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Testing Conditional Tail Independence

Zhaowen Wang'!, Huixia Judy Wang? and Deyuan Li*

LShanghai University of International Business and Economics,

2Rice Univeristy, and 3 Fudan University

Abstract: Measuring tail dependence structure is crucial in understanding the be-
havior of bivariate extremes. Common measures of tail dependence include tail
dependence index, coefficient of tail dependence, tail dependence function, and
so on. However, in practice, there may exist covariates which are related with
both variables. Up to our knowledge, there is no measure that focuses on the
conditional tail dependence structure. This paper first introduces the concept of
conditional tail dependence index, based on which we can distinguish between
conditional tail independence and conditional tail dependence. We provide a test
statistic named conditional tail quotient correlation coefficient (CTQCC) to test
the null hypothesis of conditional tail independence and obtain its asymptotic
distribution. Simulation studies are conducted to assess the finite sample per-
formance of the proposed method. We apply CTQCC to investigate conditional
tail dependencies of a large-scale problem of daily precipitation and daily average
wind speed in the United States, given the daily maximum temperature. The
results show that the proposed method is effective in detecting conditional tail

dependence structures.
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1. Introduction

Modeling extreme events is crucial in many fields, such as environmental
sciences, finance, and insurance. Understanding and predicting the oc-
currence of extreme events allows us to assess risks and make informed
decisions. Extreme value theory provides a valuable tool for characteriz-
ing multivariate dependencies in extremes, with applications including the
analysis of extreme flooding (Engelke and Ivanovy , 2021)), risk diversifi-
cation across stock returns (Poon et al), 2004), and extremal dependence
between air pollutants (Heffernan and Tawn , 2004).

Extremal dependence between two random variables can be measured in
different ways. A common practice is to classify bivariate random vectors
into two regimes—tail independence and tail dependence (also known as
asymptotic independence and asymptotic dependence)—based on the tail

dependence index A\:

AZL%P(X > QX(T) | Y > QY(T))7
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where Qx(7) and Qy (7) are the Tth quantiles of X and Y, respectively. If
A =0, X and Y are said to be tail independent; if A > 0, X and Y are
said to be tail dependent. We refer to Ledford and Tawn ([1996) for further
details on tail independence and tail dependence.

Although most research articles within the bivariate extreme value
framework assume a tail dependence model (i.e., A > 0), there is increas-
ing evidence that weaker dependence often exists in the bivariate tail region
across many applications—for example, significant wave height (Wadsworth
and Tawn, 2012), spatial precipitation (Le et al|, 2018), and daily stock
prices (Lehtomma and Resnick, 2020). Since the largest values of each vari-
able can occur together only when the variables exhibit tail dependence,
it is important to distinguish between the two regimes. Several attempts
have been made to test for tail independence of a bivariate vector (i.e.,
Hy : A = 0), including Hiisler and Li (2009), Bacro, et al (2010), and
Zhang et al, (2017).

In practice, confounding variables Z may exist that are related to both
X and Y. It is important to account for the effect of Z when quantifying
the extremal dependence between X and Y. For example, one may be
interested in the probability of concurrence of extreme values in X and

Y given the values of Z. Traditional notions of tail dependence and tail



independence are not sufficient to address the confounding effect of Z.
We introduce the concept of the conditional tail dependence index,
denoted by A(Z), which measures the tail dependence of (X,Y") given co-

variates Z. It is defined as
NZ) = liﬂp\z(X >Qx(112)|Y > Qy(r|2)),

where Qx (7 | Z) =inf{z: Fx(z |Z) > 7}and Qy(7 | Z) =inf{y : Fy(y | Z) > 7}
denote the 7th conditional quantiles of X and Y given Z, respectively. Here
Fx(-|Z) and Fy (- | Z) are the conditional distributions of X and Y given
Z, respectively, and Pz denotes the conditional probability given Z. The
conditional tail dependence index \(Z) describes the extremal dependence
between X and Y given Z.

