

1 ,γ l⊤
2 , · · · ,γl⊤

Kl
}⊤.

Also, πu =
(
πu
1 , π

u
2 , . . . , π

u
Ku

)⊤
and πl =

(
πl
1, π

l
2, . . . , π

l
Kl

)⊤
. Here, operator

“vec(·)” straightens column vectors, and L(Ωu) and L(Ω̃
l
) denote the ob-

served log-likelihood functions for the upper and lower levels, respectively.

The key development is the Multilevel Aligning (MA) penalty:

Pma

(
βu,αl,γ l

)
=

p∑
j=1

P


√√√√ Ku∑

k=1

(βu
kj)

2 +

Kl∑
k=1

(αl
kj)

2, λ1

+

p∑
j=1

P


√√√√ Kl∑

k=1

(γl
kj)

2, λ2

 ,

(2.4)

where P (·, λ) is a penalty function, and λ1 and λ2 are tuning parameters.

Choices for the penalty include Lasso, SCAD, MCP, and others. Note
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2.2 Effects-nested Multi-level Analysis

that in the proposed multi-level analysis, at each level, once the number of

(sub)groups at that level is set, the “true” parameters can be accordingly

determined. As such, the estimation of parameters as well as the deter-

mination of grouping and subgrouping structures can be conducted in a

similar way as under the FMR framework.

Rationale A sparse group type penalty is proposed. It ensures that, if a

variable is identified as important at the higher level (with nonzero estimates

corresponding to β), then its lower-level estimates (corresponding to α) are

automatically nonzero, making it identified as the lower level. The level-

specific effect γ is only identified in the more heterogeneous lower-level

subgroups. However, this is not true the other way around. At the same

level, all the estimates corresponding to one specific variable across the

groups/subgroups are viewed as a group. With group penalization, they are

either all zero or all nonzero. In addition, our model degenerates into the

simplified analysis in Section 2.1 whenKu = 1 and βu
1j = αl

kj, k = 1, · · · , Kl.

Our approach allows for more flexible, or “more heterogeneous”, analysis,

and we also consider the “more homogeneous” case in Section 7.

Remarks: The proposed approach can be generalized to more than two

levels in a rather straightforward way. Consider for example a three-level

analysis (with an additional middle level denoted by “m”). Denote the
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numbers of mixture components at the three levels as Ku < Km < Kl. For

decoupling the effects, we write: βm
k = αm

k + γm
k , s.t. αm

k ⊙ γm
k = 0, k =

1, 2, · · · , Km. Consider the penalty:

Pma

(
βu,αm,γm,αl,γ l

)
=

p∑
j=1

P


√√√√ Ku∑

k=1

(βu
kj)

2 +
Km∑
k=1

(αm
kj)

2, λ1


+

p∑
j=1

P


√√√√Km∑

k=1

(αm
kj + γm

kj)
2 +

Kl∑
k=1

(αl
kj)

2, λ2

+

p∑
j=1

P


√√√√ Kl∑

k=1

(γl
kj)

2, λ3

 ,

(2.5)

where λ1, λ2, and λ3 are tuning parameters. In a similar manner, the anal-

ysis can be extended to more levels. Obviously, computation is expected to

be more complicated. Our preliminary exploration suggests that statistical

properties similar to those described below can be established. Also noted

that more levels of analysis introduce more model parameters, inevitably

bringing computational challenges. In unsupervised hierarchical clustering

and other analyses, sometimes, certain levels/numbers of grouping lead to

insensible results. This is also expected to hold for the proposed analysis.

3. Statistical Properties

For the simplicity of notation, we still consider two levels. As discussed

above, it is not assumed that there is a single true model. However, our

exploration suggests that, for the purpose of presentation, it can be easier if
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we call the lower-level model as the true, with its corresponding parameters

indicated using superscript “*”.

Define S = {j :
∑Kl

k=1 β
l∗2
kj ̸= 0, 1 ⩽ j ⩽ p} = {j : βl∗

kj ̸= 0, 1 ⩽ j ⩽

p, 1 ⩽ k ⩽ Kl}, under the assumption that all the subgroups share the same

set of important variables. There exists a decomposition S = S1 ∪ S2 with

S1 = {j : αl∗
kj ̸= 0, 1 ⩽ j ⩽ p, 1 ⩽ k ⩽ Kl} and S2 = {j : γl∗

kj ̸= 0, 1 ⩽ j ⩽

p, 1 ⩽ k ⩽ Kl}, and S1 ∩ S2 = ∅. For the upper level, the set of important

variables S1 corresponds to model parameters Ωu∗, which can be viewed as

a “shrunk version” of the lower-level ones. Specifically,

Ωu∗ = argmax
Ωu

{E[
Ku∑
k=1

πkfk (y;x,β
u
k , σ

u
k )]}

s.t. {j :
Ku∑
k=1

βu∗2
kj ̸= 0, 1 ⩽ j ⩽ p} = S1.