Suppose Z has compact support Z. Then A(Z) is a function of Z € Z.
For a subset B C Z, we say that X and Y are conditional tail independent
on Bif A(Z) =0 for Z € B a.s. We call that X and Y are conditional tail
dependent on B if \(Z) > 0 for Z € B almost surely. Moreover, if B = Z,
we say that X and Y are conditional tail (in)dependent almost surely on
the entire support.

While in some cases, X and Y are both tail (in)dependent and con-
ditionally tail (in)dependent, there are examples where X and Y are tail

independent but conditionally tail dependent, i.e., A = 0 but A(Z) > 0



for Z € Z a.s. (see Example 1 below). In such cases, the classical tail
independence tests in the literature may lead to misleading conclusions.

In this paper, we consider the testing of conditional tail independence:
Hy : MZ) =0, for Z € Z a.s. We propose the Conditional Tail Quotient
Correlation Coefficient (CTQCC), an extension of the Tail Quotient Corre-
lation Coefficient (TQCC; see Zhang et al| (2017)), to test conditional tail
independence. We derive the asymptotic distribution of CTQCC and apply
it to investigate the conditional tail dependence structure.

The rest of this article is organized as follows. Section 2 illustrates
the concept of conditional tail (in)dependence through examples. Section
3 introduces CTQCC as the test statistic and investigates its asymptotic
properties. A testing procedure is developed for conditional tail indepen-
dence. Section 4 presents simulation experiments to assess the finite-sample
performance of the proposed method, and Section 5 applies the method to
test for conditional tail independence and explore the tail structure of daily
precipitation and wind speed from 2011 to 2023, recorded at 317 stations
across the United States. A brief conclusion is provided in Section 6. All

proofs are relegated to the Appendix.



2. Examples and Equivalency

To further illustrate the concept of conditional tail (in)dependence, we begin
with examples that contrast tail and conditional tail dependence structures.
Specifically, we present one example where X and Y are tail independent
but conditionally tail dependent, and another where they are tail dependent
but conditionally tail independent (see Example 1 below).

Denote the Fréchet distribution with parameters (v, s) as Fréchet («, s),
where o > 0 is the shape parameter and s > 0 is the scale parameter. The

probability function is given by
F(z) =exp(—(x/s)™),z > 0.

We call F' a standard Fréchet distribution function if « = s = 1. The
Gumbel copula belongs to the Archimedean family of copulas and is defined

by the parametric form:
0 971/¢
C(u,v) = exp{— [(—logu)” + (—logv)’] }, 0>1.

The parameter 6 > 1 corresponds to the case of tail independence.
Example 1. Let X and Y be two random variables with the following

bivariate structure:

(X,Y) =Wy + Vi, Wa+ Va),



where Wy, Wy, Vi, Vs are all Fréchet random variables with parameters (a1, 1),
(a1, 1), (ag,1), (ag, 1), respectively. Suppose (W7, Ws) follows a Gumbel
copula with parameter 6 > 1, and assume (W;,Ws), Vi, and V5 are mutu-

ally independent.

o If a; > an, then Vi and V5, have heavier tails than W; and W, re-
spectively. As a result, X and Y are tail independent. However, due
to the dependence structure of (W7, W5), X and Y are conditionally

tail dependent given V = (V1, V3).

o Conversely, if a; < as, then V; and V5 have lighter tails, and X and

Y are tail dependent, but conditionally tail independent given V.

This example highlights that tail dependence and conditional tail de-
pendence capture distinct aspects of extremal dependence and should be
evaluated separately. In particular, traditional tail dependence tests may
fail to conditional extremal structure, so we need to develop a new testing
method.

We now present a second example to demonstrate that the conditional
tail dependence index A(Z) can vary with the values of Z.

Ezrample 2. Let X and Y have the bivariate structure:

(X,Y) = (ZW, + V1, ZWy + Vs)



where Wy, Wy, Vi, V5 are as in Example 1, and Z is a Bernoulli(p) random

variable with p € (0,1). Assume a; < as. Then we have:

e When Z =0, A(0) = 0, so X and Y are conditionally tail independent.

e When Z =1, A\(1) > 0, so X and Y are conditionally tail dependent.

This example illustrates that A(Z) can depend sensitively on the value of
Z, emphasizing the importance of clearly specifying the null hypothesis and

the domain over which conditional tail independence is being tested.

Remark 1. Heffernan and Tawn (2004) introduced the notion of mutual
asymptotic conditional independence for a d-dimensional random vector
Y = (Y1,...,Y;) with Gumbel marginal distributions, by analyzing the

limiting behavior of

P(Yi<y.|Yi=w), and P(Y;<vy;|Yi=w), asy — oo,

for i = 1,...,d and ¢ # j. Here Y_; denotes the vector Y exclud-
ing the component Y; and y_; has the similar meaning. Their frame-
work differs from ours in that it assumes extreme conditioning values and
fixed marginals. In contrast, we do not require (X,Y,Z) to have specific
marginal distributions, and we condition on Z, which does not necessarily

take extreme values. Furthermore, A(z) is equivalent to A(1,1 | z), where



A(z,y | z) is the conditional tail copula defined by Gardes and Girard
(2015). Thus, A(z) can be estimated using the nonparametric estimator of
A(1,1 ] z) proposed in their work, and its asymptotic normality is guaran-

teed.

To formalize our setup, we now define a regularity condition on the
conditional distributions of X and Y. Define the univariate extreme value

distribution function as
G, (2) = exp{—(1 +y2) "/},

for 1 + vz > 0 and v € R. Throughout the paper, we assume the following
maximum domain of attraction condition, which is standard in the extreme
value literature and encompasses a wide range of heavy-tailed distributions.
Throughout the paper, we assume the following maximum domain of at-
traction condition, which is standard in the extreme value literature and

encompasses a wide range of heavy-tailed distributions.

Assumption 1. Fx(- | Z) and Fy (- | Z) belong to the maximum domains
of attraction of the extreme value distributions G, (-) and G.,(+), respec-

tively, for all Z, where v; > 0 and v, > 0.

We now state an equivalency result characterizing conditional tail in-

dependence under Assumption E]



Proposition 1. Let Fxy(-,- | Z) be the joint conditional distribution of
(X,Y) given Z. Suppose Assumption@ holds, then the following statements

are equivalent:

1. X andY are conditional tail independent.

2. n(IP"Z(X >Qx(1—x/n|2Z),Y >Qy(l—y/n| Z))) = op(1), for all

0<z,y<oo.

3. For Z almost surely, Fxy(-,-| Z) belongs to the mazimum domain of

attraction of the bivariate extreme value distribution G, (-)Ga,(-).

Under conditional tail independence, the conditional joint distribution
Fxy(-,- | Z) lies in the maximum domain of attraction of a bivariate ex-
treme value distribution with independent components, specifically, a prod-
uct of its marginal distributions G, (-) and G.,(+), as shown in Proposition
m. Consequently, the probability of concurrence of extreme values in X and
Y, given the value of Z, is asymptotically negligible under conditional tail

independence.



3. Proposed Testing Method

3.1 Conditional Tail Quotient Correlation Coefficient

Let {(X;,Y;,Z;),i=1,--- ,n} be independent and identically distributed

copies of random vector (X,Y,Z). Define

X, X
max (un—é’l) max <yn IZ 71)
An _ HlaX ( 7,) ’ @n — HlaX ( ’L) )
1Si<n | oo (#7 1) I<i<n | ax (—un)((ii)’ 1)

where the thresholds u,(Z;) = Qx (1 —c¢/n | Z;) and v, (Z;) = @y(l —c/n |
Z;) are the estimated conditional (1 — ¢/n)th quantiles of X and Y given
Z, respectively (see (@) below), and ¢ is a positive constant.

The choice of ¢ involves a trade-off. If ¢ — oo, the selected quantile
level may no longer lie in the tail region, resulting in substantial bias. On
the other hand, if ¢ — 0, there may not be enough data to compute the
test statistic reliably. The quantile level 1 — ¢/n is commonly referred to
as an extreme level in extreme value theory. In practice, we select a finite

value of ¢ to balance bias and variance in the tail estimation.