(3.6)

Remarks: To get some intuitive insight, we consider a model with two

subgroups Y 1 ∈ Rn,X1 ∈ Rn×5 and Y 2 ∈ Rn,X2 ∈ Rn×5. For the

two subgroups, the first four regression coefficients are the same, and the

fifth regression coefficients have the same absolute magnitude but opposite

signs. Additionally, we consider the special case of orthogonal designs. The

separate OLS estimates are β1j =
X⊤

1jY 1

X⊤
1jX1j

, β2j =
X⊤

2jY 2

X⊤
2jX2j

, j = 1, 2, · · · , 5,

where X1j and X2j are the j-th columns of X1 and X2, respectively.

For the upper level, if we set the number of groups as one (that is, a
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homogeneity model), with Y = (Y ⊤
1 ,Y

⊤
2 )

⊤ and X = (X⊤
1 ,X

⊤
2 )

⊤, βj =

X⊤
j Y

X⊤
j Xj

=
X⊤

1jY 1+X⊤
2jY 2

X⊤
1jX1j+X⊤

2jX2j
, j = 1, 2, · · · , 5, where βj = β1j = β2j ̸= 0 for

j = 1, 2, 3, 4, and β5 = 0. Here, the “more common” effects of the lower level

are “averaged” to form the upper-level effects, while the “more specific”

effects of the lower level are canceled out. Although this is a special example,

it is not hard to see that many data/model settings have similar properties.

We introduce the following notations. For simplicity, use αk and γk

to denote αl
k and γ l

k, respectively, for k = 1, 2, · · · , Kl. Similarly, use βk

to denote βu
k for k = 1, 2, · · · , Ku (here we note the different implications

from Section 2.1). Denote Ω∗ as the “true” value of Ω. γ∗, as a part of

Ω∗, is similarly defined. Let | · | denote the cardinality of a set, and define

the sparsity parameters as s1 = |S1|, s2 = |S2|, and s = s1 + s2. Write

x ≃ y if x = Dy for some positive constant D. The 2-norm of a vector

z = (z1, · · · , zq)⊤ is defined as ∥z∥2 =
√∑q

j=1 z
2
j . The assumed conditions

and their implications are described in Supplementary Materials.

Theorem 1. Suppose that Conditions 1-6 (Supplementary Materials) hold

and

√
K3

l s log p

n
= O (λ1),

√
K3

l s2 log p

n
= O (λ2). The minimum signals in β∗

and α∗ are larger than (a+0.5)·λ1, and that in γ∗ is larger than (a+0.5)·λ2,

where a is the regularization parameter defined in Condition 5. Then, there

exists a local maximizer of (2.3), with probability tending to 1:
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1. (Estimation consistency):
∥∥∥Ω̂−Ω∗

∥∥∥
2
= O

(√
K3

l s log p

n

)
;

2. (Heterogeneous effects consistency): ∥γ̂ − γ∗∥2 = O

(√
K3

l s2 log p

n

)
;

3. (Selection consistency): Ŝ1 = S1, Ŝ2 = S2, where Ŝ1 = {j : α̂kj ̸=

0, 1 ⩽ j ⩽ p, 1 ⩽ k ⩽ Kl}, Ŝ2 = {j : γ̂kj ̸= 0, 1 ⩽ j ⩽ p, 1 ⩽ k ⩽ Kl}.

The proof is presented in Supplementary Materials. Note that the com-

monly encountered reshuffling issue is also applicable here. It is “reas-

suring” that, with a more complicated analysis goal and formulation, the

proposed approach enjoys similar much-desired properties as Fan and Lv

(2011); Zhang et al. (2016). Compared to the multi-level heterogeneity

analysis in Ren et al. (2022), the proposed analysis enjoys stronger variable

selection properties by better accommodating high-dimensional variables.

In addition, unlike Ren et al. (2022) which is concerned with identifying the

exact number of (sub)groups (using penalized fusion to aggregate samples),

the proposed analysis can accommodate any reasonably specified number

of (sub)groups and is more concerned with differences in parameters at dif-

ferent levels. There are also differences/advancements from the existing

mixture regression literature (e.g., Hui et al. (2015) and Sun et al. (2022)).

For example, when s2 = o(s1), the analysis can detect subgroup-level ef-

fects with smaller signals. Although with more levels in our analysis, Kl
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is allowed to diverge like in Hao et al. (2018). Our analysis can accom-

modate slightly more subgroups as sample size grows and, thus, can be

advantageous over some existing ones like Li et al. (2023).

4. Computation

We develop an effective algorithm based on the EM technique. Denote

µu
k and µl

k′ as the means of the k-th group and the k′-th subgroup, re-

spectively. Denote ωu = (ωu
ik)n×Ku

and ωl =
(
ωl
ik

)
n×Kl

, where ωu
ik and ωl

ik

correspond to the upper and lower levels, respectively, as the latent indica-

tor variables representing the component memberships of the i−th sample

in the mixtures. Use superscript (t) to denote the updated parameters in

the t-th iteration. With initial values from the standard FMR or K-means

with regression estimates, the algorithm is sketched in Algorithm 1.