We now define CTQCC as

A +6,-2

AL X0, 1 (3:-1)

an

The CTQCC g, in Equation (El]) is designed to test conditional tail in-

dependence between X and Y given all values of Z. If interest lies in a



3.1 Conditional Tail Quotient Correlation Coefficient

particular subset B C Z, i.e., testing Hy : N(Z) = 0 for Z € B almost
surely, one can restrict the data to the set {(X;,Y;,Z;) : Z; € B}.

To study the properties of CTQCC, we define

%ﬂ_—f, ife>1,y>1lz+y>2,

fx,y) =

1, else.

By Theorem E], we have P(A,, > 1) > 0 and P(©,, > 1) > 0 for any n > 1,
and both A,, and ©,, are almost surely greater than or equal to 1 as n — oo.
Therefore, g, = f(A,, ©,) takes values between 0 and 1 almost surely. For
a fixed sample size n, the larger A, or ©, becomes, the smaller g, tends
to be, reflecting less agreement in tail magnitudes. In this way, ¢, serves
as a measure of conditional tail dependence between X and Y. A value
of @, close to 1 implies that either A,, or ©,, is close to 1, indicating the
presence of co-movement in the tails of X and Y conditional on Z, i.e.,
nearly complete conditional tail dependence.

Remark 2. CTQCC is inspired by the TQCC proposed in Zhang et al.

(2017), but it possesses several distinctive features. Given a random sample

of unit Fréchet random variables {(X;,Y;)}._,, TQCC is defined as

=1

maxi<;<n {max (X, u,) /max (Y;, un) } + maxi<;<n {max (¥;, u,,) / max (X;, u, )} — 2

maxi<i<n {max (X, u,) / max (Y;, up,)} X maxi<i<, {max (Y;, u,) / max (X;,un)} — 1’
where u,, is a random threshold. The asymptotic distribution of TQCC

is derived under two classes of thresholds. Unlike TQCC, the threshold



3.2 Asymptotic Distribution of CTQCC

selection in CTQCC is based on estimated conditional quantiles at a speci-
fied quantile level. Moreover, CTQCC takes maximum over (X;/u,) and 1
instead of over X; and w,,. This construction and the selection of thresholds
enable CTQCC to handle variables with differing tail heaviness, and does

not require the marginal distributions to be unit Fréchet.

3.2 Asymptotic Distribution of CTQCC

In this subsection, we derive the asymptotic distribution of CTQCC under
the null hypothesis of conditional tail independence. Recall that we choose
the thresholds u, and v, as estimated extreme conditional quantiles, de-
fined as u,(Z;) = Qx(1 — ¢/n | Z;) and v,(Z;) = Qy(1 — ¢/n | Z;). To
estimate thresholds, we consider fitting the following linear quantile regres-

sion models:

Qx(7|2) =Z"Bi(7), Qv(r|Z)=2"Bx(r), (3.2)

where 75 € (0, 1) is a fixed constant and 7 € [r, 1].

Now define a sequence of quantile levels T = {7, x < Tpp1 < -+ <
Tm} C (70,1), where m = n — [n"] with [a] denoting the integer part of a,
and 7; = j/(n+1). For each j =n —k,--- ,m, we define

n n

Bi(7)) = arg min ZP@- (X; —Z78), Ba(7;) = arg migz,% (Y, — 2]

R4
pe =1



3.2 Asymptotic Distribution of CTQCC

where p,(u) = (7 — 1(u < 0))u.
Define q1;(Z;) = ZIB1(%), 42j(Z:) = ZIBa(y),i = 1,-++ m,j = n —
k,---,m. Consequently, Qx (1 —c¢/n|Z;) and Qy (1 —c¢/n|Z;) can be

estimated by

R 1— %nfk M(Z:)
QX (1 — C/?’L | Zz) = (—) q1(nfk)(z7,)a

c/n

N 1 — 7~_n—k ¥2(Z:)
r-cmizo=(F22) T wen@). 63

where the Hill estimators 7;(Z;) and 7»(Z;) are constructed as

q2(n— ]) )

k
Ch(n —7) )

71(Z;)
71( QIn k)Z)

Y2(Z;)

:n"7 ] [77]

To establish the asymptotic properties of the estimated extreme quan-
tiles and consequently the proposed CTQCC, we impose the following as-

sumptions. Here, a,(Z) ~ b,(Z) uniformally for Z denotes that

£o.

sup
ZezZ

b-(2)
Assumption 2. The distribution function of Z, Fz has compact support

Z with E (ZZ") positive definite.