The EM technique has been popular in mixture modeling. There are

additional complexities for our model. For example, the optimization of

β(t),α(t),γ(t) in the M-step is not straightforward. For this purpose, we

develop an Iterative Hierarchical Shooting Algorithm. Here, we describe it

for MCP and note that it can be modified for other penalties.

We denote zujk :=
∑n

i=1 ω
u
ik(−xij(yi−µu

k−x⊤
i βk))∑n

i=1 ω
u
ik

for k = 1, · · · , Ku and zljk :=∑n
i=1 ω

l
ik(−xij(yi−µl

k−x⊤
i (αk+γk)))∑n

i=1 ω
l
ik

for k = 1, · · · , Kl, j = 1, · · · , p. A necessary
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Algorithm 1 EM-based Algorithm

Initialize: πu(0) ∈ RKu ,πl(0) ∈ RKl ,µu(0) ∈ RKu ,µl(0) ∈ RKl , Ω(0) ∈
R(Ku+2Kl)×p+Ku+Kl , given tuning parameters λ1, λ2, regularization param-

eter a, and a sufficiently small constant ζ.

for t = 1, · · · , T do

Input: πu(t−1),πl(t−1),µu(t−1),µl(t−1),Ω(t−1), {yi,xi}ni=1.

for k = 1, · · · , Ku do

for i = 1, · · · , n do

ω
u(t)
ik =

π
u(t−1)
k fk

(
yi;xi,(1,x⊤

i )
(
µ
u(t−1)
k ,β

(t−1)⊤
k

)⊤
,σ

u(t−1)
k

)
∑Ku

k=1 π
u(t−1)
k fk

(
yi;xi,(1,x⊤

i )
(
µ
u(t−1)
k ,β

(t−1)⊤
k

)⊤
,σ

u(t−1)
k

) .
end for

π
u(t)
k = 1

n

∑n
i=1 ω

u(t)
ik ; µ

u(t)
k =

∑n
i=1 ω

u(t)
ik

(
yi−x⊤

i β
(t−1)
k

)
∑n

i=1 ω
u(t)
ik

end for

for k = 1, · · · , Ku do

for i = 1, · · · , n do

ω
l(t)
ik =

π
l(t−1)
k fk

(
yi;xi,(1,x⊤

i )
(
µ
l(t−1)
k ,α

(t−1)⊤
k +γ

(t−1)⊤
k

)⊤
,σ

l(t−1)
k

)
∑Kl

k=1 π
l(t−1)
k fk

(
yi;xi,(1,x⊤

i )
(
µ
l(t−1)
k ,α

(t−1)⊤
k +γ

(t−1)⊤
k

)⊤
,σ

l(t−1)
k

) .
end for

π
l(t)
k = 1

n

∑n
i=1 ω

l(t)
ik ; µ

l(t)
k =

∑n
i=1 ω

l(t)
ik

(
yi−x⊤

i

(
α

(t−1)
k +γ

(t−1)
k

))
∑n

i=1 ω
l(t)
ik

end for

Apply Algorithm 2 to get β(t),α(t),γ(t)

for k = 1, · · · , Ku do

σ
u(t)
k =

∑n
i=1 ω

u(t)
ik

(
yi−µ

u(t)
k −x⊤

i β
(t)
k

)2

∑n
i=1 ω

u(t)
ik

end for

for k = 1, · · · , Kl do

σ
l(t)
k =

∑n
i=1 ω

l(t)
ik

(
yi−µ

l(t)
k −x⊤

i

(
α

(t)
k +γ

(t)
k

))2

∑n
i=1 ω

l(t)
ik

end for

if convergence criterion is satisfied then

Break;

end if

Output: πu(t),πl(t),µu(t),µl(t),Ω(t).

end for

return π̂u, π̂l, Ω̂.
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and sufficient condition for β,α,γ after an E-step is:

zujk +Djβkj = 0, βkj ̸= 0, for k = 1, · · · , Ku;

zljk +Djαkj = 0, αkj ̸= 0, for k = 1, · · · , Kl;

zljk + Fjγkj = 0, γkj ̸= 0, αkj = 0 for k = 1, · · · , Kl;

(4.7)

Aj :=
∥∥(zuj1, · · · , zujKu

, zlj1, · · · , zljKl

)∥∥
2
⩽ λ1, βkj = 0 for k = 1, · · · , Ku

and αkj = 0 for k = 1, · · · , Kl;

Bj :=
∥∥(zlj1, · · · , zljKl

)∥∥
2
⩽ λ2, γkj = 0 for k = 1, · · · , Kl.

(4.8)

whereDj =

(
λ1

∥(β⊤
·j ,α

⊤
·j)∥2

− 1
a

)
+

, Fj =

(
λ2

∥γ·j∥2

− 1
a

)
+

, and (·)+ = max(·, 0)

is the ReLU function. A closed-form solution is not available here when the

orthonormal condition is not satisfied. Consider that the first line of con-

dition (4.7) is equivalent to:∑n
i=1 ω

u
ik

(
xij

(
yi − µu

k − x⊤
i βk(−j)

))∑n
i=1 ω

u
ik

=

(∑n
i=1 ω

u
ikx

2
ij∑n

i=1 ω
u
ik

+Dj

)
βkj,

where βk(−j) =
(
βk1, . . . , βk(j−1), 0, βk(j−1), . . . , βkp

)⊤
, k = 1, · · · , Ku. Con-

sider the m-th iteration:

β
(m)
kj =

(∑n
i=1 ω

u
ikx

2
ij∑n

i=1 ω
u
ik

+D
(m−1)
j

)−1
∑n

i=1 ω
u
ik

(
xij

(
yi − µu

k − x⊤
i β

(m−1)
k(−j)

))
∑n

i=1 ω
u
ik

,

(4.9)

where D
(m−1)
j =

(
λ1∥∥∥(β(m−1)⊤

·j ,α
(m−1)⊤
·j

)∥∥∥
2
+ζ

− 1
a

)
+

, and ζ is a sufficiently small
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constant (and set as 0.01 in our numerical studies). Similarly, we can con-

duct the iteration for α and γ as follows:

α
(m)
kj =

∑n
i=1 ω

l
ik

(
xij

(
yi − µl

k − x⊤
i

(
α

(m−1)
k(−j) + γ

(m−1)
k

)))
(∑n

i=1 ω
l
ikx

2
ij∑n

i=1 ω
l
ik

+D
(m−1)
j

)∑n
i=1 ω

l
ik

, (4.10)

γ
(m)
kj =

∑n
i=1 ω

l
ik

(
xij

(
yi − µl

k − x⊤
i

(
α

(m−1)
k + γ

(m−1)
k(−j)

)))
(∑n

i=1 ω
l
ikx

2
ij∑n

i=1 ω
l
ik

+ F
(m−1)
j

)∑n
i=1 ω

l
ik

, (4.11)

where F
(m−1)
j =

(
λ1∥∥∥γ(m−1)

·j

∥∥∥
2
+ζ

− 1
a

)
+

. It is noted that the decoupling strat-

egy in (2.2) can be satisfied by considering both Aj and Bj in (4.8) simulta-

neously. Specifically, Aj > λ1 for a nonzero αkj, Aj ⩽ λ1 and Bj > λ2 for a

nonzero γkj. The Iterative Hierarchical Shooting Algorithm is summarized

in Algorithm 2.

Here, A
(m−1)
j and B

(m−1)
j denote (4.8) with β,α,γ from the (m− 1)-th

iteration. The iteration is similar to the iterative group shooting algorithm

(Yan and Huang, 2012) and additionally accommodates the nested struc-

ture, and it can be viewed as a special case of a block coordinate descent

algorithm. Unlike the algorithm proposed by Yan and Huang (2012), this

nested setup realizes a “think twice” mechanism rather than a “no draw-

back” approach (which means that regression coefficients, once zero, remain

zero). In each iteration, the important variables at the upper level are re-

evaluated within the important variable set at the lower level, and ζ can
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Algorithm 2 Iterative Hierarchical Shooting Algorithm

1: Initialize: β(0) ∈ RKu×p,α(0) ∈ RKl×p,γ(0) ∈ RKl×p. Given {yi,xi}ni=1,

ωu ∈ Rn×Ku ,ωl ∈ Rn×Kl ,µu ∈ RKu ,µl ∈ RKl , tuning parameters

λ1, λ2, regularization parameter a, and a sufficiently small constant ζ:

2: for m = 1, · · · ,M do

3: Input: β(m),α(m),γ(m).

4: for j = 1, · · · , p do

5: Calculate A
(m−1)
j and B

(m−1)
j following (4.8);

6: if A
(m−1)
j > λ1 then

7: Update β
(m)
·j and α

(m)
·j following (4.9) and (4.10), respectively;

8: else

9: β
(m)
·j = α

(m)
·j = 0;

10: if B
(m−1)
j > λ2 then

11: Update γ
(m)
·j following (4.11);

12: else

13: γ
(m)
·j = 0;

14: end if

15: end if

16: end for

17: if convergence criterion is satisfied then

18: Break;

19: end if

20: Output: β(m+1),α(m+1),γ(m+1).

21: end for

22: return β̂, α̂, γ̂

be considered a “compensation signal”, pushing the unselected variables

to still be considered. It can help avoid information loss associated with

the no-drawback approach. Once we have the parameter estimates, for a

new sample, we can calculate the posterior probability that it belongs to a
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specific (sub)group. Then, it can be assigned to the one with the highest

posterior probability.