Assumption 3. There exist auxiliary lines Z — Z73,,,Z — Z*3,, such
that for X* = X — Z73,,,Y* =Y — Z*3,, and some heavy-tailed dis-

tribution functions Fi(-), F(-) with extreme value index v; > 0,7 > 0,



3.2 Asymptotic Distribution of CTQCC

respectively, it holds that

1— Fy-(t] Z)

= — 41 61/\; op ,
K- ho, L W RO K@+ e}

1— Fy«(t|Z)

1= 1 _ 5y T o |
Kz (- Ry L U RO )+ (1))

uniformly for Z € Z as t — oo, where Ky(-) > 0, Ky(-) > 0, Ky, K, are
continuous bounded functions and §; > 0,d, > 0 are constants. Note that

Ki() and Ks() satisfy Ki(pz) = Ka(pz) = 1, where pz = E(Z).
Assumption 4. As 7 — 1, it holds that

o o o o
CFM 12~ o F /K@), RN 1 2) ~ o B Ka()),

uniformally for Z and that 2 Fy ' (1—7), & F; ' (1—7) are regularly varying

at zero with index —y; — 1 and —~ — 1, respectively.

Assumption 5. U;(t) = F;'(1 — 1/t) and Uy(t) = F,*(1 — 1/t) both
satisfy the second-order condition with v; > 0, 01 < 0, A;(t) = 71d;t¢", and
72 > 0, 00 < 0, Ag(t) = 72dat??, respectively, with dy # 0,dy # 0, i.e. for all

5> 0,ast— o0,

A(t)™ %1((29)) — s = (s —1) /o1,
Ay(t)™! Ualts) s — 877 (52 —1) /0y



3.2 Asymptotic Distribution of CTQCC

Assumption 6. Asn — 00,k =k, — 00, k/n — 0,k > n" k~/?n"logk —
0,\/%(”/]{7)5 — 07 where E = max(§17§2)7§1 = maX(gh_(Sl?_’Yl)vaZ =

max(2, —d2, —¥2), and 1 > 0 is some small constant.

Assumption E requires some form of equivalence between 1 — Fx«(t | z)
and 1 — F(t), and between 1 — Fy«(t | z) and 1 — Fy(t) at the right tails,
respectively. Under Assumptions B and a, Theorem 3.1 of Chernozhukov
(2005) shows that K(-) takes the following form: K (z) = (z"w) Y7 for some
w € RPF! such that plw =1 and z'w > 0 for all z € Z. Assumption@
is a von Mises type condition for the distribution belonging to a maximum
domain of attraction. Assumption B is a second-order condition for the
distribution functions F; and F5. Assumption a controls the order of &
such that the asymptotic bias of the extreme value indices reduce to zero.

The following theorem establishes the limiting joint distribution of A,
and ©,,, as well as the asymptotic distribution of the CTQCC statistic g,

under the null hypothesis of conditional tail independence.

Theorem 1. Suppose the linear quantile regression model ) and As-

sumptions B—B’ hold. Under the conditional tail independence, we have

eXp(—C.Ti%—Cyié), Zf121,9217$+y>2;
lim P(A, <z,0, <y)=
n—o0

1, else.



3.2 Asymptotic Distribution of CTQCC

and as n — o0,

n 5 f(max(Uy, 1), max(Us, 1)),

where Uy and U, are independent, U, ~ Fréchet (v7',¢") and Uy ~

Fréchet(yy ', ).

In practice, the tail indices 7, and 7, are typically unknown and must be
estimated in order to evaluate the limiting distribution of f(max(Uy, 1), max(Us, 1)).
Since the estimators 7;(Z;) and 7»(Z;) are computed for each ¢ = 1,...,n,

we define the sample averages as plug-in estimates:
S I PR BN,
M= " Z%(Zi)a T2 = 7 Z V2(Z;). (3.4)
i=1 i=1

These estimates are then substituted into the limiting distribution to ap-

proximate the law of ¢, under the null.