In most of the existing supervised heterogeneity analyses, the num-

ber of groups is a tuning parameter and is selected, for example, using

AIC/BIC. In contrast, in the proposed analysis, the number of (sub)groups

is user-defined, which can be based on analysis needs and/or data. It is

also noted that there can be certain constraints. For example, to gen-

erate consistent estimation, sizes of the groups/subgroups cannot be too

small. Additionally, as in hierarchical clustering, sometimes, some num-

bers of groups/subgroups cannot be realized. We suspect that it may be

possible to revise AIC/BIC and “more objectively” select the number of

(sub)groups. However, this will involve assigning different weights (asso-

ciated with degrees of freedom) for different levels. This is beyond of the

scope of this work and deferred to future research. With MCP, the regu-

larization parameter can be data-dependently selected or prefixed.

5. Simulation

To complement the theoretical investigation, we conduct simulation to ex-

amine practical performance. The settings have been designed to closely

resemble those in existing heterogeneity studies, to sufficiently demonstrate
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both strengths and possible limitations of the proposed approach. We

set Kl = 4 and Ku = 2 and p = 100. We consider a balanced case

with all the subgroups having 150 samples and an unbalanced case with

(190, 170, 130, 110) samples. For the subgroups, we consider three scenar-

ios, which all have s = 12 variables with nonzero coefficients. Specifically,

• (S1)

βl
1 = (ρ4,

4

3
ρ2,−

1

6
ξ2,

1

10
ξ,

1

8
ξ2,

1

7
ξ,088)

⊤,

βl
2 = (ρ4,

2

3
ρ2,

1

7
ξ2,−

1

6
ξ,

1

10
ξ2,

1

8
ξ,088)

⊤,

βl
3 = (−ρ4,−

2

3
ρ2,

1

8
ξ2,

1

7
ξ,−1

6
ξ2,

1

10
ξ,088)

⊤,

βl
4 = (−ρ4,−

4

3
ρ2,

1

10
ξ2,

1

8
ξ,

1

7
ξ2,−

1

6
ξ,088)

⊤.

• (S2)

βl
1 = (ρ5,

4

3
ρ3,−

1

6
ξ,

1

10
ξ,

1

8
ξ,

1

7
ξ,088)

⊤,

βl
2 = (ρ5,

2

3
ρ3,

1

7
ξ2,−

1

6
ξ,

1

10
ξ,

1

8
ξ,088)

⊤,

βl
3 = (−ρ5,−

2

3
ρ3,

1

8
ξ,

1

7
ξ,−1

6
ξ,

1

10
ξ,088)

⊤,

βl
4 = (−ρ5,−

4

3
ρ3,

1

10
ξ,

1

8
ξ,

1

7
ξ,−1

6
ξ,088)

⊤.

• (S3)

βl
1 = (ρ6,

ξ

4
,−ξ

6
,
ξ

8
,− ξ

10
,
ξ

12
,− 1

14
,088)

⊤,

βl
2 = (ρ6,−

ξ

4
,
ξ

6
,−ξ

8
,
ξ

10
,− ξ

12
,
ξ

14
,088)

⊤,

βl
3 = (−ρ6,

ξ

4
,−ξ

6
,
ξ

8
,− ξ

10
,
ξ

12
,− ξ

14
,088)

⊤,

βl
4 = (−ρ6,−

ξ

4
,
ξ

6
,−ξ

8
,
ξ

10
,− ξ

12
,
ξ

14
,088)

⊤.

Here, for example, ρ4 denotes a vector of length 4 with all components

equal to ρ. The relative signal strengths are controlled by ρ and ξ. More

Statistica Sinica: Newly accepted Paper 



specifically, ρ describes the upper-level effects, and the weaker heteroge-

neous signals corresponding to ξ are “truncated” at the upper levels. The

heterogeneity structures and upper-level models (or βu
k ’s) are derived based

on the lower-level ones. As can be intuitively seen from the above settings,

subgroups 1 and 2 form the first group, and the rest subgroups form the sec-

ond group. Specifically, in S1 and S3, there are 6 important variables at the

upper level, with βu
1 = (ρ6,094)

⊤. In S2, there are 8 important variables,

with βu
2 = (−ρ8,092)

⊤. We consider ρ = ξ = 1, ρ = ξ = 1.5, and ρ = 1.5

and ξ = 1. We further set the intercept terms as µl = (4, 4
3
,−4

3
,−4)⊤.

xi’s are generated from a multivariate standard Gaussian distribution. ϵi’s

are generated from a Gaussian distribution N (0, 0.52). We have also ex-

perimented with a few other ways of generating the covariates and random

errors and made similar observations.

Our literature review does not suggest any approaches that closely align

with ours. We consider the following single-level approaches (which conduct

analysis at different levels separately) and two-step approaches as relevant

competitors. Specifically, for the former, we consider: (i) Sparse Finite Mix-

ture Model (S-FMR), which is implemented using R package “flexmix”.

This approach conducts FMR analysis and applies adaptive Lasso for spar-

sity. The numbers of groups and subgroups are set as the true values. This
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approach is considered as the baseline. (ii) Group Finite Mixture Model

(G-FMR): This approach applies group Lasso to simultaneously select

variables across multiple groups/subgroups. It is based on the development

in Hui et al. (2015), with the numbers of groups and subgroups set as the

true values. (iii) MCP Group Finite Mixture Model (MG-FMR): this ap-

proach is similar to (ii), with group Lasso replaced by group MCP (which

may have more favorable performance).

For two-step approaches, we consider: (iv) Ascending order (Order-

A). First, we perform clustering at the upper level. Then, within each

group, we perform clustering to generate subgroups. The model and penal-

ized estimation in each step follow (iii). (v) Descending order (Order-D):

its strategy is similar to (iv), but first generates subgroups and then merge

them to generate upper-level groups. Different from the proposed approach,

(iv) and (v) generate sample-nested structures. We acknowledge that there

can be other alternatives and the above may be more relevant and can pro-

vide direct insights into operating characteristics of the proposed approach.

We adopt the following metrics for evaluation: (i) True and false pos-

itive rates (TPR and FPR), where TPRL = 1
Kl

∑Kl

k=1

∑p
j=1 I(βl∗

kj ̸=0,β̂l
kj ̸=0)∑p

j=1 I(βl∗
kj ̸=0)

,

FPRL = 1
Kl

∑Kl

k=1

∑p
j=1 I(βl∗

kj=0,β̂l
kj ̸=0)∑p

j=1 I(βl∗
kj=0)

and TPRU= 1
Ku

∑Ku

k=1

∑p
j=1 I(βu∗

kj ̸=0,β̂u
kj ̸=0)∑p

j=1 I(βu∗
kj ̸=0)

,

FPRU = 1
Ku

∑Ku

k=1

∑p
j=1 I(βu∗

kj =0,β̂u
kj ̸=0)∑p

j=1 I(βu∗
kj =0)

for the Lower and Upper levels, re-
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spectively. (ii) Mean squared errors (MSE) for the two levels defined as

MSEL =
∑Kl

k=1

∥∥∥β̂l

k − β∗l
k

∥∥∥
2
and MSEU =

∑Ku

k=1

∥∥∥β̂u

k − β∗u
k

∥∥∥
2
. (iii) Rand

Index (RI) and Adjusted Rand Index (ARI) for the two levels, which mea-

sure grouping accuracy.

The proposed analysis is computationally very affordable. The analysis

of one replicate takes less than one minute on a standard laptop. For each

setting, we generate 100 replicates. The results for the unbalanced subgroup

design with ρ = 1.5 and ξ = 1 are presented in Table 1. Those for the other

settings are presented in Supplementary Materials.

In FMR analysis, estimation accuracy of regression coefficients is tightly

connected to clustering performance. This is also observed in our simula-

tion study. For subgroups, S-FMR fails to identify important variables,

leading to poor subgrouping results. High FPR and low RI/ARI values are

observed. G-FMR can distinguish unimportant variables more effectively

compared to S-FMR, as shown by significant reduction in FPR. However,

with its tendency of excessive shrinkage, G-FMR suffers from high bias,

leading to low TPR, RI/ARI, and high MSE values. MG-FMR demon-

strates notable superiority over the previous two methods, which is likely

caused by the advantage of MCP in estimation – this subsequently leads to

improved variable selection and grouping performance.
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Among those based on group MCP penalization (MG-FMR, Order-A,

and Order-D), the approach that first performs upper-level grouping and

then conducts within-group analysis has better performance. For example,

under S1 in Table 1, it achieves TPRL = 0.806, FPRL = 0.054, and RIL

= 0.788. The proposed method consistently demonstrates the best perfor-

mance. For example, under S1, S2, and S3 in Table 1, it achieves TPRL =

0.918, 0.885, and 0.807, respectively, while maintaining low FPR and high

RI (≈ 0.85) and ARI values. Particularly, in detecting weak signals at the

lower level, it excels with high TPR and low MSE values.

When strong signals are only present at the upper level, the methods

with group penalization also perform well, and the proposed method has

performance comparable to the best. An interesting observation is that, by

taking the results with ρ = ξ = 1 as a “baseline”, an increase of the overall

signal level (ρ = ξ = 1.5) leads to an improvement in variable selection

for all the methods. However, when the relative difference is larger (ρ =

1.5, ξ = 1), our method maintains consistent performance, whereas variable

selection performance of the other methods deteriorates. Also note that in

regular FMR analysis, it is of interest to examine performance when the

number of groups (subgroups) is mis-determined. This is not as applicable

to the proposed analysis – when the number of groups (subgroups) changes,
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the level of analysis also changes, and so does the “true” model.