Remark 3. Note that

1 1
exp(—x_q - y_g)’ if x Z Ci’ﬂ)iy Z 0*72’
lim P(c A, <z,¢ 7?0, <y)=
n—00
0, else.

Define the rescaled version of g, as

_ AL+ 0, — 2
n = cMmA, X 20, —1°

Then, as n — oo,

lim P(¢, < z) = P[f{max(V;, ¢ "), max(V3, ¢ ")} < x],

n—oo



3.2 Asymptotic Distribution of CTQCC

where V] and V5 are independent Fréchet random variables with parameters
(v71,1) and (75*, 1), respectively. The limiting distribution above only
depends on the extreme value indices v; and 75, and does not vary with
respect to c. However, in numerical experiments, we must estimate v; and
~9, which leads to inferior performance of ¢, compared with ¢,. This is why
we propose ¢, as the test statistic. Moreover, if we set ¢ = 1, then ¢, equals
Gn, and both share a simplified limiting distribution. Nevertheless, we do
not recommend using ¢ = 1 in practice, as this would imply that only one
observation exceeds the threshold for either X or Y, leading to unreliable

inference.

We propose a testing procedure based on Theorem m For a given signif-
icance level a € (0, 1), the critical value is obtained via Monte Carlo simula-
tion as the upper a percentile of the distribution of f(max(Uy, 1), max(Us, 1)).
If the observed value g, exceeds this critical value, we reject the null hy-
pothesis Hy at level o and conclude that there is evidence of conditional
tail dependence between the two variables of interest, given the covariates.
Otherwise, we do not have sufficient statistical evidence to reject Hy. In-
tuitively, a larger value of ¢, implies that either A, or ©,, is smaller (e.g.
close to 1). In this case, there exists co-movement in the tails of X and Y

conditional on Z, thus providing evidence against the null hypothesis.



4. Simulation

We conduct simulation studies to evaluate the performance of CTQCC in
testing conditional tail independence. Data are generated from the following
model:

X=14Z+4e, Y=14+2Z+(14+1r2)es, (4.5)

where (e, e2) is a random error vector independent of Z, and Z follows
a uniform distribution on [0,1]. The parameter r controls the degree of
heteroscedasticity in the model. We consider two distinct cases for the
joint distribution of (ej, e3).

Case 1: (e1,e) has marginal unit Fréchet distributions and a joint
dependence structure specified by a normal copula. We vary the correlation
parameter p of the copula. It is well known that (eq, e5) are tail independent
when p < 1.

Case 2: (e1, e3) has marginal unit Fréchet distributions and is coupled
through a Gumbel copula with dependence parameter 6. In this setting,
(€1, €2) exhibit tail dependence for 6 > 1.

We set the sample size to n = 2000 and consider three extreme quantile
levels: 1 — ¢/n = 0.990, 0.992, and 0.994. Here, ¢ can not be too small

because we need sufficient observations exceeding the high threshold for



Table 1: Type I error rates of the proposed test for Case 1 with significance

level 5%.
r=20 r=2
pk/n 7=0990 7=0992 7=099%4| p k/n 7T=0990 7=0.992 7=0.994
2.5% 4.5 3.4 1.8 2.5% 4.3 3.1 1.7
5% 4.2 3.5 2.4 5% 4.4 3.3 2.5
055 10% 4.8 3.8 2.9 055 10% Dl 4.1 3.1
15% 4.8 4.1 3.0 15% 5.3 4.6 3.5
2.5% 5.7 3.8 2.0 2.5% 5.7 3.7 1.9
5% 5.6 4.2 2.8 5% 5.5 4.0 3.0
0.60 10% 5.9 4.3 3.3 0.60 10% 6.1 4.8 3.3
15% 6.1 4.7 3.3 15% 6.6 5.2 3.9
2.5% 7.4 4.7 2.9 2.5% 7.2 4.7 2.7
5% 7.5 5.3 3.6 5% 7.3 5.1 3.6
0.65 10% 8.0 5.6 3.7 0.65 10% 7.9 5.7 4.2
15% 7.7 5.5 4.0 15% 8.6 6.1 4.4

both X and Y to ensure reliable estimation. For the tail index estimation,
we choose k/n = 2.5%,5%, 10%, and 15%. The simulation is repeated 2000
times for each scenario to assess the performance of the proposed test under
varying threshold and estimation settings.