6. Data Analysis

We analyze breast cancer (BRCA) data collected by The Cancer Genome

Atlas (TCGA) project and refer to many published studies for information

on TCGA. The response variable of interest is the ratio between “Positive

Finding Lymph Node Hematoxylin and Eosin Staining Microscopy Count”

and “Lymph Node Examined Number”. It is an indicator of tumor bur-

den, disease progression, and recurrence risk, and can describe the degree

of treatment (Braunstein et al., 2017). It has been suggested that this ratio

may be correlated with gene expressions. In genetic studies of breast cancer

(and many other cancers), heterogeneity has been suggested, and hetero-

geneity analysis has been shown to have important implications for disease

prevention, treatment, and management (Reis-Filho and Pusztai, 2011).

We adopt a dynamic smoothing approach based on empirical Bayes

to correct the response ratio. Let “Positive Finding Lymph Node Hema-

toxylin and Eosin Staining Microscopy Count” of the i-th sample be de-

noted as “positivei”, “Lymph Node Examined Number” as “testi”, and

ratioi =
positivei
testi

. Define ai =
∑n

i=1 testi
n·(testi+1)

, bi =
∑n

i=1 positivei∑n
i=1 testi

· ai. Then, the

adjusted ratio is r̃atioi = positivei+bi
testi+ai

. When the numbers of tests are low,
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directly calculating the ratios is prone to extreme values of 0 or 1, which

may lead to instability in subsequent analysis. This method effectively mit-

igates the occurrence of extreme values and has been frequently adopted.

It reflects the Bayesian principle of “the more data available, the less in-

fluence the prior has”, ensuring that for the samples with more tests, the

ratio estimates rely more on the actual data, while for the samples with

fewer tests, the ratio estimates are more influenced by global information.

We then retain the samples with testi > 1 and non-missing values and per-

form the transformation log
(

r̃atioi
1−r̃atioi

)
following He et al. (2021). For the

gene expression data, we focus on the “breast cancer” pathway (hsa05224 in

KEGG), considering a limited sample size. With the above preprocessing,

we have 139 gene expression measurements for 841 samples.

With the proposed approach, the numbers of groups/subgroups need

to be specified. As discussed above, in a sense, there is no wrong or right

specification. As observed in unsupervised hierarchical clustering and some

other analysis, some numbers and their corresponding clustering structures

may be less satisfactory. Taking into account the sample size, biological

(especially subtyping) information about the disease, and desired grouping

results, we choose five subgroups and three groups. We have examined other

options, for example four or six subgroups, and observed inferior results.
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Figure 2: Analysis using the proposed approach: coefficients of the iden-

tified genes, sorted in descending order based on magnitudes of the coeffi-

cients for the subgroups. Top (bottom): upper (lower) level.

The five subgroups have sizes of 241, 289, 176, 57, and 78, and 19 genes

are identified. The three groups have sizes of 552, 146, and 143, and 11 (out

of those 19) genes are identified. The identified genes are presented in Figure

2. Some interesting findings are made. First, even though not reinforced,

the samples at the two levels roughly satisfy a hierarchical structure: the
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first two subgroups overlap largely with the first group (orange in Figure 2),

the last two subgroups overlap largely with the second group (blue in Figure

2), and the third subgroup overlaps largely with the third group (green in

Figure 2). More specifically, the samples in subgroup-1 and -2, with a total

size of 530, belong almost exclusively to group-1. Those in subgroup-4

and -5, with a total size of 135, belong almost exclusively to group-3. The

correspondence between group-2 and subgroup-3 is slightly ambiguous, with

subgroup-3 also containing a small number of samples mainly from group-

1. This may be caused by some small heterogeneous effects – the effects

in group-1 are small in general. Second, for the important genes identified

at the upper level, their estimates are similar for the two levels. Here,

it is noted that the blue subgroup-4 and -5 in Figure 2 have significant

differences in the magnitudes of some regression coefficients. However, the

directions (signs) of these coefficients are highly consistent, which may lead

to them identified in the same group at a higher level. Additionally, the

important genes identified only at the lower level have weaker signals, and

their estimates differ significantly across the subgroups.

For the upper level, genes WNT9B, PTENP1, DVL2, FGF8, EGF, and

E2F2 are clearly identified. They are involved in key signaling pathways

that regulate cell proliferation, differentiation, apoptosis, and metastasis,
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which are critical factors influencing tumor aggressiveness and lymphatic

spread. WNT9B is part of the Wnt signaling pathway, which plays a role in

the determination and proliferation of cell fate. Its association with LNR

implies that it may influence the ability of tumor cells to invade lymphatic

vessels (Lu et al., 2021). Dishevelled-2 (DVL2) is another member of the

Wnt signaling pathway, mediating signal transduction. Its association with

the ratio suggests that it may modulate activity of the Wnt pathway, af-

fecting tumor invasiveness (Sharma et al., 2018). Variations in PTENP1

affect PTEN levels, with PTEN being a well-known tumor suppressor in-

volved in cell cycle regulation, thus altering tumor growth and metastatic

potential (Ghafouri-Fard et al., 2022). FGF8 is involved in cell growth and

angiogenesis, while EGF promotes cell proliferation and survival, poten-

tially facilitating tumor expansion and lymph node involvement (Masuda

et al., 2012). E2F2 regulates genes essential for cell cycle progression.