Table m reports the percentages of rejecting the null hypothesis of con-
ditional tail independence at the significance level a = 0.05 for p = 0.55,
0.60, and 0.65 in Case 1. Since X and Y are conditionally tail independent
in this setting, these proportions correspond to the empirical Type I error

rates. As shown in Table m, the Type I error decreases as p approaches



Table 2: Empirical power of the proposed test for Case 2 with significance

level 5%.
r=20 r=2
0 k/n 7=0.990 7=0992 7=0.99%4| 0 k/n 7=0.990 7=0.992 7=0.994
2.5% 41.4 31.4 21.2 2.5% 41.4 31.0 21.1
5% 41.2 32.6 22.6 5% 40.7 324 22.5
15 10% 41.3 32.5 24.2 L5 10% 41.7 33.2 24.8
15% 40.7 32.7 22.9 15% 41.8 33.4 24.5
2.5% 97.5 94.7 87.6 2.5% 97.3 94 .4 87.7
5% 97.5 94.7 87.6 5% 97.3 94.5 87.3
29 10% 97.0 94.2 87.1 ] 10% 97.2 94.5 86.7
15% 97.1 94.3 86.4 15% 97.3 94.7 87.4
2.5% 99.9 99.8 99.2 2.5% 99.9 99.8 99.0
5% 99.9 99.8 99.2 5% 99.9 99.8 99.1
35 10% 99.9 99.8 98.9 35 10% 99.9 99.8 99.1
15% 99.9 99.8 99.0 15% 99.9 99.8 99.1




0, which corresponds to the case of independence. In addition, for most
combinations of p and 7, the empirical Type I error tends to decrease as
k decreases. Similarly, for most combinations of p and k, the Type I error
tends to decrease as 7 increases. Based on these observations, we recom-
mend using a smaller value of k£ and a larger value of 7 to improve test
performance under the null.

Table P reports the percentages of rejecting the null hypothesis at the
same significance level a = 0.05 for # = 1.5, 2.5, and 3.5 in Case 2. Since
X and Y are conditionally tail dependent given Z, these proportions cor-
respond to the empirical power of the test. As shown in Table @, the
empirical power increases with 6, reflecting stronger tail dependence. The
performance of the test is also relatively robust across a wide range of values
for both k£ and .

We also plot the empirical distribution of the CTQCC test statistic un-
der Hy, along with the density of its limiting distribution, for Case 1 with
7 = 0.994 in Figure E] The empirical density of CTQCC closely approxi-
mates the limiting distribution across a range of values for r, p, and 7. This
alignment suggests that CTQCC accurately captures the underlying distri-
butional behavior under the null, reinforcing its utility and effectiveness in

practical applications.
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5. Real Data Analysis

Understanding the structure of compound climate extremes—such as simul-
taneous extremes in precipitation and wind speed—is crucial for assessing
climate risks. In this section, we apply our proposed method for testing
conditional tail independence to the Daily Global Historical Climatology
Network (GHCN-Daily) dataset. GHCN-Daily provides daily updates on
climatic variables from over 80,000 stations across 180 countries and territo-
ries, and is publicly accessible through the NOAA National Climatic Data
Center. A detailed description of the dataset can be found in Menne et al.
(2012). For our analysis, we use daily data on precipitation (X), average
wind speed (Y'), and daily maximum temperature (Z) collected from 317
stations across the United States, covering the period from 2011 to 2023.

Before investigating the conditional tail dependence structure, we first
examine the unconditional tail dependence between daily precipitation and
average wind speed using the TQCC test. The resulting p-values are plotted
in Figure . As shown, most stations exhibit near-zero p-values, indicating
strong evidence against the null hypothesis of tail independence. This sug-
gests that extreme precipitation events are more likely to occur when wind
speeds are also extreme at many of these stations.