Similar insightful findings are made at the lower level. Genes WNT2B

and WNT1 can influence overall activity of the Wnt signaling pathway, and

their effects can accumulate and significantly affect tumor behaviors (Xu

et al., 2020). MAPK3, a key member of the MAPK signaling pathway,

may exert effects on cell signal transduction even with minor changes. And

PIK3CD indicates different degrees of activity of the PI3K/AKT pathway,
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potentially related to subgroup-specific molecular mechanisms influencing

tumor invasiveness. These two pathways play important roles in treatment

of various cancers (Ruchi Sharma et al., 2017). FGF8 and FGF9 may

exhibit different affinities across subtypes, leading to variations in activated

signaling pathways and biological effects.

To get some additional insight, in Figure S2 (Supplementary Materi-

als), we compare overall survival across the subgroups and groups. Log-rank

tests lead to p-values 1×10−4 for the upper level and 4×10−5 for the lower

level. In Figure S3 (Supplementary Materials), we compare lymph node

positive ratio across the subgroups and groups. Significant differences in

mean and variation are observed. Such differences suggest that the identi-

fied heterogeneity can have meaningful biomedical implications.

Data is analyzed using the alternatives, which lead to significantly dif-

ferent results. S-FMR identifies significantly different variables across the

subgroups (details omitted). It leads to relatively balanced subgroups with

sizes of 141, 135, 193, 173, and 199, and upper-level groups with sizes of

284, 389, and 168. MG-FMR identifies subgroups with sizes of 225, 307,

177, 43, and 89, and 16 genes are identified. The upper-level groups have

sizes of 544, 152, and 142, and 11 genes are identified. The subgroups

are approximately nested in the groups. Among the 11 genes identified at
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the upper level, 8 overlap with those identified by the proposed approach.

Genes ERBB2, WNT7B, and DDB2 are newly identified, FOS, WNT1, and

SHC4 are missed. Among the 16 genes identified at the lower level, only 4

(PTENP1, FGF8, EGF, and FGF4) overlap with those at the upper level

– this is significantly different from our proposed analysis. More results are

presented in Supplementary Materials Figure S1. It is interesting to see

that subgroup-3 and its counterparts in the other methods overlap signif-

icantly. They include samples with a very low proportion of lymph node

positivity (Figure S3 in Supplementary Materials). G-FMR, Order-A, and

Order-D lead to results inferior to MG-FMR, and the details are omitted.

7. Extension: Modeling Homogeneity in Effects Across Levels

With the proposed approach, the sets of important variables identified at

different levels have a nested structure. However, there is no special at-

tention to the estimated effects of the same identified variables at different

levels. Consider for example the case of linear regression. For the important

variables identified at the higher level, if they are orthogonal to those ad-

ditionally identified at the lower level, then their estimates are the same at

the two levels. Here, we explore modeling homogeneity in estimated effects,

under which estimates at multiple levels are better aligned in magnitude.
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The scheme of this estimation is presented in Figure S4 (Supplementary

Materials). For this purpose, an additional penalty term is introduced.

The proposed approach and its theoretical properties are described in Sec-

tion S3 of Supplementary Materials. We have experimented with a few

simulations and found that this approach has satisfactory identification,

grouping, and estimation performance, in a way similar to the above. In

addition, when there is a strong alignment in the magnitudes of important

effects, it achieves superior performance. Details are omitted here.

8. Discussion

For supervised heterogeneity analysis, we have developed a simultaneous

analysis at multiple levels, where the sets of identified important effects

have a nested structure. A novel penalization approach has been developed,

with its theoretical and numerical properties rigorously established. We

have also considered an extension, under which there is a better alignment

in the magnitudes of estimated effects. Overall, the proposed approach is

conceptually and statistically sound, and as shown in the numerical studies,

can provide a practically useful tool.

As elaborated above, it can be of interest to conduct multi-level super-

vised heterogeneity analysis. Although significant advancements have been
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made in this study and some others, it is still relatively underdeveloped

compared to under the unsupervised paradigm. For example, it can be of

interest to “combine” the existing techniques to achieve nested structures in

both identified important effects and samples. It can also be of interest to

combine the proposed nested structure with the penalized fusion technique,

which has been a popular alternative to the FMR technique. In hierar-

chical clustering and other multi-level analysis, the numbers of groups are

often specified in a heuristic way. This also applies to the proposed anal-

ysis. In general, it is of interest to more deeply examine the numbers of

groups/subgroups. Last but not least, more applications may be pursued.

Supplementary Materials

Online Supplementary Materials contains additional theoretical (referenced

in Sections 3), numerical (referenced in Section 5 and Section 6), and

methodological (referenced in Sections 7) developments, which is available

on the Statistica Sinica website.
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