However, both precipitation and wind speed may be influenced by tem-



perature,a relationship established in several studies, including [Trenberth
and Shea (2005), Fujibe (2009) and Qu et al| (2012). To further investigate
the role of temperature, we stratify the data into two groups: days with
maximum temperature above 20°C and days with maximum temperature
less than or equal to 20°C. Our goal is to test for conditional tail indepen-
dence between precipitation and wind speed, given the level of maximum
daily temperature.

The analysis is restricted to stations with at least 100 observations in
each subgroup after stratification. Figure 1551, @ and @ display empiri-
cal probability density distribution of p-values of TQCC test and CTQCC
tests under the two scenarios, respectively. We note that for all the three
cases, the distributions of p-values is heavily concentrated around zero. A
closer examination reveals distinct patterns: a majority of stations that
are significant in the unconditional TQCC test lose significance under a
specific conditional framework. Notably, of all the stations, 55.22% are
significant in the unconditional TQCC case but lose significance under the
conditional test given daily maximum temperature greater than 20°C. Sim-
ilarly, 57.83% of the stations are significant in the unconditional case but
insignificant under CTQCC given daily maximum temperature less than or

equal to 20°C. There is an overlapping of 35.65% significant in the TQCC



Figure 2: TQCC test for tail independence between daily precipitation and

average daily wind speed.

case but not significant under both conditional frameworks.

We also observe interesting regional weather patterns. For example,
stations in Alaska exhibit strong tail dependence between precipitation
and wind speed in both the unconditional case and when the maximum
temperature is at or below 20°C. However, when the temperature exceeds

20°C, the null hypothesis of conditional tail independence is not rejected,



p-value
- 100

Figure 3: CTQCC test for conditional tail independence given daily maxi-

mum temperature greater than 20°C.

suggesting that compound extremes are less likely to occur in Alaska on
warmer days. This pattern stands in direct contrast to the weather pat-
terns in Texas. Stations in Texas also show significant unconditional tail
dependence, but demonstrate significant conditional tail dependence specif-
ically when temperatures exceed 20°C, while showing insignificance when

the maximum temperature is at or below 20°C. This comparison under-
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Figure 4: CTQCC test for conditional tail independence given daily maxi-

mum temperature less than or equal to 20°C.

scores how the drivers of compound extremes can be highly region-specific

and conditional on environmental factors.

6. Conclusion

In this paper, we introduced a new measure and test procedure for char-

acterizing conditional tail dependence, formulated through the conditional



Figure 5: Empirical pdf of p-values for: (a) TQCC test for tail independence
between daily precipitation and average daily wind speed; (b) CTQCC test
for conditional tail independence given daily maximum temperature greater
than 20°C; (c¢) CTQCC test for conditional tail independence given daily

maximum temperature less than or equal to 20°C.

tail dependence index \(Z), which captures the extremal dependence struc-
ture conditional on covariates. Building on this framework, we proposed
a statistical testing procedure for conditional tail independence based on a
novel test statistic, the Conditional Tail Quotient Correlation Coefficient
(CTQCC), which generalizes the previously developed Tail Quotient Cor-
relation Coefficient (TQCC). We derived the asymptotic distribution of
CTQCC under the null hypothesis and evaluated its performance through
extensive simulation studies. Finally, we applied our method to the GHCN-

Daily dataset to examine compound climate extremes. The empirical re-



sults demonstrate that the proposed test performs well in detecting condi-
tional tail dependence across a range of settings.

One limitation of the current methodology is its reliance on the as-
sumption that the sample is independent and identically distributed (i.i.d.).
In real-world applications, data may exhibit temporal dependence or non-
stationarity, which can affect the validity of the test. One way to address
this issue is to first fit an ARMA-GARCH model for capturing the evo-
lution of the conditional mean and variance of the underlying stochastic
process, assuming a parametric model for innovations (see, e.g. McNeil and
Frey (2000) and Nolde et al| (2022)), followed by calculating CTQCC with
the sample of realized innovations. Extending the current methodology to

accommodate non-i.i.d. data is an interesting direction for future research.

Supplementary Materials

The supplementary material contains the proofs of Proposition 1 and The-

orem 1.
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